SIMULATION OF STOCHASTIC DIFFERENTIAL EQUATIONS

Yoshiliro Saito ${ }^{1}$ and Taketomo Mitsul ${ }^{2}$
${ }^{1}$ Shotoku Gakuen Women's Junior College, 1-38 Nakauzura, Gifu 500, Japan
${ }^{2}$ Graduate School of Human Informatics, Nagoya University, Nagoya 464-01, Japan

(Received December 25, 1991; revised May 13, 1992)

Abstract

A lot of discrete approximation schemes for stochastic differential equations with regard to mean-square sense were proposed. Numerical experiments for these schemes can be seen in some papers, but the efficiency of scheme with respect to its order has not been revealed. We will propose another type of error analysis. Also we will show results of simulation studies carried out for these schemes under our notion.

Key words and phrases: Numerical solution, stochastic differential equations, error analysis, order of convergence.

1. Introduction

We consider stochastic initial value problem (SIVP) for scalar autonomous Ito stochastic differential equation (SDE) given by

$$
\begin{align*}
& d X(t)=f(X) d t+g(X) d W(t), \quad t \in[0, T] \tag{1.1}\\
& X(0)=x
\end{align*}
$$

where $W(t)$ represents the standard Wiener process and initial value x is a fixed value. In many literatures, whose partial list can be seen in the references of the present paper, numerical schemes for SDE (1.1) were proposed, which recursively compute sample paths (trajectories) of solution $X(t)$ at step-points. Numerical experiments for these schemes can be seen in some papers (Pardoux and Talay (1985), Liske and Platen (1987), Newton (1991)). However, the efficiency of numerical schemes has not been revealed in those works. We will propose error analysis separating error term into two parts (stochastic and deterministic parts). In this paper, we will show results of error behaviour in various numerical schemes on several SDEs under our notion. Then, in strong sense, the numerical features of schemes well reflect in the deterministic part of error.

In the next section, we describe several numerical schemes in mean-square sense. Section 3 discusses our notion of error analysis in detail with five examples and Section 4 shows the numerical result of order of convergence of scheme for these examples. Finally, Section 5 is devoted to describe our conclusion on error analysis and several future aspects.

2. Numerical schemes for SDEs

In the following, we present numerical schemes. They adopt an equidistant discretization of the time interval $[0, T]$ with stepsize

$$
h=\frac{T}{N} \quad \text { for fixed natural number } N .
$$

Furthermore,

$$
t_{n}=n h, \quad n \in\{1,2, \ldots, N\}
$$

denotes the n-th step-point. We abbreviate

$$
\bar{X}_{n}=\bar{X}\left(t_{n}\right) \quad \text { and } \quad \Phi_{n}=\Phi\left(\bar{X}_{n}\right),
$$

for all $n \in\{0, \ldots, N\}$ and functions $\Phi: \boldsymbol{R} \mapsto \boldsymbol{R}$.
When $X(t)$ and \bar{X}_{n} stand for the exact and the numerical solutions of SIVP (1.1), respectively, the local error from $t=t_{n-1}$ to $t=t_{n}$ and the global error from $t=t_{0}$ to $t=T=t_{N}$ are defined by the following:

$$
\begin{aligned}
& \boldsymbol{E}\left(\left|X\left(t_{n}\right)-\bar{X}_{n}\right|^{2} \mid X\left(t_{n-1}\right)=\bar{X}_{n-1}=\bar{x}_{n-1}\right), \\
& \boldsymbol{E}\left(\left|X(T)-\bar{X}_{N}\right|^{2} \mid X_{0}=\bar{X}_{0}=\bar{x}_{0}\right)
\end{aligned}
$$

where $\bar{x}_{n-1}, \bar{x}_{0}$ are arbitrary real values. Then, the local and global orders are defined as follows.

Definition 1. The numerical scheme \bar{X}_{n} is of local order γ, of global order β iff

$$
\begin{aligned}
& \boldsymbol{E}\left(\left|X\left(t_{n}\right)-\bar{X}_{n}\right|^{2} \mid X\left(t_{n-1}\right)=\bar{X}_{n-1}=\bar{x}_{n-1}\right)=O\left(h^{\gamma+1}\right) \quad(h \downarrow 0), \\
& \boldsymbol{E}\left(\left|X(T)-\bar{X}_{N}\right|^{2} \mid X_{0}=\bar{X}_{0}=\bar{x}_{0}\right)=O\left(h^{\beta}\right) \quad(h \downarrow 0)
\end{aligned}
$$

respectively.
Remark. While the equation $\gamma=\beta$ holds in numerical methods for ODE under a mild assumption, it isn't satisfied for SDE (see Saito and Mitsui (1992)). Also, another definition of order of convergence may be given by

$$
\boldsymbol{E}\left(\left|X(T)-\bar{X}_{N}\right| \mid X_{0}=\bar{X}_{0}=\bar{x}_{0}\right)=O\left(h^{\beta^{\prime}}\right) \quad(h \downarrow 0)
$$

to be consistent with the deterministic order of convergence (Kloeden and Platen (1989)). But we use the order concept in Definition 1 to make it easy to investigate the global error. Thus, the reader might read as $\beta=2 \beta^{\prime}$.

The following three random variables will be used in the $(n+1)$-st time step of the schemes:

$$
\begin{aligned}
& \Delta W_{n}=W\left(t_{n+1}\right)-W\left(t_{n}\right) \\
& \Delta Z_{n}=\int_{t_{n}}^{t_{n+1}} \int_{t_{n}}^{s} d W(r) d s \\
& \Delta \bar{Z}_{n}=\int_{t_{n}}^{t_{n+1}} \int_{t_{n}}^{s} d r d W(s) .
\end{aligned}
$$

They are obtained as sample values of normal random variables using the transformation

$$
\begin{aligned}
& \Delta W_{n}=\xi_{n, 1} h^{1 / 2} \\
& \Delta Z_{n} \stackrel{d}{=} \frac{1}{2}\left(\xi_{n, 1}+\frac{\xi_{n, 2}}{\sqrt{3}}\right) h^{3 / 2} \\
& \Delta \bar{Z}_{n} \stackrel{d}{=} \frac{1}{2}\left(\xi_{n, 1}-\frac{\xi_{n, 2}}{\sqrt{3}}\right) h^{3 / 2}
\end{aligned}
$$

and, together with them, we further use $\Delta \tilde{W}_{n}=\xi_{n, 2} h^{1 / 2}$, where $\xi_{n, 1}, \xi_{n, 2}$ are mutually independent $N(0,1)$ random variables.

Remark. In the mean-square sense ΔZ_{n} and $\Delta \bar{Z}_{n}$ cannot be expressed in terms of the random variables $\xi_{n, 1}, \xi_{n, 2}, \ldots, \xi_{n, m}$ which are mutually independent $N(0,1)$ ones. Thus, any numerical scheme cannot attain order 3 (Rümelin (1982), Pardoux and Talay (1985), Newton (1991)). However, we derived the above expressions for ΔZ_{n} and $\Delta \bar{Z}_{n}$ in the weak sense. In the simulation on digital computer with pseudo-random numbers we might expect these random variables behave well for the approximate solution.

Numerical schemes.

1. $\gamma=1, \beta=1$.

Euler-Maruyama scheme (Maruyama (1955)):

$$
\begin{equation*}
\bar{X}_{n+1}=\bar{X}_{n}+f_{n} h+g_{n} \Delta W_{n} \tag{2.1}
\end{equation*}
$$

2. $\gamma=2, \beta=2$.

Heun scheme (McShane (1974)):

$$
\begin{equation*}
\bar{X}_{n+1}=\bar{X}_{n}+\frac{1}{2}\left[F_{1}+F_{2}\right] h+\frac{1}{2}\left[G_{1}+G_{2}\right] \Delta W_{n} \tag{2.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& F_{1}=F\left(\bar{X}_{n}\right) \\
& G_{1}=g\left(\bar{X}_{n}\right) \\
& F_{2}=F\left(\bar{X}_{n}+F_{1} h+G_{1} \Delta W_{n}\right) \\
& G_{2}=g\left(\bar{X}_{n}+F_{1} h+G_{1} \Delta W_{n}\right) \\
& F(x)=\left[f-\frac{1}{2} g^{\prime} g\right](x)
\end{aligned}
$$

Taylor scheme (Mil'shtein (1974)):

$$
\begin{equation*}
\bar{X}_{n+1}=\bar{X}_{n}+f_{n} h+g_{n} \Delta W_{n}+\frac{1}{2}\left[g^{\prime} g\right]_{n}\left(\left(\Delta W_{n}\right)^{2}-h\right) \tag{2.3}
\end{equation*}
$$

Derivative-free scheme (Kloeden and Platen (1989)):

$$
\begin{equation*}
\bar{X}_{n+1}=\bar{X}_{n}+F_{1} h+G_{1} \Delta W_{n}+\left[G_{2}-G_{1}\right] h^{-1 / 2} \frac{\left(\Delta W_{n}\right)^{2}-h}{\rho} \tag{2.4}
\end{equation*}
$$

where

$$
\begin{aligned}
& F_{1}=f\left(\bar{X}_{n}\right) \\
& G_{1}=g\left(\bar{X}_{n}\right) \\
& G_{2}=g\left(\bar{X}_{n}+G_{1} h^{1 / 2}\right)
\end{aligned}
$$

FRKI scheme (Newton (1991)):

$$
\begin{equation*}
\bar{X}_{n+1}=\bar{X}_{n}+F_{1} h+G_{2} \Delta W_{n}+\left[G_{2}-G_{1}\right] h^{1 / 2} \tag{2.5}
\end{equation*}
$$

where

$$
\begin{aligned}
& F_{1}=f\left(\bar{X}_{n}\right) \\
& G_{1}=g\left(\bar{X}_{n}\right) \\
& G_{2}=g\left(\bar{X}_{n}+G_{1}\left(\Delta W_{n}-h^{1 / 2}\right) / 2\right) .
\end{aligned}
$$

3. $\gamma=3, \beta=2$.

Improved 3-stage RK scheme (Saito and Mitsui (1992)):

$$
\begin{align*}
\bar{X}_{n+1}= & \bar{X}_{n}+\frac{1}{4}\left[F_{1}+3 F_{3}\right] h+\frac{1}{4}\left[G_{1}+3 G_{3}\right] \Delta W_{n} \tag{2.6}\\
& +\frac{1}{2 \sqrt{3}}\left[f^{\prime} g-g^{\prime} f-\frac{1}{2} g^{\prime \prime} g^{2}\right]_{n} h \Delta \tilde{W}_{n}
\end{align*}
$$

where

$$
\begin{aligned}
& F_{1}=F\left(\bar{X}_{n}\right) \\
& G_{1}=g\left(\bar{X}_{n}\right) \\
& F_{2}=F\left(\bar{X}_{n}+\frac{1}{3} F_{1} h+\frac{1}{3} G_{1} \Delta W_{n}\right) \\
& G_{2}=g\left(\bar{X}_{n}+\frac{1}{3} F_{1} h+\frac{1}{3} G_{1} \Delta W_{n}\right) \\
& F_{3}=F\left(\bar{X}_{n}+\frac{2}{3} F_{2} h+\frac{2}{3} G_{2} \Delta W_{n}\right), \\
& G_{3}=g\left(\bar{X}_{n}+\frac{2}{3} F_{2} h+\frac{2}{3} G_{2} \Delta W_{n}\right), \\
& F(x)=\left[f-\frac{1}{2} g^{\prime} g\right](x)
\end{aligned}
$$

Taylor scheme (Mil'shtein (1974)):

$$
\begin{align*}
\bar{X}_{n+1}= & \bar{X}_{n}+f_{n} h+g_{n} \Delta W_{n}+\frac{1}{2}\left[g^{\prime} g\right]_{n}\left(\left(\Delta W_{n}\right)^{2}-h\right) \tag{2.7}\\
& +\left[f^{\prime} g\right]_{n} \Delta Z_{n}+\left[g^{\prime} f+\frac{1}{2} g^{\prime \prime} g^{2}\right]_{n} \Delta \ddot{Z}_{n} \\
& +\frac{1}{6}\left[g^{\prime 2} g+g^{\prime \prime} g^{2}\right]_{n}\left(\left(\Delta W_{n}\right)^{3}-3 h \Delta W_{n}\right)
\end{align*}
$$

4. $\gamma=3, \beta=3$.

Taylor scheme (Kloeden and Platen (1989)):

$$
\begin{align*}
\bar{X}_{n+1}= & \bar{X}_{n}+f_{n} h+g_{n} \Delta W_{n}+\frac{1}{2}\left[g^{\prime} g\right]_{n}\left(\left(\Delta W_{n}\right)^{2}-h\right) \tag{2.8}\\
& +\left[f^{\prime} g\right]_{n} \Delta Z_{n}+\left[g^{\prime} f+\frac{1}{2} g^{\prime \prime} g^{2}\right]_{n} \Delta \bar{Z}_{n} \\
& +\frac{1}{6}\left[g^{\prime 2} g+g^{\prime \prime} g^{2}\right]_{n}\left(\left(\Delta W_{n}\right)^{3}-3 h \Delta W_{n}\right)+\frac{1}{2}\left[f^{\prime} f+\frac{1}{2} f^{\prime \prime} g^{2}\right]_{n} h^{2} .
\end{align*}
$$

5. $\gamma=2, \beta=2$ but $\gamma=3, \beta=3$ for linear equation.

ERKI scheme (Newton (1991)):

$$
\begin{align*}
\bar{X}_{n+1}= & \bar{X}_{n}+\frac{1}{2}\left[F_{1}+F_{2}\right] h+\frac{1}{40}\left[37 G_{1}+30 G_{3}-27 G_{4}\right] \Delta W_{n} \tag{2.9}\\
& +\frac{1}{16}\left[8 G_{1}+G_{2}-9 G_{3}\right] \sqrt{3 h}
\end{align*}
$$

where

$$
\begin{aligned}
F_{1} & =f\left(\bar{X}_{n}\right) \\
G_{1} & =g\left(\bar{X}_{n}\right) \\
F_{2} & =f\left(\bar{X}_{n}+F_{1} h+G_{1} \Delta W_{n}\right) \\
G_{2} & =g\left(\bar{X}_{n}-\frac{2}{3} G_{1}\left(\Delta W_{n}+\sqrt{3 h}\right)\right) \\
G_{3} & =g\left(\bar{X}_{n}+\frac{2}{9} G_{1}\left(3 \Delta W_{n}+\sqrt{3 h}\right)\right) \\
G_{4} & =g\left(\bar{X}_{n}-\frac{20}{27} F_{1} h+\frac{10}{27}\left(G_{2}-G_{1}\right) \Delta W_{n}-\frac{10}{27} G_{2} \sqrt{3 h}\right)
\end{aligned}
$$

3. Stochastic and deterministic parts in the global error

We apply the numerical schemes described in the last section to five examples. For obtaining the mean-square error of the approximation, it is important that the exact value of the realizations of the solution $X(T)$ can be determined. As mentioned in Introduction, the error analysis has not been carried out successfully. In our view, it could be solved by separating mean-square error into two parts (stochastic and deterministic), namely

$$
\begin{equation*}
\left\|X(T)-\bar{X}_{N}\right\| \leq\left\|X(T)-\hat{X}_{N}\right\|+\left\|\hat{X}_{N}-\bar{X}_{N}\right\| \tag{3.1}
\end{equation*}
$$

where $\|\cdot\|$ denotes

$$
\|X\|=\left\{\boldsymbol{E}\left(|X|^{2}\right)\right\}^{1 / 2}
$$

and \hat{X}_{N} the discretized exact solution realized by using pseudo-random numbers generated in digital computer (see the following Examples). From this reason, we will call \hat{X}_{N} the realized exact solution, and the first term in the right-hand
side as stochastic part, the second term as deterministic part. We anticipate that the effect of order of numerical schemes appears in deterministic part. A similar notion in weak sense is seen in Talay (1984). However, we don't expect the stochastic part could be minimized by means of taking sufficiently large sample number. The discussion can be seen in Janssen (1984) and Kanagawa (1989) from mathematical point of view. However, stochastic part will have to be investigated by some stochastic tests.

For example, if the solution $X(t)$ of SDE (1.1) can be expressed

$$
\begin{equation*}
X(t)=F\left(t ; W(t), \int_{0}^{t} W(s) d s, \int_{0}^{t} s d W(s), \ldots\right) \tag{3.2}
\end{equation*}
$$

for $F \in C^{\infty}$, then the realized exact solution is

$$
\begin{equation*}
\hat{X}_{n}=F\left(t ; \sum_{i=0}^{n-1} \Delta W_{i}, \sum_{i=0}^{n-1} \Delta Z_{i}, \sum_{i=0}^{n-1} \Delta \bar{Z}_{i}, \ldots\right) \tag{3.3}
\end{equation*}
$$

Therefore, we can easily calculate the deterministic part, whereas stochastic part will be calculated with the distances between $\sum_{i=0}^{n-1} \Delta W_{i}$ and $W(t), \sum_{i=0}^{n-1} \Delta Z_{i}$ and $\int_{0}^{t} W(s) d s$, and so on at each step points $(t=i h ; i=0, \ldots, n-1)$ in distribution sense.

Note that our error analysis is slightly different from one carried out by Liske and Platen (1987) or Newton (1991). They estimated directly the error \|X(T) $\bar{X}_{N} \|^{2}$. Here our realized exact solution corresponds to the truncated one for the exact solution they thought of. In the sequel, we study only the deterministic part.

Example 1. Linear case (Martingale).

$$
\begin{equation*}
d X=X d W(t), \quad t \in[0, T], \quad X_{0}=1 \tag{3.4}
\end{equation*}
$$

The exact solution of (3.4) is

$$
\begin{equation*}
X(t)=\exp \left\{-\frac{1}{2} t+W(t)\right\} \tag{3.5}
\end{equation*}
$$

while the realized exact solution \hat{X}_{n} is

$$
\begin{equation*}
\hat{X}_{n}=\exp \left\{-\frac{1}{2} t_{n}+\hat{W}_{n}\right\} \tag{3.6}
\end{equation*}
$$

Example 2. Linear case (Submartingale).

$$
\begin{equation*}
d X=X d t+X d W(t), \quad t \in[0, T], \quad X_{0}=1 \tag{3.7}
\end{equation*}
$$

The exact solution of (3.7) is

$$
\begin{equation*}
X(t)=\exp \left\{\frac{1}{2} t+W(t)\right\} \tag{3.8}
\end{equation*}
$$

while the realized exact solution \hat{X}_{n} is

$$
\begin{equation*}
\hat{X}_{n}=\exp \left\{\frac{1}{2} t_{n}+\hat{W}_{n}\right\} \tag{3.9}
\end{equation*}
$$

Example 3. Linear case (Supermartingale).

$$
\begin{equation*}
d X=-X d t+X d W(t), \quad t \in[0, T], \quad X_{0}=1 \tag{3.10}
\end{equation*}
$$

The exact solution of (3.10) is

$$
\begin{equation*}
X(t)=\exp \left\{-\frac{3}{2} t+W(t)\right\} \tag{3.11}
\end{equation*}
$$

while the realized exact solution \hat{X}_{n} is

$$
\begin{equation*}
\hat{X}_{n}=\exp \left\{-\frac{3}{2} t_{n}+\hat{W}_{n}\right\} \tag{3.12}
\end{equation*}
$$

In Examples 1 to $3 \hat{W}_{n}$ is given by

$$
\hat{W}_{n}=\sum_{i=1}^{n} \xi_{i, 1} h^{1 / 2}
$$

Example 4. Non-linear case (Liske and Platen (1987)).

$$
\begin{align*}
& d X=-\left(\sin 2 X+\frac{1}{4} \sin 4 X\right) d t+\sqrt{2}(\cos X)^{2} d W(t) \tag{3.13}\\
& \\
& \quad t \in[0, T], \quad X_{0}=1
\end{align*}
$$

The exact solution of (3.13) is

$$
\begin{equation*}
X(t)=\arctan (V(t)) \tag{3.14}
\end{equation*}
$$

with

$$
\begin{equation*}
V(t)=V_{0} e^{-t}+\sqrt{2} \int_{0}^{t} e^{s-t} d W(s), \quad V_{0}=\tan (1) \tag{3.15}
\end{equation*}
$$

The realized exact solution \hat{X}_{n} is $\hat{X}_{n}=\arctan \left(\hat{V}_{n}\right)$ where \hat{V}_{n} is computed by the following three ways according to the order of numerical scheme;

Case 1. $\quad \gamma=1,2$.

$$
\hat{V}_{n}=e^{-t}\left(V_{0}+\sqrt{2} \sum_{i=1}^{n} e^{t_{i-1}} \Delta W_{i}\right)
$$

Case 2. $\gamma=3$, use $\xi_{n, 1}$ and $\xi_{n, 2}$.

$$
\hat{V}_{n}=e^{-t}\left(V_{0}+\sqrt{2} \sum_{i=1}^{n} e^{t_{i-1}}\left(\Delta W_{i}+\Delta \bar{Z}_{i}\right)\right)
$$

Case 3. $\gamma=3$, use only $\xi_{n, 1}$ but no $\xi_{n, 2}$ and ERKI scheme.

$$
\hat{V}_{n}=e^{-t}\left(V_{0}+\sqrt{2} \sum_{i=1}^{n} e^{t_{i-1}}\left(\Delta W_{i}+\Delta U_{i}\right)\right)
$$

where

$$
\Delta U_{i}=\frac{1}{2} \xi_{i, 1} h^{3 / 2}
$$

In this case, we simplify the expression for the realized exact solution in the schemes (2.7) and (2.8) by replacing the terms ΔZ_{n} and $\Delta \bar{Z}_{n}$ with ΔU_{n} or in the scheme (2.6) by removing the correction term $(1 / 2 \sqrt{3})\left[f^{\prime} g-g^{\prime} f-(1 / 2) g^{\prime \prime} g^{2}\right]_{n} h$. $\Delta \tilde{W}_{n}$.

Example 5. Non-linear case (Gard (1988)).

$$
\begin{equation*}
d X=X(1-X) d t+X d W(t), \quad t \in[0, T], \quad X_{0}=0.5 \tag{3.16}
\end{equation*}
$$

The exact solution of (3.16) is

$$
\begin{equation*}
X(t)=\frac{\exp (0.5 t+W(t))}{2+\int_{0}^{t} \exp (0.5 s+W(s)) d s} \tag{3.17}
\end{equation*}
$$

On the other hand, the realized exact solution \hat{X}_{n} is computed by the following three ways, similar in Example 4.

Case 1. $\quad \gamma=1,2$.

$$
\hat{X}_{n}=\frac{\exp \left(0.5 t_{n}+\hat{W}_{n}\right)}{2+\sum_{i=1}^{n} \exp \left(0.5 t_{i-1}+\hat{W}_{i-1}\right) h}
$$

Case 2. $\gamma=3$, use $\xi_{n, 1}$ and $\xi_{n, 2}$.

$$
\hat{X}_{n}=\frac{\exp \left(0.5 t_{n}+\hat{W}_{n}\right)}{2+\sum_{i=1}^{n} \exp \left(0.5 t_{i-1}+\hat{W}_{i-1}\right)\left(h+\Delta Z_{i}+h^{2} / 2\right)}
$$

Case 3. $\gamma=3$, use only $\xi_{n, 1}$ but no $\xi_{n, 2}$ and ERKI scheme.

$$
\hat{X}_{n}=\frac{\exp \left(0.5 t_{n}+\hat{W}_{n}\right)}{2+\sum_{i=1}^{n} \exp \left(0.5 t_{i-1}+\hat{W}_{i-1}\right)\left(h+\Delta U_{i}+h^{2} / 2\right)},
$$

where

$$
\hat{W}_{n}=\sum_{i=1}^{n} \xi_{i, 1} h^{1 / 2}, \quad \Delta U_{i}=\frac{1}{2} \xi_{i, 1} h^{3 / 2}
$$

The realized exact solution is expressed as in similar way for Example 4.

4. Numerical results

We chose $T=0.5$, the sample number $=10000$, and the stepsizes $h=$ $2^{-4}, 2^{-5}, 2^{-6}$. To each schemes, we calculate the error:

$$
\begin{equation*}
e=\frac{1}{10000} \sum_{k=1}^{10000}\left(\hat{X}_{N}^{k}-\bar{X}_{N}^{k}\right)^{2} \tag{4.1}
\end{equation*}
$$

where superscript k means the k-th trajectory of each solutions. This quantity tends to the square of the deterministic part in (3.1). We show the computed mean-square error (4.1) for Example 1 in Table 1 or Figs. 1 and 2; for Example 2 in Table 2 or Figs. 3 and 4; for Example 3 in Table 3 or Figs. 5 and 6; for Cases 1, 2 and 3 of Example 4 in Table 4 or Figs. 7 to 9; for Cases 1, 2 and 3 of Example 5 in Table 5 or Figs. 10 to 12, respectively.

Note that scheme (2.4) is just same as scheme (2.3) in Examples 1, 2, 3 and 5 or scheme (2.8) is (2.7) in Example 1.

Table 1. Example 1.

$h \backslash$ Scheme	(2.1)	(2.2)	$(2.3) \&(2.4) \&(2.5)$
2^{-4}	3.25×10^{-2}	2.33×10^{-3}	7.36×10^{-4}
2^{-5}	1.29×10^{-2}	4.23×10^{-4}	1.44×10^{-4}
2^{-6}	6.29×10^{-3}	8.90×10^{-5}	3.32×10^{-5}
$h \backslash$ Scheme	(2.6)	$(2.7) \&(2.8) \&(2.9)$	
2^{-4}	9.49×10^{-5}	1.92×10^{-5}	
2^{-5}	1.16×10^{-5}	1.53×10^{-6}	
2^{-6}	2.06×10^{-6}	1.59×10^{-7}	

Fig. 1. Schemes (2.1), (2.2), (2.3), (2.4) and (2.5) for Example 1.

Fig. 2. Schemes (2.6), (2.7), (2.8) and (2.9) for Example 1.

Table 2. Example 2.

$h \backslash$ Scheme	(2.1)	(2.2)	$(2.3) \&(2.4) \&(2.5)$				
2^{-4}	1.17×10^{-1}	1.00×10^{-2}	2.37×10^{-2}				
2^{-5}	4.04×10^{-2}	1.87×10^{-3}	5.15×10^{-3}				
2^{-6}	1.78×10^{-2}	3.98×10^{-4}	1.13×10^{-3}				
					(2.6)	(2.7)	$(2.8) \&(2.9)$
$h \backslash$ Scheme	$\left(2.6 \times 10^{-4}\right.$	1.79×10^{-3}	5.35×10^{-4}				
2^{-4}	3.53×10^{-5}						
2^{-5}	3.75×10^{-5}	3.28×10^{-4}	4.16×10^{-5}				
2^{-6}	6.08×10^{-6}	7.22×10^{-5}	4.54×10^{-6}				

Fig. 3. Schemes (2.1), (2.2), (2.3), (2.4) and (2.5) for Example 2.

Fig. 4. Schemes (2.6), (2.7), (2.8) and (2.9) for Example 2.

Table 3. Example 3.

$h \backslash$ Scheme	(2.1)	(2.2)	$(2.3) \&(2.4) \&(2.5)$
2^{-4}	1.20×10^{-2}	8.48×10^{-4}	1.93×10^{-3}
2^{-5}	5.06×10^{-3}	1.52×10^{-4}	4.77×10^{-4}
2^{-6}	2.44×10^{-3}	3.19×10^{-5}	9.84×10^{-5}
$h \backslash$ Scheme	(2.6)	(2.7)	$(2.8) \&(2.9)$
2^{-4}	3.68×10^{-5}	1.84×10^{-4}	4.54×10^{-5}
2^{-5}	4.52×10^{-6}	4.25×10^{-5}	5.11×10^{-6}
2^{-6}	7.86×10^{-7}	9.83×10^{-6}	6.44×10^{-7}

Fig. 5. Schemes (2.1), (2.2), (2.3), (2.4) and (2.5) for Example 3.

Fig. 7. Schemes (2.1), (2.2), (2.3), (2.4) and (2.5) for Case 1 of Example 4.
(2.5) • (2.7)

Fig. 9. Schemes (2.6), (2.7), (2.8) and (2.9) for Case 3 of Example 4.

Fig. 6. Schemes (2.6), (2.7), (2.8) and (2.9) for Example 3.

Fig. 8. Schemes (2.6), (2.7) and (2.8) for Case 2 of Example 4.

Fig. 10. Schemes (2.1), (2.2), (2.3), (2.4) and (2.5) for Case 1 of Example 5.

Table 4. Example 4.
Case 1

$h \backslash$ Scheme	(2.1)	(2.2)	(2.3)
2^{-4}	1.08×10^{-2}	3.55×10^{-4}	2.00×10^{-3}
2^{-5}	5.62×10^{-3}	1.36×10^{-4}	4.94×10^{-4}
2^{-6}	2.77×10^{-3}	3.96×10^{-5}	1.17×10^{-4}
$h \backslash$ Scheme	(2.4)	(2.5)	
2^{-4}	2.54×10^{-3}	9.57×10^{-4}	
2^{-5}	6.16×10^{-4}	2.53×10^{-4}	
2^{-6}	1.39×10^{-4}	6.41×10^{-5}	

Case 2

$h \backslash$ Scheme	(2.6)	(2.7)	(2.8)
2^{-4}	4.31×10^{-5}	7.56×10^{-4}	6.59×10^{-4}
2^{-5}	8.78×10^{-6}	1.45×10^{-4}	1.06×10^{-4}
2^{-6}	1.60×10^{-6}	2.66×10^{-5}	1.31×10^{-5}

Case 3

$h \backslash$ Scheme	(2.6)	(2.7)	(2.8)	(2.9)
2^{-4}	3.94×10^{-5}	8.68×10^{-4}	7.41×10^{-4}	2.73×10^{-4}
2^{-5}	7.30×10^{-6}	1.44×10^{-4}	1.02×10^{-4}	4.22×10^{-5}
2^{-6}	1.49×10^{-6}	2.50×10^{-5}	1.27×10^{-5}	5.54×10^{-6}

Table 5. Example 5.
Case 1

$h \backslash$ Scheme	(2.1)	(2.2)	$(2.3) \&(2.4) \&(2.5)$
2^{-4}	6.34×10^{-3}	1.25×10^{-3}	4.15×10^{-4}
2^{-5}	2.78×10^{-3}	2.41×10^{-4}	9.57×10^{-5}
2^{-6}	1.32×10^{-3}	5.63×10^{-5}	2.24×10^{-5}

Case 2

$h \backslash$ Scheme	(2.6)	(2.7)	(2.8)
2^{-4}	1.74×10^{-5}	5.20×10^{-5}	2.27×10^{-5}
2^{-5}	2.46×10^{-6}	1.14×10^{-5}	3.08×10^{-6}
2^{-6}	3.38×10^{-7}	2.33×10^{-6}	3.88×10^{-7}

Case 3

$h \backslash$ Scheme	(2.6)	(2.7)	(2.8)	(2.9)
2^{-4}	2.21×10^{-5}	9.98×10^{-5}	2.19×10^{-5}	8.44×10^{-6}
2^{-5}	2.19×10^{-6}	1.46×10^{-5}	2.96×10^{-6}	1.03×10^{-6}
2^{-6}	3.06×10^{-7}	2.56×10^{-6}	3.61×10^{-7}	1.15×10^{-7}

Fig. 11. Schemes (2.6), (2.7) and (2.8) for Case 2 of Example 5.

Fig. 12. Schemes (2.6), (2.7), (2.8) and (2.9) for Case 3 of Example 5.

Table 6. Fitted slopes for error-stepsize curve.

Example \backslash Scheme	(2.1)	(2.2)	(2.3)	(2.4)	(2.5)
1	1.2	2.4	2.2	2.2	2.2
2	1.4	2.3	2.2	2.2	2.2
3	1.1	2.4	2.1	2.1	2.1
4-case 1	1.0	1.6	2.0	2.1	1.9
5-case 1	1.1	2.2	2.1	2.1	2.1
Example \backslash Scheme	(2.6)	(2.7)	(2.8)	(2.9)	
1	2.8	3.5	3.5	3.5	
2	2.9	2.3	3.4	3.4	
3	2.8	2.1	3.1	3.1	
4-case 2	2.4	2.4	2.8	-	
4-case 3	2.4	2.6	2.9	2.8	
5-case 2	2.8	2.2	2.9	-	
5-case 3	3.1	2.6	3.0	3.1	

In all figures, the least-square linear fitting was incorporated for the errorstepsize curve. The fitted slopes are shown in Table 6. From the results we can conclude that the third order Taylor scheme (2.8) is superior to other schemes from our viewpoint of global error. Also, when the scheme carried out by using only one pseudo-random number at each step, ERKI method (2.9) may be preferred to the third order Taylor scheme (2.8), because it is easier to implement.

5. Conclusions and future aspects

Our numerical examples in the preceding section lead to the following tentative conclusions:
(i) The global order of numerical scheme appears well in the deterministic part of error.
(ii) We emphasize that approximation for sample path of solution $X(t)$ is completely determined by sequences of pseudo-random numbers. Therefore, how to generate pseudo-random numbers is the most crucial problem in the simulation of SDEs. Namely, the problem reduces how well the Wiener process $W(t)$ and the random process $\int_{0}^{t} e^{s} d W(s)$ can be realized by using pseudo-random numbers in digital computer. Henceforce, the program for simulation of SDE will have to require both numerical scheme and specific pseudo-random number generator.
(iii) Case 3 of Examples 4 and 5 show that Runge-Kutta scheme proposed by Rümelin (1982) may be used if the random process $\int_{0}^{t} e^{s} d W(s)$ is realized by only one pseudo-random number at each step.
We investigated only the deterministic part of global error in this paper. However, so far it seems very difficult to study the stochastic part. In general, it requires a finer analysis through good pseudo-random numbers.

References

Gard, T. C. (1988). Introduction to Stochastic Differential Equations, Marcel Dekker, New York.
Janssen, R. (1984). Discretization of the Wiener-process in difference-methods for stochastic differential equations, Stochastic Process. Appl., 18, 361-369.
Kanagawa, S. (1989). The rate of convergence for approximate solutions of stochastic differential equations, Tokyo J. Math., 12, 33-48.
Kloeden, P. E. and Platen, E. (1989). A survey of numerical methods for stochastic differential equations, Stochastic Hydrology and Hydraulics, 3, 155-178.
Kloeden, P. E. and Platen, E. (1992). Numerical Solution of Stochastic Differential Equations, Springer, Berlin.
Liske, H. and Platen, E. (1987). Simulation studies on time discrete diffusion approximations, Math. Comput. Simulation, 29, 253-260.
Maruyama, G. (1955). Continuous Markov processes and stochastic equations, Rend. Circ. Mat. Palermo, 4, 48-90.
McShane, E. J. (1974). Stochastic Calculus and Stochastic Models, Academic Press, New York.
Mil'shtein, G. N. (1974). Approximate integration of stochastic differential equations, Theory Probab. Appl., 19, 557-562.
Newton, N. J. (1991). Asymptotically efficient Runge-Kutta methods for a class of Ito and Stratonovich equations, SIAM J. Appl. Math., 51, 542-567.
Pardoux, E. and Talay, D. (1985). Discretization and simulation of stochastic differential equations, Acta Appl. Math., 3, 23-47.
Platen, E. (1981). An approximation method for a class of Ito processes, Lithuanian Math. J., 21, 121-133.
Rümelin, W. (1982). Numerical treatment of stochastic differential equations, SIAM J. Numer. Anal., 19, 604-613.
Saito, Y. and Mitsui, T. (1992). Discrete approximations for stochastic differential equations, Transactions of the Japan Society for Industrial and Applied Mathematics, 2, 1-16 (in Japanese).
Talay, D. (1984). Efficient numerical schemes for the approximation of expectations of functionals of the solution of a SDE and applications, Lectures Notes in Control and Information Sciences, 61, Springer, Berlin.

