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ABSTRACT

SIMULATION OF THE STABILIZATION OF MAGNETIC

ISLANDS BY ECRH AND ECCD

AYTEN, BİRCAN

MS.,Department of Physics

Supervisor: Prof. Dr. Sinan Bilikmen

Co-Supervisor: Dr. Egbert Westerhof

September 2009, 57 pages

An almost universal instability in high pressure plasmas is the Neoclas-

sical Tearing Mode (NTM). NTMs are driven by local perturbations in

the current density and result in magnetic island like deformations of the

magnetic topology. They can be stabilized by compensating the current

perturbations with local electron cyclotron resonance heating (ECRH) or

with non-inductive current drive (ECCD). The modified Rutherford equa-

tion describes the nonlinear evolution of tearing modes as determined by

various contributions to the local current density pertubation. An exten-

sive investigation of the two terms representing the stabilizing effects from

ECRH and ECCD have been made resulting in accurate description of both
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terms. The results of this model can now be compared to the experimental

observations. For this purpose, an extensive data set exists from the past

experiments on tearing mode stabilization by ECRH and ECCD on TEX-

TOR. The properly benchmarked model can then be used to predict the

effectiveness of ECRH and ECCD for NTM stabilization on International

Thermonuclear Experimental Reactor (ITER). In addition, a number of

predictions on the effects of ECRH and ECCD on the growth of the NTM

have been made on the basis of crude approximations to the ECRH and

ECCD tems in the modified Rutherford equation. These predictions can

now be checked against the more accurate expressions obtained.

Keywords: Tokamak Physics, MHD Instabilities
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ÖZ

MANYETİK ADALARIN ECRH VE ECCD

YÖNTEMLERİYLE KARARLI HALE GETİRİLMESİNİN

SİMULASYONU

AYTEN, BİRCAN

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi: Prof. Dr. Sinan Bilikmen

Ortak Tez Yöneticisi: Dr. Egbert Westerhof

Eylül 2009, 57 sayfa

Neoclassical tearing mode (NTM) hemen hemen bütün yüksek basınçlı

plazmalarda görülen evrensel bir kararsızlıktır. Akım yoğunluğundaki te-

dirginlikten oluşup manyetik topolojide manyetik adalara benzeyen defor-

masyonlara neden olurlar. Akım tedirginlikleri ECRH (Electron cyclotron

resonance heating) ve ECCD (Non-inductive current drive) yöntemleriyle

eşitlenerek kararlı hale getirilebilirler. Düzeltilmiş Rutherford denklemi

tearing mode kararsızlıklarının lineer olmayan oluşumlarını açıklar. Bu

denklemdeki ECRH ve ECCD terimlerinin kararlı hale getirmedeki etki-

leri üzerine yaplan büyük çaplı araştırmalar bu terimlerin kesin bir şekilde
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tanımlanmalarına neden olmuştur. Şimdi ise bu modelin sonuçlar deney-

sel gözlemlerle karşılaştırılacaktır. Bu amaçla, bu konu hakkında TEX-

TOR Tokamak’ından geçmiş deneylerde geniş çaplı veri elde edilmiştir. Uy-

gun şekilde yapılmış olan karşılaştırılmış model, ITER (Uluslararası Ter-

monükleer Deneysel Reaktör) üzerinde ECRH ve ECCD yöntemlerinin NTM-

leri kararlı hale getirmekteki etkinliklerini tahmin etmekte kullanılacaktır.

Bunun yanı sıra, ECRH ve ECCD nin bu kararsızlıkların oluşumundaki etki-

leri üzerine, düzeltilmiş Rutherford denklemine dayanılarak, kabaca yapılmış

olan tahminler de kontrol edilecektir.

Anahtar Kelimeler: Tokamak Fiziği, MHD Kararsızlıkları
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CHAPTER 1

INTRODUCTION

In nuclear fusion the lighter nuclei merge to form a heavier nucleus. It is

the energy source of our universe as all the stars and the sun are powered

by this type of reaction. In most of the cases the total mass of the reactants

is larger than the mass of the product in most of the cases. This mass

difference accounts for the energy released according to Einstein’s energy-

mass relation E = ∆m · c2.
For the controlled fusion on Earth the reaction between two hydrogen

isotopes deuterium and tritium, shown in Figure 1.1, is the most promising

candidate as it has the largest cross section at lower energies among all

the possible reactions. The reaction produces a helium nucleus (α particle)

and a neutron. It has a mass defect ∆m = mD + mT − (mHe + mn) =

3.1 × 10−29 kg. The released energy is distributed into these two product

particles inversely proportional to their masses. The neutron receives 14.1

MeV in the form of kinetic energy whereas the α particle has 3.5 MeV.

D + T → He+ n+ 17.6 MeV (1.1)

Fusion fuels (D and T) are sufficiently abundant. Deuterium exists in the

oceans. Tritium is an unstable radioactive isotope yet it can be produced

by a nuclear reaction of the neutrons from the D-T reaction and lithium.

The latter is also very abundant in the Earth’s crust.

This fusion reaction does not occur spontaneously. Since both deuterium

1



Figure 1.1:
Fusion reaction between two hydrogen isotopes, deuterium and tritium.
The products are a 3.5 MeV α particle and 14.1 MeV neutron.

and tritium have positively charged nuclei, they feel repulsive Coulomb

force preventing them from fusing. This Coulomb barrier can be overcome

by increasing the temperature of the reacting gases to about 10 keV (1

eV=11600 K). At these high thermal energies the mixture of deuterium

and tritium gases are completely ionized and become a plasma composed

of charged ions and electrons.

1.1 Ignition

One of the aims of the thermonuclear fusion research is to achieve a self

sustaining plasma to be recognized as an energy producing system. By a

self sustaining plasma an ignited plasma is meant where all energy losses

are compensated by the energy of the α particles. These particles transfer

their energy to the plasma by collisions while slowing down. The neces-

sary condition for the deuterium-tritium reaction to realize a self sustaining

plasma is expressed by the triple product of density n, energy confinement

2



time τE and temperature T [2] [16]:

nTτE ≥ 5× 1021m−3 s keV (1.2)

It is called the Lawson criterion and 1/τE is the rate at which plasma loses

its energy. A fusion reaction is self-sustained provided that at around 10

keV the density and energy confinement time are sufficiently high. There

are different ways to achieve these requirements [18]. One of them is con-

fining the plasma by making use of magnetic fields (magnetic confinement).

Second type of confinement is laser- or beam- induced inertial confinement.

In this thesis only magnetically confined plasmas will be discussed.

1.2 Tokamak

A plasma can be confined by magnetic fields since it is composed of electri-

cally charged nuclei and electrons. The motion of these particles in response

to a magnetic field is dictated by the Lorentz force ~F = q~u × ~B. Al-

though electrons and ions can freely move along the field lines, their motion

perpendicular to the field lines is restricted to gyrate around these lines

with cyclotron frequency ωc = qB/m and a gyroradius (Larmor radius)

ρL = u⊥/ωc, where B is the magnetic field, q the charge of the particle,

m the mass of the particle and u⊥ the magnitude of the particle velocity

perpendicular to the magnetic field (see Figure 1.2).

That the motion parallel to the magnetic field lines is not restricted re-

sults in particle losses from the plasma in linear configurations (end losses).

Consequently, the required energy confinement time τE can not be reached.

The most effective confinement of high temperature plasmas is achieved

when the magnetic field lines close themselves inside the plasma forming a

toroidal geometry.

3



Figure 1.2: An electron gyrating around a magnetic field line.

The curvature and gradient of this purely toroidal magnetic field lead to

a vertical drift which is in opposite directions for electrons and ions. This

charge separation generates a vertical electric field and this electric field in

turn induces an outward radial ~E × ~B drift of the whole plasma which is

independent of the charge of the particles as shown in Figure 1.3.

Figure 1.3:
Vertical drifts and outward particle drift due to ~E× ~B drift in a purely
toroidal geometry.
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Thus, a pure toroidal magnetic field is not enough to confine the plasma

effectively. In order to avoid such radial losses of electrons and ions a

poloidal magnetic field should be introduced. As a result, a helical magnetic

field is formed.

There are different approaches for the introduction of the poloidal mag-

netic field, Bθ. In a stellarator the helical field is generated by external coils

wound around the plasma torus. In a tokamak toroidal component of the

magnetic field Bφ is produced by poloidal currents in the external coils (see

Figure 1.4).

 

Figure 1.4:
A schematic representation of a tokamak. The major and minor radius
are indicated by R0 and a, respectively. Toroidal magnetic field pro-
duced by poloidal currents in the external coils and poloidal magnetic
field generated by a toroidal current Ip form the helical field.

5



Its poloidal magnetic field is produced by a toroidal current Ip in the

plasma which is induced making the plasma the secondary winding of a

transformer. This current also participates in plasma formation and heat-

ing. Among all the magnetic configurations invented so far, best perfor-

mance has been achieved by the tokamak. Its name is an acronym for

the Russian name TOroidalnaya KAmera i MAgnitnaya KAtushka which

means toroidal chamber with magnetic coils.

1.3 TEXTOR

In this research experimental data from TEXTOR tokamak are used. TEX-

TOR (Tokamak Experiment for Technology Oriented Research) is a medium

sized, circular, limiter tokamak with major radius R0 = 1.75 m and minor

radius a = 0.47 m. The toroidal magnetic field is generated by a set of

16 coils around the vacuum vessel and this field can go up to 3 T. Plasma

current is produced by the iron transformer core and its value can be 800

kA maximum. However, TEXTOR is typically operated with a toroidal

field Bφ = 2.25 T and plasma current Ip = 400 kA. A discharge can last

up to 10 s maximum but its typical value is 6 s. The main parameters of

TEXTOR are listed in the Table 1.1.

1.3.1 Plasma Heating

The plasma current Ip is the primary source for heating for all tokamaks.

The power dissipated by the flow of this current is called the Ohmic heating

power. The contribution of this Ohmic heating is given by ηJ2, where η

is the low but finite resistivity of a high temperature plasma. Note that

this plasma resistivity is proportional to T−3/2
e . So, as the temperature

increases, Ohmic heating power decreases. Moreover, the maximum value

6



Table 1.1: TEXTOR parameters.

Major radius R0 1.75 m

Minor radius a 0.46 m

Plasma volume 7 m3

Toroidal field Bφ < 3 T

Plasma current Ip < 0.8 MA

Pulse length < 10 s

Ohmic power 0.3-0.5 MW

Installed heating power (ECRH + ICRH + NBI) 9 MW

ECCD < 50 kA

Typical Electron and Ion temperature on axis 1.2 keV

Typical electron density on axis 3 · 1019m−3

of plasma current is restricted by the occurrence of magnetohydrodynamic

instabilities. Therefore, the Ohmic heating itself is not sufficient to provide

the necessary temperature to initiate a fusion reaction and keep the plasma

burning. In TEXTOR its power ranges between 0.3 and 0.5 MW. Thus,

additional heating methods are necessary to be employed. In TEXTOR

there are two additional ways of heating the plasma (increasing the energy

of the plasma). First way is to inject highly energetic particles inside the

plasma. This method is called neutral beam injection (NBI).

In neutral beam injectors a beam of ionized particles are accelerated

to a high energy and neutralized. This neutral beam is injected into the

plasma. While penetrating into the plasma, the neutral particles are ion-

ized by charge exchange reactions with the plasma ions. Then they transfer

7



their energy and momentum to plasma electrons and ions through collisions.

On TEXTOR there are two tangential neutral beam injectors [2] [12] in-

stalled. Each can deliver a maximum of 1.5 MW heating power of neutrals

at energies up to 60 keV. The typical neutral particles are H, D and He.

Second way is to inject electromagnetic energy inside the plasma. The

power of the electromagnetic waves is absorbed either by the ions or the

electrons through resonant interaction with their cyclotron motion (or their

harmonics). This way of heating the plasma is called Ion Cyclotron Res-

onance Heating (ICRH) or Electron Cyclotron Resonance Heating

(ECRH), respectively. ICRH frequencies are much lower than ECRH fre-

quencies since ion mass is much larger than the electron mass. Therefore

ECRH wavelength is smaller (around 2 mm) [2]. This property of ECRH

provides accurate localization of the heating power and driven current as in

the case of stabilization of magnetic islands.

On TEXTOR there are two sets of two ICRH antennae [2] installed

on the low field side of the tokamak. Each set can generate waves with

frequencies between 25 and 38 MHz injecting power of 2 MW. Continuous

power injection can last up to 3 seconds.

For ECRH power on TEXTOR there are two gyrotrons [12], a 110 GHz,

350 kW, 200 ms gyrotron and a 140 GHz, 850 kW, 10 s gyrotron. They

generate extra-ordinary polarization mode (X-mode) microwaves to be ab-

sorbed in the plasma at the second harmonic of the electron cyclotron res-

onance.

By rotating the mirror of the launcher around its vertical axis, a varia-

tion in the radial position of ECRH power deposition is obtained while ro-

tation around its horizontal axis leads to Electron Cyclotron Current Drive

(ECCD).
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1.3.2 Dynamic Ergodic Divertor

Dynamic Ergodic Divertor (DED) [4] is a tool installed at TEXTOR. It is

composed of 16 perturbation coils and 2 more compensation coils installed

at the inboard side (high field side) of TEXTOR, see Figure 1.5. These 16

perturbation coils run helically around the torus being aligned to the mag-

netic field lines at q = 3 surface. By applying current to these perturbation

coils a magnetic field perturbation is obtained. The two compensation coils,

above and below the perturbation coils, are used to reduce the stray field.

Figure 1.5:
The DED coil configurations for the 3/1 (left hand side) and 12/4
(right hand side) operation modes. The 16 helical perturbation coils
(black, yellow, gray and red) are located at the inboard side of the
vacuum vessel (high field side). Coils fed by different phased currents
are indicated by the different colors. The green coils above and below
the perturbation coils are the compensation coils.

The coils can either be fed with direct or alternating current (DC or

AC) with an amplitude of up to 15 kA each. DC mode generates a static

magnetic perturbation whereas a rotating (dynamic) magnetic field pertur-

9



bation is obtained in AC mode operation since in this mode the phase of

each coil changes. In AC mode the 16 coils can be fed by four differently

phased currents (0◦, 90◦, 180◦, 270◦). The principal mode numbers of the

perturbation fields depend on how these 16 coils are connected to these 4-

phase current. There are three different operation modes (see Figure 1.5).

In a 3/1 mode all coils are grouped in four sets of four coils and the coils

belonging to the same group have the same phase but there is a 90◦ phase

shift between the neighboring group of coils. In a 12/4 mode there is a 90◦

phase difference between the neighboring coils. In a 6/2 mode which is an

operational mode between 3/1 and 12/4. It has groups consisting of 2 coils.

The coils in each group have the same phase while the next group have 90◦

phase shift.

AC mode is divided into two categories with respect to phase change

as time passes [2]. If the phase increases, it is called AC+ mode. The re-

sulting field rotates counterclockwise in the poloidal direction and clockwise

in the toroidal direction. The phase decreases in AC− mode and the field

rotates toroidally counterclockwise and poloidally clockwise. The AC cur-

rent frequencies range from 0 to 10 kHz but typically frequencies 1 kHz and

3.75 kHz are chosen.
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CHAPTER 2

THEORY OF NEOCLASSICAL TEARING MODES

2.1 Magnetohydrodynamics

Magnetohydrodynamics (MHD) provides a single fluid description of plasma

behavior. It differs from the kinetic theory description of plasmas in the

sense that the dynamics of electrons and ions are not treated separately.

Below are the simplified MHD equations [16] [1] [7] to be used in this re-

search.

Continuity equation:
∂ρ

∂t
+ ~∇.(ρ~υ) = 0 (2.1)

Equation of motion:

ρ
d~υ

dt
= ~J × ~B − ~∇p (2.2)

where the right hand side is the force density acting on a fluid element.

The term on the left hand side is the inertial force and the first and the

second term on the right hand side are the magnetic force and the pressure

gradient force, respectively.

Equation of energy:
d(pρ−γ)

dt
= 0 (2.3)

The equations above dictate the time evolution of mass, momentum

and energy, respectively. The energy equation expresses the evolution of

adiabatic fluid characterized by a ratio of specific heats, γ = 5/3.

11



Ampere’s Law:

µ0
~J = ~∇× ~B (2.4)

Faraday’s Law:
∂ ~B

∂t
= −~∇× ~E (2.5)

In the ideal MHD model the plasma is taken perfectly conducting. In

this model Ohm’s law implies that in a reference frame moving with the

plasma the electric field is zero.

Ohm’s Law (ideal):

~E + ~υ × ~B = 0 (2.6)

The inclusion of resistivity, η in Ohm’s law gives rise to the resistive MHD

model.

Ohm’s Law (resistive):

~E + ~υ × ~B = η ~J (2.7)

Note that the displacement current in Maxwell’s equations is neglected.

2.2 Resistivity

Neoclassical resistivity of a fully ionized toroidal plasma is given as [16]:

η ≈ 2.8 · 10−8Zeff

T
3/2
e

(1− ε1/2)−2. (2.8)

Assuming that electric field is constant throughout the plasma and neoclas-

sical effects can be neglected, Ohm’s law gives the current density profile

as [14]

J‖ = ksT
3/2
e (r), (2.9)

where ks depends on Zeff which is the effective ion charge. In this research

Zeff is assumed to be constant, consequently ks becomes a constant.
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2.3 Magnetic surfaces

In an equilibrium ( ∂
∂t

= 0) without flows (~υ = 0), the equation of motion

reduces to

~∇p = ~J × ~B. (2.10)

This force balance equation shows that a plasma can be confined by a

magnetic field if the plasma pressure is balanced by a magnetic force. For a

well-confined plasma which is in equilibrium, plasma pressure is maximum

in the center of the poloidal cross section and independent of the toroidal

angle, φ. For such profiles the contours of constant pressure are nested

toroidal surfaces [6]. As a consequence of the equilibrium relation,

~B · ~∇p = 0, (2.11)

~J · ~∇p = 0, (2.12)

magnetic lines and current lines lie on surfaces of constant pressure. For that

reason these constant pressure surfaces are called magnetic surfaces or flux

surfaces. As can be seen from the Figure 2.1, magnetic field lines follow a

helical path on their own surfaces. This helicity can be expressed by q which

is called safety factor due to its importance in determining stability [16],

q =
△φ
2π

, (2.13)

where △φ is the change in the toroidal angle in a field line’s trajectory

to come to the same point in the poloidal cross section. In the case of a

tokamak with a large aspect ratio of circular cross section, R/a, it can be

approximated as [16],

q ≃ rBφ

RBθ

, (2.14)

where Bφ is the toroidal and Bθ is the poloidal magnetic field at a minor

radius r. The safety factor, q is a flux function or surface quantity as all

the field lines on the same surface have the same q value.
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Figure 2.1: Flux surfaces in a tokamak [19].

Magnetic surfaces are divided into two categories. If a magnetic field

line of a given magnetic surface closes on itself after a finite number of

revolutions around the torus, then this surface is called a rational surface.

The q-value of such a surface is a ratio of two integer numbers, written as

m/n, where m is the poloidal and n is the toroidal mode number, meaning

that the field line closes on itself after m toroidal and n poloidal turns

around the torus. Instabilities often occur on rational surfaces. The second

category is the so-called ergodic surfaces. The magnetic field lines cover

those surfaces ergodically [6]. Magnetic axis is a closed magnetic field line

and it is surrounded by the other magnetic surfaces. On this line pressure

is the maximum. A measure for the efficiency of confinement is given by

the ratio of plasma pressure to magnetic field pressure which is called beta,

β, [16],

β =
p

B2/2µ0

. (2.15)
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2.4 Magnetic islands

In the ideal configuration of magnetic field lines described above, particles

and heat are well-confined. Particles gyrate around field lines. But there can

occur some instabilities resulting in a change in magnetic topology. Tearing

modes are one of those instabilities. They are caused by a non-axisymmetric

redistribution of plasma current density and lead to a perturbed radial mag-

netic field on rational q = m/n surfaces resonant with that perturbation.

This perturbation breaks and reconnects magnetic surfaces resulting in a

new structure called a magnetic island. Since islands make a path for heat

and particles to move rapidly across it without crossing the equilibrium

magnetic field, tearing modes degrade the particle confinement and lower

the stored energy which in turn flattens the temperature (pressure) and

density profiles inside the island. Large islands and the simultaneous exis-

tence of island chains even lead to a (major) disruption, with a fast loss of

plasma energy (confinement) and a termination of the plasma.

The geometry of an island can be defined in terms of radial coordinate

r, poloidal angle θ and introducing a new coordinate helical angle, ξ which

is perpendicular to the equilibrium field lines at the q = m/n surface,

ξ = θ − n

m
φ, (2.16)

and adopting large aspect ratio approximation, the equilibrium field along

this direction is given by

Bh = Bθ

(
1− n

m
q(r)

)
, (2.17)

where Bθ is the poloidal magnetic field. Close to the resonant rational

surface, it becomes

Bh = −
(
Bθ
q′

q

)

s

(r − rs). (2.18)
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In the Figure 2.2 the projection of a m/n island on ξ − r plane can be seen

where resonant radius, rs denotes its minor radius. Magnetic islands can be

interpreted as another set of helically nested flux surfaces with their own

magnetic axis shown as O-point. Islands are bounded by the separatrices

which are crossed at X-points in the poloidal cross section. The largest

distance between the boundaries of magnetic island is given by w and called

the full width of the island.

r

rs

Separatrix

X point

O point

rs+w/2

rs-w/2

π

X point

π- ξ

Figure 2.2: A schematic representation of a magnetic island [14].

Using field line equation
dr

rsdξ
=
Br

Bh
(2.19)

The magnetic field perturbation in the radial direction can be written as

Br = B̃r(r) sin(mξ) (2.20)
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assuming that B̃r(r) remains constant over the radial extent of the island.

w = 4

√√√√ rsB̃r(rs)q(rs)

mBθ(rs)q′(rs)
(2.21)

It is practical to express the perturbed magnetic field in terms of the per-

turbed flux function, ψ̃ [9] [19] [16]

δ ~B = ~∇φ× ~∇ψ̃, (2.22)

where

ψ̃ = ψ1 (r) cos(mθ − nφ) = ψ1(r) cos(mξ). (2.23)

Assuming that ψ1 is constant across the island region (known as constant

ψ approximation),

B̃r =
mψ1

rR
. (2.24)

Total magnetic field can also be expressed in terms of ψ1 [19]

~B = RBφ
~∇φ+ ~∇φ× ~∇Υ (2.25)

where the helical flux, Υ is composed of Ψ (poloidal magnetic flux) and ψ̃

Υ = Ψ+ ψ̃ (2.26)

It is convenient to define Ω which is the normalized flux surface label [5]

Ω =
Υ

ψ1

= 8
x2

w2
− cos(mξ) (2.27)

where x = r − rs is the distance away from the rational surface. It varies

between Ω = −1 (at the O-point) and Ω = 1 (at the separatrix) and Ω > 1

defines flux surfaces outside the island.
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2.5 Tearing modes

The relation between ψ̃ and the current density perturbation parallel to the

magnetic field, J‖ can be found by Ampere’s law. For an island whose width

is much less than its resonant radius (w<<rs), it reduces to [19]

1

R
∆ψ̃ ≃ 1

R

d2ψ̃

dr2
= µ0J‖, (2.28)

1

R

d2ψ1

dr2
cos(mξ) = µ0J‖, (2.29)

multiplying both sides by cos(mξ),

1

R

d2ψ1

dr2
cos2(mξ) = µ0J‖ cos(mξ), (2.30)

since we are concerned with narrow islands, we integrate across the resonant

surface from r = rs−ǫ to r = rs+ǫ, where ǫ>>w is assumed. LHS becomes

rs
R

∫ ǫ

−ǫ
dx

d2ψ1

dr2

∮
dξ cos2(mξ) (2.31)

=
rs
R

∫ ǫ

−ǫ
dx

d2ψ1

dr2

∣∣∣∣∣
ξ

2
+
sin(2mξ)

4m

∣∣∣∣∣

2π

0

(2.32)

=
rsπ

R

(
dψ1

dr

)rs+ǫ

rs−ǫ

. (2.33)

Introducing classical stability index, ∆′ which is defined as logarithmic jump

of the radial derivative of the exterior solution for the perturbed magnetic

flux function ψ̃ across the rational surface,

∆′ = lim
ǫ→0

1

ψ1

[
dψ1

dr

∣∣∣
rs+ǫ

− dψ1

dr

∣∣∣
rs−ǫ

]
, (2.34)

the matching of the exterior solution to the interior one is obtained as,

1

2
∆′ψ1 = µ0R

∫ ǫ

−ǫ
dx
∮
dξ

2π
cos(mξ)J‖. (2.35)

Remembering that,

w = 4

√
qψ1

q′ψ′
, (2.36)
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where ψ′ = ∂ψ
∂r

and q′ = dq
dr
, one can write,

ψ1 =
w2RBp

16Lq
, (2.37)

where Lq = q/(dq/dr) is the magnetic shear length and positive for con-

ventional tokamaks [8]. Substituting equation 2.37 into equation 2.35 and

rearranging the terms, the form of equation is obtained which will be used

in the coming sections to evaluate the effect of other terms resulting in

stabilization or destabilization of magnetic islands

rs∆
′ =

16µ0Lqrs
Bpπw2

∫ ǫ

−ǫ
dx
∮
dξ cos(mξ)J‖. (2.38)

For the following calculations using flux surface averaging operator, F̄

would ease our work. It is defined as F̄ = 〈F 〉 / 〈1〉, where

〈F (σ,Ω, ξ)〉 ≡
∮
dξ

2π

F (σ,Ω, ξ)√
Ω + cos(mξ)

, (2.39)

for Ω > 1, and

〈F (σ,Ω, ξ)〉 ≡
∫ ξ

−ξ

dξ

2π

1/2[F (σ,Ω, ξ) + F (−σ,Ω, ξ)√
Ω + cos(mξ)

, (2.40)

for −1 < Ω < 1. Here σ = sgn(x), ξ = cos−1(−Ω)/m and F is a general

function with the property ~B · ~∇〈F 〉 = 0 [9] [5].

We continue keeping in mind that in the model being employed
∮ dξ

2π
=

2
∫ ξ
−ξ

dξ
2π
, so it can be written as the following,

∆′ψ1 = 4µ0R
∫ ∞

−1
dΩ

∫ ξ

−ξ

dξ

2π

w

4
√
2

cos(mξ)J‖√
Ω + cos(mξ)

. (2.41)

As can be seen, in order to continue the perturbed current parallel to the

magnetic field should be determined. There are several contributions to the

perturbed current but now we simply consider the induced current which
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results from the island growth itself. Since Ẽ = (1/R)(dψ̃/dt), the per-

turbed current is related to the evolution of the poloidal flux perturbation

through Ohm’s law,

E = η(J − JCD)− η̃J0, (2.42)

where JCD is a part of the perturbed current that is driven non-inductively

and η̃J0 is a part of the current perturbation generated by a perturbation

in the plasma resistivity. Neglecting for now these latter two contributions,

the flux surface averaged parallel current can be written as [9] [19],

J‖ =
E‖

η
=

1

Rη
cos(mξ)

dψ1

dt
. (2.43)

Substituting it into the equation 2.41 and employing the flux surface aver-

aging operator, it reduces to

∆′ψ1 = 4µ0R
1

Rη

dψ1

dt

∫ ∞

−1
dΩ

w

4
√
2

〈cos(mξ)〉2
〈1〉 . (2.44)

Using the result of the integration which was given in [5],

√
2
∫ ∞

−1
dΩ

〈cos(mξ)〉2
1

= 0.8227, (2.45)

right hand side can be written as

∆′ = 0.82
τr
r2s

dψ1/dt

ψ1

w

2
, (2.46)

where τr =
µ0r2s
η

is the current diffusion time. The ratio dψ1/dt
ψ1

can be written

in terms of the magnetic island width w

dψ1/dt

ψ1
=

dw

dt

2

w
. (2.47)

Putting it into the equation 2.47, we finally obtain the Rutherford equation

(which is also called classical tearing mode equation) [13] [5] [19],

0.82
τr
rs

dw

dt
= rs∆

′. (2.48)
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The Rutherford equation describes the growth or decay of a magnetic

island of full width w. ∆′ represents the free energy available in the plasma

current density distribution to drive a tearing mode [19]. For small islands

(w<<rs), ∆
′ is not affected by the island itself so it is independent of w

and when ∆′ is positive, island grows linearly. As islands become sufficiently

large, they will have an influence on the current profile around them so ∆′

is no longer independent of w. Instead the dependence of ∆′ on w can be

expressed by the following approximation [3],

∆′ (w) = ∆′
0

(
1− w

wsat

)
, (2.49)

where wsat is the saturated island width. For ∆′>0, an island grows to

w=wsat till it consumes all its free energy leaving ∆′=0.

2.6 Generalized Rutherford equation

Rutherford equation is derived under the assumption that the induced cur-

rent resulting from the island growth is the only source of current pertur-

bation parallel to the magnetic field. However, there are extra inductive

or non-inductive helical current perturbations around the resonant surface

modifying the classical tearing mode equation. With the introduction of

these perturbations the modified equation is called the generalized Ruther-

ford equation. It describes the temporal evolution of the full width w of

a magnetic island as a function of different driving and stabilizing mecha-

nisms [10]:

0.82
τr
rs

dw

dt
= rs∆

′ +
16µ0Lqrs
Bpπw2

∫ ∞

−∞
dx
∮
dξ
(
δj‖,1 + δj‖,2 + ...

)
cos(mξ),

(2.50)

where δj‖ refers to the current perturbation given in Ohm’s law. Subse-

quently, the contributions of other current perturbations are discussed in
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the same order as given by the following equation,

0.82
τr
rs

dw

dt
= rs∆

′ + rs∆
′
bs + rs∆

′
DED − rs∆

′
CD − rs∆

′
H . (2.51)

2.6.1 Neoclassical tearing modes

Neoclassical tearing modes (NTMs) are magnetic islands destabilized by the

perturbation of the bootstrap current. Bootstrap current is a non-inductive

current which is driven by the radial gradient of plasma pressure. It flows

parallel to the magnetic field and is independent of the current driven by

an applied electric field. It can be approximately written as [8]:

Jbs ≈ −
(
ǫ1/2

Bθ

)
dp

dr
, (2.52)

where ǫ = r
R0

is the local inverse aspect ratio for minor radius r and major

radius R0 and p is the plasma pressure.

As an initial (seed) magnetic island forms, pressure is flattened within

the island separatrix resulting in a removal of the bootstrap current inside

the island while there still exists bootstrap current outside. This helical

perturbation of bootstrap current provides a destabilizing effect for conven-

tional tokamaks (where magnetic shear length Lq = q/ (dq/dr) is positive

and pressure gradient is negative) to reinforce the initial island.

The resulting equation expressing the temporal evolution of full width

w of an island including neoclassical effects is called modified Rutherford

equation [8] [19] [17],

0.82
τr
rs

dw

dt
= rs∆

′ − cneoβpε
1/2Lq
Lp

rs
w
, (2.53)

where βp = 2µ0p
B2

θ

is the poloidal beta, Lp = p/ (dp/dr) is the pressure gra-

dient length and cneo is a constant of order one. Classically stable plasmas

(∆′ < 0) can be destabilized by the helically perturbed bootstrap current
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which is called the neoclassical tearing modes (NTMs) [19]. Under this con-

dition equation 2.53 implies that every island on a rational surface would

be destabilized although this is indeed not the case. Fortunately, so-called

small island effects form threshold mechanisms and prevent NTMs to be-

come totally unstable and harmful to the confinement.

First of those effects result from the fact that at small island widths,

temperature and density are not necessarily flux functions (consequently,

pressure is also not a flux function). Consequently, the flattening of pressure

inside such an island would not be complete which would put a threshold

on the occurrence of NTMs. Including this effect, modified Rutherford

equation can be written as [17] [8]:

0.82
τr
rs

dw

dt
= rs∆

′ − cneoβpǫ
1/2Lq
Lp

rs
w

w2

w2 + w2
c

, (2.54)

where wc is the critical island width below which the pressure is not flat-

tened within the island separatrix. It is proportional to the ratio of thermal

diffusivities parallel and perpendicular to the magnetic field and wc ≈ 1 cm

under typical tokamak conditions [19] [8].

A second small island effect is the polarization current which is mostly

stabilizing. As the islands rotate at a frequency ω in the frame of the plasma

flow, a time varying electric field forms. Since the response of electrons to

this electric field is faster than that of the ions, another current which is

called polarization current is generated. Its characteristic threshold island

width is wpol ≈ (Lq/Lp)
1/2ǫ1/2ρθi where ρθi is ion banana width. With

the inclusion of this final threshold mechanism, contribution of perturbed

bootstrap current can be written as,

rs∆
′
bs ≈ −ǫ1/2Lq

Lp
βp
rs
w

[
w2

w2 + w2
c

− w2
pol

w2

]
(2.55)
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2.6.2 Dynamic ergodic divertor (DED)

Magnetic islands can also be excited by externally resonant magnetic pertur-

bation fields. On TEXTOR tokamak, these perturbed fields are generated

by the dynamic ergodic divertor (DED) [3]. DED consists of a set of helical

perturbation coils located at the high field side of the tokamak. Current

application to these helical coils leads to a magnetic perturbation. In the ab-

sence of a conducting plasma, the vacuum magnetic field (the superposition

of the DED perturbation field and the equilibrium magnetic field) results

in a ’fictive’ island called vacuum island. In the presence of a conducting

plasma, this perturbation field generates shielding currents on rational q

surfaces and these currents influence the stability of tearing modes. In this

case, the vacuum island only represents the amplitude and phase of the

perturbation field.

The contribution of destabilization by DED to the Rutherford equation

is given by:

rs∆
′
DED = 2m

(
wvac
w

)2

cos (∆ (mξ)) , (2.56)

where

∆ (mξ) = m (ξO,plasma − ξO,vacuum) (2.57)

is the phase difference between the O-points of the plasma and the vacuum

island and wvac is the width of the latter. The islands driven by DED

discussed in this research [3] [17] are locked to the perturbation field of

DED, (∆ξ = 0) and have vacuum islands of about 4 cm wide. It has been

observed in [3] that after switching off the DED, the 2/1 magnetic island

still remains without considerable changes in its width.
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2.6.3 Current drive

Perturbed current profile can be compensated through a non-inductive cur-

rent. It can be driven by ECW deposition inside the island. A co-current

drive can stabilize the magnetic island on the contrary a counter-current

drive provides extra perturbed current profile and results in a destabiliza-

tion of the magnetic island. A normalized Gaussian distribution is assumed

for the radial power deposition profile,

PEC = PtotP̃CW (x)M(ξ;D, φ), (2.58)

with

P̃CW (x) =
1

2π5/2wdepRrs
e−4(x−xdep)

2/w2

dep (2.59)

where wdep is the full e−1 power density width and xdep = rdep − rs is the

deposition dislocation relative to the resonant radius. The total injected

power in case of continuous wave (CW) application is represented by Ptot

and the modulation effects are included in the function M which is written

in terms of a Heaviside function as

M(ξ;D, φ) = H (|cos (mξ/2 + 2)− cos (Dπ/2)|) , (2.60)

where ξ is the helical angle, D the power on-time fraction, and φ the phase

mismatch between the power modulation and the island rotation. The rela-

tion between the non-inductive current driven by EC power absorption and

power density averaged over a flux surface is given by:

JCD = 2πRηCDPEC (2.61)

where current drive efficiency ηCD is defined as

ηCD =
ICD
Ptot

, (2.62)
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and assumed to be constant over the deposition profile. Making use of equa-

tion 2.86, one can find the contribution of current drive to the generalized

Rutherford equation,

rs∆
′
CD =

16µ0Lqrs
Bpπw2

∫ ∞

−∞
dx
∮
dξJCDcos(mξ), (2.63)

which is equal to

rs∆
′
CD =

16µ0Lqrs
Bpπw2

∫ ∞

−1
dΩPEC2πRηCD

∮
dξ

cos(mξ)√
Ω + cos(mξ)

w

4
√
2
. (2.64)

As given in [10] which was found following the formulation of [15], the term

rs∆
′
CD is written as,

rs∆
′
CD ≈ 16µ0Lq

Bpπ

ηCDPtot
w2
dep

FCD(w
⋆, xdep,D). (2.65)

Note that its contribution has been defined in terms of an efficiency fore-

factor times a dimensionless effectivity, FCD. Geometrical parameters like

the normalized island width (w∗ = w/wdep), the displacement of the power

deposition from the resonant surface and the modulation are embedded in

the function FCD given by,

FCD(w
⋆, xdep,D) =

w2
dep

∫∞
−1 dΩp̃CWM〈cos(mξ)〉
w2
∫∞
−1 dΩp̃CW 〈1〉 . (2.66)

2.6.4 Local heating

The ECW deposition inside the island can stabilize the mode not only di-

rectly through a non-inductive current but also indirectly, by a perturbation

of the temperature profile resulting in a perturbation of the inductive cur-

rent JH . This current perturbation can be approximated making use of the

resistivity relation given by the equation 2.8 as,

JH ≈ Jsep

T
3/2
sep

δ
(
T 3/2
e

)
(2.67)
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where Jsep and Tsep denote the inductive part of the current density and the

temperature at the island separatrix, respectively.

As can be seen from the equation above, in order to evaluate current

perturbation, it is necessary to solve heat diffusion equation below so that

δTe can be found. Keeping in mind the time scales of interest, we assume

that Te equilibrates along the perturbed field lines, so that Te = Te(Ω).

∂Te
∂t

+ div~g =
∂Te
∂t

+
∂Γ

∂V
= PEC(Ω) (2.68)

where ~g is the local flux, and Γ is the net flux of the vector ~g through the

whole magnetic surface,

~g(Ω, θ) = Te(Ω)~ν(Ω, θ)−D(Ω, θ)~∇Te(Ω), (2.69)

Γ =
∫
div~gdV = ~g · ~∇V , (2.70)

with D = neχ⊥kB, and ne is the electron density, χ⊥ is the perpendicular

heat conductivity which is assumed to be constant, kB is the Boltzmann

constant (in units of J/keV).

Under steady state conditions(for τr >> τdiff with τdiff = w2/χ⊥ ) and

neglecting convection in the heat diffusion equation, we get

PEC = −∂Ω
∂V

∂

∂Ω

(
∂V

∂Ω

∣∣∣~∇Ω
∣∣∣neχ⊥kB

∂Te
∂Ω

)
, (2.71)

where V (Ω) is the total volume enclosed within a given flux surface,

V = 2πR
∫
rsdx

∮
dξ, (2.72)

and accordingly, ∂V
∂Ω

is the volume of the flux shell which can be shown to

be equal to
∂V

∂Ω
= 8π2Rrs

w

4
√
2
〈1〉 . (2.73)

Substituting it in the previous equation, we obtain

PEC∂V = −∂
(
8π2Rrs

w

4
√
2
< |~∇Ω|2 > neχ⊥kB

∂Te
∂Ω

)
. (2.74)
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Integrating both sides over Ω once gives us,

P (Ω) = − < |~∇Ω|2 > neχ⊥kB
∂Te
∂Ω

(2.75)

P (Ω) is the total power injected inside the flux tube between the O-point

and the flux surface labeled Ω. Integrating once more over Ω an expression

for temperature perturbation is found as,

Te = Tsep + δTe, (2.76)

δTe =
Ptotw

8π2Rrsneχ⊥kB
δT̃e, (2.77)

where

δT̃e =
∫ 1

Ω
dΩ

P̃ (Ω)

< |~∇Ω|2 >
8π2Rrs
w

, (2.78)

and

P (Ω) = PtotP̃ (Ω). (2.79)

δT̃e is dimensionless and called normalized temperature perturbation. The

current perturbation JH ∝ δ
(
T 3/2
e

)
can be further reduced by the following

approximation,

δ(T 3/2
e ) = (Tsep + δTe)

3/2 − T 3/2
sep ≈ T 1/2

sep

3

2
δTe (2.80)

JH ≈ Jsep
Tsep

3

2
δTe (2.81)

The stabilization term provided by local heating is to be calculated from

the following equation

rs∆
′
H =

16µ0Lqrs
Bpπw2

∫ w/2

−w/2
dx
∮
dξJHcos(mξ), (2.82)

which is equal to

rs∆
′
H =

16µ0Lqrs
Bpπw2

∫ 1

−1
dΩJH

∮
dξ

cos(mξ)√
Ω+ cos(mξ)

w

4
√
2
. (2.83)
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Substituting the approximated JH into the equation above, a new expression

for stabilization term (rs∆
′
H) is obtained [10]:

rs∆
′
H ≈ 16µ0Lq

Bpπ

ηHPtot
w2
dep

FH(w
⋆, xdep,D) (2.84)

where ηH denotes the efficiency with which the power is converted into a

perturbative inductive current and the geometrical parameters are embed-

ded in the dimensionless function FH ,

ηH =
3w2

dep

8πRneχ⊥kB

Jsep
Tsep

, (2.85)

FH(w
⋆, xdep,D) =

1

2πw

∫ 1

−1
dΩδT̃e

∮
dξ

w

4
√
2

cos(mξ)√
Ω+ cos(mξ)

. (2.86)

The temperature profile above has been obtained under the assumption

of a constant heat conductivity. In order to investigate the possible conse-

quences of constant χ⊥ profiles, a family of possible Te profiles is introduced,

characterized by the single parameter α as

Te (Ω;α) = (TO−point − Tsep) (1− ((Ω + 1) /2)α) + Tsep, (2.87)

where TO−point is the temperature at Ω = −1 and Tsep is the temperature

at Ω = 1.

Note that in this profile the values of TO−point and Tsep are independent of

the parameter, α. According to this new temperature profile, temperature

perturbation inside the island is given by

δTe (Ω;α) = (TO−point − Tsep) (1− ((Ω + 1) /2)α) . (2.88)

By changing α, a family of temperature perturbation profiles can be ob-

tained. It is necessary to know if the temperature profile which was obtained

in the preceding section to be used for evaluating the ECRH stabilizing term
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in this research is within the range of this new temperature profile (to avoid

confusion, it will be represented as Tα). To see this, the normalized temper-

ature perturbation, δT̃e of both profiles should be compared qualitatively.

In order to keep the calculations simple, let us assume the power deposition

to be aligned on resonant surface, rs (xdep = 0), continuous (D = 1). This

comparison has been restricted to three different normalized island width,

(w∗ = w/wdep), w
∗ = 0.3, w∗ = 1 and w∗ = 3. Respectively, they represent

the cases when island width is smaller than deposition width of power, when

they are equal, and when island width is larger than the deposition width.

Figures 2.3 - 2.5 show the comparison of normalized temperature per-

turbation profiles inside the island for the case of w∗ = 0.3, w∗ = 1 and

w∗ = 3, respectively. For each comparison above the values of the parame-

ter, α have been kept the same. One of conclusions is that Te profile (the

one adopted for calculating ECRH term for the rest of this research) stays

always within the range of Tα profiles i.e. in the family of Tα profiles for

each different w∗ case. Moreover, it can be observed that αfit values are

1, approximately 1 and around 0.8 for normalized island width w∗ = 0.3,

w∗ = 1 and w∗ = 3, respectively. This indicates that αfit value slightly

decreases as w∗ increases.

When the difference between δT̃O−point and δT̃sep is considered for each

graph, another conclusion can be drawn. For a given power deposition

width,wdep as the island width decreases, the difference in perturbation also

decreases. The difference between TO−point and Tsep is the highest for w
∗ = 3

case among all these three cases. Power deposition whose density width is

smaller than island width results in a more efficient temperature perturba-

tion.
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Figure 2.3:
Comparison of normalized temperature perturbation profiles for w∗ =
0.3 resulting from CW power deposition without misalignment
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Figure 2.4:
Comparison of normalized temperature perturbation profiles for w∗ = 1
resulting from CW power deposition without misalignment
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Figure 2.5:
Comparison of normalized temperature perturbation profiles for w∗ = 3
resulting from CW power deposition without misalignment

Another comparison can be made with respect to the FH values of those

profiles have at three different normalized island width, (w∗ = w/wdep),

w∗ = 0.3, w∗ = 1 and w∗ = 3, under the same assumptions made for

temperature profile comparison. In order to provide coherency, same values

of α have been chosen as before. As can be seen from the Figure 2.6, the

three values of FH which were calculated using the temperature profile Te,

again stay within the range of their corresponding FH values calculated from

the temperature profile Tα.

These results confirm the fitted α value found in the previous comparison

of normalized temperature perturbation profiles for each w∗ case. Moreover,

the FH values of each profile follow the same trend i.e. as normalized island

width increases, the corresponding values also increase (within the range
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0.3 ≤ w∗ ≤ 3). Detailed information about this trend can be found in [10],

where it was obtained from numerical evaluation of equation 2.86, that FH

values are approximately linear for small values of w∗ and converge to a

constant for w∗ >> 1.
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Figure 2.6:
Comparison of FH values as a function of normalized island width of
each profile being discussed

There is one more conclusion to be drawn on α dependence of FH values.

While broader Tα profiles lead to higher FH values, lower FH values are

obtained from more peaked Tα profiles.
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CHAPTER 3

COMPARISON WITH EXPERIMENTAL Te(Ω)

PROFILES

In this chapter we shall start with working on the measured temperature

profiles inside the suppressed magnetic islands [3]. The fact that in the

theoretical model perpendicular heat conductivity, χ⊥ is assumed to be

constant leads us to find out its value for each experimental case that will be

discussed in this chapter. In the first section the method used for obtaining

χ⊥ inside the island is discussed and the values are found out. In the

second section by considering the experimental conditions (basically the

input powers) and the results, the choice of χ⊥ is fixed to be used for the

rest of the research.

3.1 How to obtain χ⊥

Let us start with rewriting the expression of temperature profile calculated

in the preceding chapter,

Te(Ω) = Tsep + δTe (Ω) , (3.1)

where

δTe =
Ptotw

8π2Rrsχ⊥nekB
δT̃e, (3.2)

and

δT̃e =
∫ 1

Ω
dΩ

P̃ |Ω−1

< |~∇Ω|2 >
8π2Rrs
w

. (3.3)
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It should be reminded that this temperature profile was calculated under

the assumption χ⊥ is constant. δT̃e is, by definition, independent of Ptot and

χ⊥. This fact is the starting point to obtain χ⊥ value inside the island using

experimental data.

Before proceeding further, let us explain the experiment which was con-

ducted on the TEXTOR tokamak briefly. Owing to the Dynamic Ergodic

Divertor (DED) that TEXTOR has, islands can be created and controlled

with a fully known driving term [3]. When the DED current exceeds a

threshold, islands can be destabilized. In this experiment only a 2/1 island

was destabilized which after a while, has reached a saturated island width

of about 12 cm. Then ERCH was switched on, depositing CW power of 400

kW, 300 kW, 200 kW, on the resonant q = 2 surface reducing the width of

the island respectively to 5 cm, 6 cm, 7 cm.

For each case, there are two ways to calculate δT̃e(Ω = −1). First

way comes from numerical calculation of equation 3.3. In the numerical

calculation the conditions of the experiments are mimicked (xdep = 0, D = 1,

and φ = 0). The δT̃sim(Ω = −1) curve under these conditions as a function

of w/wdep, (wdep = 1.8 cm) is shown in Figure 3.1.

The second way comes from the experimental calculation and is given

by

δT̃exp(Ω = −1) =

(
Ptotw

8π2Rrsχ⊥nekB

)−1

(TO−point − Tsep) , (3.4)

where the difference between TO−point and Tsep is to be found from experi-

mental data. It is shown in [3] that over the largest part of the island, χ⊥

is about 1 to 1.5 m2/s. In Figure 3.1 the δT̃exp(Ω = −1) values calculated

assuming χ⊥ = 1.5 m2/s can be seen.
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Figure 3.1:
δT̃e(Ω = −1) values found from experimental data taking χ⊥ =
1.5 m2/s and its numerically calculated curve.

However, this choice of χ⊥ does not provide the same values as δT̃e(sim)

does for these three cases. The question to be asked is what χ⊥ value should

be chosen so that both ways give the same result. The χ⊥ can be found

from the relation below,

δT̃e(exp)

1.5m2/s
χ⊥ = δT̃e(sim), (3.5)

which gives us the following values,

χ⊥(Ptot = 400 kW ) = 1.2032, (3.6)

χ⊥(Ptot = 300 kW ) = 1.1819, (3.7)

χ⊥(Ptot = 200 kW ) = 1.1419. (3.8)
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Figure 3.2:
FH values found from simulation as a function of w/wdep and FH ex-
perimental values calculated using their associated χ⊥.

It is also necessary to check whether FH(experimental) values calculated

using their associated χ⊥ are the same as the ones calculated theoretically.

Figure 3.2 shows that only for the case whose input power is 300 kW, the

results are quite close. In order to see the reason of this difference in FH

values both theoretical and experimental δT̃e vs Ω curves have been plotted

for each case (see Figure 3.3 - 3.5).

Figure 3.3 shows the theoretical and measured normalized temperature

profiles inside the fully suppressed island wsupp = 5 cm after CW ECRH

input power 400 kW. For this case that the area under the theoretical δT̃e

curve is larger than one under the experimental curve can be accounted for

the result that its experimental value of FH is smaller than its theoretical

value. Similarly, the quantitative difference in the area under the theoret-
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Figure 3.3:
Normalized temperature profiles inside the fully suppressed island after
CW ECRH input power 400 kW, wsupp = 5 cm.

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ω

 

 

δT̃
e

δT̃e (simulation)
δT̃e (experimental)

Figure 3.4:
Normalized temperature profiles inside the fully suppressed island after
CW ECRH input power 300 kW, wsupp = 6 cm.
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ical and measured curves of the other two cases reveals the difference in

theoretical and experimental FH values.
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Figure 3.5:
Normalized temperature profiles inside the fully suppressed island after
CW ECRH input power 200 kW, wsupp = 7 cm.

3.2 Fixing the choice of χ⊥

When the results are compared, it is obvious to see that different input

powers do not result in considerable changes in the values of χ⊥. It is

concluded that input power has no effect on χ⊥ and χ⊥ is not a function

of ECRH power. For the rest of the research χ⊥ will be taken as 1.2 m2/s

regardless of the input power.
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CHAPTER 4

GENERALIZED RUTHERFORD EQUATION

SIMULATIONS

In ITER the control of neoclassical tearing modes (NTMs) is one of the

main challenges in order to keep the plasma pressure stable and high and

consequently to produce efficient energy. Electron cyclotron resonance heat-

ing (ECRH) and electron cyclotron current drive (ECCD) are the widely

used two control methods although the effect of ECRH is often underes-

timated. Experiments were performed to see how effective ECRH can be

on suppressing m = 2, n = 1 magnetic islands on TEXTOR tokamak. The

controlled experiments can be divided into three groups. At first, the in-

fluence of variation in radial deposition of ECRH power on the suppression

of magnetic islands is discussed. The second part aims to assess the effect

that ECCD has on island suppression. Finally, modulated ECRH experi-

ments were performed to observe under what conditions one can have the

best outcome of ECRH mechanism. The results [17] have shown that in

TEXTOR island stabilization by ECRH has a dominance over stabilization

by ECCD. After having fixed the choice of χ⊥ which is approximately 1.2

m2/s (independent of the input power to be used for TEXTOR simulations),

the results of the generalized Rutherford equation shall be compared with

TEXTOR data presented in [17]. First of all, general information regarding

these three sets of experiments is given.
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4.1 General overview on experiments

Let us recall the generalized Rutherford equation,

0.82
τr
rs

dw

dt
= rs∆

′ + rs∆
′
bs + rs∆

′
DED − rs∆

′
CD − rs∆

′
H (4.1)

which describes the evolution of full width (w) of a magnetic island in

terms of stabilizing and driving mechanisms. Since the experiments were

performed at low βp, the contribution of ∆′
bs is insignificant and can be

ignored. In this case dynamic ergodic divertor (DED) was used to produce

magnetic islands. Generalized Rutherford equation reduces to the following

form,

0.82
τr
rs

dw

dt
= rs∆

′(w) + rs∆
′
DED − rs∆

′
CD − rs∆

′
H . (4.2)

In Figure 4.1 one can see the time traces of one of the discharges (Shot

Nr. 94727). In this discharge m = 2, n = 1 DED generated magnetic is-

land was suppressed only by ECRH (140 GHz, 770 kW) on q = 2 surface

(rs = 0.28 m). The growth and suppression of the island can be observed

from the oscillations taking place on the 141 GHz ECE channel which mea-

sures the radiation temperature on the high-field side coming from a region

approximately 3 cm inside the q = 2 surface. Increase in the oscillations

results from DED operation and shows that 2/1 island is growing while

suppression of the oscillations, as ECRH is switched on, implies island sta-

bilization.

Experimental data were found out under the assumption that ∆T is

proportional to the width of the island. That is why, experimental ratio of

saturated island width before ECRH is switched on (basically, represented

as wDED) over the suppressed island width as a result of ECRH (represented

as wECRH) is approximated as,

wDED/wECRH = ∆TECRH [%]/∆TDED[%]. (4.3)

41



Figure 4.1:
Time traces of discharge 94727 in which a 2/1 magnetic island is created
by DED and almost completely suppressed by ECRH at the q = 2
surface:(a) the plasma current; (b) plasma heating powers PΩ, PNBI ,
PECRH ; (c) the line average density at R = 1.80; (d) the current in a
DED coil; (e) the ECE radiation temperature at 141 GHz, T141; (f) the
amplitude of the 1 kHz oscillation in this signal, ∆T141; (g) the island
size measured by a soft x-ray camera [17].
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Numerically calculated saturated island size is the island size w = wsat

for which dw
dt

= 0. The value of wDED is evaluated from the generalized

Rutherford equation in the following form,

0.82
τr
rs

dw

dt
= rs∆

′(w) + rs∆
′
DED, (4.4)

where ∆′(w) = −6.22w+0.627
(0.23)2

for TEXTOR experiments [3]. Another neces-

sary parameter is the resonant radius rs = 0.28 m. Note that the stabilizing

ECRH and ECCD terms are dropped. For the calculation of wECRH all

the terms are kept as in the equation 4.2. The islands driven by DED in

these three sets of experiments are locked to the perturbation field of DED,

(∆ξ = 0). In this case the contribution of DED term is written as,

rs∆
′
DED = 2m

(
wvac
w

)2

, (4.5)

and the vacuum island width is chosen to be the same as in [3] which is of

about 4 cm wide.
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4.2 Comparison concerning radial deposition

scans

In the first set of the experiments radial deposition variation of ECRH

power of 750 kW was obtained by scanning the vertical injection angle for

two different toroidal injection angles: φ = +0.5◦ and φ = −16◦ which

correspond to the deposition width of wdep = 1.2 cm and wdep = 4.6 cm,

respectively.
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Figure 4.2:
Suppression of the 2/1 magnetic island as a function of radial deposi-
tion (where a= 47 cm is the minor radius of the tokamak) for narrow
deposition profile(wdep = 1.2 cm). Red dashed curve shows the numer-
ical results taking ECRH into account as the only stabilizing effect in
the simulation. Different symbols refer to the data taken on different
days, for which q= 2 surface position might have been slightly different.
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For the case at narrow deposition profile (wdep = 1.2 cm), the numeri-

cally calculated island suppression (red curve) is compared with experimen-

tal data in Figure 4.2. The results look qualitatively comparable to each

other, but the model being used assumes a symmetric temperature pertur-

bation around the resonant radius, rs whereas the experimental data shows

an antisymmetric behavior indicated by the black lines. A possible reason

for this behavior observed could be a modification in the magnetic equilib-

rium in response to the heating well outside the island leading to a further

destabilization for rdep < rs and a further stabilization for rdep > rs [11]. The

results of the radial deposition scan at wide deposition profile (wdep = 4.6

cm) is shown in Figure 4.3.
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Figure 4.3:
Suppression of the 2/1 magnetic island as a function of radial deposition
for wide deposition profile(wdep = 4.6 cm). Red markers represents the
effect of pure ECRH and blue markers represent the effects of both
ECRH and ECCD.
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As can be seen, there is a negligible influence of ECCD on suppress-

ing the islands. This agrees with the results of these experiments that in

TEXTOR the main stabilizing mechanism is ECRH.

When the width of the regions within the effective suppression achieved

is compared for two different wdep, it is concluded that wider deposition

profiles make sure that at least some power is deposited inside the islands

resulting in partial stabilization.

4.3 Comparison concerning the current drive

In this second set of the experiments, by scanning the toroidal injection

angle from φ = −11◦ to φ = +3◦ (positive/negative angles correspond to

counter-/co-current drive), the EC driven current has been varied while the

vertical injection angle was kept constant. Looking at the experimental

results, one can easily see EC driven current has a negligible effect on sup-

pression (see Figure 4.4). Although the values calculated numerically are

slightly higher than the experimental results, the fact that there is almost

no difference between calculated suppressed island width by ECRH (red

markers) and the one by both ECRH and ECCD (blue markers) supports

the conclusion drawn above from experiments.
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Figure 4.4:
Results of a scan on the toroidal injection angle, φ. Green markers
show the experimental values while red markers show suppression of
islands only by ECRH of power 200 kW and blue markers show the
suppression resulting from both ECRH and ECCD.

Note that, while a co-current drive stabilizes the mode, a counter-current

drive provides a further destabilization. However, neither in the experimen-

tal data nor in numerically calculated values this difference between the

effects of counter- and co-current drive on island suppression is significant.

4.4 Comparison concerning the modulation

scans

Modulated ECRH experiments were performed by using the current in a

DED coil as a reference signal to control the gyrotron power which makes

it possible to vary timing and duty-cycle of the high power phase.
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4.4.1 Timing scan

The results of timing scan for a fixed duty-cycle (%50) are presented in

figure 4.5. Note that the timings for which the center of the high power

phase coincides with the passage of the O- or X-point of the magnetic island

through the region of power deposition are pointed.
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Figure 4.5:
Suppression of the 2/1 magnetic island as a function of the timing of
the high power ECRH phase in a modulated ECRH experiment. The
horizontal axis gives the phase difference between the start of the ECRH
high power phase and the DED current reference signal(taken as a sin-
wave). Arrows point the timings for which the ECRH high power phase
is centered at either the O- or X-point.

Numerically calculated values follow the same trend as the experimental

data, which can be stated as power deposition at the O-point is more efficient
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on suppressing the island than deposition at the X-point. However, the

difference between the efficiency of O-point heating and the X-point heating

in the experimental values is larger than the difference between those in

numerical calculation.

4.4.2 Duty-Cycle scan

In the second part of the modulated ECRH experiments, the duty-cycle of

a high power phase centered around the O-point passage was scanned (see

Figure 4.6).
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Figure 4.6:
Suppression of the 2/1 magnetic island by modulated ECRH centered
around the O-point as a function of the duty cycle of the ECRH high
power phase. Red markers show the experimental values and blue mark-
ers show numerically calculated suppression of islands.
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The modulated power varies between 70 kW and 400 kW, for which

the duty cycle corresponds to 0% and 100%, respectively. The efficiency

of 200 kW CW power is also compared with the efficiency a modulated

power with duty-cycle 40% (which corresponds to same power) has on sup-

pressing the islands. It can be clearly seen that although experimental and

numerical results show qualitatively the same trend, their difference grows

as experimental data values become smaller. For both cases as duty-cycle is

increased, the efficiency also increases but no further improvement is found

beyond a duty-cycle of about 60%.

Another common behavior of these two kind of results is that the mod-

ulated ECRH with 40% duty-cycle results in further stabilization than CW

ECRH at the same average power.
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CHAPTER 5

DISCUSSION AND OUTLOOK

This project is focused on a benchmark of the model given in the second

chapter with the data of island suppression experiments performed on TEX-

TOR tokamak. In the third chapter, by comparing the measured temper-

ature profiles [3] inside three fully suppressed magnetic islands (each with

a different ECRH input power) with a numerically calculated profile, an

approximate perpendicular heat conductivity, χ⊥ value for each case has

been calculated. It is noticed that the difference in the powers deposited

does not dramatically affect the value of χ⊥ inside the island. That is why,

an average value (χ⊥ = 1.2 m2/s) has been chosen to be used for the rest of

the TEXTOR simulations. In the fourth chapter, 2/1 magnetic island sup-

pression was simulated and the results were benchmarked with the data of

island suppression experiments [17] performed at TEXTOR. Comparisons

are based on three different scans. Firstly, comparisons concerning radial

deposition scans have been made at narrow deposition profile and at wide

deposition profile. The results at narrow deposition profile indicate a fur-

ther destabilization for rdep < rs and a further stabilization for rdep > rs.

A possible reason might be a modification in magnetic equilibrium because

of the heating well outside the island. This modification is not taken into

account in deriving the theoretical model. At wide deposition profile numer-

ically calculated suppressed island sizes, one representing the effect of pure

ECRH and the other representing the effects of both ECRH and ECCD,
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lead to the same conclusion as experimental ones that in TEXTOR heat-

ing inside the island is the dominant suppression mechanism. Moreover, it

is obvious that wider deposition profile provides a wider region in which

stabilization is achieved.

The second set of comparisons have been made concerning the variation

in the EC driven current. Calculated island sizes suppressed by pure ECRH

and by both ECRH and ECCD are found out to be almost the same. It gives

an agreement with conclusion drawn from the experimental data that EC

driven current has a negligible contribution to stabilize the islands. Another

observation is that neither experimental data nor numerically calculated

sizes show a significant difference in the effects of counter- and co-current

drive on island stabilization.

The final set of comparisons are concerning the modulation scans com-

posed of timing and duty-cycle scan. Both numerical values and experimen-

tal data of the timing scan agrees on that O-point heating is more effective

than X-point heating on island suppression. The experimental and numeri-

cal values of the duty-cycle scan follow the same trend but as experimental

data values become smaller, the difference between them gets larger. Be-

sides both values indicates that the efficiency of modulated ECRH around

the O-point on island suppression increases as duty-cycle is increased but

no further improvement is observed beyond a duty-cycle of about 60%.

The relation between experimentally obtained and numerically calculated

wDED/wECRH for timing scan, duty-cycle scan and rotation scan (current

drive) performed has been plotted (see Figure 5.1). Note that the experi-

mental values are found out assuming ∆T is proportional to island width.
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Figure 5.1:
The scattering of experimental island suppression values versus numeri-
cally calculated suppression values for timing scan, duty-cycle scan and
rotation scan. It is seen that the relation is nonlinear in most of cases.

A better agreement between the model and the experimental data would

be possible in case the relation between ∆T and the island size would be

non-linear, in particular for small islands. In fact there are also good reasons

why this might be the case:

1. As given by the equation 2.36 island width w is proportional to
√
ψ1

(perturbed flux function).

2. The displacement between the point where temperature is measured

and the island is proportional to ψ1. Thus, ∆T is also proportional

to ψ1.

These arguments would result in an island size w being proportional to
√
∆T . For large islands, such that the point of measurement falls inside
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the island, the temperature perturbation would still be expected to vary

linearly with w.

In order to better assess the validity of the model, further numerical

simulations could be performed to obtain a more reliable estimate of the

island size from the temperature perturbation. Besides, discharges discussed

in [3] could be analyzed to find out the experimental relation between ∆T

and w.
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