SIMULATOR FOR SERVICE-BASED SOFTWARE SYSTEMS: DESNGAND
IMPLEMENTATION WITH DEVS-SUITE
by

Sungung Kim

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree
Master of Science

ARIZONA STATE UNIVERSITY

December 2008

SIMULATOR FOR SERVICE-BASED SOFTWARE SYSTEMS: DESNGAND
IMPLEMENTATION WITH DEVS-SUITE
by

Sungung Kim

has been approved

October 2008

Graduate Supervisory Committee:
Hessam S. Sarjoughian, Chair

Stephen S. Yau
Wei-Tek Tsali

ACCEPTED BY THE GRADUATE COLLEGE

ABSTRACT

Simulation modeling offers important and uniqueatdfities for analysis and
design of service-oriented computing systems thatsatisfy multiple, competing
Qualities of Service (QoS) requirements. In ordeait! design of service-based software
systems (SBS), it is important to employ a suitabteleling framework that can account
for the Service-Oriented Architecture (SOA) consepiioward this goal, this thesis
develops a simulator that can represent and exseuntee-based software systems. A
novel set of generic SOA-based models are develbased on the Discrete Event
System Specification (DEVS) framework. The resglit8BOA-based DEVS (SOAD)
models can be created in the DEVS-Suite simulaimnronment, a newly developed
extension of the DEVSJAVA Tracking Environment. TB®AD models are
implemented and incorporated into the DEVS-Suiteugator which affords animation of
simulation executions and visualization of simuatresults as time trajectories. To
demonstrate the modeling capabilities of SOAD ,exdrchical model of a travel agency
services is developed. Simulation models for a ¥ @ommunication System (VCS) are
also developed according to a real SOA-based imgréaion of VCS. Future extensions
for the SOAD simulator are proposed to enable modeind simulation of adaptable

service-based software systems.

ACKNOWLEDGMENTS

I would like to thank my committee chair, Dr. Hass8arjoughian, Department
of Computer Science and Engineering, Arizona Stiligersity. He has given countless
hours of his time towards guiding me in this resbas well as mentoring me as a
graduate student.

I would also like to thank my other committee memsb®r. Stephen S. Yau and
Dr. Wei-Tek Tsai for serving on my thesis committee

| want to thank my colleagues at the ACIMS, Garyy®taVignesh Elamvazhuthi,
Sajjan Sarkar, Muthukumar Ramaswamy, and Mohammagkshh. It was a pleasure
working with you guys.

I am thankful to the members of the Science of @e8ISF project and in
particular Dazhi Huang who provided experimentalits that helped this thesis. The
partial financial support of this research undeFN&ant number CCF-0725340 is
gratefully acknowledged.

Special thanks to my father and mother. They alvsaypport and encourage me.

Without their help, this degree would not have bpessible.

TABLE OF CONTENTS

Page
LIST OF TABLESoiiii ittt ettt ettt e et e e s b e e e s annbneeeeens X
LIST OF FIGURES ...ttt ettt e e e e Xi
CHATER
O 1 To [¥ [ox 1 o] o HN PP TP PP 1
1.1. A Statement of the Problem ... 1
1.2. Thesis COoNtriDULION.........ooi e 5
1.3. ThesSis OrganizZationccooi i 6
2. Background and Related WOrKS ... 7
2.1. Discrete Event System Specification (DEVS)..ccc......cvuvviiviiiiiiiiiiiiiiiieiiiiiiiienes 7
2.2. DEVSJAVA Simulation ENVIFONMENTceuiiiiiiiiiiiiiiiiiiiiiiiiieieeinenenieenennnenes 9
2.2.1. DEVSJAVA Simulation VIEBWETcooi oo 9
2.3. Tracking Environment With TIMEVIEWcceeiiiiiiiiiiee, 11
2.3.1. Architecture Design of Tracking Environment.................euuvvveieimeiiiennnnnnnn. 11
2.3. 2. TIMEVIBW ...t 15
2.3.3. Integration of TimeView into the Tracking\BHionment............ccceevvvvvvveenee. 16
2.3.3.1. Tracking OPLIONS.cuuuiuiuiiiiirereaeeeeeieeeeeaeeeeeeeeete e e e e e e e eeereaae s 16
2.3.3.2. Data FIOW CRart.ooeiiiiiiiiiieiieiieieiieeeee ettt beeeeeeee e 17
2.4. Service Oriented Architecture based SOftW ISFEBNeevevviiiiiiiiiiiiiiiiinnns 19
2.4.1. Service Oriented ArchiteCture ... 19
2.4.2. Adaptable Service Based Software SYStemlu......cccccovviiiiiiiiiiiiiiniininnne 2.2

\Y

CHAPTER

Page
2.4.2.1. Four critical QOS features. ... eeeeriiiiiieeeee e e e e 23
2.5, Related WOIKScoooiiiiiiiiiieieeeee e 24
3. Extension of Tracking Environment with SIMVIEW................uvviiiiiiiiiiiiiiiiiiinnnnd 92
3.1. Analysis on the SIMView and DTEuuiiii e 29
3.1.1. Architectural Design Patterncccccciiiiiiiiiiiiiiiiiiiiiiiiieiieiinemnnmnee e 29
3.1.2. Simulation Model TYPEcooiiiiiiii e 34
3.1.3. Model Loading MechaniSm...........cooccceeeiiiiiiiiiiiiiieiii e 36
3.1.4. Simulation CoNtrol LOGICScevtieeemeeeerereeirerennninninrennnnnennnneennnnnrnnnnneeee 38
3.2. Integration of SIMVIEW INtO DTE..........coummruuummmmmiiiii s s smanees 38
3.2.1. Interface INtEQrationuuiiicreeee e r e e 39
3.2.2. Architecture INtegrationccommeeeeeeeiieieiiieiee e eeerereee e e e 41
4. DEVELOPMENT OF SOA BASED SIMULATION MODELScoooiiiiiieeee. 45
4.1. SOAD FrameEWOTIKuuuiiiiiiieiiiiieeeeee et e e e e e e as 45
4.1.1. Comparisons between the SOA and DEVS..cccc...ooooiiiiiiiiiiievee 46
4.1.2. Mapping SOA Elements to the DEVS ElementS........ccccccevevvvviiiiiiiiinnnnn. 49
4.2. SOftWaAre MOEISeueiieiiiie e 50
4.2.1. SOA-Compliant DEVS ModElSooimeaeeiiiiiiiieeeee 51
4.2.2. A Simple Network Modeloooiiii, 52
4.3. Modeling of SOA-Compliant DEVS MOAElS ..coeevvivviiiiiiiiiiiiiiiiiiiiiiniviiiiiveienns 53
4.3.1. Service Broker Simulation Model.......cccccoiiiiiiiiiiiiiieiieeee s 53

Vi

CHAPTER Page

4.3.2. Service Client Simulation MOdel ... o 54
4.3.3. Service Provider Simulation Model ..o 54
4.3.4. Composite Service Simulation MOdel.. . coooiiiiiiiiiiiiiiiiieeeeee 55
4.4. Implementation of SOA-Compliant DEVS models...............ouvvviviiviiivivinninnnnn 56
4. 4.1, GENEIIC MESSAUES ...uuvuvrurrrrrnrssmmmm e e eeeeeeeaaataaaeaeaeteatteaeateeeeetraaaaaaaaeeaes 56
4.4.1.1. Servicelnfo and ServiceLoOKup MeSsages.cuvvvvvvveveveeeveeeeeennen 57
4.4.1.2. ServiceCall MESSAQE.ccoeiiieeeeeeei s s 58
4.4.2. PrIMITIVE SEIVICES mmmmmm s e sennsnenennees 59
4.4.2.1. ServiceBroker Model. ... 60
4.4.2.2. ServiceClient MOdel. ... 60
4.4.2.3. ServiceProvider MOdel.ooovooeoiieiiiiieeeie e 61
4.4.3. Composite Service MOlcommeereeiiiiiiiiiiiiiiiieeiieiieee . 63
4.4.4. Application COMPOSITIONccoiiiiiieeeaeiiieiiiiieiiiie e mnnmnee e 65
4.4.5. ServiceTransducer Model............oooiiiiiiiii e 67
5. SIMUIAION EXPEIMENTSuuiiiiiiiiitit e 68
5.1. Service Composition and Configurationsccccvviiiiiiiiiiiiiieiieceeeeeeeen, 68
5.2. EXperimental SCENANIOSccooiiiiieeeeeeeiiiiiiiieiiei ittt beeebeeebeerneeeeeeeeees 68
5.2.1. Real Voice Communication ServiCe SYSteMuuuuuruururrieririeiriiiinenennnenns 69
5.2.2. Travel Agency Service SYSEMcccoovviiviiiiiieeeeeeee e 70

vii

CHAPTER Page

5.3. Service Composition with Primitive ServiCes..........ccccevvvriiriiniiniiiiesneneneenann 71
5.3.1. Composition for the VCS Model with Configtioa 1ccccceeiiiiiiinnnnns 72
5.3.1.1. Service Broker and NetWOIK. ... e, 73
5.3.1.2. SEIVICE PrOVIAEN. ...coeiiiiiiiiiitieeeeee e 73
5.3.1.3. SErVICE ClIBNL. ...eeiiiiiiiii i 75
5.3.1.4. TrANSAUCETuiuiiiiiiiieee et sttt e e e e e e s et e e e e e s semnneeeeeee s 76
5.3.1.5. Coupling Of SEIVICES.ccoiiiiieeeeeee e 77
5.3.2. Composition for the VCS Simulation with Cigafation 2...............ccoeeeeeeee. 78
5.3.3. Validation on the SOAD Simulation Models...................uuiiiiiiiiiiiiiiiiiininnns 79
5.3.4. Composition for the VCS Simulation with Cigafation 3..............ccccoeveeeeee. 83
5.3.5. Composition for the VCS Simulation with Cigafation 4..............cccovveeee.e. 86
5.4. Service Composition with Composite ServiCe..........ccccceviiiiiiiiiiiieieeeee, 87.
5.4.1. Composition for the TAS Simulation with Cigofration 4.ccovvvvveveeeeee. 87
5.4.1.1. ENdpOoiNtS CONSIIUCLION.t e eeeeeeeeeeeeee e e eeeeeeeeeeeeeeeeeeeeeeaeeas 88
5.4.1.2. Service Provider CONSIIUCHION. ... eiiiiiiiiieie e, 89
5.4.1.3. Service Composition with the VCS and TAS...........ccoovviiiiiiiieeeeeeeees 89
5.5 Scaling SOAD Models with the DEVS-SUItE.........uuiiiiiiiiiieeiesse e 9l
6. Conclusion and FULUIrE WOTKSomemmmmeeeeeeeen i beee e e e e 93
6.1, CONCIUSION ittt mmmee ettt e e e e et e e e e e e e e e eeas 93

CHAPTER Page
B.2. FULUIE RESBAICI ..eeeeeeee ettt e e e e e e e e e e 94
R (10T Lo TR 95

LIST OF TABLES

Table Page
1. Four QOS Metrics Table........oouuiiiii e 24
2. Comparisons of Approaches in Terms of M&S Cohcep........cccvvvvviiieieeeeeeviinnnnnn. 28
3. An Association between the DEVS and SOA FramB/or..............ccccuvveeeeeeeeennnnnns 47
4. Correspondences between the DEVS and SOA ElSment...............euvvvvveeinennnennnns 50
5. WSDL and Servicelnfo and ServiceLookup Messages...........ccccccvvvveiiiiieneieienen, 58
6. Service Composition ConNfigUuIrationS.......ccccccvvvviiiiiiieiiriiiiiiiieirerrenrr 67
7. The Experimental Control Variables SettingS ..., 70
8. The Simulation Control Variable Setting ..ccccccoooooeeeiieee s 80
9. Throughputs for the Real and Simulated VCS bynbier of Service Clients............. 82

Figure Page
1. The conceptual view of ASBS (Yau et al., 2008)..........ccceeveiiiiiiiiiieee, 2
2. SOAD With M&A SUD-SYSIEIMSeuuiiiiiiiimrmeneeeieeeeeeee e 5
3. The DEVSJAVA SiMUIAtION VIBWETuuueieiiiiiiieeeiiiiiiiiiiieeee e ineeee e 10
4. The EFP model in the DEVSommmiiiiiieiee e smnreee e 11
5. Software architeCture CONCEPL.........ooiiiiiiiiiiiiiiiiieiieiiiiiiiie e eee s 13
6. Simulation Tracking ENVIFONMENT.........cummeeeieiiirieeaiseesees s s e e e eseeeesnens 14
7. TE TIMEVIBW .ttt ettt e e e e e e be e e e e s s s re e e e s 16
8. The Tracking OPLIONS ..o e s e eeeneee 17
9. Data flow of Tracking ENVIrONMENT ... 18
10. Integration with the TIMEVIEW ..o 19
11. Service oriented arChit@CIUIe.......... e 21
12. Model-View-Controller Pattern e 31
13. MFVC framework for the Tracking Environment............cccooooiiiiiniiinenieneeneeen. 32
14. UML diagram for the SIMVIEWuueeeeeiiiiiiii e 34
15. The hierarchy of simulation models ..., 35
16. Tracking Environment loading mechanismccccccciiiiec e, 36
17. SimView loading MeChaniSMoiiceeeeeiieiiiiiiiiieiii b 37
18. The list of Control Logics in the simulation@onment.................eevevveeivinininnns 38
19. Interface Of the DEVS-SUILEcooiiiiiiiiiiiiiiie e 40
20. The sequence diagram for model loading meshani.............ccoeeeeeieieeeeenen 4L
21. The MFVC framework for the DEVS-SUILE ... cooeiiiiiiiiiiieieeeeeeiiiiiee e 42

LIST OF FIGURES

Xi

Figure
22.
23.
24,
25.
26.
27.
28.
29.
30.
32.
34.
35.
36.
38.
39.
40.
41.
42.
43.
44,
45.

46.

Page

The simplified MFVC frameworkoccecevoiiiiiiiiieeeee 43

The entire MFVC framework for the DEVS-SUILE............ccoovviiiiiiiiiiiieeeennis 45

SOA-based DEVS @pPrOACNES..........uuuuiuuuureeiiiiieiieiieiisiuniessnesrnenenreenrerenneeeeee 46
SOA-compliant DEVS MOEI...........uuiiceeeeeiiiiiiiiiiiieiiiiiiiveiieiveieereeseeeneeneneeseeees 52
Communication Of MESSAGEScciiiii e e 53
Service broker simulation MOdelcceeemiiiiiiiiiiiiii e 54
Service client simulation MOdEl........cccouieiiiiiiiiiii e 54
Service provider simulation Modelcoocooiiiiiiiiiii s 55
Composite service simulation Model ... 55
Messages iNthe SOAD ... 57
Internal Event function in the ServiceProvider..........cccoooooiiiiiiiiiiiniii e 61

Connection between service clients and an@ntp............ccoooeeeieieiiieiiieieeeeen. 62

Business Process EXecution LANQUAQJEccceevviiiiiiiiieeiiiiieiieiieiieieeieensieeeneeens 64

ApplicationComposition MOAEmeiiiiiiiii e 66
ServiceTransducer MOdel...........oooviiii 67
Voice COMMUNICALION SEIVICEceiiiemmeiiiiiie et ee e et 69
Travel Agency Service COMPOSITION. ... cuummmuurunmnninniirneaanaasaasessssseeesssssesennnes 71
The Service COMPOSILION ClaSSicoeeerriiiiiiiiiiiiiiiriieiiiiieie e 72
Broker and Network CONSIIUCTIONcevueriiiiiiiiiiiee et neeeee e 73
Service Provider CONSIIUCTION oo ceeeeeeseisiiitiieeeeeeeeesaseseinsieeesessenneenees 73
gRate SPECITICALIONccviiiiiiiiiiiieeee e 74
Service ClieNt CONSTIUCTIONooiiiiiiieiie e e e 75

Figure Page

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

TranSAUCEr CONSTIUCTIONuueeiiiiscmmmenceiei e e e e e e e e 76
Transducers iNthe VCSuiii e 77
Voice Communication service with configuratbn.........................o, 78
Service client construction with configurat@®n..............cccccoviviiiiiiiiieiieeees 79
The VCS simulation with configuration 2 ..ee......ccovvveiviiiiiiiiiiiiiiiiiiiiiiiieieeeee 79
The measurements of the VCS throughput wittiigoration 1cccccvvvvennns 81
Comparison the throughputs between the rehbenulated VCS...........ccooeeeieennn. 82
Service provider construction with configuoati3...................ccoe e 83
Specifications of endpoints in USZIP and REFGBIVICES.........cccvvveviiviiiiieeennnn, 84
Service client construction with configurati®n..............ccccvviiiiiiiieeees 85
The VCS simulation with configuration 3 .eecee......ooiiiiiiiiiiiiiiiiiiieiieeeie e 85
Service client construction with configuratibn...............ccccviiiiiiiiiiieeeees 86
Service composition with configuration 4..................eeeevieiiiiieiieiiiiiiiieiiieeeeeee 87
Composite ServiCe COMPOSILIONiuteeeee e 88
Endpoints construction for the RBZ ... 88
Service client construction for the RBZ............cccciiiiiiiiiiiii e 89
Composite SEerviCe CONSIIUCTIONociveieiiiiiiiieieeieeiie et rrerneeeeeeeee e 90
The Composite service composition with the \&@8 the TAS ..., 91
Simulator Execution PerformanCeccccceuveviiiieioiiiiiiiiiiieee e eeeeeen s 92

Xiii

1. Introduction
1.1. A Satement of the Problem

Modeling and Simulation has become a necessitgdégeloping many kinds of
complex, large scale systems. A major part of exgging systems is to develop models
that can aid analysis and design activities. Modgélgh describe both structural and
behavioral specifications can be simulated in tineeal environments. They help to
detect requirement and design errors in the etatyesof product development cycles.
This capability can significantly reduce the costaciated with eliminating errors in
system implementation and testing development stafgenodel can be written by using
a variety of system specification formalisms. Fearaple, the Discrete Event System
Specification (DEVS), the Discrete Time System $ption (DTSS), and Differential
Equation System Specification (DESS) formalismslmamsed to simulate discrete event,
discrete-time, and continuous models (B.P. Zeigte., 2000). Simulation is commonly
used as a technique for better understanding térsysoftware designs, performance
optimization, as well as undertaking the role afittional experimentation.

Currently the concept of Service Oriented Compu(®QC) paradigm is rapidly
being adopted for developing distributed compusigstems. The Service Oriented
Architecture (SOA) is proposed for building softeaystems from services (Erl, 2006).
This framework affords composition of various typéservices for distributed
applications built on different platforms. An impant consideration in developing SOA-
based software systems (SBS) is supporting mulgjpédity of service (QoS) features,

such as timeliness, throughput, accuracy and sgiiau et al., 2008). To achieve this

goal, QoS Monitoring and Adaptation sub-systemspimbination with services, are
needed to collect and analyze tradeoffs betweetipfeuQoS features and to adapt the
composition of services accordingly. As showniiguiFe 1, SBS with the Monitoring

and Adaptation sub-systems is collectively refetoeds Adaptable SBS (ASBS).

QoS Expectations L
J
Adaptation :
command QoS Adaptatuon>
/

Extrageneous
vents
Produce
Events
_ SBS
Ig:eosr:)suurrcneeS Affect QoS Monitoring

Resources

Measure changes of system resource states

[Adaptable Service Based Software system]

Figure 1. The conceptual view of ASBS (Yau et al., 2008)

Simulation modeling can be used to study multipteSQittributes of service-
based systems and thus determine desirable tradéofirder to verify and validate the
design of ASBS, in this research, the DEVS fornmalis used to define the
characteristics of ASBS. The DEVS framework, simitaother modeling and simulation
approaches, supports analysis, design, and develaprhsystems (B. P. Zeigler &

Sarjoughian, 2003). This modeling formalism progiderigorous basis for simulating

3
service-oriented software systems. A variety oeobpriented Modeling and Simulation
(M&S) tools based on the DEVS formalism have beaplémented in different
programming languages (e.g., C++ and JAVA) and tseaimulate many different kinds
of systems such as command and communication seftsyatems. In this research, we
will use the DEVSJAVA (ACIMS, 2001) and the DEVSJAM racking Environment
(DTE) (H.S. Sarjoughian & Singh, 2004; Singh & 8aghian, 2003). The former
supports animation of hierarchical models and dtied supports specifying and
dynamically collecting simulation results as tinteds and tabulated data.

The DEVSJAVA shows a view of the entire hierarcliyh@ simulation model
using components-within-components-style and ananaif messages moving along the
paths of the coupling between components duringitnalation (Mather, 2003; B. P.
Zeigler & Sarjoughian, 2003). The DEVSJAVA supponjgcting inputs into the model
during the simulation dynamically so users canlgasialyze the dynamics of the
simulated models.

The DTE offers a graphical user interface to idgrégnd enable semi-automated
experimentations to track the simulation model data including states (i.e., Phase,
Sigma, Time of the Next Event, Time of the Last @yand input/output events. The
DTE supports the concept of the experimental frangtan implementation of it is
integrated with the DEVSJAVA simulator. It allowsar flexibility to select and observe
the simulation data sets which are tracked dyndmifza any number of atomic and
coupled models. While simulating a model on the DihE simulation data sets from the

selected simulation models including user-definatistical simulation are displayed in a

4
tabular format which is called the Tracking Log. iforease the usability of the DTE, a
plotting tool called TimeView has been implementElde design and implementation of
the TimeView is based on the concept of componamiisdisplay data in terms of time.
The integration of the TimeView into the DTE campgart run-time visualization of
simulation. However, the TimeView did not accoumtthe concept of time as used in
the DTE. Such a capability is necessary for intiqggethe TimeView into the DTE
environment. To aid this research and others (Edtmuthi, 2008; H. S. Sarjoughian, in
preparation), the DEVS-Suite environment whichgnéées DEVSJAVA, DTE, and
TimeView has been developed (Kim et al., in prefian.

Currently a few approaches have been proposeddé«-Isased simulation
frameworks in order to help develop service-basdtivare systems (Anderson et al.,
2005; Chang et al., 2005; Hiroyuki et al., 200hrJet al., 2006; Srini & Sheila, 2003;
Tsai, Fan et al., 2006). These approaches are yrfamused on models that can be
simulated for testing purposes of real servicesilé\tfferent modeling and simulation
frameworks have been used to simulate service-lbadtsare systems, it is desirable to
develop an approach where the basic concepts efaswell as software/hardware co-
design (Hild et al., 2002; Hu, 2007) can be explianodeled and simulated (H.
Sarjoughian et al., 2008). Toward this goal, fivetneed to develop a generic set of
SOA-based simulation models including the servickér, service provider, service
client, service composition and router SOA compdtsierherefore, first we need to
develop an approach to build an SOA-based DEVS @3Amulator. Second, we need

to develop simulated and actual service-based addtaystem examples to examine the

capabilities of the SOAD simulator. The simula®aimed at supporting simulation-
based verification and validation of SBS desigrhwiultiple QoS attributes.
Furthermore, the SOA-compliant DEVS framework (ldrj@ughian et al., 2008) offers a
basis for introducing the capability to model aidgate adaptive service-based

software systems.

1.2. Thesis Contribution

The overall contribution of this thesis is the desand development of the new SOAD
simulation environment which introduces the capghid model and simulate service-
based software systems as shown in Figure 2. GeB€h-based simulation models are
designed by introducing SOA modeling capabiliti® ithe object-oriented DEVS-Suite
environment. The SOAD environment supports modei\-based primitive and
composite services. Example simulation models aveldped, executed, and evaluated
to demonstrate how the SOAD simulator can suppesigth and analysis of software-

based software systems.

N\
4 (
] QoS Adaptation J
Service N
Broker -
Service Service
Client Provider

oo g csswontare
\K -/ Y

Figure 2. SOAD with M&A sub-systems

1.3. Thesis Organization

The remainder of this thesis is organized asallBhapter 2 reviews and
discusses related background and research. ldeslthe detailed descriptions of the
DEVSJAVA and DTE as well as the basic modeling singulation concepts employed
in this thesis. It describes the NSF Science oiddegroject including four critical QoS
features and experimental scenarios along witlcdingparison to other SOA-based
simulation approaches. Chapter 3 describes thdamwent of the DEVS-Suite. Chapter
4 presents the SOAD approach and the developmemt abstract set of SOA-based
simulation models for the service broker, servicevler, service client, service
composition, and network. In addition to these bashavioral models, the observational
model called transducer is introduced in this clajpt order to simplify simulation data
collection for the services and network. Chaptdetails two example models one of
which (i.e., voice communication service) is basadactual software systems that are
implemented with SOA and .Net technology. Thesauktion models are used to
validate the abstract SOAD models that are devel@gainst real experimentations.

Finally, Chapter 6 presents conclusions and digsugure research.

2. Background and Related Works

This chapter discusses background information athautield of software
modeling and simulation including the detailed diggion of the SimView and DTE and
the related works on the SOA-based simulation agares. Also it includes the
introduction to the proposed NSF SOD project ingigdour critical QoS features and

experimental scenarios.

2.1. Discrete Event System Specification (DEVS)

Simulation can make many software developmentga®anprovements in terms
of cost, repeatability, and time. This observatan apply to SBS since it is also based
on fundamental concept of components and theiraot®ns. In this research, we use the
Discrete Event System Specification (DEVS) formmali® specifying an SOA-based
software system. The DEVS formalism provides a webtio specify a software system
using a time base, input, state, and output, anctifons for determining next states and
outputs given current states and inputs (B. P.l&e& Sarjoughian, 2003). In the DEVS,
a system is consisting of two types of models: &and coupled models.

An atomic model (B.P. Zeigler et al., 2000) is neattatically represented as,

M= (X, Y, S,dext,dint, écon,A, ta)
Where:
» Xis the set of input values
* Y isthe set of outputs
+ Sis aset of states

e Jint: S— S is the internal transition function

« Jdext:Q x X — Sis the external transition function, where
Q ={(s,e)| &S, 0<e<ta(s)} is the total state set and e is the tinapstd since
last transition
« &con: Q x X — S is the confluent transition function
* A S— Y is the output function
« ta: S— R’ is the time advance function
Coupled models in the DEVS can be represented bpliog two or more DEVS
atomic models. A coupled model contains the sebaiponents, the set of input ports,
and the set of output ports. DEVS employs the goinakinput and output ports to
represent the connection between each componeatcdupled model itself also can be
used as a DEVS atomic model to form a larger calipiedel (B. P. Zeigler &
Sarjoughian, 2003) by coupling an output port obeponent with an input port of
others. To simulate a DEVS atomic/coupled model DEVSJAVA Simulation Viewer
which provides animation of messages moving albegths of the coupling between
components and the Tracking Environment which glesia simple graphical user
interface to identify and enable semi-automateceargentations to track the simulation
model data sets are used.
Mathematical representation of a coupled model.(Bd®gler et al., 2000) is
described below.
DN = (X, Y, D, {Mi}, {l i}, {Zij})
Where:

» Xisthe set of external input values

* Y isthe set of outputs

* D is a set of components names;

* ForeachiinD
0 Miis a component model
o liis the set of influences for i
o Foreachjinil

0 Zij is the i-to-j output translation function

2.2. DEVSJIAVA Smulation Environment
2.2.1. DEVSIAVA Smulation Viewer
The SimView provides a view of the arbitrary levetoupled model using
boxes-within-boxes-style and animation of messageang along the paths of the
coupling between components during the simulatMatlier, 2003). The interface of the

SimView is shown in Figure 3.

10

-~

|2/ DEVSJAVA Simulation Viewer mEX|

| configure | |SimpAr[: |v| |Efp |v|

efn

ExpFrame

in#
out

none oM
in
ariv

. . result A

in widt

zolved

) o a0
real time factor: D animation speed: D alwayz show couplings

ready clock: (0 000 step run restart help

Figure 3. The DEVSJAVA simulation viewer

In addition to the visualization capabilities oétBimView, it allows users to
inject input values into Inports of components dwically during the simulation so that
users can easily model and analyze the behaviohianarchy of simulation model.

Figure 3 shows that the EFP model is currently éodidto the SimView. We are
also going to use this model for the DTE as a esfee model of the DEVS. The EFP
model consists of three atomic model componentshagn in Figure 4, the Generator
which generates external events and sends theme fbransducer and Processor, the
Processor which processes external events reciadhe Generator and send the

simulation results to the Transducer, and the Thacer which records statistical results

11
of simulation and request start/stop of simulatmthe Generator. The Generator and

Transducer are coupled together to form the experiahl frame.

DEVSJAVA

Experimental Frame

Generator

L Transducer

— | Processor

Figure 4. The EFP model in the DEVS

2.3. Tracking Environment with TimeView

2.3.1. Architecture Design of Tracking Environment

The Tracking Environment was developed based esdftware architecture as
shown in Figure 5 (b). The illustrated softwarehéecture contains a conceptual
interface layer called FACADE layer to handle datd control services required by the
VIEW and CONTROLLER in conjunction with the clasdidodel-View-Control
(MVC) paradigm as shown Figure 5 (a). As illustdate Figure 5 (b), only the FACADE
layer is allowed to interact with the MODEL anditeer components. In the traditional
MVC paradigm, the simulation data sets displayetherView are obtained directly

from the simulation model. This means the Viewis® allowed to interact with the

12
MODEL. As mentioned earlier, the Tracking Envirommhsupports dynamic
configuration for monitoring of simulation behaviehich implies the View is allowed to
retrieve selected data for itself.

By employing the FACADE layer into the traditiodV/C, the software
architecture gives important benefits to the desigtme system (H.S. Sarjoughian &
Singh, 2004; Singh & Sarjoughian, 2003). They idelu

* Enhanced encapsulation
» Modularized development by layering technique.
* Reduced complexity of dependencies between comp®nen

* Improved weak coupling problem

13

4 N

Model
/” R
View Control
Textual/Graphical - » Interaction between the
simulation behavior View and Model

N J

(a) Traditional Software Architectt

4)

Encapuslates Mcdeling and Simulation

]

P Fagade
Access and inleraction with Model ControbCommand

Queries
7 "Hook” Calls

View onte Controller

Qﬂnﬂtg Rehavior y Communicating Rahawy

(b) Software Architecture for the Tracking Envirosmt

L

Figure5. Software architecture concept

As shown in Figure 6, the Tracking Environmentwahlausers to select the
simulation data sets to be tracked such as staghles and input/output events for any
number of atomic and coupled models. Thereafteinguhe execution of simulation,
the Tracking Environment provides two internal femnthe Tracking Log and the

Console, to track and monitor the selected simutadiata sets. The output of tracked

14
simulation data sets with its state is displayed tabular format on the Tracking Log

frame in addition to the Console frame which resaeteived and sent events.

» DEYS Modeling & Simulation Tracking Environment - v 1.1.0 E]@
File Options Window Help

Fiodel Viewer : 3 Tracking Lo
[opt i =
[Generator 10.00 15.0 200 250
[Transducer
[Pracessar Al | =t
Generator T
Phase: active || Phase: active || Phase: active || Phase: active
e N Sigma: 70.0 Sigma: 60.0 Sigma: 55.0 Sigma: 50.0
L. do.u
TH: Infinicy : .Input Ports: .Input Poris: .Input Ports: .Input Poris:
e : Transducer | in i ity i
Sigma: Infinity Output Forts: | Output Ports: || Output Ports: || Output Ports:
Input Ports: =
{ariv} {in} [solwved]
Dutput Ports: L E Console
{outh -
Inject.. Tracking..
total :7
FSimulator Control WG Th = 5.0

THRUPUT = 0.0875
state of Transducer:

ase, sigma : passive Infinity
obs arrived :
tal :8
hs solved :
total :8
G TA = 5.0
§| THRUPUT = 0.09411764705882373

Real Time Factor: 0.01

Simulator State: End
Time of Last Event: 5.0
Time of Hext Event: Infinity

Set Tracking Options...
Iz‘ Model Transducer | Input Ports Output Ports
[[]Phase [ariv [Jout
[] Sigma Cin
bmn [] sotved
[]TH

Figure 6. Simulation Tracking Environment

On the left side of the controller, the TrackingvlEEonment provides the FModel
Viewer which displays the hierarchy of the simwatmodel so that users are easily able
to understand the structure of the simulation madel help them to select which atomic

and coupled models to track and monitor. In genénalsimulation data sets to track

15
need not always to be the same for all models. elémetracking options shown in
Figure 6, which are for the Transducer atomic maaéhe GPT coupled model, will be
changed when we select another model on the FMd&deler.

In addition, the Tracking Environment provides arusonvenient option called
the Real Time Factor which can adjust the scat@miilation logic time in order to get a
faster/slower or even soft real-time responsehaws in Figure 6 at the bottom left of
the Tracking Environment. For example, when a adgirsts the scale of Real Time
Factor as 1, the logic time of the simulator in Tmacking Environment is corresponding
to 1 second in the real-time and the simulatioexiscuted under the soft real-time

condition.

2.3.2. TimeView

The TimeView, a separate un-timed viewer of dates designed and
implemented by Robert Flasher as part of his unddrgte senior project in the
Computer Science and Engineering department abAaiState University. It supports
plotting data sets along the time axis. Source daabe input and output and state
changes from atomic or coupled DEVS models. Atim@f data can be fed into the
TimeView for plotting. For example, default and udefined data variables such as size
of a queue can be automatically plotted as the tigjectory charts until the end of the
simulation (see Figure 6). Therefore, users canitmoand track atomic models’
input/output and state changes during simulatianréhtly the TimeView only accepts
the primitive data types (e.g., double and stringan event to be displayed on the time

trajectory chart.

16
The current version of the TimeView increments eaajectory by a predefined
time periods, for example, time is incremented Oy fits of time as shown in Figure 7
and then plots the simulation data sets at the itaistances events are received. This
environment is similar to an oscilloscope and aflawers the flexibility to adjust time
period scale for every simulation run. The lengdth trajectory that is viewable can also

be specified.

ngime Graph View E]@

Pause Exit

in
o,
o,
iz,
s,
BN

10.0 20.0 30.0 40.0 50.0 60.0 0.0 80.0 90.0 100.0

out
job0
I

10.0 20.0 30.0 40.0 50.0 60.0 0.0 80.0 90.0 100.0
Time

4.0
3.0

fueue
=]
1=

2.0 . 2.0
o [1 [
10.0 20.0 30.0 40.0 50.0 60.0 0.0 80.0 90.0 100.0
Time

@
1 bu: bu. bu: bu: bu: bu:
=

10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

Time

Figure7. The TimeView Ul

2.3.3. Integration of TimeView into the Tracking Environment

2.3.3.1. Tracking options. As stated above, the TimeView does not have the
concept of time and nor the capability of contiidle TimeView is a simple tool to
display a series of (x, y) values on the trend tshidke an oscilloscope. Given the

limitations, the TimeView is integrated into thea€king Environment so that its

17
controller of the Tracking Environment can updaie TimeView graph by
synchronizing with the simulation time. Currentilye simulation data sets which are
tracked and monitored by the Tracking Environmeatthe primitive data type including
the String. Then the data types in the TimeViewusthalso be consistent with the
Tracking Environment. The user has the flexibitiyselect view options for any number
of atomic/coupled models as well as the unit ohdaacking data and X-axis and
increment of X-axis, as shown in Figure 8. The Tviesv can be invoked for each

atomic/coupled model independently with selectetltion data sets.

I"Set Tracking COptions: gpt

@ States/Unit Input Ports/Unit Output Ports/Unit

[]TL [] start [Iresutt

[in []out
[]TN

[[]stop
X-Axis/Unit View Options
X-Axis ser [] TimeView
Increment 1a [Tracking Log

| OK | ‘ Cancel ‘

Figure 8. The Tracking options

2.3.3.2. Data flow chart. After selecting one or both of the tracking viewtiops
(i.e., TimeView and TrackingLog), the Tracking Eronment assigns a tracker for the
simulation data sets to be tracked for atomic angled models. Figure 9 shows data
flow of the DEVS Tracking Environment. Logicallyhenever an input/output event

occurs during the simulation executidmodel TrackingComponent Class loops through

18
the tracker to get simulation data sets for thected models. Originally the
Model TrackingComponent Class contains the method to get simulation datafeam the

tracker as well as to construct the Tracking Log.

View

!

Trackingl.og

ModelTracking
Component

Tracker

Figure 9. Data flow of the DEVS Tracking Environment

To integrate TimeView into the DEVS Tracking Erriment,TrackingControl
Class is employed as an intermediate Class betiveehkinglLog and
Model TrackingComponents Classes (see Figure 10). Then, the logic to gatlaion
data sets for selected models is moved fikdodel TrackingComponent Class into the
TrackingControl Class which sends the data sets to TimeView offaadking Log for
runtime viewing as shown in Figure 10. Therefohe, tole of

Model TrackingComponents Class is limited to construct the Tracking Logyonl

19

ol ™
View
. J
— L
Trackingl.og
A Y
— L
TrackingControl Tracker
ModelTracking TimeView
Component

Figure 10. Integration with the TimeView

2.4. Service Oriented Architecture based Software System
2.4.1. Service Oriented Architecture

SOA is a software architecture style aimed at dyonaliscovery and use of
services over a network. Before understanding S@Ashould understand the definition
of each component in SOA clearly. Figure 11 shosvdbnceptual model of SOA.
Service provider provides services that may be bgeather services. It can publish its
service interface and access information to thes=broker using Web Services
Description Language (WSDL) (WSDL, 2001). A servies be described as (Chen &

Tsai, 2008),

* An interface between the producer and the consumer.

20

» A service is well-defined, self-contained, and doesdepend on the context or
state of other service.

* Newly developed modules or just wrapped aroundiegisegacy software to
give them new interfaces.

* A service is a unit of work done by a service pdevito achieve desired end
results for a consumer.

» Provides loosely coupled Application Programminigitface (API), with
standard interface, so that it can be discoverddcatied (invoked) by another

service.

The services can communicate with one another blgamging messages. WSDL
is an XML based language for describing Web sesvasel how to access them. It
includes the location of the service and the meti{odlled endpoints) that are exposed
for other services to use. The service brokersisraice repository and registry that stores
information about the published services. A comnmaplementation of service broker is
the Universal Description, Discovery, and Integmnat{UDDI) developed by OASIS
(OASIS, 2003). A proposed ideal features that gicetbroker should have are (Chen &

Tsai, 2008),
* Service registry
» Service repository
» Service specification and requirement
» Application templates

* GUI templates

21
» Collaboration protocols and templates
» Policies
» Database and ontology
» Integrated testing and evaluation tools
* Quality of service
Service client lookups the service broker to seardesirable service by a key
word or service name defined using WSDL. If a sexvs found, the service broker sends
the service information stored in the repositorglbi® the service client, then binding to
service provider to invoke one of its operationaiiable in the service using Simple
Object Access Protocol (SOAP, 2003). SOAP is a XdMked protocol to allow
communication between SOA-based applications dardifiit operation systems,

technologies, and programming languages over HW8&Q, 2007).

Service Broker

y ;!/ II " &, .
b
=2
Service Client SOAP Service Provider

Figure 11. Service oriented architecture
SOA enables service clients to be separated fromceeproviders. Therefore,
service clients do no need to know how the senaéctesmplemented, which platforms

are used, or how they are distributed. It leverdageseusability of services. One of the

22
most important desired advantages of SOA is tahpgiompose distributed services. For
the service composition, two methods may be uskey &re

» Orchestration: A central process which can be acitself takes control over
all involved services and coordinates the executifadifferent operations. BPEL
(Business Process Execution Language) supportgsiralion.

» Choreography: There is no central coordinator. Esehice involved can
communicate with any partners. WS-CDL (Web Servichereography

Description Language) is a composition languagedhpports choreography

2.4.2. Adaptable Service Based Software System

As stated previously, SOA enables dynamic comjposdf various types of
services for distributed applications built on diffint platforms. Dynamic binding of
services makes SBS more flexible and that is orteeomost important advantages of
using SOA. However, dynamic service compositioruies the development of SBS
with multiple QoS such as timeliness, throughpatuaacy, security, dependability,
survivability, and availability. Service-based sadte systems need satisfy multiple QoS
simultaneously and thus tradeoff among the Qo%ifeatis necessary. However,
currently we do not have comprehensive understgnafithese tradeoffs and
relationships so that it is a challenge to sattsfdg manage multiple QoS features
simultaneously. To overcome this, as shown in EdyrQoS Monitoring and Adaptation
sub-systems may be used to collect data conce@u®which can be analyzed to adapt

the composition of services accordingly.

23
2.4.2.1. Four critical QoSfeatures. Since we cannot study the tradeoffs of all QoS
features due to limitation of time and resourceay QoS (i.e., timeliness, throughput,
accuracy, and security) are important to be cons@lérau et al, 2008). However, in this

work, security QoS feature is not considered.

A set of experiments are devised to collect necgsata to develop a design
approach for developing Adaptive Service-Basedviaot Based Systems. Two types of
atomic services, communication intensive (Voice @amication) and computation
intensive (Motion Detection) models, are develoféal et al, 2008). Voice
Communication System (VCS) provides voice strearsgryice to multiple users
simultaneously. For experimenting with this systeampling rate, number of clients and
buffer size are varied. Motion Detection System aso be considered. The Motion
Detection (MD) service provides the rate of motitatected for a certain time period.
Several motion detection algorithms are used toutate the user request rates. The
composite service can be constructed by combiriege atomic services. However, a
simple composite simulation service called TravgeAcy service, which provides the
closest resort place by zip code, is developed.Vid@nd Travel Agency services are
used together to model and simulate a compositécseiThe MD service is not used

since it is under development.

24

Table 1

Four QoS Metrics Table

QoS Features Metrics Experimental Data
The number of bits lost between
Loss Rate .
two nodes after transmission
Accuracy
The frequency of erroneous bits
Error Rate between two nodes after
transmission
The difference between the time of
Response Time subrr_uttlng a service request and the
time of receiving a service
confirmation
Timeliness
The difference between the time of
Service Delay | submitting a service request and the
time of receiving the service result
Jitter Variation of delay generated by the
transmission equipment
Data rate The rate in which data are encoded
Throughput .
gnp Bandwidth The data transfer rate measured|in
bits per second
: . : Initial security configuration
Security Security Rating Security events detected in runtime

2.5. Reated Works

A SOA-based framework using High Level Architect(iftA) Infrastructure
(HLA, 1999) has been proposed to develop and eteab@A-based network centric and
system-of-systems applications using Process fimn and Modeling Language

(PSML) (Tsai, Chun et al., 2006). From existing S€skvices, composite services can be

25
synthesized and executable code generated forcthal application and simulated for
testing purposes. The services are geographicaligtaited and interconnected as web
services. The DEVS and PSML models have basicrdiifges such as explicit
representation of time, event preemption, and caader coupling of model
components. Another important difference is the pivagpfrom DEVS and PSML to
SOA. SOAD is defined in terms of the basic SOA aata (service client, service
provider, and service broker) as well as the pimiand composite service composition.
More generally, SOAD is grounded in system-theonetbdeling and simulation
concepts whereas PSML is based on software modeliggted for service-based
computing systems (WinterSim, 2004).

Some other tools are also proposed to support atranlof SOA-based software
systems. A UML simulator is proposed to definenatéion among web service by a
UML model (Hiroyuki et al., 2006). By using Actitiyper-graph, it supports execution
of the extended UML model called BPEL/UML which caupport mapping elements of
BPEL4WS document onto elements of UML active diageand WSDL onto elements of
UML class diagram. The interfaces of services afendd in order to validate interaction
between BPEL/UML models and BPEL/UML models withlrgervices. The Petri Net
formalism is used to provide decision proceduresveb service simulation, verification,
and composition (Srini & Sheila, 2003). By using hAML-S description of a Web
service that is translated in situation calculugtrifaSim simulator (Srinivas, 1999)

automatically generates the Petri Nets in ordgetdorm the desired analysis. These

26

UML simulator and Petri Net are focusing on suppgrtvorkflow design, rather than the
individual component.

There are other approaches to web service composititerms of QoS properties.
One research is focusing on the relationship betweevice chain complexity and QoS
for the user (Anderson et al., 2005). Agent bagguiaach is used to model a set of end-
users that request service invocations througmétwork. Users use a catalog that
provides the name of a server where a requestetesés located to find that service.
The TouchGraph library (TouchGraph) is extendedusetl as a JAVA visualization
tool to model service chaining, visualize netwadéftc and quantify service chain
complexity. Simulation based Web service compasibiased on their QoS properties,
such as performance, reliability, and availabilisyproposed (Chang et al., 2005). Users
can specify the service composition with QoS comeéy using the proposed Web
Process Composer. Simulation is performed baseg®ncomposition and the
simulation results are sent to the QoS Monitomalgze and evaluate QoS of the web
process. The evaluation results are feedback téVile Process Composer to repeat the
simulation until the desired QoS is achieved. Hpgproach is somewhat similar to our
ASBS approaches in terms of monitoring and adaptatapabilities. However, the
ASBS consider multiple QoS features and their i@hahip (i.e., their satisfaction
tradeoffs) with both hardware and software aspedtter than simple QoS features of
web process. A performance engineering methodeiaicee composition is proposed
(John et al., 2006). This approach is to applygrerince test-bed generation techniques

to software system based on SOA. Service composiao be described at a high level

27
using Business Process Modeling Notation (BPMN)wn ViTABaL-WS Web service
composition notation. These high level service cositipns can be extended with a
lower level service composition model at the deth8ervice interface level in
MaramaMTE which is JAVA based performance test-gpeaeration tool. The test-beds
are executed for the service composition and resué provided to the engineer.

Table 2 shows the comparisons between the approaciedly reviewed in
relation to SOAD. The explicit use of time (diser&tlues) in services is crucial in
developing verifiably correct simulation modelsdyhamical real services (WinterSim,
2004). The dynamic simulation model with an expliepresentation of real time can be
used instead of a real service and the time bas&df€atures such as throughput for the
service can be collected. In Table 2, the PetrsN@tmalism support for representing
time, but situation calculus description transldtedh the DAML-S ontology to the Petri
Nets does not explicitly represent use of time. &daer, compare to the proposed SOAD,
currently none of approaches described above gaposudynamic changes of service
composition and no concept for the separation adeting SOA-based software system

in terms of hardware and software are presented.

28

Table 2

Comparisons of Approachesin Terms of M& S Concept

Approach Formalism| Componentg Timing | Hierarchy [Seq. / Parallel
Service Chain Y Y Y - YIY
MaramaMTE Y Y - Y YIY

Petri-Net Y Y Y Y YIY

Activity
Y Y - Y YIY
Hypergraph
PSML-S Y Y Y Y YIY
SOAD Y Y Y Y YIY

3. Extension of Tracking Environment with SimView

This chapter describes the integration processeoSimView into the DTE.
Although these two simulation tools are built oa fame DEVS formalism, the
objectives of the simulation environments are défe from each other and the
integration of them into one environment is requit@ incorporate with Monitoring and
Adaptation capabilities in our ASBS. In this chapte order to integrate two simulation
environments into one consolidated simulation emnment, we describe the decision
process of selecting an architectural design pattetype of simulation model, and

interface of the new simulation environment.

3.1. Analysis on the SmView and DTE

The brief descriptions of SimView and DTE are pldén Chapter 2. In this
section, we need to analyze more details of thesal@ion environments in terms of
architecture design pattern, simulation model typgchanism to load a model, and
simulation control logic in order to make a rigletctsion while integration process. For
the purpose of validating our selection, the congparbetween SimView and DTE for

each category described above is performed anddaeawbelow.

3.1.1. Architectural Design Pattern
As described in the Chapter 2, the DTE was deesldfased on the traditional
software architectural pattern called Model-Viewn@oller (MVC) as shown in the
Figure 12. The traditional definition of each compnot is described below (Wikipedia).
* Model: The domain-specific representation of tHerimation on which the

application operates. Domain logic, DEVS formaliemthe case of our

31
simulation, adds meaning to raw data. In our situtawe have a set of well
defined JAVA based APIs to represent these moaelsatomic model and
coupled model).

* View: The view renders the contents of a model.tld views can exist for an
application.
» Controller: Processes and responds to events aijjpieser actions, and may

invoke changes on the model.

} Model {
¥ 4

/

/

F 4

/

'4

View

Controller

Figure 12. Model-View-Controller pattern

As shown in Figure 12, the solid lines indicatdraa association and the dashed
lines indicate an indirect association. The separaif model and view allows users to
create multiple views for the same model and irereausability of models. This is one
of the main reasons why we adopt the FACADE depagtern later. It also is easier for

the developer to implement and maintain modelsHerapplication.

TimeView
(from timeView)

atomic digraph RTCentralCoord
(from modeling) (from modeling) (from simulation)
FModel
(from modeling) O ‘
‘ N — FSimulator ‘
\\\\\ (from simulati...) ‘
— /& ‘
\%\\\ “
\
FAtomicModel FCoupledModel FAtomicSimulator \ FCoupledSimulator
(from modeling) (frym modeling) (from simulation) \ (from simulation)
\
\
\
\
\
\
\
\
\
FModelView FSimulatorView \
(from view) (from view) \\
/ \
\\
View Controller
tfrom view) (from controller)
TrackingControl Tracker
(from view) (from view)

ModelTrackingComponent

(from view)

Figure 13. MFVC framework for the Tracking Environment

As discussed in the Chapter 2, based on the MMi@dveork, the DTE adopts the

FACADE layer between Model layer and View-Controliyer. This is because DTE

has multiple view options and we want to contral agnchronize these view options by

using one controller as well as other advantagssribed in the Chapter 2. The MVC

framework with FACADE layer is referred as MFVC (M-Facade-View-Controller).

32

33
In the traditional MVC paradigm, the simulationaaets displayed on the View are
obtained directly from the simulation model whickans the View is also allowed to
interact with the Model. However, as shown in FgB, the Facade layer can only
access to the Model and get a single set of simuldiata to store. As mentioned earlier,
the DTE supports dynamic configuration for monigrof simulation behavior which
implies the View is allowed to retrieve selectetedar itself by getting data from the
Facade layer. In addition, as a result of integgathe TimeView into the DTE, there are
currently two view options, TimeViewl{meView class) and Tracking Log
(Model TrackingComponent class).

Unlike the DTE architecture which has a solid aettural software design
pattern, the SimView is not constructed by usimfd\&C design pattern. View and
Control are integrated onto the one JAVA fingView.java) so that it is hard to
maintain and update the software when there areficattbns. Figure 14 displays the
simple UML diagram to show how tt@&mView.java file is implemented as one
application. We can easily recognize that all congmts are strongly tight and depending
on each other so that it is not a good approadtiuild a robust software system in terms
of modularity, reusability, and complexity of theftsvare. Consequently, we decided to
take the architectural approach of the DTE whicthésMVC framework adapting
FACADE layer and use the SimView as one of simatatiiew options that users can

select in the DTE like existing TimeView and TraajiLog.

34

Simiew

(from simiend
BgsettingsFileMame : String = "Simiiew settings”
BpalwaysShowCouplings © boolean = false
EomodelBorderyYidth : int =5
BgwrapperDigraphMame ; String = "wrapper digraph”
BgrealTimeFactors]] : double ={.0001 .001,.01,1,5,1,5,10,100,1000,10000%
BgspeedFactors]] : double={1 2345678510}
Tpani_speed ; double =1
EgmodelsPath - String
BgmourceFath ; String
BpmodelsPackage : String
gplasthodelviewed : String

SSimview)

Pconstructl]) : void

Srnainfargs : String]); void]

gcreate\r’iews(mndel : WiewableDigraph, parent ; JComponent) ; woid I—'P View
populateMaodelsBox(box ; JCamboBax) : void

PuseModelClassiname - String) : void

PpopulatePackagesBox(box | JComboBox) : void

PloadSettings() ; void

PsaveSettings() ; void

PdatrmCouplings{model : ViewableDigraph) : void

PrdetrmCouplings(comp ; WiewableComponent) : void

PdetrmCouplings(comp © YiewableComponent, portMames © List) © void

*‘qethﬂndel\ﬁewﬂ Mladels e

HW¥setStatusLabelTaSteppingl) : void

@¥zetStatusLabelToRunning) © void » Contro

H¥setStatusLabelToReady() ; void

T¥savelodellayout] : void

P aveModelLayoutimodel : YiewahleDigraph) : void

PsavelayoutsOfChildren(model : YiewableDigraph) : void

Figure 14. UML diagram for the SimView

3.1.2. Smulation Model Type

As we stated in the Chapter 2, the objectivebie$e simulation environments are
different from each other. SimView provides anirmatof simulation models and enables
the modelers to specify models directly in the DE¥®ns. On the other hand, the DTE
which is built on the DEVSJAVA Simulation Environmtewithout visualization parts
provides visual user specified data selection andnaated simulation data gathering

along with the trend chart capability. Therefolesyt require separate simulation model

35
types for execution, for exampMiewableAtomic andViewableDigraph models for the
SimView andatomic anddigraph models for the DTE. Figure 15 shows hierarchy of

these simulation models in the DEVSJAVA.

O
10D ews

ffrom modeling)

e
ffram mod eling)

Rl

atomic digraph

iram modeling DTE Models rfram madeling)
SimView Model:
YiewahleCno
mponent
i ewabledtornic L) _ _
from simiiewm) YiewableDigraph

[from simiemi

- J

Figure 15. The hierarchy of simulation models

As we can see, both models are built based on BEdS¥ormalism. Unlike
simulation models for the DTE, SimView providesiew of the arbitrary levels of
coupled model using boxes-within-boxes-style amdathimation of messages moving
along the paths of the coupling between comporduriag the simulation (Mather,

2003). ThereforeYiewableAtomic andViewableDigraph are extended from the basic

36
DEVS model atomic anddigraph model, to support these capabilities. As a result,
ViewableAtomic andViewableDigraph models are adopted as default simulation models
for the new simulation environment since they cavigle not only behaviors and
input/output data of the simulation model for thradking Environment, but also
animation of the simulation model for the SimVieuthwut any modification. The
Viewable models need to incorporate with the FACABYer adopted as the

architectural design pattern in the section 3.Mdre details are provided later section.

3.1.3. Model Loading Mechanism

Two types of model loading mechanisms are useth#oexisting simulation

environments. The first method is used by DTE hesv# in Figure 16.

-

Load Model...

Model Directory: |acking_With_Time_ver1 2isrc|

Model Class Name: |devs.sample simpArc.gpt |

OK! Cancel I

Figure 16. Tracking Environment loading mechanism

In this method, a user must specify the name afehmot directory and the path
to the model class from that directory. Typicallyser does not change the model
directory often, the main problem of this appro&cthat a user must specify the entire
path to the model whenever a different model isliémbinto the simulation environment.
Moreover, if a model is located in the differenidier or different level of the folder

structure, it is hard for a user to specify tharergath to the model at once.

37
SimView uses the second mechanism currently asrsioFigure 17. A user
must configure the path to packages of model ctaasd source files as well as model
package names. After the configuration, a user sristt a package name at the top of
the SimView as rounded with red line, and then Semvwill automatically display the

list of available models in the selected packagerfodel selection on the right scroll box.

configure E&Iem a package ‘ et | ! ‘ = i]
|\

|
Fo—— =
(£ Configure
Path to packages of model classes (from current folder)
bin |

Path to packages of model source files (from current folder)
|sre |

Model package names (one per line)

iSer\riceArc
[SimpArc
: 1.0 e
real time factor: D] animation §
ready clock: step I: '_0;

Figure 17. SimView loading mechanism

Consequently, the second mechanism is more cozvieaind logical for users to
select a model to be simulated since it providésraation of the displaying the list of
available models in the package. In addition, atiéivel of model selection, a user will
have the option to choose view options, such ag/wand/or DTE, to be displayed on

the consolidated environment.

38

3.1.4. Smulation Control Logics

Two simulation environments use the same typenfrol logic for the
simulation. However, there are some slight diffee=nin the purpose of each simulation
environment. Figure 18 display the list of contreésh simulation environment provides

and how they are differ from each other.

Tracking Environment SimView
Step Step
Step(n) Run
Run <:> Restart
Pause Realtime Factor
Reset Animation Speed
Realtime Factor Show coupling

Figure 18. The list of Control Logics in the simulation eronment

Step(n) and Pause controls are presented in tig Bt not in the SimView.
Alternatively, Animation Speed, which controls gmeed of message moving, and Show
coupling, which shows coupling between models, misare only specialized for
animation capabilities of the SimView. For the catategration control logics, the new
integrated simulation environment must support loagbabilities of DTE and SimView

so that all control logics including those speeiadi control logics must be presented.

3.2. Integration of SmView into DTE

In the Chapter 3.1, the details on the SimView Biié are analyzed in terms of
the architectural design pattern, simulation maége¢, model loading mechanism, and

simulation control logic. Based on the analysidqrened in that section, the integration

39
process, as well as the final form of the constéidaimulation environment, is
presented in this section. As analyzed in secti@ntBe DTE is built on the robust
software architecture pattern called MVC desigriguat Therefore, the DTE becomes
the base architecture of the new simulation enwiremt. Subsequently the SimView is
used as one of view options in the DTE since th& bas adopted the FACADE layer to
control multiple view options by a universal comiiga In addition, as discussed in the
section 3.1.2YiewableAtomic andViewableDigraph models become basic simulation

models for the DEVS-Suite.

3.2.1. Interface Integration

Since the model loading mechanism of the SimViesvigles more convenience
and automation of displaying available models touker, that mechanism adopted into
the DEVS-Suite. In addition, for the user convenerthe DEVS-Suite provides user
flexibility in that a user can select view optio&mView and/or Tracking at the level of
model selection as shown in Figure 19. On the dthed, as discussed in Chapter 2, the
user can select TimeView and/or Tracking Log ati¢ével of model tracking option. A
user must configure a path to the source packagksames of the packages which
contain the model the user want to load. Consefyexiter a user select a package, the
DEVS-Suite searches available and validated sinomahodels in that selected package
to display for selection by the user. Figure 2@ldigs the sequence diagram showing

how the DEVS-Suite works for loading a model.

40

|2 DEVS Suite Ver 2.0 = =)=
File Options Controls Help
Model Viewer :_
[apt ; gpt
D hn g He in
Ot : out @
.ot
(o
i start
: in @ 3
vl 1 et ||
passive = out
in &3 16&5‘3 @ out none @ n—*m result @
A= La stop solved @4 0= 70.000 : 3
TL:
TH: : || Configure =]
s ; Rt el EI=E (| painto packages of model o nt fold
Sigma: — — Path to packages of model classes (from current folder)
Input Ports: g Pk ES' T 1 !
T : ackage: \SimpArcho ||
Biddead 2| | patn to packages or mouel source files iram current folder).
: Matisl: gpt [~]] ||
ek gackinu: | : Model package names (one per line)
[_] always show couplings :] Simwiew [_] Tracking [Bimparchiodt
' (Gervicemod
mulator Control \ : .
: |
s — \ configure [ok || cancer |
Stepin}
| Reset Console | —
| Real Time Factor: 1.0E-4 | ok |

Animation Speed: 9.0

Simulator State: Ready
Time of Last Ewvent: 0.0
Time of Hext Event: 0.0

)

N —__J

Figure 19. Interface of the DEVS-Suite

Since the SimView is integrated into the TrackimyEonment, the specialized
control logics for the SimView such as Animatiore8gd and Show coupling must be
presented in the DEVS-Suite controller as showthéred circled area in Figure 19.

Figure 19 also displays the SimView with 8BT model is loaded onto the DEVS-Suite.

41

‘ : Controller : View ‘ ‘ : LoadModel : ConfigureDialog

Viiw(ControlIerlnterfaLe) ‘ ‘
U‘ ‘ LoadModel() ‘

T loadSettings()
|

ConfigureDialog(Frame)

populatePackagesBox(JComboBox)

=

populateMagdelsBox(JComboBox)

=

loadModelAction()

Ioad odel(String[])

= —

userLesture(String, Ojjject) u

Figure 20. The sequence diagram for model loading mechanism

3.2.2. Architecture Integration

Figure 21 shows the new MFVC framework for theM3=Suite. This class
diagram contains only important classes for th@pse of simplification. The entire
class hierarchy diagram is provided at the endhisfchapter. Basically the
implementation of FACADE layer does not have angrges, but the connection to the

Model is altered to Viewable models and simulasmshown below.

42

devs
(from modeling) RTCentralCoord
4\ (from realTime)
atomic ‘ digraph Z} -
(from modeling) (from modeling) TunableCoordinator
A ‘ % (from realTime)
- Z> - -
| \ | SimView
ViewableAtomic ViewableDigraph SimViewCoupledCoordinator — >
(from modeling) ‘ (from modeling) (from simulation)
i | I Models
[" ‘
| |
/ FModel “
(from modeling) |
/ w\ ‘ imulator
| simulation)
FAtomicModel k\cxo\upledM.odel EAfo 'c%ulator FCoupledSimulator
(from modeling) (flam modeling) (from simulation) (from simulation)
FModelView FSimulatorView
(from view) (from view)
View
(from view)
Controller
TrackingControl Tracker (e enfiriley)
(from view) (from view)
TimeView ModelTrackingComponent SimView . .
(from timeView) (from view) (from simView) . VIeW OptlonS

Figure 21. The MFVC framework for the DEVS-Suite

Since the Viewable models and simulators are eefrom the original DTE
models and simulators, semantically this conned@atisfied with the requirements for
the DTE as well as the SimView itself.

Finally, the SimView classes are integrated ih®Model as a view option for

the DTE. As shown in Figure 21, at tMiew class, the simulation data getting from the

43
Facade layer are sent to two view option clasSe®d/iew (SimView) andTracking
Control (Tracking), based on the user selection. Figurdig@ays the simplified MFVC
class diagram for the DEVS-Suite. Classes are gaugo one of the following
packages, Model, Facade, View, and Control andhtieerelationships between these

packages and classes are presented in Figure 23.

Model

< - ' -
Modeling Simulation

ViewableComponent ViewableAtomicSimulator

" Facade ™\

Simulatio

FSimulator

/ View \
y s
[View Clontroller
—
Controller
TrackingControl SImView
N T SimView

AimeView———————

imeView
. ; N
ModelTrackimgCompaonent T eView
[TrackingLog]

Figure 22. The simplified MFVC framework

In this chapter, Integration process of the Simieto the DTE is discussed for
the purpose of supporting M&A capabilities in ASB®ie DEVS-Suite is now capable to
provide simulation data so the Monitoring sub-syst&an analyze the service

composition and adopt the control form the Adaptasub-system which reflects the

44
dynamic binding of services by changing couplintnaen simulation models. Now the
new simulation environment for the SOA-based sitnoteis ready. The next step is to
develop a set of SOA-based simulation models tpatglesirable quality of service for

ASBS.

[] []

modeling simulation

<<Interfaces> ViewableAtomicSimulator
ViewableComponent

£A i
! ; =i SimiienCoordinatorB ase
) L_.—-—'_J—'_'_'___._.—__F._
ViewableAtomic F ViewableDigraph H

SimViewCoordinator SimViewCoupledCoordinator

\ ,\

\ facade

modeling simulation

Fivbdel hooks

<<|nterfaces=
z=|niterfacess SimulatorHooklListener

ﬁ:
;ﬁ FSjmulator
\ . A e !
FAtomicModel H "% | b i
FAtomicsinklal FCoupledSirhulator FCaupledCoordinator
I
I
4] D i
]
FAtomcSimulatorX FRICentralCa FCatjpledCoordX
1
I
7 1 T
7 AY 1 :
1
1
I
i
1
1
I
]
=]
view i
I
1
1
1

[

<<Interfaces= sifView T
Viewintesface controllef
SimView .

<<|nterfapess

: W nltrnllerllltelfue

LoadWadel View A{ : tll
Zﬁ;: — il

FModelView ,é
FSimulatbriiew ‘

—‘ TrackingCordrol ‘

timeMiew

[Tracker

ModelTrackingComponent

Figure 23. MFVC component/package specification for DEVSt&ui

4. DEVELOPMENT OF SOA BASED SIMULATION MODELS

This chapter describes the SOA DEVS (SOAD) apprdacmodeling and
simulating service-based software systems. Ge&®ik-based simulation models are
developed for service broker, service provideliserclient and service composition as
well as a simple network for simulating computetwak traffic. In addition, a set of
transducer models are developed to automate dolhect simulation data sets for service

and network models.

4.1. SOAD Framework

To support simulation modeling of SOA-based soffensystems, our approach is
to introduce SOA concept and capabilities intodg/S framework (H. Sarjoughian et
al., 2008). The extended DEVS framework with theASfalled SOA DEVS framework
is developed in order to enable simulation basesigdeof service oriented computing.
The approach provides a basis for verifying anithaséihg the design of Monitoring and
Adaptation sub-systems that conceptualized for Adefservice-based Software
Systems. SOAD is designed and implemented using®Ebite. In SOAD, both
software and hardware components of service-badtgase systems are modeled. This
is useful in order to model and simulate the ra®work (e.g., router) plays in the overall
dynamics of system under consideration. As discugs€hapter 2, there exists no
simulator that is grounded in a system-theoretideling and simulation framework such
as DEVS. By incorporating the SOA concept intoB&V/S simulation models and
accounting for hardware aspect of service-basdw/aé systems, SOA-compliant

DEVS simulator can be developed (H. Sarjoughiaal.e2008).

46

S Y

Router

Model
SOA

!

DEVS

Figure 24. SOA-based DEVS Modeling Approach

4.1.1. Comparisons between the SOA and DEVS

Before extending the DEVS framework with the SQvh@ept and capabilities, it
is important to compare these frameworks in terfriber concepts and capabilities
since SOA and DEVS are used to develop real andlaied SBSs, respectively.

The comparisons between the SOA and DEVS framea@klescribed below and

shown in Table 3.

47

Table 3

An Association between the DEVS and SOA Frameworks (H. Sarjoughian et al., 2008)

SOA DEVS
autonomous atomic and coupled models modularity
composable hierarchy and closure under coupling
formal contract inputs/output ports, variables, aodplings

<x1 Sy Y1 89Xt1 8int1 8CO[’Ifl }\'! ta>

abstract logic (X, Y, D, {Mg}, EIC, IC, EOG

reusable basic models

stateless state-based
loosely coupled dynamic structure
discoverable dynamic structure

The concept of autonomous services correspondetoancept of modularity of
atomic and coupled models. DEVS models are defiméerms of generic
functions Bexs Sint, Scon, 1) @and time (ta).

The formal contract corresponds to the input/ougmsts and messages (X and Y),
and their couplings (EIC, EOC, IC) subject to thcscoupled model

specification. The couplings in DEVS are fixedhaligh the use of coupling in a

48
simulation can be decided during simulation. Thecept of coupling
components via ports is absent in SOA.

The concept of service composability is similacéapled model hierarchy. SOA
composability is not constrained to have strictdmehy. This is because DEVS
hierarchy requires strict tree structure relatigpsiamong (atomic and coupled)
model components. In SOA, composability is basetherbroker service which
is not defined in DEVS. In DEVS, input and outpu#ssages are sent and
received via direct couplings — i.e., the couplextlgl contains the coupling
relations between model components.

The concept of abstract logic in DEVS has a thémakbasis (abstract structural
and behavior syntax with operational semantics)redee SOA does not. For
exampledex has template syntax that has to be completed givaamponent’s
specific functions. In contrast, a service has@rface template, but without
functionality.

The basic concept of reusability in SOA is more pdul than that of DEVS.
This is because the broker concept with suppomp@iishing services and
identifying services are not defined in DEVS.

The concept of stateless services promotes loagaing of composite services.
The functions of a service can be arbitrary defirgdmic and coupled model
components require state information which inclutiiee t (t0J S) in order to
allow synchronization of events produced and coregluriihe time-based

dynamics of DEVS model components has a centralinosimulation.

49

Based on the analysis in Table 3, we can notideoima fundamental difference
between the DEVS and SOA is the use of the brakecept. In the SOA, all services
must publish its service to the broker serviceroteo to be discovered and composed
with other services. Therefore, the connection betwservice providers and service
client is only established by the broker serviclon

In DEVS, however, the broker concept is not accediior and thus the DEVS
atomic and coupled models are not SOA compliant ¢éveught these models have
important similarities to those of primitive andngposite services. In fact, we can model
a SOA-like software system by using the DEVS atomazlel and coupled model and
applying the concept of publish/subscribe ports @rhmic structure (Ramaswamy,
2008). However, this approach to modeling serviagel software systems is not SOA-

compliant since there is no model for the brokevise.

4.1.2. Mapping SOA Elements to the DEVS Elements

As stated previously, the SOA elements have siitida and differences with
those of DEVS. We need to map these SOA elemetatshie DEVS models in order to
develop the SOAD simulator. Below, Table 4 shovesdbrrespondences between the
SOA and DEVS elements. The SOA-compliant DEVS frapr& is characterized in
terms of primitive, composite, and broker servigg¢sSarjoughian et al., 2008) which in
this thesis are referred to as service provideviceclient, and service broker,

respectively.

50
Table 4

Correspondences between the DEVS and SOA Elements (H. Sarjoughian et al., 2008)

SOA Model Elements SOAD Model Elements

atomic models
(service provider, service client,
service broker)

_:—l-

services (service provider, service clien
service broker)

entity

service description . .
(service-information)

messages entity
9 (service-lookup and service-call)
messaging framework ports and couplings
service registry and discovery executive model

coupled models

composition of services . .
(service providers)

In Table 4, the service provider, service client] aervice broker are mapped to
DEVS atomic models. Similarly, composite servicengpped to a DEVS coupled model.
In addition, the messages and their exchange®iDEVS can be extended to represent
service description and messages. DEVS model comeations via messages, ports, and

coupling can be used to represent the SOA publibb(sibe concept.

4.2. Software Models

To realize the SOA-compliant DEVS framework, wed&o develop the SOA-

based DEVS service provider, service client, amdiee broker models. In addition to

51
the primitive SOA-based service models, it is alsoessary to develop a composite

service model.

4.2.1. SOA-Compliant DEVS Models

Based on the relationship defined between SOACHRS frameworks (see
Table 4) the service provider, service client, aadiice broker are primitive services in
the SOAD framework. As shown in Figure 25, the merprovider and service client are
defined to have specific ports for requesting amoliphing services (H. Sarjoughian et
al., 2008). Similarly, the service broker is deflrte identify, publish, and found ports
given its role with the service provider and clieflhe coupling relationships among the
primitive service provider and service client withe broker are shown in Figure 25.
Each of these SOA-based DEVS models are extendedtfre DEVS atomic model and
are defined to have their unique structures andviels as described in Section 4.3. For
example, a service provider publishes its senodié service broker and performs its
own functionality as requested. A service cli@uks up the service information through
the service broker and may subscribe to the puldisiervice. The composition of
services is represented by a coupled model. Acpéat realization of the composite
service is defined to be a composite service wb@ttains at least two services. The
composite service publishes its service as watlagh of the services it contains to the
service broker. The service broker stores the sem¥efinitions and sends them to the
clients if the desired services are available.

Three types of messages are defined for the SODIator. They are service-

info, service-lookup, and service-call messagashasvn in Table 4. Service-info

52
message which contain the description of the serngicised between the service broker
and the service provider and the service cliergevice-lookup message is used by the
service client in order to ascertain whether orgawhe desired services are available or
not from the broker. The service-call message ésl lietween the service client and the
service provider. From the service client to thevise provider, the service-call message
contains a data for the specific method (endpaintfie service and it contains the

serviced result from the service provider to thwise client.

Publisher/Subscriber with Broker Coupled Model

58 58
---’:]E' 2 75 = -,
33 g%

Broker

i 5]
————————————— r-———————-==- ==
oo - 1 1
[:
o :
°] ° T =
b i 1,28 efg-
87 3 3 3
Publisher Subscriber
g 82 E g 8
u £3 g < 2 3t m
g2 g 5 g g8 —‘
msg
- - ¥ request and response messages [input port [output port
—» data service messages =+ =P publish messages

Figure 25. SOA-compliant DEVS model

4.2.2. A Smple Network Model

We need to have a simple network model to reptdsedware aspects of the

SOAD framework as shown in Figure 26 (H. Sarjougteaal., 2008). Basically the

53

network model has capabilities of FIFO message gugeansmission delay, and traffic

bandwidth.

n T ° © =

o < c T ca

(=X g Q [S0)
sz 0 OS5 720

53 g 2%

Publisher Network Subscriber

0 = o n T o

o @ & c oo

o ® S _ o5 ® o
Des 28 5 EB—D=7 238

28 87 7 82

msg

Figure 26. Communication of messages

4.3. Modeling of SOA-Compliant DEVS models

As stated in Chapter 2, each SOA component, sebrigker, service client,
service provider, and composite service, has its fatures and behaviors that should be
modeled. However, it is impractical to model albpible features and behaviors of the
component so that critical features that can repriethe characteristics of the model are

selected to be modeled.

4.3.1. Service Broker Smulation Moddl

There are many desirable features for the servimeeb as discussed in Chapter 2,
but service broker simulation model is modeled whvice registry feature only for
simplicity as shown Figure 27. Basically serviceypder can publish its service
description including endpoints information to 8exvice broker and service client can
find the service based on the desired endpoingaldth the service name. Service

broker store the received service-info messagédssaand return it to the service client

54
when the service-lookup message matches one atsenfo message in the repository.

Otherwise, it notices the service client that theneo information available.

Service registry

Figure 27. Service broker simulation model

4.3.2. Service Client Smulation Mode

Service client simulation model is modeled with taehaviors such as looking up
the service broker and invoking service providéstFservice client simulation model
looks up the service broker using a desired endadomg with the service name. The list
of service providers that a service client simolatmodel wants to subscribe is
constructed when a service client simulation magldefined. If the service client
simulation model receives the service-info mesdeaya the service broker, then invoke
the service provider; otherwise it may continuétak up the service broker for a given

number.

Lookup &
invoke

Figure 28. Service client simulation model

4.3.3. Service Provider Smulation Model

Service provider simulation model is modeled withawn performService()
function that fulfills a set of specific services depicted in Figure 29. The service

provider simulation model publishes its input p@sgsendpoints at the given time. It

55
should be able to handle multiple requests andeethiem simultaneously. Accessing

information is supported by coupling and ports.

performService()

Figure 29. Service provider simulation model

4.3.4. Composite Service Smulation Model

To model the composite service simulation modealhestration is used as a
simple service composition in SOAD as shown in Feg80. There are number of ways
to composite services as we discussed in Chaptéo\&ever, in this research, sequential
service composition is implemented to narrow dolengcope of this research. Service
composition information should be defined in thevee-information message model as
binding information. Each primitive service provide the composite model does not

know the order of invocation.

Service Provider l

[T—

"
L, Service Provider .

Service Provider

Figure 30. Composite service simulation model

56

4.4. Implementation of SOA-Compliant DEVS models

As noted previously, a set of generic DEVS modé&Service, that represents
static and dynamic software aspects of SOA capigsilare developed. In this section,
we implement the structural specification of eaatppsed model and how they
correspond with the DEVS specification. TBenService API contains several pre-
defined behavioral SOA-based simulation modelsdhatbe categorized into three types
based on its characteristics: generic messagesitipg services, and composite service.
The DEVS-Suite is used to simulate the specific ehadeated by the genei@enService

API, called Application Model.

4. 4.1. Generic Messages

Service Broker (Registry)

Service-Lookup Service-Info

Service-Info

< Service-Call >

Service Client Service Provider

Figure 31. The message types in GenService

As shown in Figure 31, there are three princigalges, publication, lookup, and
subscription, of message between services in the $@ese three different usages
require three discrete types of messages due yingadlata requirements in each

message. Consequently, three different types ofages are employed in the

57
GenService APL. They are derived from the Entity class in BEEVSJAVA API as

shown in Figure 32.

entity
(from GenCol)

— A N

|

SeniceLookupMessage
(from GenSenice)

SenicelnfoMessage
(from GenService)

SeniceCallMessage
(from GenService)

f&Subscriber : String
i&SeniceName : String

igareceiver : String
i#SeniceName : String

f&PacketSize : double = 32
i&gname : String

fgaSubscriber : String

&P ublisher : String

f&Bindinginfo : ArrayList

i#zDuration : Double
wData : Pair

i&zDescription : String
iz SenvceType : String
i#EndPoints : ArrayList
i#Bindinginfo : ArrayList

i#Endpoint : String
i&aduration : Double

Figure 32. Messages in the SOAD

4.4.1.1. Servicelnfo and ServiceLookup messages. The WSDL is used in the real
environment between services and service broketbel simulation environment, among
the three message typ&syvicelnfo andServicelLookup represent characteristics of the

WSDL (see Table 5).

These messages are needed for publishing senndaseir discovery. The
Servicelnfo message type is used to publish the service tediwce broker. It contains
the service definition given a service name, deson, service type (atomic or
composite), endpoints, and binding informationfa®s in Figure 32. The endpoint
consists of two parts: exposed method name andremgitype for the method. Currently

the method is limited to accept only one argumemerform its functionality and later it

58
will need to be extended. Binding information camseathe list of services with an
endpoint. Logically the order of services in thet hepresents the order of service in the
composition. This binding information feature isplemented partially for now, but it
will be resolved in the next research to supportastyic service compost ion. The
Servicelnfo message type is stored into the service brokesdaectly in order to lookup.
Table 5

WSDL and Servicelnfo and ServiceLookup Messages

WSDL Servicelnfo Servicel.ookup
interface | service name, endpoints service nameyaanid
message n/a data

service n/a (ports and couplings) n/a (ports angblogs)

binding binding info n/a

ServiceL.ookup message type contains the subscription informati@name of
the service provider, the endpoint to service tlidre data type to be sent, and the time
frame to subscribe service. The name of the seprimeider and an endpoint in that
service provider are used as key value to finddg®sred service information in the
Service Broker. In reality, the service client eee a service description or a specific
combination of service information to lookup theker to locate a service. However,

this capability is limited to use of service namighvan endpoint for the simulation.

4.4.1.2. ServiceCall message. The SOAP, XML based communication protocol, is

used over HTTP in the communication between sesvite the simulation environment,

59
ServiceCall message type corresponding to the S@éperties is employed for
exchanging messages between services with thereelgata. Figure 32 shows the
structure of ServiceCall message. The size of 8eBall message depends on the size of

service data plus the default size of packet, 328y

4.4.2. Primitive Services

The primitive services such as service providenyise client, and service broker
as a DEVS atomic model are proposed as shown iRiuge 33. The default behavioral
specification of th&/iewableAtomic model is presented in the (B. P. Zeigler &
Sarjoughian, 2003). These simulation services laawee-to-one correspondence with the
SOA service. Services in the SOA can be considasegbmponents in the component-

based system. Unlike a component, a service ig $elf-contained and loosely coupled.

atomic
(from modeling)
A

[

ViewableAtomic
(from modeling)

SenvceProvider
(from GenService)

SenviceBroker
(from GenService)

/\7 /\
|
|

fgstart : double
fgavailable_time : double
YazUDDI : ArrayList

SenviceClient
(from GenService)

E¥publish()
E¥subscribe()
®publishCompositeSenice()

fgnumOftry : int = 5
fgwaitingTime : double = 1
fgseniceResponse : double = 100
fgstartTime : double

fglookuplList : ArrayList

YgProcessing_time : double
YaProc_time : double
Ygtotal_size packets : double
HaSeniceName : String
fzSeniceDescription : String
HaSeniceType : String
fgEndpoints : ArrayList
YgRequestList : ArrayList
HmsgQ : Queue

Sout()

Figure 33. Primitive services in the SOAD

SperformSenice()
S CheckDestination()

60
4.4.2.1. ServiceBroker model. ServiceBroker model has a container (UDDI) to
storeServicelnfo messages as a service description. The desireidesean be
discovered by looking up an endpoint from 8eeviceClient as a key. Figure 33 shows

two important methods as characteristics of SOA,

» Publish: Store the published service informatis@&ervicelnfo message into
the UDDI.

» Subscribe: Return the index of the matched seritiee list. An endpoint from
the service client is used to lookup the servitfe®o service is found, then a
negative value is returned. Service Broker senesrtatched service information

(Servicelnfo) or “No Found” message to the client.

4.4.2.2. ServiceClient model. ServiceClient model defines a service client m th
SOA. A service client can be defined with the &ifservice that the service client wants
to subscribe sequentially. At the beginning, antligith a given start time begins to look
up the service broker to search whether the deserdce is currently available or not. If
the endpoint is not available or even if the senlooker itself is not available yet, the
service client attempts to lookup the service bragain after a set amount of time units
until the specified number of attempts, which isrently set at 5 times as shown in
Figure 33. If the endpoint is found and gets theise information, then the service
client sends a message with a required data fagrtdpoint and then waits for the
response from the service for the given response, tL00 time units. After completion

of a service subscription, if there are more se@vie@maining in the subscription list, then

61
the service client looks up the broker again arix$eribes the service until no more

services are in the list.

4.4.2.3. ServiceProvider model. ServiceProvider model defines behavior of its
specific service with gerformService method. TheerformService receives a data from
the service client as an argument and perfornepesified service depending on the
subscribed port (endpoint) using that data. Culyente do not consider a service which
contains multiple methods in it which means a sertias only one endpoint to be
subscribed upon request. As an initial behavidisevice providers need to publish their
services to the Service Broker at the given timgurfeé 33 shows the specifications of

ServiceProvider.

Unlike other simulation models, tiserviceProvider model has two time logics,
Processing Time and Service Duration, for a quedeadist, msgQ and RequestList

respectively, as shown below.

-

Processinz Time Service Duration

R1 ; i
R2 /

R3

RS
R6

1. Processing

e 2. |Ooping
) 3.Servicing —

* msgQ Requeoestlist *

Figure 34. Internal Event function in the ServiceProvider

62

Processing Time is the required time for a reqteebe processed before
servicing. In other words, a request needs to wdte msgQ for the Processing Time.
For example, if the Processing Time is 5 time ynitsn R4 in the Figure 34 has waited
for 5 simulation time units before it is storedoithe RequestList to be served for the
requested Service Duration. All service requesistdiR4, in the RequestList are
handled by th@erformService method for each request at a time.

The functionality of the RequestList is to handleltiple user requests for the
same endpoint or service simultaneously. As shawkigure 35 (a), multiple service
clients can subscribe the same endpoint at a tmtbat case, at the programming level,
endpoint objects from the same endpoint are crdatehd assigned to each request, as
shown in Figure 34 (b). Therefore, it looks likdya service client subscribes this
endpoint at a time. This capability is implemenigdhe RequestList. Multiple requests
are stored in the RequestList and they are sengeditaneously by iterating the entire

list at one time. Then the simulation time is adexh
Service
Client 1
Service
Client 2
Service
Client 3

Figure 35. Connection between service clients and an entlpoin

EndPoint

1= =1

Service
Client1

Service Provider .

Service
Client 2

EndPoint

(a) (b)

63

The internal event function as a DEVS atomic mdalgps itself by changing
three states, “processing”, “looping”, and “semi sequentially as shown in Figure 34
until msgQ and RequestList become empty. At thet fsrocessing” state, if the
Processing Time becomes zero, then the top regupestied out from the msgQ and
added into the RequestList. In the “looping” stéte, service provider loops the
RequestList to serve each request if the requ&sedce Duration for the request is not
equal to zero and then send output messages taeaelsponding service client by
changing the state to “servicing”. If Service Dimatfor a request is zero, then it skips to
the next request. At the “servicing” state, aftérequests in the RequestList are handled,
then it removes requests which have zero Servicatdn from the RequestList. Finally,

the state is changed to “processing” again forlasrdbop.

4.4.3. Composite Service Model

The composite service model contains at least emace providers (either
primitive or composite service) models to represeadbmposite service. The flow of
service invocations needs to be specified at thecgemodel design stage. Figure 36
shows how the real services are composed using BPts is a basic capability for
hierarchical service provider composition which tabe extended to support different

kinds of workflow patterns (Russell et al., 2006).

Request
Client ‘
CallBack
Asynchronous

<<invoke>>
pottType

<<assign>>
Assign input to Resort

<<invoke>>
Get a Resort from RESORT portType

<<assign>>
Assign Tnput to Output

<<invoke>> |
Raturmn

Figure 36. Business Process Execution Language

Synchronous

Request

USZIP

Reply

Request

RESORT

Reply

Synchronous

64

ViewableDigraph

(from modeling)

I

CompositeSenice
(from GenService)

i&zPublisherList : ArrayList

> [&ZCompositePublishersList : ArrayList

#CompositeConstruction()
SCouplingConstruct()

[TransducerList : ArrayList 1.*
i&zEndpoints : ArrayList >
i&zRouter : SeniceRouter 1
SEndpointsConstruct()

P ublisherConstruct() 1

S TransducerConstruct()

/1
/
ty
SeniceBroker
(from GenService)
fzstart : double
ikzavailable_time : double
fi%zUDDI : ArrayList

E¥publish()
E¥subscribe()
publishCompositeSenvice()

1

SeniceProvider
(from GenService)

fizProcessing_time : double
&zSeniceName : String
f&zSeniceDescription : String

__|fEzSeniceType : String

&zEndpoints : ArrayList
kzRequestList : ArrayList
i&zmsgQ : Queue

®performSenice()

SenviceTransducer
(from GenService)

f&zin : ArrayList
fzzout : ArrayList
igzobservation_time : double

Scompute_TP()
Scompute_TA()

SeniceRouter
(from GenService)

fi&atrasmissionTime : double
izznetwork_traffic : double
f&zoutputPort : String

Figure 37. Composite service model

65

4.4.4. Application Composition

As shown previously, a SOA-compliant DEVS modeisists of a set of service
provider and service client with a service brolk®fault couplings between these
primitive services are permanent. Therefore, weleynite ApplicationComposition
model that constructs default coupling betweerstrgice models as shown in the Figure

38.

fizitrasmissionTime : double
fizgnetwork_traffic : double
fizggoutputPort : String

E¥publish()
E¥subscribe()
®publishCompositeService()

)

\
\

fikzBrokerList : ArrayList

fikzRouterList : ArrayList
fikzPublisherList: ArrayList
fikzCompositePublishersList : ArrayList

ServiceRouter ApplicationComposition Ser\nceTransdvucer
(from GenService) (from GenService) = (frorp Genservice)
fikzin : ArrayList

®PublisherConstruct()
®CompositeConstruct()
®subscriberConstruct()
®TransducerConstruct()
®CouplingConstruct()

Tl

fikzout : ArrayList
1.* |f&gobservation_time : double

fSubscriberList : ArrayList < :compule_TP()

SenviceBroker s TransducerList : ArrayList 1 compute_TA()

(from GenService)
@start : double ®seniceComposition()

il e — ®seniceComposition() 1.*
available_time : double 4 <> 1. . "
%guom : ArrayList ®BrokerRouterConstruct() 1 ServiceClient
: (from GenService)

figgstartTime : double

fizglookuplList : ArrayList
fikzServiceRequest : ServiceCallMessage
fizzlookUp : ServiceLookupMessage

=
CompositeService
(from GenService)
fikzPublisherList : ArrayList
fikzCompositePublishersList : ArrayList
fkzTransducerList: ArrayList
SEndpoints : ArrayList 1

SenviceProvider
(from GenService)

-*|izServiceDescription : String

f&zRouter : ServiceRouter

®EndpointsConstruct()
®PublisherConstruct()
®TransducerConstruct()
®compositeConstruction()
®CouplingConstruct()

o]

fikgProcessing_time : double
figzServiceName : String

fiiServiceType : String
f&ZEndpoints : ArrayList
f&iRequestList: ArrayList
fiZgmsgQ : Queue

®perform Senvice()

66

Figure 38. ApplicationComposition model

First of all, this generic composition model cansafive empty construction
methods which allow users to construct specificaibeach component in SOAD.
As stated earlier, at least one service providéngeprimitive or composite), one service
client, and one service broker are required to ama@m SOA-compliant DEVS
application model. The cardinalities in Figure 8Bnesent that constraint. At the last,
CouplingConstruct method which is used for coupling between each BEVmMponent

in the five lists is predefined.

67

445, ServiceTransducer Model

SeniceTransducer
(from GenService)
fi&zin © ArrayList
fzout : ArrayList
lizzobservation_time : double

Sicompute_TP()
Sicompute_TA()

Figure 39. ServiceTransducer model
Transducer, an observational component, collestt af simulation data for the
service and it is attached to each service modeljce provider, service client, and
service broker. Transducer keeps track of all alsiand departures for a given
observation interval then turnaround time and tghmut for the model can be computed
as shown in Figure 39.
* Turnaround time: the length of time between itévatrand its departure from the
attached service.
» Throughput: the average rate of message depaftoraghe service, estimated
by the number of requests processed during theadigm interval, divided by

the length of the interval.

5. Simulation Experiments

This chapter demonstrates the experiments of af S¥DAD simulation models
discussed in Chapter 4. Using the simulation modetet of the experimental scenarios
such as the Voice Communication Service and TrAgehcy Service are developed and
simulated on the DEVS-Suite environment in orderdanfy and validate that the

simulation models are suitable to represent the 8@#epts and capabilities.

5.1. Service Composition and Configurations

The service composition can be defined with fanfigurations as shown in
Table 6. These configurations are based on the auoftservice clients and providers,
not on the number of service broker since theomig one broker in the service
composition. The service composition must be abEupport these configurations in
terms of SOA concept and capabilities.
Table 6

Service Composition Configurations

Client | Provider| Broker
Configuration 1 1 1
Configuration 2 n 1
Configuration 3 1 n !
Configuration 4 n n

5.2. Experimental Scenarios

Two experimental scenarios, such as the Voice Camtation Service (VCS)
System and the Travel Agency Service (TAS) Systendaveloped in order to validate

the SOAD simulation models.

69

5.2.1. Real Voice Communication Service System

A real experiment for the VCS system is develoiwechpture four critical QoS
features, such as timeliness, throughput, accueaysecurity. The experiment is a
simple network intensive service, where multiplesge clients can use the VCS
simultaneously to receive real-time voice dataastre with various qualities of voice

configured by a user-specified sampling rate asvahio Figure 40.

Wt

Broker

o

VCS

Subscribers
Figure 40. Voice Communication service
The real experiment is developed using C# in .Mdtdeployed on the .NET
development server. Since the VCS is a networksite service, throughput is mainly
examined as a main QoS feature. Processor, Mermbggical Disk, System, IP, UDP,
TCP, Server, and Web Services are collected asxperimental data using Windows
Performance Object. There are three experimentaordriables, such as the sampling

rate for recording the voice data stream, the nurabgervice clients, and the buffer size

70
for storing the voice data before network. Tab&h@ws the different setting for those
control variables.

Table 7

The Experimental Control Variables Settings

Sampling Rate (KHz)| 44.1, 88.2,132.3,176.4, 220.5

of Service clients 1,2,3,4,5

Buffer Size (KBytes) | 16, 32, 48, 64, 80

The real experiment has been run under 125 expetaineonditions, and each
experimental condition has 5 independent runs leacd replicates of data set. For each
individual replicate, 60 data observations are méed. By comparing these data sets with
simulation data sets, we can verify and validateS®DAD simulation models.

In the real experiment, the actual broker seridga®t presented since we
assumed that the VCS has already been publishi&e &ervice broker and service clients
have looked up the broker to find the VCS, meativag service clients already know the
VCS information such as the URL of the VCS whicé described in WSDL. However,
in the SOAD framework, the broker must be impleradrgo that the SOA concepts and

capabilities are represented by the generic sinounlahodels.

5.2.2. Travel Agency Service System

A simple simulation experiment called Travel Aggiservice (TAS) system is
designed to show the service composition with apmsite service. For this service

composition, we developed two primitive simulatgervices, such as the USZIP service

71
which provides the city name by a given zip code e RESORT service which
displays the closest resort place by a given @ty@. Then these primitive services are
used to construct the TAS.

Figure 41 depicts a simple experimental scenarigsofg the TAS. A service
client invokes the TAS with a zip code (85281). TS sends the 85281 to the USZIP
service and then the USZIP service provides andtye (Tempe) generated by the zip
code to the RESORT service. The RESORT servicephmtuce the closet resort name

(the Phoenix Resort) by the city name and The T&&rns the result to the client.

Broker i
| TAS B:J
5 85281 usziP

Tempe

i RESORT

Phoenix Resort

Figure 41. Travel Agency service compaosition

5.3. Service Composition with Primitive Services

Based on the service configurations stated inél&plve can create several
simulation scenarios for the VCS simulation. Fofall, we need to construct instances
of service providers including specifications oflpoints, service clients and a service

broker as well as the hardware component, netwWorlg service composition.

72

5.3.1. Composition for the VCS Model with Configuration 1

Since we already have tiAgplicationComposition class defined in Chapter 4, the
composition of primitive services as well as thenwek for the VCS can be derived from
the ApplicationComposition. In theApplicationComposition class, as shown in Figure 42,
six independent service lists are created to ststances of each component. For the
VCS composition, we need to construct all partistpat each construction function call
and store them into the corresponding list. Thewood each construction function call
does not matter. However, the coupling construdiimation must be called at the last to

automatically construct coupling between all congrua stored in the six service lists.

public ServiceComposition(String nm) {
super (nm) ;
BrokerList = new Arraylist <ServiceBroker> ()
RouterList = new Arraylist <ServiceRouter> ():
PublisherlList = new Arraylist <ServicePublisher:> ():
CoupledPublishersList = new Arraylist <ServiceCoupledPublishers> ()’
Subscrikberlis=st = new Arraylist <ServiceSubscriber> ():
TransducerList = new ArraylList «<ServiceTransducer:> (s
S fThizs function call construct the list of brokers and routers
BrokerRouterConstruct () ;
//This function call construct the list of subscribers
Sub=scriberConstruct () 7
ffThi=s function call construct the list of publishers
PublisherConstruct () ;
f{Thi=z function call construct the list of composite services
ComposziteConstruct () ;
//This function call construct the list of transducer
TransducerConstruct () 7
f/Thi=s function call construct the coupling of each component
CouplingConstruct () -

Figure42. The Service Composition class

73
5.3.1.1. Service broker and Network. Since we need only one broker and one
network link in the configuration 1 for the VCS sikation, we construct a service broker
with a service start time and a length of availdinlee and a network link with a network

bandwidth and store them into corresponding lestsshown in Figure 43.

public void BrokerRouterConstruct () {

[/attributes
donble available 60; ffavailable time for broker
donble startTime = 0.5;

double bandwidth

10; //bandwidch for the network or router
//Create unigue components

Broker = new ServiceBroker ("Broker"™, awvailabkle, startTime):;
Router = new ServiceRouter ("Bouter Link", bandwidth);

BrokerList.add (Broker):
RouterList.add (Router);

Figure 43. Broker and Network construction

5.3.1.2. Service provider. As shown in Figure 44jRate is defined as an endpoint
which requires an argument in double data typelbsaribe and store into the list of
endpoints for the VCS. Then, the VCS is construet#d the service name, service

description, service type, list of endpoints, anacpssing time for the request.

public void PublisherConstruct () {

ArrayList <Pair» Endpoints = new ArrayList <Pair> ():
Endpoints.add (new Pair("gRate"™, "Double")):

VolceComm Servicel =
new VoiceComm("VoiceComm", "Voice Communication™, "Atomic", Endpoints, 1)

{/Construct the publisher list

PublisherList.add(Servicel);

Figure 44. Service provider construction

74
The basic behaviors and structures of the proadealready defined in the
genericSerivceProvider class as stated in Chapter 4. Therefore, to acstdtne VCS, we
need to define service specifications d&ate in the performService method as shown in

Figure 45.

public class VoiceComm extends ServiceFublisher{

public VoiceComm(String name, Servi
String descpt, Sexrvi
String sviype, Servic
Arraylist <Pair> endpts,
double process=inglIime){ C
super (name, descpt, svIype, endpts, processingTime);

public Pair performService(Pair data){
donble buffersize = 16; buffersize (Kbps
double avgNumOfDatagram = 260; = nber of
double sizeCfmsgs = (avgNumOfDatagram * buffersize);

ServiceReturn.setSize (sizeOfmsgs):;
retuarn data;

Figure 45. qRate specification

Since the VCS returns the voice data streamstivéhiequested sampling rate to
the client, the size of returning messages vargdas the control variable setting
discussed in Table 7. For the current settingbtiféer size for the network
communication is set to 16 Kbytes and the averageber of datagrams received by the
service client is set to 260. These settings aoptad from the real experiment.
Therefore, the size of each message from the VQi&eteervice client is the average
number of messages multiple by the buffer sizd,ith@160 Kbytes. We ignored the

datagrams header size, 32 Bytes, since it is @¢aansnd negligible in size.

75
5.3.1.3. Service client. With the configuration 1, as shown in Figure 4& YCS
simulation has only one service client which isimed with the name of the client, the
list of ServiceLookup messages that contains the client with an endpbi@tsampling
rate, and the duration of time to subscribe tos#@ice, and the time to look up the
Service Broker. This Service Client is added i list of clients to be coupled with
other components in the simulation. The defaultcstire and behavior of the client is

defined in the generigerviceClient class in Chapter 4.

poblic woid SubscriberConstructi){
//Construct ServicelLookup information: The list of service to subscribe
BrraylList <ServicelLookup> lookuplLi=st = new Arraylist <ServicelLookup> ():
lookupList.add(new ServicelLookup ("VoiceComm", "gRate"™, new Pair("Hz", 220500}, €0)):
//Construct Subscriber with the list of service lookup message

ServiceSubscriber Subscriberl = new ServiceSubscriber ("Subscriberl", loockuplList, 0.1):

//Bdd the subscriber into the list

SubscriberlList.add(Subscriberl)

Figure 46. Service client construction

76

5.3.1.4. Transducer. The list of transducers for each primitive senasewell as
the network is constructed to collect a set of $mon data as shown in Figure 47.
These data sets are compared with the data sésted|from the real experiment in
order to validate the SOAD simulation models. Tdaurters observe each component for
a given length of time and then measure the pedoo® metrics defined in each
transducer model. For example, the transduceh®network link can measure the
average transmission delay, total size of mesdagesmitted, and network utilizations

as shown in Figure 48.

public void TransducerConstruct () {

BrokerTransd BroTIrans = new BrokerTransd("BrokerTran=d", obssrvation):
RBouterTransd NecTrans = new RouterTransd("RouterTran=sd", obssrvation);
SubscriberTransd SubTransl = new SubscriberTransd("SublTransd", observation):

PublisherTransd PubTransl new PublisherTransd ("VoiceCommTransd", ohservation):
/fAlways the same order: Broker >> Network >»> Subscriber >»> Publisher
TransducerlList.add (BroTrans);

Transducerlist.add (NecTrans):

TransducerList.add (SubTransl):

TransducerList.add (PubTransl):

Figure 47. Transducer construction

SeniceTransducer
(from GenService)

igzin © ArrayList
iggout : ArrayList

likzobservation_time : double

Scompute_TP()
Scompute_TA()

\

RouterTransd

BrokerTransd PublisherTransd SubscriberTransd
(from ServiceArc) (from ServiceArc) (from ServiceArc) (from ServiceArc)
ikzname : String zname : String ikzname : String ikzname : String

ikzObservation_time : double

®BrokerTransdy()
Wshow_state()
FnumOfpublished()
SnumOflookup()
$numOfFailure()
®lengthOfAvail ()

Mibandwidth : double
Bname2

f&ztime : double = 70
igaTimePt : double = 0

% RouterTransd()
Wshow_state()
®avg_Transmission_delay()
Stotal_size_msgs()
BgetNetUtilization()
SgetMinUtilzation()
WgetMaxUtilzation()

SPublisherTransd()
Wshow_state()
Stotal_size_msgs()
FnumbOfSubscribers()

WsubscriberTransd()
Wshow_state()
SnumbOofPublisher()
Stotal_size_msgs()

Figure 48. Transducers in the VCS

77

5.3.1.5. Coupling of services. The user takes a role of constructing a service

broker, a network, the list of service clients, éimel list of service providers while

service composition for the VCS simulation with ttenfiguration 1.

coupling between these components is automaticaltypleted. Figure 49 shows the

78

Woite Communication Serice

in m BrokerTransd
active
it € g =70.000

publish @ Broker =3 Subzeribert

passive
subscribe B o =5500 - active

in &~ SubiTransd in & RouterTransd in @ VoiceCommTransd
active active active
o€ g =70.050 wt€ g=70.000 st® g =70.000
found €+ SubSCIer! g lookup Routes Link .a subserivert VoiceComm -3 publish
lookingup i - == aRsteln 3 pubiishing
service &1 a=0.100 @ i=yuest 0 = infinity qhate o= 1.000 @ qRateOut

Figure 49. Voice Communication service with Configuration 1

5.3.2. Composition for the VCS Smulation with Configuration 2

Configuration 2 represents multiple clients witiegrovider and that is easily
constructed since the generic provider class hasdhability to handle multiple requests
simultaneously as described in Chapter 4. Sincéghef clients and the list of providers
are maintained independently and coupling betwieset primitive services are already
established, we only need to construct more clienssibscribe the VCS as shown in
Figure 50.

There are no changes with the service broker amdy@5. Therefore, the VCS
with multiple clients as mentioned as configurat®bare constructed as depicted in the
Figure 51. As shown, the entire VCS simulationasthat different from the Figure 49,
which only has one client, except for the numbecl@int. However, the VCS can receive
multiple requests and return a voice data streaimneguested sampling rate back to

clients simultaneously.

79

public void SubscriberConstruct (){
/ n: The list of service to subscribe

//Construct ServiceLookup informati
Arraylist <Servicelookup> lockuplist = new ArraylList <ServiceLookup> ():

//Construct subscriber with name, service lookup info, start time
lookupList.add (new Servicelookup ("VoiceComm", "gRate", new Pair ("Hz", 220500), &0)):

ServiceSubscriber Subscriberl = new ServiceSubscriber ("Subscriberl", lookupList, 0.1):

lockuplist = new Arraylist <Servicelookup> ()
lookupList.add (new Servicelookup ("VoiceComm", "gRate", new Pair ("Hz", 220500), &0)):
ServiceSubscriber Subscriber? = new ServiceSubscriber ("Subscriber2", lookupList, 0.1):

lockuplist = new Arraylist <Servicelookup> ()
lookupList.add (new Servicelookup ("VoiceComm", "gRate", new Pair ("Hz", 220500), &0)):
ServiceSubscriber Subscriber3 = new ServiceSubscriber ("Subscriber3", lookupList, 0.1):

//Construct the subscriber list

Subscriberlist.add (Subscriberl) ;
Subscriberlist.add (Subscriber?) ;
Subscriberlist.add (Subscriber3) ;

Figure 50. Service client construction with Configuration 2

Yoice Communication Service

< Subseribert
pablish &= Braker -2 !
. =@ Subscriberz
PASSIVE 5 ciiconiber
Subscribe M-

o = 5.500 ~@ active

fosiaip

reniest

~@ Subscribert VoIceCamm —a publish

=3 Subscriberz aRateln o pubiishing

B lookup -3 Subscriberd & = 1.000 a qRateOut
~& yRate
Equest
in
out
found leakup
service request

Figure51. The VCS simulation with Configuration 2

5.3.3. Validation on the SOAD Smulation Models.
Since configuration 3 and 4 use the simulatedisereomparisons between the
simulation data sets from the transducers andethleexperimental data sets from the

Window Performance Objects are conducted for th&g@stem with configuration 1

80
and 2 so that the SOAD simulation models can bidat&d in terms of four critical QoS
features, mainly throughput for the VCS systemc§&iih is more important for the aspect
of service provider, we measured throughputs of¢aéVCS and simulated VCS with
configuration 1 and 2 60 times. The simulation cointariable settings for each case are
shown in Table 8.

Table 8

The Smulation Control Variable Setting

Configuration 1 Configuration 2
Sampling Rate 44.1 - 220.5 KHz 44.1 KHz
of Service clients 1 1-5
Buffer Size 16 Kbytes

With configuration 1, we collected two sets of dmiaboth the real and simulated
VCS (Roontiva et al., in preparation). First, weasige service provider throughputs
with a fixed sampling rate 220.5 KHz for 60 tim&gcond, we adjusted the sampling rate
from 44.1 KHz to 220.5 KHz and collected servicevyier throughputs. The results of

the real and simulated VCS with configuration 1sttewn in Figure 52.

81

Service Provider Throughput [Sampling Rate = 220.5KHz]

Mbps

=& Simulated Data

== Real Data

6.5
6.4
1 4 7 10131619222528 31343740 43 4649 525558
Sample Number
(a) The VCS Throughput by Sample Number
Sampling Rate vs Service Provider Throughput

8

7

6

5
7]
8 4
= ® Throughput (Simulated)

3

B Throughput (Real)

2 -

1 -

0 -

44.1 88.2 132.3 144 176.4 2205
Sampling Rate {KHz)

(b) Sampling Rate vs. Service Provider Throughput

Figure52. The measurements of the VCS throughput with Qoméition 1

82

For the case of configuration 2, we measure thiputs with a fixed sampling

rate 44.1 KHz for the both the real and simulat€B\by adjusting the number of service

clients from 1 to 5. The actual measurements aegnted in Table 9 and comparisons

are shown in Figure 52.

Table 9

Throughputs for the Real and Smulated VCS by Number of Service Clients

N

Number of Service Clients Throughput (Simulated) Throughput (Rea
1 1.332300356 1.3459957
2 2.670600711 2.693091272
4 4.333476156 4.396452098
5 5.311201423 5.388197829

Service Clients Number vs Service Provider Throughput
(Sampling Rate = 44.1KHz)

Mbps
w

Number of Service Clients

Throughput (Simulated)
I m Throughput (Real)

Figure 53. Comparison the throughputs between the real amdaed VCS

83
Based on the comparisons between the simulatitanashal experimental data,

there are differences between them; however tlierdifces are negligible as shown in
Figure 52 and 53 meaning that we can validatetti@®SOAD simulation models are

suitable to represent the static software aspeitteoSOA capabilities.

5.3.4. Composition for the VCS Smulation with Configuration 3

Since the SOAD simulation models have been vadjave can extend the
service composition with configuration 3. In th@ndiguration, a service client
subscribes multiple service providers. For thisecage can use two more primitive
services developed for the TAS simulation, whiakl &SZIP service and RESORT

service as shown in Figure 54 and add them int@¢inéce provider list for coupling.

public void PublisherConstruct () {

Arraylist «Pair>» Endpoints = new ArraylList <Pair> ()

Endpoints.add (new Pair("gRate", "Doukle™)):;
VoiceComm Servicel =
new VoiceComm ("VoiceComm"™, "Voice Communication”, "aAtomic", Endpoints, 1);
Servicel.setBackgroundColor (Color. CYAN) ;
PublisherList.add (Servicel);

Endpoints = new ArrayList <Pair> ()
Endpoints.add(new Pair("CityByZip", "Doukle")):
USZipService Serviced =
new USZipService ("USZip", "City by Zip Service", "Atomic", Endpoints, 1);
Servicel?,zetBackgroundColor (Color.CYAN) ;
PublisherlList.add (Service?);

Endpoints = new ArrayList <Pair> ()
Endpoints.add(new Pair("ResortByCity", "String™)):
ResortService Servicel =
new ResortService ("Resort™, "Hesort by Citcy Service™, "Atomic"™, Endpoints, 1):;
Service3. setBackgroundColor (Color. CYAN) »
PublisherList.add (Service3);

Figure 54. Service Provider construction with Configurat®n

84

Since we do not need complicated services, thafggaions of endpoints in

these services are really simple as shown in Figbre

public Pair performService (Pair data){
double sizeOfmsgs = 32:
Double doubleVal;
Pair returnVal = new Pair():

doubleVal =
Double.parseDouble|data.value.toString ()) :
/fif the zip code is 85281, then return tempe
if (doukleVal == 85281){
returnVal.key = "String":

returnval.value = "tempe";
else{

returnvVal.key = "String";

returnVal.value = "No Found";

ServiceReturn.setSize (sizeOfmsgs);
return returnVal;

(a) USZIP

public Pair performService (Pair data){
double sizeCfmsgs = 32;
Pair returnVal = new Pair();

//if argument is tempe,

//then return pheonix resort

if({data.value.toString() .equals ("tenpe™)) {
returnVal.key = "5tring";
returnVal.value = "Pheonix Resort";

else{
returnVal.key = "String";
returnvVal.value = "No Found";

ServiceReturn,setSize (sizeCimsgs);
return returnval;

(b)RESORT

Figure 55. Specifications of endpoints in USZIP and RESORiVises

For the case of a service client, the lookup tableaintained to store the lookup

messages for subscription. A service client logkshe broker at first to subscribe the

VCS. After completion of the VCS, a service clitadks up the broker again if there are

more services that the service client wants to@iltisin the lookup list. The order of

subscriptions needs to be specified as shown iRithee 56.

public void SubscriberConstruct () {
//Construct ServiceLookup information: The list of service to subscribe
ArrayList <ServicelLookup> lookuplist = new ArraylList «<ServicelLookup> ()

//construct the subscription list

lookuplist.add (new Servicelockup ("VoiceComm", "gRate", new Pair("Hz", 220500), &0));
lookuplist.add (new ServicelLookup ("USZip", "CityByZip", new Pair("double", 85281), 1)):
lookupli=st.add (new ServicelLockup ("Rescrt", "RescrtByCity", new Pair("String", "Tempe"), 1))

ServiceSubscriber Subscriberl = new ServiceSubscriber ("Subscriberl™, lookupList, 0.1):

//Construct the subscriber list
Subscriberlist.add (Subscriberl);

Figure 56. Service clients construction with Configuration 3

Finally, Figure 57 shows the service compositiantfie configuration 3.

85

Woice Communication Service

publish @ Broker -3 Subscribert
passive

subseribe @ T =0A50D -& aclive "
4, o

VolceComimi -3 publish

aRatein 8- publishing
g=100n =3 qRateOut

LR T

out
faund laakup Rowter Lik -8 -itvBwip USZin a CityByZipOut
el e Rescamciy Ciybyain 8 publishing)
semice € = iZ2ss s 3 Subsciiber) o=1000 9 Publish

O =infinty -& qRate

Resort =@ ResontByCityOut
RezortByCitvin @ publishing
o =1.000 —@ publizh

Figure57. The VCS simulation with Configuration 3

5.3.5. Composition for the VCS Smulation with Configuration 4

86

Configuration 4 is a consolidation of configurati®d and 3 so that we need to

construct multiple service clients as well as sernproviders. For the construction of

service providers, we use the VCS, USZIP, and REE&HRvices. We modified little bit
for client construction so that each service clmtiscribes to a different service provider.

Figure 58 shows the service client constructiorenetSubscriber 1 subscribes the USZIP

service, Subscriber 2 subscribes the VCS, and 8bbs8 subscribes the RESORT

service. Figure 59 is the service composition wihfiguration 4.

public void SubscriberConstruct(){
J/Construct Servicelookup information: The list of =service to subscribe
ArrayList <ServicelLookup> lookupList = new ArraylList <ServicelLookup> ():
lookupLlist.add (new ServiceLookup ("USZip", "CityByZip", new Pair ("double", 85281),
ServiceSubscriber Subscriberl = new ServiceSubscriber ("Subscribkerl"™, loockuplist,

lookupList = new ArraylList <Servicelookup> ()7

ServiceSubscriber Subscriber2 = new ServiceSubscriber ("Subscribker2", loockuplist,

lookuplist = new ArrayList <Servicelookup> ();

ServiceSubscriber Subscriber3 = new ServiceSubscriber ("Subscriker3", lookupList,

Subscriberl.setBackgroundColor (Color . GREEN) ;
Subscriber?.setBackgroundColor (Color. GREEN) ;
Subscriber3.setBackgroundColor (Color . GREEN) ;
//Construct the subscriber list
SubscriberlList.add (Subscriberl):
SubscriberList.add (Subscriber?);
Subscriberlist.add (Subscriber3);

1))
0.1);

lookupList.add (new Servicelookup ("VoiceComm", "gRate", new Pair("Hz", 220500), &0)):

0.1);

lookupList.add (new ServicelLookup ("Resort", "ResortByCity"™, new Pair("String", "Tempe"),

0.1):

60)

Figure 58. Service client construction with Configuration 4

87

Yoice Communication Serice

in - BrokerTransd
; active
MEE a1 = 70,006

; T Subseribar]
in @ Sub1Transd publish £ Bioker =8 Subscriber in @ VoiceCommiransd
active % =3 Subscribe2 .
out & passive — active
o =70,000 Heari -@ Subseribed out £
sybzcrihe @ “ : o =70.000
z . i = 0500 - active
found €~ SUNSERNErT g ouiup VOICECOMNG -3 putlish
lookingug aizteln & publishing

sevice @ o qgp S eIuet geipoa -3 aRsteOut

(REH

in & SuhZI_r st n 2~ Routeriransd in & USZipTransd
acie active active
out @ — it -
0 =70.600 MR- g = F3000 out &0 20 000
found g+ SUDSCTBERZ g |ookup Rogter Link -= CitByZip USzin -3 CikyByZipOut
) leokingup -2 Resortfylity CittiZivi= 3 publishing
e € u=gage = et _ asubimiban g=1000 -9 publish
AR PASSIVE oo iiben
ing Sub3Trancd 2 Subscriberd in & PesortTransd
active g =infinity ¥ aRate active
€ =70.000 e m=73.900
found g SUBSEFIBEF3 L tooiup RE_SUI'! @ ResotByCityDut
lookingujp ResortByCitin @ publishing)
sevice € gopqpp S EIuet g=1000 9 publih

Figure 59. Service composition with Configuration 4

5.4. Service Composition with Composite Service

Since we have constructed two primitive servitéS8ZIP and RESORT, and the
USZIP service can provide a required data, ther@tye, for the RESORT service, we

can construct a composite service, the TAS, bygusiam.

5.4.1. Composition for the TAS simulation with configuration 4.

The service composition is shown in Figure 60. 3&vices in the composite
service class can be either a service providersenace client in terms of a SOA
concept. In addition, a service broker is not inredl in the composite service class since
only one universal service broker at the top aechitral level is used as a repository for

the composite service.

88

public ServiceCoupledPublishers (String nm) {
soper (nm) ;
//Router construction
Router = new ServiceRouter ("Router", bandwidth);
/S /Endpoints for this composite sexrvcie
Endpoints = new ArrayList <Pair> i)z
/fPublisher construction
PublisherList = new ArraylList «<ServicePublisher:> i)
CoupledPublishersList = new ArraylList <Copy0fServiceCoupledPublishers>();
TransducerList = new ArraylList <ServiceTlransducer> (3
ff This function call construct the list of endpoints
EndpointsConstruct ()
ff This function call construct the list of publishers
PublisherConstruct ()}
f/ This function call construct the list of transducer
TransducerConstruct ()
ff Thi=z function call construct the list of composite services
ConpositeConstruction() :

This function call construct the coupling of each component

CouplingConstruct () :

Figure 60. Composite service composition

5.4.1.1. Endpoints construction. Since the TAS itself is a composite service, the
TAS must have at least one endpoint to publisfuitstionality to the service broker.

Figure 61 shows the endpoint construction for tA&T

poblic void EndpointsConstruct () {

Endpoint=s.add (new Pair ("ResortBvZip"™, "Double™)) ;

Figure 61. Endpoints construction for the RBZ

89
5.4.1.2. Service provider construction. The specifications of endpoints in the
USZIP and RESORT services are already defined guely. Therefore, we need to

construct the primitive client list for the TAS ogithem as shown in Figure 62.

public void PublisherConstruct () {

Arraylist <Pair>» Endpoints = new ArrayList <Pair> ()
Endpoints.add (new Pair ("CityByZip", "Double™)):
USZipService Servicel =
new USZipService ("USZip", "City by Zip Service"™, "Atomic", Endpoints, 1)
Servicel.setBackgroundColor (Color.C¥AN) ;
ffConstruct the publisher list

PuklisherList.add(Servicel) ;

Endpoints = new ArrayList <Pair> ()
Endpoints.add (new Pair ("ResortByCitvy"™, "String")):
Resort3ervice Serviced =
new ResortService ("Resort", "Resort by City Service", "Atomic", Endpoints, 1)
Service2.setBackgroundColor (Coloxr.CYAN) ;
PublisherList.add(Servicel);

Figure 62. Service client construction for the RBZ

5.4.1.3. Service composition with the VCSand TAS Now we have a primitive
service, the VCS, and a composite service, the da@dbthen we construct the service
with configure 4 using VCS, TAS, and three cliemtbere two clients subscribe the VCS
and one client subscribes the TAS. Since we hamstagcted all services except the TAS,

we need to construct the TAS in the service contiposas shown below.

90

public void CompositeConstruct() {
ArraylList <Pair>» Endpoints = new ArraylList <Pair> ()
Endpoints.add (new Pair ("ResortByZip™, "Double™)):

EesortByZipServices ServiceZ = new ResortByZipServices():
CoupledPublishersList.add (Service2);

ServiceInfo CompositeService = new ServicelInfo ("ResortByZip"™,
"Find a resort by =zip",
"composite™, Endpoints):

ffS5et Binding Info (Service, endpolnt)
CompositeService.setBindingInfo (new Pair ("ResortBvZip", "ResortByZip")):
CompoziteService.setBindingInfo (new Pair ("USZip"™, "CityByZip")):
CompozgiteService.setBindingInfo (new Pair ("Resort", "ResortByCity")):

EBroker.publishCompositeService (CompositeService)

Figure 63. Composite service construction

Since there are no automatic ways to compositecgsrat a run time currently,
we need to specify the service binding informatmmiather the order of primitive and/or
composite services in the composite service salieamnessage contains the information
concerning which service is the next receiver. Toisposite service must be published
manually into the broker to be subscribed. Fig@sl@ows the entire composite service

composition with the VCS and the TAS.

91

in £

out &

found &

senice £

in &

out £

found &

senice &

in &+

out 8-

found &

semvice

Sub1Transd
active
o =70.520
Siibscriber]
leckinguj
o =0.100

Sub2Transd
active
o =7N.500

Subscriber2
lookingug
o =0.100

SulisTransd
active
™ =70.000
Subscriberd
lezKingup
a =0.100

& lackup

ziequest

@ lookup

~@ request

Walce Cammunication Serice

in m BrokerTransd

active
€ r e 70.000
piblish @ LYokes
passive
suhanribe B 7= 0500

- RnuterTransd
active
cut S 3=70.000

=8 Subscriter]

=3 Subscriber2

& Subsnriberd in - VoiceCommTransd
@ active active

€ g=70.000

VoiceCOMIn -3 publish

qRateln & publishing
o= 1.000 3 gRateOut

Roister Lik @ ResortByZip
@ Subscriberl
i@ passive @ Subssiba
-3 Subseiiberd
a= :nﬁni‘ty -& qRate
Resort By Zip Senvice
in - RouterTransd ResortByZipOui ey
active
ot o= 70,000
R =2 CityByZip
[eRazedEipl) UaziTeansd N passive g ResotmyChy
active O =iifinity -8 HesorwZip w9 ResortTransd
aut & _ active
o = F0.600 p
r "t e g =70.000
—— puhlishgH
U?le_ -8 CityByZipUui Resort @ RecudByCityl
ciyByZiein & publishing o ReserByCibinca- publishing
g=1000 & pubiish a=1000 S Publish

Figure 64. The Composite service composition with the VC8 dne TAS

5.5 Scaling SOAD Models with the DEVS-Quite

In addition to the simulation experiments that weegeloped for the

configurations listed in Table 6, it is useful tetermine how large of a system can be

simulated in the DEVS-Suite for a given hardwarmpatational resource. The Voice

Communication System with Configuration 2 is useétamine the scalability of the

SOA and the DEVS-Suite. A representative set ofiatron models having 20 to 7000

model components were devised and simulated fovy@f@ system. For the convenience,

the SimView is turned off and any set of dataasked. Figure 65 shows how the

number of service clients impacts the wall-clockdation time given a desktop

machine with Core 2 Duo 2.66 GHz CPU and 4GB RAM.eXpected, the wall-clock

92
simulation time increases proportional to the nuntdfeservice clients. The largest
simulation executed contained 3500 service cliesdets and 3500 transducer models.
The total number of models in DEVS-Suite can begased provided that more powerful
hardware (more cache and virtual memory as weligtser speed single or multi-core
processors). In particular, the default settinthefJava Virtual Machine can be changed
to allow more virtual memory which is needed tod@ead execute larger number of
objects. The DEVS-Suite, therefore, supports cotidgcelatively large-scale simulation
on single machines and thus supports the scalabéds of the simulating service-based

software systems.

Simulator Execution Performance

30000
25000 »
20000 /
15000 /
10000 /

5000 /
0 //

L v

Simulation Time (sec)

0 200 400 600 800 1000 1200

Number of Service Clients

Figure 65. Execution scalability of the DEVS-Suite simulator

6. Conclusion and Future Research
6.1. Conclusion

As stated previously, SOA-based software desiguli&iributed computing
systems poses new challenges to existing simulatims. SOA enables dynamic
composition of different types of services as nde@ynamic service composition
requires the development of high quality SBS tlaat &imultaneously satisfy multiple
QoS features. To achieve this goal, QoS Monitoangd Adaptation sub-systems are
needed to collect and analyze tradeoffs betweetipteuQoS features and adapt the
composition of services accordingly.

To develop the ASBS framework and support desigplementation, and testing
of its Monitoring and Adaptation sub-systems, dahle SOA-based simulation
framework referred to as SOAD has been developedd®Veloped a set of service
abstractions — service broker, service client,isergrovider, and their relationships, such
as the service provider must publish its serviciéoservice broker before being
subscribed and the client only can find out the@iserprovider via service broker. In
addition to these SOA elements and relationshigst af message types corresponding
to WSDL and SOAP in the real SOA are also develdgpemply with the SOA
framework. Since SOAD simulator should accountiierboth hardware and software
aspects of SOA, simple hardware components suamaswvork link is modeled. In
addition a set of transducer models have been oleeelto collect data on services and
network links.

Since current existing simulation environmentsrareaimed to support early

creation of designs for ASBS, we developed the D&V S-Suite simulation

94
environment which extends the Tracking Environnasmd DEVSJAVA simulators. The
capability to track, animate, and plot time-basetltation data sets helps analyze the
dynamics of adaptive service-based software systems

Models were developed for a voice communicatistesy and a travel agency
system. A real voice communication system was tsegvelop their simulated
counterparts. The VCS simulation models demonstride ability to develop alternative
design configurations and evaluating their dynamgiag DEVS-Suite. The resulting
SOAD simulator demonstrated creation and validatiodifferent simulation models and
scenarios which is key for evaluating alternatidative service-based software systems

in terms of their quality of service attributes.

6.2. Future Research

The current SOA-based simulation models do notsugervice-based software
systems where services can be added or removad-téitire. Since the adaptation system
in the ASBS requires dynamic service compositioruattime, it is important for the
SOAD simulation model to change its structure dyicaity by adding or removing
service models. Dynamic Structure DEVS modeling(@a 1997) is suitable to be
incorporated into the SOAD simulator. As we stated, SOAD should account for the
both the hardware and software aspects of SOAB®EVS/DOC, a
software/hardware co-design approach has beenapege(Hild et al., 2002; Hu, 2007).
The SOAD should be extended with the DEVS/DOC céifiab so that details of
hardware components can be modeled and simulatieth whturn can provide a richer

basis for the Monitoring sub-system. Furthermdres important for the SOAD simulator

95
to be integrated with the Monitoring and Adaptatsa-systems in order to have a

testbed that can support ASBS design and simukiigsed testing.

References

ACIMS. (2001). Arizona Center for Integrative Moithgj and Simulation. 2007, from

http://www.acims.arizona.edu/SOFTWARE

Anderson, C., Rothermich, J. A., & Bonabeau, EOB0Modeling, quantifying and
testing complex aggregate service chains. Proceedings of the 2005 IEEE
International Conference on Web Services, Orlafthrjda, USA.

Barros, F. (1997). Modeling formalisms for dynarsiiucture system&\CM
Transactions on Modeling and Computer Smulation, 7(4), 501-515.

Chang, H., Song, H., Kim, W., Lee, K., Park, H.,&w S., et al. (2005). Simulation-
Based Web Service Composition: Framework and Redgoce Analysis. In
Systems Modeling and Smulation: Theory and Applications, pp. 352-360.

Chen, Y., & Tsai, W. T. (2008pPistributed Service-Oriented Software Devel opment, .
Kendall/Hunt Publishing.

DEVS-Suite (2008), Computer Science and Engineddegartment, Arizona State
University, from http:// acimsl.eas.asu.edu/WeliStar

Elamvazhuthi, V. (2008)isual Component-Based System Modeling with Automated
Smulation Data Collection and Observation. Unpublished master's thesis.
Arizona State University, Tempe, AZ.

Erl, T. (2006).Service-Oriented Architecture Concepts, Technology and Design: Prentice

Hall.

97
Hild, D. R., Sarjoughian, H. S., & Zeigler, B. R002). DEVS-DOC: A Modeling and
Simulation Environment Enabling Distributed Codesi¢EE Transactions on
Systems, Man and Cybernetics, Part A, 32(1), 78-92.
Hiroyuki, K., Taku, F., Toshiyuki, M., & SadatosH, (2006).A UML Smulator for
Behavioral Validation of Systems Based on SOA. International Conference on
Next Generation Web Services Practices.

HLA. (1999). High Level Architecturenttp://hla.dmso.mi[cited 2006]: Defense

Modeling and Simulation Office.

Hu, W. (2007)Visual and Persistent Co-Design Modeling for Network Systems.
Doctoral Dissertation. Arizona State Universitymipe, AZ.

John, G., John, H., Lei, L., & Na, L. (200®%erformance engineering of service
compositions. 2006 international workshop on Service-orienteftisre
engineering, Shanghai, China.

Kim, S., Sarjoughian, H. S., Flasher, R., & Elanmvuahi, V. (in preparationDEVS
Suite: A Component-based Smulation Tool for Rapid Experimentation and
Evaluation.

Mather, J. (2003)The DEVSIAVA Smulation Viewer: A modular GUI that visualizes the
structure and behavior of hierarchical DEVS models. University of Arizona,
Tucson, AZ.

OASIS. (2003). OASIS UDDI Specifications TRttp://www.0asis-

open.org/specs/#uddiv3.0.2

98

Ramaswamy, M. (2008gystem Theory Based Modeling and Smulation of SOA-based
Software Systems. Unpublished master's thesis. Arizona State UnityerSempe,
AZ.

Roontiva, A., Huang, D., Xu, X., Ye, N., & Yau, S. (in preparation)QoS Performance
Models of Cause-Effect Dynamics for QoS of Voice Communication Service:
Towards Adaptive Service-based Systems.

Russell, N., Hofstede, A. H. M. t., Aalst, W. M.\R.d., & Mulyar, N. (2006). Workflow
control-flow patterns: A revised vieBPM Center Report BPM-06-22.

Sarjoughian, H., Kim, S., Ramaswamy, M., & Yau(ZR08).A Smulation Framework
for Service-Oritented Computing Systems. Proceedings of the 2008 Winter
Simulation Conference.

Sarjoughian, H. S. (in preparatio®)Unified Logical, Visual, and Persistent
Component-based Modeling Framework.

Sarjoughian, H. S., & Singh, K. R. (2008uilding Smulation Modeling Environments
Using Systems Theory and Software Architecture Principles. the Advanced
Simulation Technology Symposium, Washington DC, USA

Singh, R., & Sarjoughian, H. S. (2003). SoftwarelAtecture for Object-Oriented
Simulation Modeling and Simulation Environmentss€&tudy and Approach.

SOAP. (2003). Simple Object Access Protocol (SORAR)

http://www.w3.0rg/TR/SOAP/W3C.

Srini, N., & Sheila, M. (2003). Analysis and simiiten of Web servicesComputer

Networks, 42(5), 675—693.

99
Srinivas, N. (1999)Reasoning About Actions in Narrative Understanding. Paper
presented at the Proceedings of the Sixteenthniatienal Joint Conference on
Atrtificial Intelligence.

TouchGraph. fronfttp://www.touchgraph.com/

Tsai, W. T., Chun, F., Yinong, C., & Paul, R. (2DBDSOS a dynamic distributed
service-oriented simulation framework. Simulation Symposium, 2006. 39th
Annual.

Tsai, W. T., Fan, C., & Chen, Y. (2006)DSOS a Dynamic Distributed Service-

Oriented Smulation Framework. 39th Annual Simulation Symposium, Huntsville,
AL, USA.
W3C. (2007). SOAP Version 1.2 Part 1: Messagingnésaork. from

http://www.w3.org/TR/soapl2-partl/

Wikipedia. (2006). Department of Defense ArchiteetEramework. Retrieved April 20,
2008, from

http://en.wikipedia.org/wiki/Department of Defensechitecture Framework

WinterSim. (2004). Future of Simulation. 2004 Wim&mulation Conference,
Washington DC, USA

Yau, S. S, Ye, N,, Sarjoughian, H. S., & Huang(ZD08, October)Developing Service-
based Software Systems with QoS Monitoring and Adaptation. Proceeding of the
12th IEEE Int'l Workshop on Future Trends of Distiied Computing Systems,

Honolulu, Hawaii, USA.

100
Zeigler, B. P., Praehofer, H., & Kim, T. G. (2000heory of Modeling and Smulation:
Integrating Discrete Event and Continuous Complex Dynamic Systems (Second
Edition ed.): Academic Press.
Zeigler, B. P., & Sarjoughian, H. S. (2008)troduction to DEVSModeling &
Smulation with JAVA: Devel oping Component-based Smulation Models. from

http://www.acims.arizona.edu/PUBLICATIONS/publicats.shtml

