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Sensor systems typically have not played a significant role in the aircraft conceptual
design process. However, with the proliferation of unmanned aerial systems (UAS), the
role of sensor systems on vehicle conceptual design can no longer be ignored. This is-
sue is accentuated at smaller scales, where the sensing equipment may place significant
constraints on the size, weight and power requirements of the aircraft. In this paper, we
present a novel method that incorporates sensor systems into vehicle conceptual design
and mission capability analysis. The presented method relies on a simulation framework in
which the Blender Game Engine is used to generate complex cluttered flight environments.
The MORSE simulator is used to fly vehicles with varying sensor configurations in these
cluttered environments in order to assess mission capabilities. Results show that this ap-
proach has the potential to assess mission capabilities as a function of sensor configurations
and specifications.

I. Introduction

Designing a new aircraft is a challenging and an inherently multi-disciplinary process. Arriving at an ap-
propriate conceptual design marks the first step of this process. As a result, there a significant benefits

to be achieved by identifying a good conceptual design at the beginning of this undertaking. Tradition-
ally, conceptual design studies have focused on aerodynamics, structures, propulsion, stability, control, and
manufacturing,1 and approach the problem through multidisciplinary optimization techniques,2,3 such as ge-
netic algorithms.4 While these studies have significant appeal, they are largely targeted towards traditional
disciplines and do not take into account the potential role of sensor systems in conceptual design. Recent
conceptual design studies have shown some interest in non-traditional factors, such as aircraft emissions5 and
aircraft cost models.6 However, other significant factors, such as the size, weight, and power requirements
of on-board sensing equipment, have thus far not been a fundamental part of the conceptual design stage.
It is only very recently that researchers have begun to direct their focus towards the effects of sensors on
conceptual design.7,8

The effects of sensors and the associated data processing algorithms on vehicle design and mission ca-
pabilities are quite significant for unmanned aerial system (UAS) applications. Specifically, there exists a
trade-off between the equipment required for high levels of automation, and the performance of the vehicle
as captured by its size, weight and power requirements. The industry is currently witnessing trends that
push for smaller UAS in both civilian and military applications to enhance mobility and ease of deployment.
As the scale of the vehicle decreases, the sensing equipment may scale disproportionately and actually begin
to drive size and performance metrics. There exists a significant body of work on sensor systems required
for autonomous operations in cluttered environments,9 as well as on high-order modeling of vehicle dynam-
ics.10 However, conceptual design requires fast design cycles, so a method to incorporate sensor systems into
vehicle conceptual design and mission performance is required.
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In this paper, we present a methodology to take into account the effects of sensor systems and their
specifications on mission performance at the conceptual design stage itself. The UAS mission is undertaken
in a virtual 3D environment which is modeled and rendered using the Blender Game Engine (BGE). The
simulation itself is performed using the Modular OpenRobots Simulation Engine (MORSE) simulator. Sen-
sor systems with various specifications and configurations can be tested via flight simulations through a
cluttered environment such as a forest. Mission performance metrics can then be compared for the various
sensor system configurations to arrive at the appropriate conceptual design. The remainder of this paper
is organized as follows. Section II discusses the Blender Game Engine and MORSE frameworks used to
perform the included work. Section III discusses the simulation framework itself, including navigation and
sensor perception algorithms. Section IV discusses the simulation results and mission performance metrics
for a waypoint navigation mission Section V provides some concluding remarks and briefly discusses the
potential of this approach for improving conceptual design of small-scale unmanned aerial systems.

II. System Setup

This section provides details regarding the system setup used to perform simulations with the goal to incor-
porate sensor specifications into the conceptual design process of small UAS. The scope of the simulations
has been restricted to small UAS with gross take-off weight under 1,320 lbs., where such analyses are most
likely to produce actionable results, but in principle the approach is applicable to larger UAS as well. The
following subsections discuss the system requirements and simulation framework required to perform the
included work.

A. Minimum system requirements

The minimum system requirements to load and run the simulation environment include an Intel i5 (or
equivalent) processing unit, 4 GB RAM, and a graphics card that supports GLSL (OpenGL Shading Lan-
guage) shading. The MORSE simulator is currently only supported for Linux operating systems. For the
simulations included in this work, an 8-core Intel Core i7-4770 CPU, with 8 GB RAM and a GeForce GT
620/PCIe/SSE2 graphics card was used, with a 64-bit installation of Ubuntu 14.04 LTS.

B. Simulation framework

The simulation framework consists of three distinct components: the Blender Game Engine (BGE), the
Modular OpenRobots Simulation Engine (MORSE) simulator, and the Robot Operating System (ROS)
middleware. The Blender Game Engine (BGE) provides the tools to efficiently render the robot and envi-
ronment features. BGE is part of an open-source 3D graphics tool called Blender that enjoys wide popularity
and has a vibrant community of developers. Blender is available on the three major operating systems, Mi-
crosoft Windows, Mac OS X, and Linux. As will be seen later in this text, the Blender Game Engine enables
the development of near photo-realistic environments for the UAS to fly through. Photo-realism is one of the
key features of the presented simulation framework, and an important requirement for simulating unmanned
aerial vehicles whose guidance and navigation systems may rely heavily on vision-based sensors. In addition
to photo-realism, BGE provides features such as collision detection and physics-based simulations, as well as
a Python-scripting API for customized control of the simulation environment. Specifically, Blender’s Python
API allows for programmatic generation of user-defined environments, a feature that is used in the presented
work to generate cluttered forest environments. The physics simulation engine that is part of BGE is utilized
by MORSE to run realistic simulations in virtual environments.

The Modular OpenRobots Simulation Engine (MORSE) has been in development since 2011, and has seen
a recent increase in popularity with other developers, such as those of the Open Motion Planning Library
(OMPL), providing integrations with MORSE.11 The MORSE simulator can be controlled directly through
the command line. MORSE contains in-built actuator, sensor, and robot modules that can be combined
to simulate a robot in a virtual environment. Additionally, MORSE allows for limited simulation of multi-
robot systems if vision systems such as cameras are not simulated. MORSE is open-source and exceptionally
easy to customize. The robot model and flight actuator used in the included work are customized versions
not available in the current MORSE repository. MORSE also supports four different middleware, viz.
ROS, YARP, Picolibs, and MOOS, which enables researchers to re-use existing codebases for performing
simulations.
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In this work, the Robot Operating System (ROS) middleware was used, though any of the other middleware
supported by MORSE could have been used as well. ROS is a mature platform whose first official release
was in 2010, though it has been in development since 2007. ROS is currently supported by the Open Source
Robotics Foundation (OSRF). The primary advantages of using ROS middleware in the current simulation
framework is its increasing status as a de facto standard in the robotics community. ROS handles the
communication between various sensing, actuation and computational modules, allowing developers to focus
on algorithms rather than the intricacies of communication between them.

Figure 1 describes the relationship and dependencies between these three components of the simulation
framework. Python scripts make use of the application programming interface (API) available in Blender
to generate cluttered forest simulation environments. MORSE uses this simulation environment as well as
BGE’s in-built Bullet physics engine for flight simulation. Within this simulation environment, the ROS
middleware provides a means for communication between the various robot sensors and actuators through
ROS topics. The user may choose to define his or her own ROS topics or choose to use the topics provided as
part of MORSE’s library of sensors and actuators. The ROS middleware enables researchers to use existing
Python codebase for functions such as sensor perception, guidance, navigation and control. The next section
discusses how these three distinct components can be used together to develop a simulation framework for
incorporating sensor systems into the conceptual design of unmanned aerial systems.

Figure 1. Relationship between Blender Game Engine, MORSE simulator, and ROS middleware.

III. Simulation Setup

This section discusses the method for generating the simulation environment using BGE, low-order kine-
matic models to simulate the UAS, waypoint navigation, and low-order power usage modeling for a given
mission profile. The simulation setup establishes a framework for testing mission completion and success as
a function of the capabilities of on-board sensor systems.

A. Generation of cluttered environments

In the included work, forests are taken as prototypical examples of cluttered environments. The simulation
of autonomous flight through such cluttered environments requires virtual models that faithfully mimic the
structure of real forests. Fortunately, the study of the distribution of trees in forests has been an area
of significant research for several decades. Important works in this field, such as those of Hubbell12 and
Lieberman,13 removed several misconceptions through accurate measurements of tree locations in forests.
Other works, such as those by Keuls et al.,14 have sought to establish a stochastic representation of the spatial
distribution of individual elements. Together, these works have helped create a healthy body of literature
that can be leveraged for creating virtual forests, as exhibited by the works of Moeur15 and Karaman.16

According to prevalent methods, trees in a forest may be modeled as a Poisson process, which is essentially
a counting process.17 Thus, for dimension d = 2, let N(Ai) be a random variable representing the number of
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trees in a region Ai ⊆ Rd. Then the collection of these random variables {N(Ai) : Ai ⊆ R2, i = 1, 2, 3, ...} is
a Poisson process defined on R2 and a valid model for spatial distribution of trees in a forest. This Poisson
process is characterized by a density parameter λ, which represents the density of trees in a forest. It is
observed that typical values of tree density in a forest range from 0.00001 to 0.01 trees/m2, depending on
the tree species under consideration.13 For the purposes of this work, the tree density is assumed to be 0.001
trees/m2.

The simulated region A of the forest can be divided into disjoint cells of size dx × dy, where dx and dy
represent the cell dimensions in meters in the x and y directions, respectively. In order to simulate a Poisson
forest, trees are placed in the region A according to the following rules:

• N(Ai → 0) = 0, and

• N(Ai) and N(Aj) are uncorrelated when Ai
⋂
Aj = φ, ∀ i 6= j.

Now, these requirements of the Poisson process are approximately adhered to by restricting the cell dimen-
sions to dx = 0.5 m and dy = 0.5 m. Further, each cell is populated with trees independent of other cells.
The probability of a tree being present in a specific cell of known area is given according to the following
distribution:

P (N(|A|) = k) =
eλ|A|(λ|A|)k

k!
, (1)

where k ∈ Z+ represents the number of trees in the cell. With the simulation environment in place, the
next step for developing the simulation framework is to generate the low-order kinematic models for flight
simulation, which is discussed in the next subsection.

Figure 2. Simulation environments generated algorithmically using Blender’s Python API. (a) Top view of
Poisson forest with conifer trees, (b) First person view of Poisson forest with conifer trees, (c) Top view of
Poisson forest with palm trees, (d) First person view of Poisson forest with palm trees

B. Low-order UAS system model and waypoint navigation

The unmanned aerial system is currently simulated using low-order kinematics, though higher-order dy-
namical models can easily be substituted into the plant description. The system state variables used to
describe the vehicle kinematics include position coordinates (x, y, z) in the Earth-fixed reference frame, and
the vehicle yaw (ψ) in body-fixed reference frame, whereas the bank angle (φ), the flight path angle (γ), and
the true airspeed (v) serve as control inputs to the system. The low-order kinematic equations used in the
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simulations are:

ẋ = v cosψ cosγ (2)

ẏ = v sinψ cosγ (3)

ż = v sinγ (4)

ψ̇ =
g tanφ

v
(5)

In addition, on-board energy (E) may be a another variable may be used to determine the state of the
UAS as follows:

Ė = −P (6)

where P denotes the on-board power usage profile. Since, the eventual goal of the study is to create a
simulation framework to assist in the conceptual design of small UAS, it is essential to develop models for
studying the power consumption in these systems as a function of sensor capabilities. Moreover, varying
sensor suites that have different power requirements may impact UAS mission success. Low-order power
usage models are developed using thrust and sensor suite power consumption as follows:

P = v T + Psensor (7)

where,

T = D +mg sinγ (8)

D =
1

2
ρv2SCD (9)

CD = CD0 + kC2
L, (10)

CL =
2mg

ρv2Scosφ
, and k =

1

πARe0
(11)

where, T represents the thrust, D represents drag, mg denotes weight of the UAS, ρ represents atmospheric
density, v denotes airspeed, S denotes wing span area, CD denotes drag coefficient, CD0 represents parasitic
drag, CL denotes lift coefficient, AR denotes wing aspect ratio, and e0 denotes Oswald efficiency. Psensor
denotes the power consumption by the sensor suite and is a function of the individual sensors on-board the
UAS.

The low-order aircraft models can be used in the navigation, guidance and control operations of the
aircraft. Specifically, the navigation and guidance functions may be implemented through path planning
algorithms, with waypoint navigation implemented at a global scale and obstacle avoidance implemented at
a local scale. Waypoint navigation is currently implemented with a PID controller with saturation of the
roll angle (φ) actuation input. More sophisticated guidance, navigation and control algorithms may be used,
but they are not necessary to demonstrate the novel contributions of this work.

C. Advantages and limitations of the simulation framework

One of the key advantages of the presented simulation framework is the tight integration between the
game engine and the environment renderer, with both being part of the Blender open-source development
effort. Together with the Python API that allows researchers to write scripts for algorithmically generating
simulation environments, these aspects of the Blender Game Engine tool provide a powerful method for
creating simulation environments. In addition, while Blender has a significant learning curve, it also has an
excellent developer community that researchers can turn to for technical support.

Due to its relatively recent appearance on the robotics simulation development scene, one of the drawbacks
of the MORSE is its relatively limited documentation as compared to other platforms such as ROS. However,
MORSE appears to have a fast update cycle with updates for the simulator appearing approximately every
six months, and the documentation is also being updated frequently. In addition, the relative ease with which
new robots and actuators can be added to the existing MORSE codebase makes it an attractive platform
for robotics development and testing of unmanned aerial systems.
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IV. Simulation results

The previous sections describe the development of the simulation framework using Blender to generate
cluttered simulation environments, MORSE for running the simulation, and ROS for the communication
framework between individual sensors, actuators and other simulation entities. In this section, we discuss
some of the potential uses of the simulation framework in assessing the conceptual design of a UAS which
may have a wide variety of on-board sensors. For example, Figure 3 shows that custom aircraft can be
designed to fly user-defined missions in virtual scenarios representative of real-world environments. The
virtual environment includes real-world physics, such as gravity, enabled by the Bullet physics engine. This
framework can also be advanced to include wind forces, but this has not yet been activated in our simulation
framework.

Figure 3. Custom aircraft model nav-
igating a Poisson forest environment.

Figure 4 shows the waypoint navigation capabilities developed
as part of the simulation framework. One can notice that the UAS
is able to navigate to all waypoints and return to the origin, while
mapping its environment. The blue dots in Figure 4 indicate the
raw data observed by an on-board LIDAR sensor, representing the
positions of the trees in the forest. The map generated by the UAS
will change with variations in the capabilities of the on-board sensor.
Specifically, LIDARs with lower specifications (e.g. lower angular
resolution) will produce world maps with lower information content.
This is evident in the two maps generated by sensor suites differing
in their specifications. The map shown in Figure 4(a) has been
generated by an on-board LIDAR with an angular resolution of 1
degree, whereas the map in Figure 4(b) has been generated by a
LIDAR with an angular resolution of 5 degrees. It is evident that
the map on the left contains more information and has the potential
to be more useful for obstacle avoidance. The ability to virtually
install sensor suites with varying capabilities has implications in the
conceptual design of new aircraft, especially small-sized UAS. For example, Figure 5 shows the power usage
of the waypoint navigation mission depicted in Figure 4(b). If the sensor suite had inferior specifications
resulting in an uncertain world view, it may be expected that the UAS will execute additional maneuvers
to avoid obstacles that its assumes are present in its world view. These additional maneuvers could lead to
increased power demands which may limit the aircraft’s ability to complete its mission. Alternatively, a UAS
equipped with a high-performance, power-hungry sensor suite may utilize its energy reserves too quickly and
may also be unable to complete its mission. These results can help guide the conceptual design of UAS and
also guide UAS reconfiguration to better fit the desired mission profile.

LIDAR angular resolution = 5 deg

Waypoint 1

Waypoint 2
Waypoint 3

Waypoint 4

Origin

Tree detected by LIDAR

LIDAR angular resolution = 1 deg

Waypoint 1

Waypoint 2
Waypoint 3

Waypoint 4

Origin

Tree detected by LIDAR

(a) (b)

Figure 4. Waypoint navigation using PID controller with roll angle actuator saturation. Blue dots on the map
indicate raw LIDAR sensor data depicting obstacles (trees) in the simulation environment. Maps generated
with virtual on-board LIDAR with angular resolution of (a) 1 degree, (b) 5 degrees. Map dimensions are in
meters.
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Figure 5. Power consumption profile for waypoint navigation mission shown in Figure 4. Power consumption
peaks during banking maneuvers. Sensor power consumption is based on representative commercially available
sensors including inertial sensors, LIDARs and cameras.

V. Concluding Remarks

The primary objective of this work was to demonstrate the use of Blender Game Engine and MORSE
simulator, along with ROS middleware, to successfully act as a means for conceptual design of unmanned
aerial systems while incorporating sensor specifications. The novel contribution of this work is in terms of
assessing the impact of sensor system capabilities on waypoint navigation mission performance via virtual
flight in near photo-realistic simulation environments. Current work is directed towards running Monte Carlo
simulations to identify the effect of various sensor configurations and mission profiles on mission endurance.
Results included in this work show that the BGE-MORSE-ROS framework could be used to aid conceptual
design of unmanned aerial systems.
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