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MATLAB Simulation

I Objective: Simulate a simple communication system and
estimate bit error rate.

I System Characteristics:
I BPSK modulation, b ∈ {1,−1} with equal a priori

probabilities,
I Raised cosine pulses,
I AWGN channel,
I oversampled integrate-and-dump receiver front-end,
I digital matched filter.

I Measure: Bit-error rate as a function of Es/N0 and
oversampling rate.
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System to be Simulated
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Figure: Baseband Equivalent System to be Simulated.

Paris ECE 732 4



MATLAB Simulation
Frequency Diversity: Wide-Band Signals

Discrete-Time Equivalent System
Digital Matched Filter and Slicer
Monte Carlo Simulation

From Continuous to Discrete Time

I The system in the preceding diagram cannot be simulated
immediately.

I Main problem: Most of the signals are continuous-time
signals and cannot be represented in MATLAB.

I Possible Remedies:
1. Rely on Sampling Theorem and work with sampled

versions of signals.
2. Consider discrete-time equivalent system.

I The second alternative is preferred and will be pursued
below.
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Towards the Discrete-Time Equivalent System

I The shaded portion of the system has a discrete-time input
and a discrete-time output.

I Can be considered as a discrete-time system.
I Minor problem: input and output operate at different rates.
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Discrete-Time Equivalent System
I The discrete-time equivalent system

I is equivalent to the original system, and
I contains only discrete-time signals and components.

I Input signal is up-sampled by factor fsT to make input and
output rates equal.

I Insert fsT − 1 zeros between input samples.

×

A

↑ fsT h[n] +

N [n]

to DSP
bn R[n]
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Components of Discrete-Time Equivalent System

I Question: What is the relationship between the
components of the original and discrete-time equivalent
system?
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Discrete-time Equivalent Impulse Response
I To determine the impulse response h[n] of the

discrete-time equivalent system:
I Set noise signal Nt to zero,
I set input signal bn to unit impulse signal δ[n],
I output signal is impulse response h[n].

I Procedure yields:

h[n] =
1
Ts

∫ (n+1)Ts

nTs

p(t) ∗ h(t) dt

I For high sampling rates (fsT � 1), the impulse response is
closely approximated by sampling p(t) ∗ h(t):

h[n] ≈ p(t) ∗ h(t)|(n+ 1
2 )Ts
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Discrete-time Equivalent Impulse Response
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Figure: Discrete-time Equivalent Impulse Response (fsT = 8)
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Discrete-Time Equivalent Noise

I To determine the properties of the additive noise N [n] in
the discrete-time equivalent system,

I Set input signal to zero,
I let continuous-time noise be complex, white, Gaussian with

power spectral density N0,
I output signal is discrete-time equivalent noise.

I Procedure yields: The noise samples N [n]
I are independent, complex Gaussian random variables, with
I zero mean, and
I variance equal to N0/Ts.
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Received Symbol Energy
I The last entity we will need from the continuous-time

system is the received energy per symbol Es.
I Note that Es is controlled by adjusting the gain A at the

transmitter.
I To determine Es,

I Set noise N(t) to zero,
I Transmit a single symbol bn,
I Compute the energy of the received signal R(t).

I Procedure yields:

Es = σ2
s · A2

∫
|p(t) ∗ h(t)|2 dt

I Here, σ2
s denotes the variance of the source. For BPSK,

σ2
s = 1.

I For the system under consideration, Es = A2T .
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Simulating Transmission of Symbols

I We are now in position to simulate the transmission of a
sequence of symbols.

I The MATLAB functions previously introduced will be used
for that purpose.

I We proceed in three steps:
1. Establish parameters describing the system,

I By parameterizing the simulation, other scenarios are easily
accommodated.

2. Simulate discrete-time equivalent system,
3. Collect statistics from repeated simulation.
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Listing : SimpleSetParameters.m
3 % This script sets a structure named Parameters to be used by

% the system simulator.

%% Parameters
% construct structure of parameters to be passed to system simulator

8 % communications parameters
Parameters.T = 1/10000; % symbol period
Parameters.fsT = 8; % samples per symbol
Parameters.Es = 1; % normalize received symbol energy to 1 (0dB)
Parameters.EsOverN0 = 6; % Signal-to-noise ratio (Es/N0)

13 Parameters.Alphabet = [1 -1]; % BPSK
Parameters.NSymbols = 1000; % number of Symbols

% discrete-time equivalent impulse response (raised cosine pulse)
fsT = Parameters.fsT;

18 tts = ( (0:fsT-1) + 1/2 )/fsT;
Parameters.hh = sqrt(2/3) * ( 1 - cos(2*pi*tts)*sin(pi/fsT)/(pi/fsT));
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Simulating the Discrete-Time Equivalent System

I The actual system simulation is carried out in MATLAB
function MCSimple which has the function signature below.

I The parameters set in the controlling script are passed as
inputs.

I The body of the function simulates the transmission of the
signal and subsequent demodulation.

I The number of incorrect decisions is determined and
returned.

function [NumErrors, ResultsStruct] = MCSimple( ParametersStruct )
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Simulating the Discrete-Time Equivalent System

I The simulation of the discrete-time equivalent system uses
toolbox functions RandomSymbols, LinearModulation, and
addNoise.

A = sqrt(Es/T); % transmitter gain
N0 = Es/EsOverN0; % noise PSD (complex noise)
NoiseVar = N0/T*fsT; % corresponding noise variance N0/Ts
Scale = A*hh*hh’; % gain through signal chain

34

%% simulate discrete-time equivalent system
% transmitter and channel via toolbox functions
Symbols = RandomSymbols( NSymbols, Alphabet, Priors );
Signal = A * LinearModulation( Symbols, hh, fsT );

39 if ( isreal(Signal) )
Signal = complex(Signal);% ensure Signal is complex-valued

end
Received = addNoise( Signal, NoiseVar );
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Digital Matched Filter

I The vector Received contains the noisy output samples from
the analog front-end.

I In a real system, these samples would be processed by
digital hardware to recover the transmitted bits.

I Such digital hardware may be an ASIC, FPGA, or DSP chip.
I The first function performed there is digital matched

filtering.
I This is a discrete-time implementation of the matched filter

discussed before.
I The matched filter is the best possible processor for

enhancing the signal-to-noise ratio of the received signal.
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Digital Matched Filter

I In our simulator, the vector Received is passed through a
discrete-time matched filter and down-sampled to the
symbol rate.

I The impulse response of the matched filter is the conjugate
complex of the time-reversed, discrete-time channel
response h[n].

h∗[−n] ↓ fsT Slicer
R[n] b̂n
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MATLAB Code for Digital Matched Filter

I The signature line for the MATLAB function implementing
the matched filter is:
function MFOut = DMF( Received, Pulse, fsT )

I The body of the function is a direct implementation of the
structure in the block diagram above.

% convolve received signal with conjugate complex of
% time-reversed pulse (matched filter)
Temp = conv( Received, conj( fliplr(Pulse) ) );

21

% down sample, at the end of each pulse period
MFOut = Temp( length(Pulse) : fsT : end );
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DMF Input and Output Signal
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IQ-Scatter Plot of DMF Input and Output
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Slicer

I The final operation to be performed by the receiver is
deciding which symbol was transmitted.

I This function is performed by the slicer.
I The operation of the slicer is best understood in terms of

the IQ-scatter plot on the previous slide.
I The red circles in the plot indicate the noise-free signal

locations for each of the possibly transmitted signals.
I For each output from the matched filter, the slicer

determines the nearest noise-free signal location.
I The decision is made in favor of the symbol that

corresponds to the noise-free signal nearest the matched
filter output.

I Some adjustments to the above procedure are needed
when symbols are not equally likely.
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MATLAB Function SimpleSlicer

I The procedure above is implemented in a function with
signature
function [Decisions, MSE] = SimpleSlicer( MFOut, Alphabet, Scale )

%% Loop over symbols to find symbol closest to MF output
for kk = 1:length( Alphabet )

% noise-free signal location
28 NoisefreeSig = Scale*Alphabet(kk);

% Euclidean distance between each observation and constellation point
Dist = abs( MFOut - NoisefreeSig );
% find locations for which distance is smaller than previous best
ChangedDec = ( Dist < MinDist );

33

% store new min distances and update decisions
MinDist( ChangedDec) = Dist( ChangedDec );
Decisions( ChangedDec ) = Alphabet(kk);

end
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Entire System

I The addition of functions for the digital matched filter
completes the simulator for the communication system.

I The functionality of the simulator is encapsulated in a
function with signature
function [NumErrors, ResultsStruct] = MCSimple( ParametersStruct )

I The function simulates the transmission of a sequence of
symbols and determines how many symbol errors occurred.

I The operation of the simulator is controlled via the
parameters passed in the input structure.

I The body of the function is shown on the next slide; it
consists mainly of calls to functions in our toolbox.
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Listing : MCSimple.m
%% simulate discrete-time equivalent system
% transmitter and channel via toolbox functions
Symbols = RandomSymbols( NSymbols, Alphabet, Priors );

38 Signal = A * LinearModulation( Symbols, hh, fsT );
if ( isreal(Signal) )

Signal = complex(Signal);% ensure Signal is complex-valued
end
Received = addNoise( Signal, NoiseVar );

43

% digital matched filter and slicer
MFOut = DMF( Received, hh, fsT );
Decisions = SimpleSlicer( MFOut(1:NSymbols), Alphabet, Scale );

48 %% Count errors
NumErrors = sum( Decisions ~= Symbols );
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Monte Carlo Simulation

I The system simulator will be the work horse of the Monte
Carlo simulation.

I The objective of the Monte Carlo simulation is to estimate
the symbol error rate our system can achieve.

I The idea behind a Monte Carlo simulation is simple:
I Simulate the system repeatedly,
I for each simulation count the number of transmitted

symbols and symbol errors,
I estimate the symbol error rate as the ratio of the total

number of observed errors and the total number of
transmitted bits.
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Monte Carlo Simulation

I The above suggests a relatively simple structure for a
Monte Carlo simulator.

I Inside a programming loop:
I perform a system simulation, and
I accumulate counts for the quantities of interest

43 while ( ~Done )
NumErrors(kk) = NumErrors(kk) + MCSimple( Parameters );
NumSymbols(kk) = NumSymbols(kk) + Parameters.NSymbols;

% compute Stop condition
48 Done = NumErrors(kk) > MinErrors || NumSymbols(kk) > MaxSymbols;

end

Paris ECE 732 27



MATLAB Simulation
Frequency Diversity: Wide-Band Signals

Discrete-Time Equivalent System
Digital Matched Filter and Slicer
Monte Carlo Simulation

Confidence Intervals

I Question: How many times should the loop be executed?
I Answer: It depends

I on the desired level of accuracy (confidence), and
I (most importantly) on the symbol error rate.

I Confidence Intervals:
I Assume we form an estimate of the symbol error rate Pe as

described above.
I Then, the true error rate P̂e is (hopefully) close to our

estimate.
I Put differently, we would like to be reasonably sure that the

absolute difference |P̂e − Pe| is small.
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Confidence Intervals
I More specifically, we want a high probability pc (e.g.,

pc =95%) that |P̂e − Pe| < sc .
I The parameter sc is called the confidence interval;
I it depends on the confidence level pc , the error probability

Pe, and the number of transmitted symbols N.
I It can be shown, that

sc = zc ·
√

Pe(1− Pe)
N

,

where zc depends on the confidence level pc .
I Specifically: Q(zc) = (1− pc)/2.
I Example: for pc =95%, zc = 1.96.

I Question: How is the number of simulations determined
from the above considerations?
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Choosing the Number of Simulations

I For a Monte Carlo simulation, a stop criterion can be
formulated from

I a desired confidence level pc (and, thus, zc)
I an acceptable confidence interval sc ,
I the error rate Pe.

I Solving the equation for the confidence interval for N, we
obtain

N = Pe · (1− Pe) · (zc/sc)2.

I A Monte Carlo simulation can be stopped after simulating N
transmissions.

I Example: For pc =95%, Pe = 10−3, and sc = 10−4, we
find N ≈ 400, 000.
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A Better Stop-Criterion
I When simulating communications systems, the error rate is

often very small.
I Then, it is desirable to specify the confidence interval as a

fraction of the error rate.
I The confidence interval has the form sc = αc · Pe (e.g.,

αc = 0.1 for a 10% acceptable estimation error).
I Inserting into the expression for N and rearranging terms,

Pe ·N = (1− Pe) · (zc/αc)2 ≈ (zc/αc)2.

I Recognize that Pe ·N is the expected number of errors!
I Interpretation: Stop when the number of errors reaches

(zc/αc)2.
I Rule of thumb: Simulate until 400 errors are found

(pc =95%, α =10%).
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Listing : MCSimpleDriver.m
9 % comms parameters delegated to script SimpleSetParameters

SimpleSetParameters;

% simulation parameters
EsOverN0dB = 0:0.5:9; % vary SNR between 0 and 9dB

14 MaxSymbols = 1e6; % simulate at most 1000000 symbols

% desired confidence level an size of confidence interval
ConfLevel = 0.95;
ZValue = Qinv( ( 1-ConfLevel )/2 );

19 ConfIntSize = 0.1; % confidence interval size is 10% of estimate
% For the desired accuracy, we need to find this many errors.
MinErrors = ( ZValue/ConfIntSize )^2;

Verbose = true; % control progress output
24

%% simulation loops
% initialize loop variables
NumErrors = zeros( size( EsOverN0dB ) );
NumSymbols = zeros( size( EsOverN0dB ) );
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Listing : MCSimpleDriver.m
for kk = 1:length( EsOverN0dB )

32 % set Es/N0 for this iteration
Parameters.EsOverN0 = dB2lin( EsOverN0dB(kk) );
% reset stop condition for inner loop
Done = false;

37 % progress output
if (Verbose)

disp( sprintf( ’Es/N0: %0.3g dB’, EsOverN0dB(kk) ) );
end

42 % inner loop iterates until enough errors have been found
while ( ~Done )

NumErrors(kk) = NumErrors(kk) + MCSimple( Parameters );
NumSymbols(kk) = NumSymbols(kk) + Parameters.NSymbols;

47 % compute Stop condition
Done = NumErrors(kk) > MinErrors || NumSymbols(kk) > MaxSymbols;

end
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Simulation Results
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Summary

I Introduced discrete-time equivalent systems suitable for
simulation in MATLAB.

I Relationship between original, continuous-time system and
discrete-time equivalent was established.

I Digital post-processing: digital matched filter and slicer.
I Monte Carlo simulation of a simple communication system

was performed.
I Close attention was paid to the accuracy of simulation

results via confidence levels and intervals.
I Derived simple rule of thumb for stop-criterion.

Paris ECE 732 35



MATLAB Simulation
Frequency Diversity: Wide-Band Signals

Discrete-Time Equivalent System
Digital Matched Filter and Slicer
Monte Carlo Simulation

Where we are ...

I Laid out a structure for describing and analyzing
communication systems in general and wireless systems
in particular.

I Saw a lot of MATLAB examples for modeling diverse
aspects of such systems.

I Conducted a simulation to estimate the error rate of a
communication system and compared to theoretical
results.

I To do: consider selected aspects of wireless
communication systems in more detail, including:

I modulation and bandwidth,
I wireless channels,
I advanced techniques for wireless communications.
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Frequency Diversity through Wide-Band Signals

I We have seen above that narrow-band systems do not
have built-in diversity.

I Narrow-band signals are susceptible to have the entire
signal affected by a deep fade.

I In contrast, wide-band signals cover a bandwidth that is
wider than the coherence bandwidth.

I Benefit: Only portions of the transmitted signal will be
affected by deep fades (frequency-selective fading).

I Disadvantage: Short symbol duration induces ISI; receiver
is more complex.

I The benefits, far outweigh the disadvantages and
wide-band signaling is used in most modern wireless
systems.
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Illustration: Built-in Diversity of Wide-band Signals

I We illustrate that wide-band signals do provide diversity by
means of a simple thought experiments.

I Thought experiment:
I Recall that in discrete time a multi-path channel can be

modeled by an FIR filter.
I Assume filter operates at symbol rate Ts.
I The delay spread determines the number of taps L.

I Our hypothetical system transmits one information symbol
in every L-th symbol period and is silent in between.

I At the receiver, each transmission will produce L non-zero
observations.

I This is due to multi-path.
I Observation from consecutive symbols don’t overlap (no ISI)

I Thus, for each symbol we have L independent
observations, i.e., we have L-fold diversity.
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Illustration: Built-in Diversity of Wide-band Signals

I We will demonstrate shortly that it is not necessary to
leave gaps in the transmissions.

I The point was merely to eliminate ISI.
I Two insights from the thought experiment:

I Wide-band signals provide built-in diversity.
I The receiver gets to look at multiple versions of the

transmitted signal.
I The order of diversity depends on the ratio of delay spread

and symbol duration.
I Equivalently, on the ratio of signal bandwidth and coherence

bandwidth.
I We are looking for receivers that both exploit the built-in

diversity and remove ISI.
I Such receiver elements are called equalizers.
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Equalization

I Equalization is obviously a very important and well
researched problem.

I Equalizers can be broadly classified into three categories:
1. Linear Equalizers: use an inverse filter to compensate for

the variations in the frequency response.
I Simple, but not very effective with deep fades.

2. Decision Feedback Equalizers: attempt to reconstruct ISI
from past symbol decisions.

I Simple, but have potential for error propagation.
3. ML Sequence Estimation: find the most likely sequence

of symbols given the received signal.
I Most powerful and robust, but computationally complex.
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Maximum Likelihood Sequence Estimation

I Maximum Likelihood Sequence Estimation provides the
most powerful equalizers.

I Unfortunately, the computational complexity grows
exponentially with the ratio of delay spread and symbol
duration.

I I.e., with the number of taps in the discrete-time equivalent
FIR channel.
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Maximum Likelihood Sequence Estimation

I The principle behind MLSE is simple.
I Given a received sequence of samples R[n], e.g., matched

filter outputs, and
I a model for the output of the multi-path channel:

r̂ [n] = s[n] ∗ h[n], where
I s[n] denotes the symbol sequence, and
I h[n] denotes the discrete-time channel impulse response,

i.e., the channel taps.
I Find the sequence of information symbol s[n] that

minimizes

D2 =
N

∑
n
|r [n]− s[n] ∗ h[n]|2.
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Maximum Likelihood Sequence Estimation

I The criterion

D2 =
N

∑
n
|r [n]− s[n] ∗ h[n]|2.

I performs diversity combining (via s[n] ∗ h[n]), and
I removes ISI.

I The minimization of the above metric is difficult because it
is a discrete optimization problem.

I The symbols s[n] are from a discrete alphabet.
I A computationally efficient algorithm exists to solve the

minimization problem:
I The Viterbi Algorithm.
I The toolbox contains an implementation of the Viterbi

Algorithm in function va.
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MATLAB Simulation

I A Monte Carlo simulation of a wide-band signal with an
equalizer is conducted

I to illustrate that diversity gains are possible, and
I to measure the symbol error rate.

I As before, the Monte Carlo simulation is broken into
I set simulation parameter (script VASetParameters),
I simulation control (script MCVADriver), and
I system simulation (function MCVA).
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MATLAB Simulation: System Parameters

Listing : VASetParameters.m
Parameters.T = 1/1e6; % symbol period
Parameters.fsT = 8; % samples per symbol
Parameters.Es = 1; % normalize received symbol energy to 1 (0dB)
Parameters.EsOverN0 = 6; % Signal-to-noise ratio (Es/N0)

13 Parameters.Alphabet = [1 -1]; % BPSK
Parameters.NSymbols = 500; % number of Symbols per frame

Parameters.TrainLoc = floor(Parameters.NSymbols/2); % location of training seq
Parameters.TrainLength = 40;

18 Parameters.TrainingSeq = RandomSymbols( Parameters.TrainLength, ...
Parameters.Alphabet, [0.5 0.5] );

% channel
Parameters.ChannelParams = tux(); % channel model

23 Parameters.fd = 3; % Doppler
Parameters.L = 6; % channel order
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MATLAB Simulation

I The first step in the system simulation is the simulation of
the transmitter functionality.

I This is identical to the narrow-band case, except that the
baud rate is 1 MHz and 500 symbols are transmitted per
frame.

I There are 40 training symbols.

Listing : MCVA.m
41 % transmitter and channel via toolbox functions

InfoSymbols = RandomSymbols( NSymbols, Alphabet, Priors );
% insert training sequence
Symbols = [ InfoSymbols(1:TrainLoc) TrainingSeq ...

InfoSymbols(TrainLoc+1:end)];
46 % linear modulation

Signal = A * LinearModulation( Symbols, hh, fsT );
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MATLAB Simulation

I The channel is simulated without spatial diversity.
I To focus on the frequency diversity gained by wide-band

signaling.
I The channel simulation invokes the time-varying multi-path

simulator and the AWGN function.

% time-varying multi-path channels and additive noise
Received = SimulateCOSTChannel( Signal, ChannelParams, fs);

51 Received = addNoise( Received, NoiseVar );
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MATLAB Simulation

I The receiver proceeds as follows:
I Digital matched filtering with the pulse shape; followed by

down-sampling to 2 samples per symbol.
I Estimation of the coefficients of the FIR channel model.
I Equalization with the Viterbi algorithm; followed by removal

of the training sequence.

MFOut = DMF( Received, hh, fsT/2 );

% channel estimation
57 MFOutTraining = MFOut( 2*TrainLoc+1 : 2*(TrainLoc+TrainLength) );

ChannelEst = EstChannel( MFOutTraining, TrainingSeq, L, 2);

% VA over MFOut using ChannelEst
Decisions = va( MFOut, ChannelEst, Alphabet, 2);

62 % strip training sequence and possible extra symbols
Decisions( TrainLoc+1 : TrainLoc+TrainLength ) = [ ];
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Channel Estimation

I Channel Estimate:

ĥ = (S′S)−1 · S′r,

where
I S is a Toeplitz matrix constructed from the training

sequence, and
I r is the corresponding received signal.

TrainingSPS = zeros(1, length(Received) );
14 TrainingSPS(1:SpS:end) = Training;

% make into a Toepliz matrix, such that T*h is convolution
TrainMatrix = toeplitz( TrainingSPS, [Training(1) zeros(1, Order-1)]);

19 ChannelEst = Received * conj( TrainMatrix) * ...
inv(TrainMatrix’ * TrainMatrix);
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Simulated Symbol Error Rate with MLSE Equalizer
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Figure: Symbol Error Rate with Viterbi Equalizer over Multi-path
Fading Channel; Rayleigh channels with transmitter diversity shown
for comparison. Baud rate 1MHz, Delay spread ≈ 2µs.

Paris ECE 732 51



MATLAB Simulation
Frequency Diversity: Wide-Band Signals

Introduction to Equalization
MATLAB Simulation
More Ways to Create Diversity

Conclusions
I The simulation indicates that the wide-band system with

equalizer achieves a diversity gain similar to a system with
transmitter diversity of order 2.

I The ratio of delay spread to symbol rate is 2.
I comparison to systems with transmitter diversity is

appropriate as the total average power in the channel taps
is normalized to 1.

I Performance at very low SNR suffers, probably, from
inaccurate estimates.

I Higher gains can be achieved by increasing bandwidth.
I This incurs more complexity in the equalizer, and
I potential problems due to a larger number of channel

coefficients to be estimated.
I Alternatively, this technique can be combined with

additional diversity techniques (e.g., spatial diversity).
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More Ways to Create Diversity

I A quick look at three additional ways to create and exploit
diversity.

1. Time diversity.
2. Frequency Diversity through OFDM.
3. Multi-antenna systems (MIMO)
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Time Diversity
I Time diversity: is created by sending information multiple

times in different frames.
I This is often done through coding and interleaving.
I This technique relies on the channel to change sufficiently

between transmissions.
I The channel’s coherence time should be much smaller than

the time between transmissions.
I If this condition cannot be met (e.g., for slow-moving

mobiles), frequency hopping can be used to ensure that the
channel changes sufficiently.

I The diversity gain is (at most) equal to the number of
time-slots used for repeating information.

I Time diversity can be easily combined with frequency
diversity as discussed above.

I The combined diversity gain is the product of the individual
diversity gains.
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OFDM

I OFDM has received a lot of interest recently.
I OFDM can elegantly combine the benefits of narrow-band

signals and wide-band signals.
I Like for narrow-band signaling, an equalizer is not required;

merely the gain for each subcarier is needed.
I Very low-complexity receivers.

I OFDM signals are inherently wide-band; frequency
diversity is easily achieved by repeating information (really
coding and interleaving) on widely separated subcarriers.

I Bandwidth is not limited by complexity of equalizer;
I High signal bandwidth to coherence bandwidth is possible;

high diversity.
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MIMO
I We have already seen that multiple antennas at the

receiver can provide both diversity and array gain.
I The diversity gain ensures that the likelihood that there is

no good channel from transmitter to receiver is small.
I The array gain exploits the benefits from observing the

transmitted energy multiple times.
I If the system is equipped with multiple transmitter

antennas, then the number of channels equals the product
of the number of antennas.

I Very high diversity.
I Recently, it has been found that multiple streams can be

transmitted in parallel to achieve high data rates.
I Multiplexing gain

I The combination of multi-antenna techniques and OFDM
appears particularly promising.

Paris ECE 732 56



MATLAB Simulation
Frequency Diversity: Wide-Band Signals

Introduction to Equalization
MATLAB Simulation
More Ways to Create Diversity

Summary

I A close look at the detrimental effect of typical wireless
channels.

I Narrow-band signals without diversity suffer poor
performance (Rayleigh fading).

I Simulated narrow-band system.
I To remedy this problem, diversity is required.

I Analyzed systems with antenna diversity at the receiver.
I Verified analysis through simulation.

I Frequency diversity and equalization.
I Introduced MLSE and the Viterbi algorithm for equalizing

wide-band signals in multi-path channels.
I Simulated system and verified diversity.

I A brief look at other diversity techniques.
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