

SIMULATOR FOR SERVICE-BASED SOFTWARE SYSTEMS: DESIGN AND

IMPLEMENTATION WITH DEVS-SUITE

by

Sungung Kim

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

ARIZONA STATE UNIVERSITY

December 2008

SIMULATOR FOR SERVICE-BASED SOFTWARE SYSTEMS: DESIGN AND

IMPLEMENTATION WITH DEVS-SUITE

by

Sungung Kim

has been approved

October 2008

Graduate Supervisory Committee:

Hessam S. Sarjoughian, Chair
Stephen S. Yau
Wei-Tek Tsai

ACCEPTED BY THE GRADUATE COLLEGE

iii

ABSTRACT

Simulation modeling offers important and unique capabilities for analysis and

design of service-oriented computing systems that must satisfy multiple, competing

Qualities of Service (QoS) requirements. In order to aid design of service-based software

systems (SBS), it is important to employ a suitable modeling framework that can account

for the Service-Oriented Architecture (SOA) concepts. Toward this goal, this thesis

develops a simulator that can represent and execute service-based software systems. A

novel set of generic SOA-based models are developed based on the Discrete Event

System Specification (DEVS) framework. The resulting SOA-based DEVS (SOAD)

models can be created in the DEVS-Suite simulation environment, a newly developed

extension of the DEVSJAVA Tracking Environment. The SOAD models are

implemented and incorporated into the DEVS-Suite simulator which affords animation of

simulation executions and visualization of simulation results as time trajectories. To

demonstrate the modeling capabilities of SOAD, a hierarchical model of a travel agency

services is developed. Simulation models for a Voice Communication System (VCS) are

also developed according to a real SOA-based implementation of VCS. Future extensions

for the SOAD simulator are proposed to enable modeling and simulation of adaptable

service-based software systems.

iv

ACKNOWLEDGMENTS

I would like to thank my committee chair, Dr. Hessam Sarjoughian, Department

of Computer Science and Engineering, Arizona State University. He has given countless

hours of his time towards guiding me in this research as well as mentoring me as a

graduate student.

I would also like to thank my other committee members, Dr. Stephen S. Yau and

Dr. Wei-Tek Tsai for serving on my thesis committee.

I want to thank my colleagues at the ACIMS, Gary Mayer, Vignesh Elamvazhuthi,

Sajjan Sarkar, Muthukumar Ramaswamy, and Mohammed Muqsith. It was a pleasure

working with you guys.

I am thankful to the members of the Science of Design NSF project and in

particular Dazhi Huang who provided experimental results that helped this thesis. The

partial financial support of this research under NSF Grant number CCF-0725340 is

gratefully acknowledged.

Special thanks to my father and mother. They always support and encourage me.

Without their help, this degree would not have been possible.

v

TABLE OF CONTENTS

Page

LIST OF TABLES .. x

LIST OF FIGURES ... xi

CHATER

1. Introduction ... 1

1.1. A Statement of the Problem ... 1

1.2. Thesis Contribution .. 5

1.3. Thesis Organization ... 6

2. Background and Related Works ... 7

2.1. Discrete Event System Specification (DEVS) ... 7

2.2. DEVSJAVA Simulation Environment .. 9

2.2.1. DEVSJAVA Simulation Viewer ..9

2.3. Tracking Environment with TimeView ... 11

2.3.1. Architecture Design of Tracking Environment ..11

2.3.2. TimeView ...15

2.3.3. Integration of TimeView into the Tracking Environment16

2.3.3.1. Tracking Options. ... 16

2.3.3.2. Data Flow Chart. ... 17

2.4. Service Oriented Architecture based Software System ... 19

2.4.1. Service Oriented Architecture ..19

2.4.2. Adaptable Service Based Software System ..22

vi

CHAPTER Page

2.4.2.1. Four critical QoS features. .. 23

2.5. Related Works .. 24

3. Extension of Tracking Environment with SIMVIEW .. 29

3.1. Analysis on the SimView and DTE ... 29

3.1.1. Architectural Design Pattern ..29

3.1.2. Simulation Model Type ..34

3.1.3. Model Loading Mechanism ..36

3.1.4. Simulation Control Logics ...38

3.2. Integration of SimView into DTE.. 38

3.2.1. Interface Integration ...39

3.2.2. Architecture Integration ...41

4. DEVELOPMENT OF SOA BASED SIMULATION MODELS 45

4.1. SOAD Framework ... 45

4.1.1. Comparisons between the SOA and DEVS ...46

4.1.2. Mapping SOA Elements to the DEVS Elements ...49

4.2. Software Models .. 50

4.2.1. SOA-Compliant DEVS Models ...51

4.2.2. A Simple Network Model ..52

4.3. Modeling of SOA-Compliant DEVS models .. 53

4.3.1. Service Broker Simulation Model ..53

vii

CHAPTER Page

4.3.2. Service Client Simulation Model ...54

4.3.3. Service Provider Simulation Model ...54

4.3.4. Composite Service Simulation Model ..55

4.4. Implementation of SOA-Compliant DEVS models ... 56

4.4.1. Generic Messages ...56

4.4.1.1. ServiceInfo and ServiceLookup Messages. .. 57

4.4.1.2. ServiceCall Message. .. 58

4.4.2. Primitive Services ...59

4.4.2.1. ServiceBroker Model. ... 60

4.4.2.2. ServiceClient Model. .. 60

4.4.2.3. ServiceProvider Model. .. 61

4.4.3. Composite Service Model ..63

4.4.4. Application Composition ...65

4.4.5. ServiceTransducer Model ...67

5. Simulation Experiments .. 68

5.1. Service Composition and Configurations .. 68

5.2. Experimental Scenarios ... 68

5.2.1. Real Voice Communication Service System ..69

5.2.2. Travel Agency Service System ..70

viii

CHAPTER Page

5.3. Service Composition with Primitive Services ... 71

5.3.1. Composition for the VCS Model with Configuration 172

5.3.1.1. Service Broker and Network. .. 73

5.3.1.2. Service Provider. ... 73

5.3.1.3. Service Client. ... 75

5.3.1.4. Transducer... 76

5.3.1.5. Coupling of Services. .. 77

5.3.2. Composition for the VCS Simulation with Configuration 278

5.3.3. Validation on the SOAD Simulation Models. ..79

5.3.4. Composition for the VCS Simulation with Configuration 383

5.3.5. Composition for the VCS Simulation with Configuration 486

5.4. Service Composition with Composite Service ... 87

5.4.1. Composition for the TAS Simulation with Configuration 4.87

5.4.1.1. Endpoints Construction. .. 88

5.4.1.2. Service Provider Construction. ... 89

5.4.1.3. Service Composition with the VCS and TAS. .. 89

5.5 Scaling SOAD Models with the DEVS-Suite ... 91

6. Conclusion and Future Works .. 93

6.1. Conclusion ... 93

ix

CHAPTER Page

6.2. Future Research ... 94

References ... 95

x

LIST OF TABLES

Table Page

1. Four QoS Metrics Table.. 24

2. Comparisons of Approaches in Terms of M&S Concept ... 28

3. An Association between the DEVS and SOA Frameworks ... 47

4. Correspondences between the DEVS and SOA Elements .. 50

5. WSDL and ServiceInfo and ServiceLookup Messages .. 58

6. Service Composition Configurations .. 67

7. The Experimental Control Variables Settings .. 70

8. The Simulation Control Variable Setting ... 80

9. Throughputs for the Real and Simulated VCS by Number of Service Clients 82

xi

LIST OF FIGURES

Figure Page

 1. The conceptual view of ASBS (Yau et al., 2008) .. 2

 2. SOAD with M&A sub-systems ... 5

 3. The DEVSJAVA simulation viewer .. 10

 4. The EFP model in the DEVS ... 11

 5. Software architecture concept .. 13

 6. Simulation Tracking Environment ... 14

 7. The TimeView ... 16

 8. The Tracking options ... 17

 9. Data flow of Tracking Environment .. 18

 10. Integration with the TimeView .. 19

 11. Service oriented architecture.. 21

 12. Model-View-Controller pattern ... 31

 13. MFVC framework for the Tracking Environment ... 32

 14. UML diagram for the SimView ... 34

 15. The hierarchy of simulation models .. 35

 16. Tracking Environment loading mechanism ... 36

 17. SimView loading mechanism .. 37

 18. The list of Control Logics in the simulation environment ... 38

 19. Interface of the DEVS-Suite .. 40

 20. The sequence diagram for model loading mechanism ... 41

 21. The MFVC framework for the DEVS-Suite .. 42

xii

Figure Page

 22. The simplified MFVC framework ... 43

 23. The entire MFVC framework for the DEVS-Suite .. 45

 24. SOA-based DEVS approaches ... 46

 25. SOA-compliant DEVS model .. 52

 26. Communication of messages ... 53

 27. Service broker simulation model ... 54

 28. Service client simulation model ... 54

 29. Service provider simulation model .. 55

 30. Composite service simulation model ... 55

 32. Messages in the SOAD .. 57

 34. Internal Event function in the ServiceProvider .. 61

 35. Connection between service clients and an endpoint .. 62

 36. Business Process Execution Language .. 64

 38. ApplicationComposition model ... 66

 39. ServiceTransducer model... 67

 40. Voice Communication service ... 69

 41. Travel Agency service composition ... 71

 42. The Service Composition class .. 72

 43. Broker and Network construction .. 73

 44. Service Provider construction .. 73

 45. qRate specification ... 74

 46. Service client construction ... 75

xiii

Figure Page

 47. Transducer construction ... 76

 48. Transducers in the VCS ... 77

 49. Voice Communication service with configuration 1 ... 78

 50. Service client construction with configuration 2 ... 79

 51. The VCS simulation with configuration 2 ... 79

 52. The measurements of the VCS throughput with configuration 1 81

 53. Comparison the throughputs between the real and simulated VCS 82

 54. Service provider construction with configuration 3... 83

 55. Specifications of endpoints in USZIP and RESORT services 84

 56. Service client construction with configuration 3 ... 85

 57. The VCS simulation with configuration 3 ... 85

 58. Service client construction with configuration 4 ... 86

 59. Service composition with configuration 4 ... 87

 60. Composite service composition ... 88

 61. Endpoints construction for the RBZ .. 88

 62. Service client construction for the RBZ ... 89

 63. Composite service construction ... 90

 64. The Composite service composition with the VCS and the TAS 91

 65. Simulator Execution Performance ... 92

1. Introduction

1.1. A Statement of the Problem

Modeling and Simulation has become a necessity for developing many kinds of

complex, large scale systems. A major part of engineering systems is to develop models

that can aid analysis and design activities. Models which describe both structural and

behavioral specifications can be simulated in the virtual environments. They help to

detect requirement and design errors in the early stage of product development cycles.

This capability can significantly reduce the cost associated with eliminating errors in

system implementation and testing development stages. A model can be written by using

a variety of system specification formalisms. For example, the Discrete Event System

Specification (DEVS), the Discrete Time System Specification (DTSS), and Differential

Equation System Specification (DESS) formalisms can be used to simulate discrete event,

discrete-time, and continuous models (B.P. Zeigler et al., 2000). Simulation is commonly

used as a technique for better understanding of system/software designs, performance

optimization, as well as undertaking the role of traditional experimentation.

Currently the concept of Service Oriented Computing (SOC) paradigm is rapidly

being adopted for developing distributed computing systems. The Service Oriented

Architecture (SOA) is proposed for building software systems from services (Erl, 2006).

This framework affords composition of various types of services for distributed

applications built on different platforms. An important consideration in developing SOA-

based software systems (SBS) is supporting multiple quality of service (QoS) features,

such as timeliness, throughput, accuracy and security (Yau et al., 2008). To achieve this

2

goal, QoS Monitoring and Adaptation sub-systems, in combination with services, are

needed to collect and analyze tradeoffs between multiple QoS features and to adapt the

composition of services accordingly. As shown in Figure 1, SBS with the Monitoring

and Adaptation sub-systems is collectively referred to as Adaptable SBS (ASBS).

S
im
u
la
ti
o
n
 &
 Q
o
S

m
e
a
s
u
re
m
e
n
ts

Figure 1. The conceptual view of ASBS (Yau et al., 2008)

Simulation modeling can be used to study multiple QoS attributes of service-

based systems and thus determine desirable tradeoffs. In order to verify and validate the

design of ASBS, in this research, the DEVS formalism is used to define the

characteristics of ASBS. The DEVS framework, similar to other modeling and simulation

approaches, supports analysis, design, and development of systems (B. P. Zeigler &

Sarjoughian, 2003). This modeling formalism provides a rigorous basis for simulating

3

service-oriented software systems. A variety of object-oriented Modeling and Simulation

(M&S) tools based on the DEVS formalism have been implemented in different

programming languages (e.g., C++ and JAVA) and used to simulate many different kinds

of systems such as command and communication software systems. In this research, we

will use the DEVSJAVA (ACIMS, 2001) and the DEVSJAVA Tracking Environment

(DTE) (H.S. Sarjoughian & Singh, 2004; Singh & Sarjoughian, 2003). The former

supports animation of hierarchical models and the latter supports specifying and

dynamically collecting simulation results as time charts and tabulated data.

The DEVSJAVA shows a view of the entire hierarchy of the simulation model

using components-within-components-style and animation of messages moving along the

paths of the coupling between components during the simulation (Mather, 2003; B. P.

Zeigler & Sarjoughian, 2003). The DEVSJAVA supports injecting inputs into the model

during the simulation dynamically so users can easily analyze the dynamics of the

simulated models.

The DTE offers a graphical user interface to identify and enable semi-automated

experimentations to track the simulation model data sets including states (i.e., Phase,

Sigma, Time of the Next Event, Time of the Last Event) and input/output events. The

DTE supports the concept of the experimental frame and an implementation of it is

integrated with the DEVSJAVA simulator. It allows user flexibility to select and observe

the simulation data sets which are tracked dynamically for any number of atomic and

coupled models. While simulating a model on the DTE, the simulation data sets from the

selected simulation models including user-defined statistical simulation are displayed in a

4

tabular format which is called the Tracking Log. To increase the usability of the DTE, a

plotting tool called TimeView has been implemented. The design and implementation of

the TimeView is based on the concept of components and display data in terms of time.

The integration of the TimeView into the DTE can support run-time visualization of

simulation. However, the TimeView did not account for the concept of time as used in

the DTE. Such a capability is necessary for integrating the TimeView into the DTE

environment. To aid this research and others (Elamvazhuthi, 2008; H. S. Sarjoughian, in

preparation), the DEVS-Suite environment which integrates DEVSJAVA, DTE, and

TimeView has been developed (Kim et al., in preparation).

Currently a few approaches have been proposed for SOA-based simulation

frameworks in order to help develop service-based software systems (Anderson et al.,

2005; Chang et al., 2005; Hiroyuki et al., 2006; John et al., 2006; Srini & Sheila, 2003;

Tsai, Fan et al., 2006). These approaches are mainly focused on models that can be

simulated for testing purposes of real services. While different modeling and simulation

frameworks have been used to simulate service-based software systems, it is desirable to

develop an approach where the basic concepts of time as well as software/hardware co-

design (Hild et al., 2002; Hu, 2007) can be explicitly modeled and simulated (H.

Sarjoughian et al., 2008). Toward this goal, first we need to develop a generic set of

SOA-based simulation models including the service broker, service provider, service

client, service composition and router SOA components. Therefore, first we need to

develop an approach to build an SOA-based DEVS (SOAD) simulator. Second, we need

to develop simulated and actual service-based software system examples to examine the

5

capabilities of the SOAD simulator. The simulator is aimed at supporting simulation-

based verification and validation of SBS designs with multiple QoS attributes.

Furthermore, the SOA-compliant DEVS framework (H. Sarjoughian et al., 2008) offers a

basis for introducing the capability to model and simulate adaptive service-based

software systems.

1.2. Thesis Contribution

The overall contribution of this thesis is the design and development of the new SOAD

simulation environment which introduces the capability to model and simulate service-

based software systems as shown in Figure 2. Generic SOA-based simulation models are

designed by introducing SOA modeling capabilities into the object-oriented DEVS-Suite

environment. The SOAD environment supports modeling SOA-based primitive and

composite services. Example simulation models are developed, executed, and evaluated

to demonstrate how the SOAD simulator can support design and analysis of software-

based software systems.

Figure 2. SOAD with M&A sub-systems

6

1.3. Thesis Organization

 The remainder of this thesis is organized as follow. Chapter 2 reviews and

discusses related background and research. It includes the detailed descriptions of the

DEVSJAVA and DTE as well as the basic modeling and simulation concepts employed

in this thesis. It describes the NSF Science of Design project including four critical QoS

features and experimental scenarios along with the comparison to other SOA-based

simulation approaches. Chapter 3 describes the development of the DEVS-Suite. Chapter

4 presents the SOAD approach and the development of an abstract set of SOA-based

simulation models for the service broker, service provider, service client, service

composition, and network. In addition to these basic behavioral models, the observational

model called transducer is introduced in this chapter in order to simplify simulation data

collection for the services and network. Chapter 5 details two example models one of

which (i.e., voice communication service) is based on actual software systems that are

implemented with SOA and .Net technology. These simulation models are used to

validate the abstract SOAD models that are developed against real experimentations.

Finally, Chapter 6 presents conclusions and discusses future research.

2. Background and Related Works

This chapter discusses background information about the field of software

modeling and simulation including the detailed description of the SimView and DTE and

the related works on the SOA-based simulation approaches. Also it includes the

introduction to the proposed NSF SOD project including four critical QoS features and

experimental scenarios.

2.1. Discrete Event System Specification (DEVS)

 Simulation can make many software development process improvements in terms

of cost, repeatability, and time. This observation can apply to SBS since it is also based

on fundamental concept of components and their interactions. In this research, we use the

Discrete Event System Specification (DEVS) formalism to specifying an SOA-based

software system. The DEVS formalism provides a method to specify a software system

using a time base, input, state, and output, and functions for determining next states and

outputs given current states and inputs (B. P. Zeigler & Sarjoughian, 2003). In the DEVS,

a system is consisting of two types of models: atomic and coupled models.

An atomic model (B.P. Zeigler et al., 2000) is mathematically represented as,

M = (X, Y, S, δext, δint, δcon, λ, ta)

Where:

• X is the set of input values

• Y is the set of outputs

• S is a set of states

• δint : S → S is the internal transition function

8

• δext : Q × Xb → S is the external transition function, where

Q = {(s,e)| s∈S, 0 ≤ e ≤ ta(s)} is the total state set and e is the time elapsed since

last transition

• δcon : Q × Xb → S is the confluent transition function

• λ: S → Y is the output function

• ta: S → R+
0,∞ is the time advance function

Coupled models in the DEVS can be represented by coupling two or more DEVS

atomic models. A coupled model contains the set of components, the set of input ports,

and the set of output ports. DEVS employs the concept of input and output ports to

represent the connection between each component. The coupled model itself also can be

used as a DEVS atomic model to form a larger coupled model (B. P. Zeigler &

Sarjoughian, 2003) by coupling an output port of a component with an input port of

others. To simulate a DEVS atomic/coupled model, the DEVSJAVA Simulation Viewer

which provides animation of messages moving along the paths of the coupling between

components and the Tracking Environment which provides a simple graphical user

interface to identify and enable semi-automated experimentations to track the simulation

model data sets are used.

Mathematical representation of a coupled model (B.P. Zeigler et al., 2000) is

described below.

DN = (X, Y, D, {M i}, {I i}, {Z ij})

Where:

• X is the set of external input values

9

• Y is the set of outputs

• D is a set of components names;

• For each i in D

o Mi is a component model

o Ii is the set of influences for i

o For each j in Ii

o Zij is the i-to-j output translation function

2.2. DEVSJAVA Simulation Environment

2.2.1. DEVSJAVA Simulation Viewer

The SimView provides a view of the arbitrary levels of coupled model using

boxes-within-boxes-style and animation of messages moving along the paths of the

coupling between components during the simulation (Mather, 2003). The interface of the

SimView is shown in Figure 3.

10

Figure 3. The DEVSJAVA simulation viewer

In addition to the visualization capabilities of the SimView, it allows users to

inject input values into Inports of components dynamically during the simulation so that

users can easily model and analyze the behavior and hierarchy of simulation model.

Figure 3 shows that the EFP model is currently loaded into the SimView. We are

also going to use this model for the DTE as a reference model of the DEVS. The EFP

model consists of three atomic model components, as shown in Figure 4, the Generator

which generates external events and sends them to the Transducer and Processor, the

Processor which processes external events received from the Generator and send the

simulation results to the Transducer, and the Transducer which records statistical results

11

of simulation and request start/stop of simulation to the Generator. The Generator and

Transducer are coupled together to form the experimental frame.

Figure 4. The EFP model in the DEVS

2.3. Tracking Environment with TimeView

2.3.1. Architecture Design of Tracking Environment

 The Tracking Environment was developed based on the software architecture as

shown in Figure 5 (b). The illustrated software architecture contains a conceptual

interface layer called FAÇADE layer to handle data and control services required by the

VIEW and CONTROLLER in conjunction with the classical Model-View-Control

(MVC) paradigm as shown Figure 5 (a). As illustrated in Figure 5 (b), only the FACADE

layer is allowed to interact with the MODEL and its inner components. In the traditional

MVC paradigm, the simulation data sets displayed on the View are obtained directly

from the simulation model. This means the View is also allowed to interact with the

12

MODEL. As mentioned earlier, the Tracking Environment supports dynamic

configuration for monitoring of simulation behavior which implies the View is allowed to

retrieve selected data for itself.

By employing the FAÇADE layer into the traditional MVC, the software

architecture gives important benefits to the design of the system (H.S. Sarjoughian &

Singh, 2004; Singh & Sarjoughian, 2003). They include:

• Enhanced encapsulation

• Modularized development by layering technique.

• Reduced complexity of dependencies between components

• Improved weak coupling problem

13

(b) Software Architecture for the Tracking Environment

Figure 5. Software architecture concept

As shown in Figure 6, the Tracking Environment allows users to select the

simulation data sets to be tracked such as state variables and input/output events for any

number of atomic and coupled models. Thereafter, during the execution of simulation,

the Tracking Environment provides two internal frames, the Tracking Log and the

Console, to track and monitor the selected simulation data sets. The output of tracked

(a) Traditional Software Architecture

14

simulation data sets with its state is displayed in a tabular format on the Tracking Log

frame in addition to the Console frame which records received and sent events.

Figure 6. Simulation Tracking Environment

On the left side of the controller, the Tracking Environment provides the FModel

Viewer which displays the hierarchy of the simulation model so that users are easily able

to understand the structure of the simulation model and help them to select which atomic

and coupled models to track and monitor. In general, the simulation data sets to track

15

need not always to be the same for all models. Hence the tracking options shown in

Figure 6, which are for the Transducer atomic model in the GPT coupled model, will be

changed when we select another model on the FModel Viewer.

In addition, the Tracking Environment provides a user convenient option called

the Real Time Factor which can adjust the scale of simulation logic time in order to get a

faster/slower or even soft real-time response, as shown in Figure 6 at the bottom left of

the Tracking Environment. For example, when a user adjusts the scale of Real Time

Factor as 1, the logic time of the simulator in the Tracking Environment is corresponding

to 1 second in the real-time and the simulation is executed under the soft real-time

condition.

2.3.2. TimeView

 The TimeView, a separate un-timed viewer of data, was designed and

implemented by Robert Flasher as part of his undergraduate senior project in the

Computer Science and Engineering department at Arizona State University. It supports

plotting data sets along the time axis. Source data can be input and output and state

changes from atomic or coupled DEVS models. At runtime, data can be fed into the

TimeView for plotting. For example, default and user defined data variables such as size

of a queue can be automatically plotted as the time trajectory charts until the end of the

simulation (see Figure 6). Therefore, users can monitor and track atomic models’

input/output and state changes during simulation. Currently the TimeView only accepts

the primitive data types (e.g., double and string) for an event to be displayed on the time

trajectory chart.

16

The current version of the TimeView increments each trajectory by a predefined

time periods, for example, time is incremented by 10 units of time as shown in Figure 7

and then plots the simulation data sets at the time instances events are received. This

environment is similar to an oscilloscope and allows users the flexibility to adjust time

period scale for every simulation run. The length of a trajectory that is viewable can also

be specified.

Figure 7. The TimeView UI

2.3.3. Integration of TimeView into the Tracking Environment

 2.3.3.1. Tracking options. As stated above, the TimeView does not have the

concept of time and nor the capability of control. The TimeView is a simple tool to

display a series of (x, y) values on the trend charts like an oscilloscope. Given the

limitations, the TimeView is integrated into the Tracking Environment so that its

17

controller of the Tracking Environment can update the TimeView graph by

synchronizing with the simulation time. Currently, the simulation data sets which are

tracked and monitored by the Tracking Environment are the primitive data type including

the String. Then the data types in the TimeView should also be consistent with the

Tracking Environment. The user has the flexibility to select view options for any number

of atomic/coupled models as well as the unit of each tracking data and X-axis and

increment of X-axis, as shown in Figure 8. The TimeView can be invoked for each

atomic/coupled model independently with selected simulation data sets.

Figure 8. The Tracking options

2.3.3.2. Data flow chart. After selecting one or both of the tracking view options

(i.e., TimeView and TrackingLog), the Tracking Environment assigns a tracker for the

simulation data sets to be tracked for atomic and coupled models. Figure 9 shows data

flow of the DEVS Tracking Environment. Logically, whenever an input/output event

occurs during the simulation execution, ModelTrackingComponent Class loops through

18

the tracker to get simulation data sets for the selected models. Originally the

ModelTrackingComponent Class contains the method to get simulation data sets from the

tracker as well as to construct the Tracking Log.

Figure 9. Data flow of the DEVS Tracking Environment

 To integrate TimeView into the DEVS Tracking Environment, TrackingControl

Class is employed as an intermediate Class between TrackingLog and

ModelTrackingComponents Classes (see Figure 10). Then, the logic to get simulation

data sets for selected models is moved from ModelTrackingComponent Class into the

TrackingControl Class which sends the data sets to TimeView or/and Tracking Log for

runtime viewing as shown in Figure 10. Therefore, the role of

ModelTrackingComponents Class is limited to construct the Tracking Log only.

19

Figure 10. Integration with the TimeView

2.4. Service Oriented Architecture based Software System

2.4.1. Service Oriented Architecture

 SOA is a software architecture style aimed at dynamic discovery and use of

services over a network. Before understanding SOA, we should understand the definition

of each component in SOA clearly. Figure 11 show the conceptual model of SOA.

Service provider provides services that may be used by other services. It can publish its

service interface and access information to the service broker using Web Services

Description Language (WSDL) (WSDL, 2001). A service can be described as (Chen &

Tsai, 2008),

• An interface between the producer and the consumer.

20

• A service is well-defined, self-contained, and does not depend on the context or

state of other service.

• Newly developed modules or just wrapped around existing legacy software to

give them new interfaces.

• A service is a unit of work done by a service provider to achieve desired end

results for a consumer.

• Provides loosely coupled Application Programming Interface (API), with

standard interface, so that it can be discovered and called (invoked) by another

service.

The services can communicate with one another by exchanging messages. WSDL

is an XML based language for describing Web services and how to access them. It

includes the location of the service and the methods (called endpoints) that are exposed

for other services to use. The service broker is a service repository and registry that stores

information about the published services. A common implementation of service broker is

the Universal Description, Discovery, and Integration (UDDI) developed by OASIS

(OASIS, 2003). A proposed ideal features that a service broker should have are (Chen &

Tsai, 2008),

• Service registry

• Service repository

• Service specification and requirement

• Application templates

• GUI templates

21

• Collaboration protocols and templates

• Policies

• Database and ontology

• Integrated testing and evaluation tools

• Quality of service

Service client lookups the service broker to search a desirable service by a key

word or service name defined using WSDL. If a service is found, the service broker sends

the service information stored in the repository back to the service client, then binding to

service provider to invoke one of its operations available in the service using Simple

Object Access Protocol (SOAP, 2003). SOAP is a XML based protocol to allow

communication between SOA-based applications on different operation systems,

technologies, and programming languages over HTTP (W3C, 2007).

Figure 11. Service oriented architecture

SOA enables service clients to be separated from service providers. Therefore,

service clients do no need to know how the services are implemented, which platforms

are used, or how they are distributed. It leverages the reusability of services. One of the

22

most important desired advantages of SOA is to rapidly compose distributed services. For

the service composition, two methods may be used. They are

• Orchestration: A central process which can be a service itself takes control over

all involved services and coordinates the execution of different operations. BPEL

(Business Process Execution Language) supports orchestration.

• Choreography: There is no central coordinator. Each service involved can

communicate with any partners. WS-CDL (Web Services Choreography

Description Language) is a composition language that supports choreography

2.4.2. Adaptable Service Based Software System

 As stated previously, SOA enables dynamic composition of various types of

services for distributed applications built on different platforms. Dynamic binding of

services makes SBS more flexible and that is one of the most important advantages of

using SOA. However, dynamic service composition requires the development of SBS

with multiple QoS such as timeliness, throughput, accuracy, security, dependability,

survivability, and availability. Service-based software systems need satisfy multiple QoS

simultaneously and thus tradeoff among the QoS features is necessary. However,

currently we do not have comprehensive understanding of these tradeoffs and

relationships so that it is a challenge to satisfactorily manage multiple QoS features

simultaneously. To overcome this, as shown in Figure 1, QoS Monitoring and Adaptation

sub-systems may be used to collect data concerning QoS which can be analyzed to adapt

the composition of services accordingly.

23

2.4.2.1. Four critical QoS features. Since we cannot study the tradeoffs of all QoS

features due to limitation of time and resources, four QoS (i.e., timeliness, throughput,

accuracy, and security) are important to be considered (Yau et al, 2008). However, in this

work, security QoS feature is not considered.

A set of experiments are devised to collect necessary data to develop a design

approach for developing Adaptive Service-Based Software Based Systems. Two types of

atomic services, communication intensive (Voice Communication) and computation

intensive (Motion Detection) models, are developed (Yau et al, 2008). Voice

Communication System (VCS) provides voice streaming service to multiple users

simultaneously. For experimenting with this system, sampling rate, number of clients and

buffer size are varied. Motion Detection System can also be considered. The Motion

Detection (MD) service provides the rate of motion detected for a certain time period.

Several motion detection algorithms are used to calculate the user request rates. The

composite service can be constructed by combining these atomic services. However, a

simple composite simulation service called Travel Agency service, which provides the

closest resort place by zip code, is developed. The VC and Travel Agency services are

used together to model and simulate a composite service. The MD service is not used

since it is under development.

24

Table 1

Four QoS Metrics Table

QoS Features Metrics Experimental Data

Accuracy

Loss Rate
The number of bits lost between

two nodes after transmission

Error Rate
The frequency of erroneous bits

between two nodes after
transmission

Timeliness

Response Time

The difference between the time of
submitting a service request and the

time of receiving a service
confirmation

Service Delay
The difference between the time of
submitting a service request and the
time of receiving the service result

Jitter
Variation of delay generated by the

transmission equipment

Throughput
Data rate The rate in which data are encoded

Bandwidth
The data transfer rate measured in

bits per second

Security Security Rating
Initial security configuration

Security events detected in runtime

2.5. Related Works

A SOA-based framework using High Level Architecture (HLA) Infrastructure

(HLA, 1999) has been proposed to develop and evaluate SOA-based network centric and

system-of-systems applications using Process Specification and Modeling Language

(PSML) (Tsai, Chun et al., 2006). From existing SOA services, composite services can be

25

synthesized and executable code generated for the actual application and simulated for

testing purposes. The services are geographically distributed and interconnected as web

services. The DEVS and PSML models have basic differences such as explicit

representation of time, event preemption, and closure under coupling of model

components. Another important difference is the mapping from DEVS and PSML to

SOA. SOAD is defined in terms of the basic SOA elements (service client, service

provider, and service broker) as well as the primitive and composite service composition.

More generally, SOAD is grounded in system-theoretic modeling and simulation

concepts whereas PSML is based on software modeling targeted for service-based

computing systems (WinterSim, 2004).

Some other tools are also proposed to support simulation of SOA-based software

systems. A UML simulator is proposed to define interaction among web service by a

UML model (Hiroyuki et al., 2006). By using Active Hyper-graph, it supports execution

of the extended UML model called BPEL/UML which can support mapping elements of

BPEL4WS document onto elements of UML active diagram and WSDL onto elements of

UML class diagram. The interfaces of services are defined in order to validate interaction

between BPEL/UML models and BPEL/UML models with real services. The Petri Net

formalism is used to provide decision procedures for web service simulation, verification,

and composition (Srini & Sheila, 2003). By using the DAML-S description of a Web

service that is translated in situation calculus, KarmaSim simulator (Srinivas, 1999)

automatically generates the Petri Nets in order to perform the desired analysis. These

26

UML simulator and Petri Net are focusing on supporting workflow design, rather than the

individual component.

There are other approaches to web service composition in terms of QoS properties.

One research is focusing on the relationship between service chain complexity and QoS

for the user (Anderson et al., 2005). Agent based approach is used to model a set of end-

users that request service invocations through the network. Users use a catalog that

provides the name of a server where a requested service is located to find that service.

The TouchGraph library (TouchGraph) is extended and used as a JAVA visualization

tool to model service chaining, visualize network traffic and quantify service chain

complexity. Simulation based Web service composition based on their QoS properties,

such as performance, reliability, and availability, is proposed (Chang et al., 2005). Users

can specify the service composition with QoS concerns by using the proposed Web

Process Composer. Simulation is performed based on user composition and the

simulation results are sent to the QoS Monitor to analyze and evaluate QoS of the web

process. The evaluation results are feedback to the Web Process Composer to repeat the

simulation until the desired QoS is achieved. This approach is somewhat similar to our

ASBS approaches in terms of monitoring and adaptation capabilities. However, the

ASBS consider multiple QoS features and their relationship (i.e., their satisfaction

tradeoffs) with both hardware and software aspects rather than simple QoS features of

web process. A performance engineering method for service composition is proposed

(John et al., 2006). This approach is to apply performance test-bed generation techniques

to software system based on SOA. Service composition can be described at a high level

27

using Business Process Modeling Notation (BPMN) or own ViTABaL-WS Web service

composition notation. These high level service compositions can be extended with a

lower level service composition model at the detailed service interface level in

MaramaMTE which is JAVA based performance test-bed generation tool. The test-beds

are executed for the service composition and results are provided to the engineer.

Table 2 shows the comparisons between the approaches briefly reviewed in

relation to SOAD. The explicit use of time (discrete values) in services is crucial in

developing verifiably correct simulation models of dynamical real services (WinterSim,

2004). The dynamic simulation model with an explicit representation of real time can be

used instead of a real service and the time based QoS features such as throughput for the

service can be collected. In Table 2, the Petri Nets formalism support for representing

time, but situation calculus description translated from the DAML-S ontology to the Petri

Nets does not explicitly represent use of time. Moreover, compare to the proposed SOAD,

currently none of approaches described above can support dynamic changes of service

composition and no concept for the separation of modeling SOA-based software system

in terms of hardware and software are presented.

28

Table 2

Comparisons of Approaches in Terms of M&S Concept

Approach Formalism Components Timing Hierarchy Seq. / Parallel

Service Chain Y Y Y - Y/Y

MaramaMTE Y Y - Y Y/Y

Petri-Net Y Y Y Y Y/Y

Activity

Hypergraph
Y Y - Y Y/Y

PSML-S Y Y Y Y Y/Y

SOAD Y Y Y Y Y/Y

3. Extension of Tracking Environment with SimView

This chapter describes the integration process of the SimView into the DTE.

Although these two simulation tools are built on the same DEVS formalism, the

objectives of the simulation environments are different from each other and the

integration of them into one environment is required to incorporate with Monitoring and

Adaptation capabilities in our ASBS. In this chapter, in order to integrate two simulation

environments into one consolidated simulation environment, we describe the decision

process of selecting an architectural design pattern, a type of simulation model, and

interface of the new simulation environment.

 3.1. Analysis on the SimView and DTE

 The brief descriptions of SimView and DTE are placed in Chapter 2. In this

section, we need to analyze more details of these simulation environments in terms of

architecture design pattern, simulation model types, mechanism to load a model, and

simulation control logic in order to make a right decision while integration process. For

the purpose of validating our selection, the comparison between SimView and DTE for

each category described above is performed and provided below.

 3.1.1. Architectural Design Pattern

 As described in the Chapter 2, the DTE was developed based on the traditional

software architectural pattern called Model-View-Controller (MVC) as shown in the

Figure 12. The traditional definition of each component is described below (Wikipedia).

• Model: The domain-specific representation of the information on which the

application operates. Domain logic, DEVS formalism for the case of our

31

simulation, adds meaning to raw data. In our simulation, we have a set of well

defined JAVA based APIs to represent these models (ex, atomic model and

coupled model).

• View: The view renders the contents of a model. Multiple views can exist for an

application.

• Controller: Processes and responds to events, typically user actions, and may

invoke changes on the model.

Figure 12. Model-View-Controller pattern

As shown in Figure 12, the solid lines indicate a direct association and the dashed

lines indicate an indirect association. The separation of model and view allows users to

create multiple views for the same model and increase reusability of models. This is one

of the main reasons why we adopt the FACADE design pattern later. It also is easier for

the developer to implement and maintain models for the application.

32

FAtomicSimulator
(from sim ulation)

atomic
(from m odeli ng)

FAtomicModel
(from m odeli ng)

digraph
(from m odeli ng)

FCoupledModel
(from m odeli ng)

Controller
(from control ler)

FSimulator

(from sim ulation)...)

FSimulatorView
(from view)

FModelView
(from view)

View
(from view)

TimeView
(from timeView)

ModelTrackingComponent
(from view)

Tracker
(from view)

TrackingControl
(from view)

FModel
(from m odeli ng)

FCoupledSimulator
(from sim ulation)

RTCentralCoord
(from sim ulation)

Figure 13. MFVC framework for the Tracking Environment

As discussed in the Chapter 2, based on the MVC framework, the DTE adopts the

FAÇADE layer between Model layer and View-Controller layer. This is because DTE

has multiple view options and we want to control and synchronize these view options by

using one controller as well as other advantages described in the Chapter 2. The MVC

framework with FACADE layer is referred as MFVC (Model-Façade-View-Controller).

33

In the traditional MVC paradigm, the simulation data sets displayed on the View are

obtained directly from the simulation model which means the View is also allowed to

interact with the Model. However, as shown in Figure 13, the Façade layer can only

access to the Model and get a single set of simulation data to store. As mentioned earlier,

the DTE supports dynamic configuration for monitoring of simulation behavior which

implies the View is allowed to retrieve selected data for itself by getting data from the

Façade layer. In addition, as a result of integrating the TimeView into the DTE, there are

currently two view options, TimeView (TimeView class) and Tracking Log

(ModelTrackingComponent class).

Unlike the DTE architecture which has a solid architectural software design

pattern, the SimView is not constructed by using a MVC design pattern. View and

Control are integrated onto the one JAVA file (SimView.java) so that it is hard to

maintain and update the software when there are modifications. Figure 14 displays the

simple UML diagram to show how the SimView.java file is implemented as one

application. We can easily recognize that all components are strongly tight and depending

on each other so that it is not a good approach to build a robust software system in terms

of modularity, reusability, and complexity of the software. Consequently, we decided to

take the architectural approach of the DTE which is the MVC framework adapting

FAÇADE layer and use the SimView as one of simulation view options that users can

select in the DTE like existing TimeView and Tracking Log.

34

Figure 14. UML diagram for the SimView

3.1.2. Simulation Model Type

 As we stated in the Chapter 2, the objectives of these simulation environments are

different from each other. SimView provides animation of simulation models and enables

the modelers to specify models directly in the DEVS terms. On the other hand, the DTE

which is built on the DEVSJAVA Simulation Environment without visualization parts

provides visual user specified data selection and automated simulation data gathering

along with the trend chart capability. Therefore, they require separate simulation model

View

Control

35

types for execution, for example, ViewableAtomic and ViewableDigraph models for the

SimView and atomic and digraph models for the DTE. Figure 15 shows hierarchy of

these simulation models in the DEVSJAVA.

Figure 15. The hierarchy of simulation models

As we can see, both models are built based on the DEVS formalism. Unlike

simulation models for the DTE, SimView provides a view of the arbitrary levels of

coupled model using boxes-within-boxes-style and the animation of messages moving

along the paths of the coupling between components during the simulation (Mather,

2003). Therefore, ViewableAtomic and ViewableDigraph are extended from the basic

DTE Models

SimView Models

36

DEVS model, atomic and digraph model, to support these capabilities. As a result,

ViewableAtomic and ViewableDigraph models are adopted as default simulation models

for the new simulation environment since they can provide not only behaviors and

input/output data of the simulation model for the Tracking Environment, but also

animation of the simulation model for the SimView without any modification. The

Viewable models need to incorporate with the FAÇADE layer adopted as the

architectural design pattern in the section 3.1.1. More details are provided later section.

3.1.3. Model Loading Mechanism

 Two types of model loading mechanisms are used for the existing simulation

environments. The first method is used by DTE, as shown in Figure 16.

Figure 16. Tracking Environment loading mechanism

 In this method, a user must specify the name of model root directory and the path

to the model class from that directory. Typically a user does not change the model

directory often, the main problem of this approach is that a user must specify the entire

path to the model whenever a different model is loaded into the simulation environment.

Moreover, if a model is located in the different folder or different level of the folder

structure, it is hard for a user to specify the entire path to the model at once.

37

 SimView uses the second mechanism currently as shown in Figure 17. A user

must configure the path to packages of model classes and source files as well as model

package names. After the configuration, a user must select a package name at the top of

the SimView as rounded with red line, and then SimView will automatically display the

list of available models in the selected package for model selection on the right scroll box.

Figure 17. SimView loading mechanism

 Consequently, the second mechanism is more convenient and logical for users to

select a model to be simulated since it provides automation of the displaying the list of

available models in the package. In addition, at the level of model selection, a user will

have the option to choose view options, such as SimView and/or DTE, to be displayed on

the consolidated environment.

38

3.1.4. Simulation Control Logics

 Two simulation environments use the same type of control logic for the

simulation. However, there are some slight differences in the purpose of each simulation

environment. Figure 18 display the list of controls each simulation environment provides

and how they are differ from each other.

Figure 18. The list of Control Logics in the simulation environment

 Step(n) and Pause controls are presented in the DTE, but not in the SimView.

Alternatively, Animation Speed, which controls the speed of message moving, and Show

coupling, which shows coupling between models, controls are only specialized for

animation capabilities of the SimView. For the case of integration control logics, the new

integrated simulation environment must support both capabilities of DTE and SimView

so that all control logics including those specialized control logics must be presented.

3.2. Integration of SimView into DTE

 In the Chapter 3.1, the details on the SimView and DTE are analyzed in terms of

the architectural design pattern, simulation model type, model loading mechanism, and

simulation control logic. Based on the analysis performed in that section, the integration

39

process, as well as the final form of the consolidated simulation environment, is

presented in this section. As analyzed in section 3.1, the DTE is built on the robust

software architecture pattern called MVC design pattern. Therefore, the DTE becomes

the base architecture of the new simulation environment. Subsequently the SimView is

used as one of view options in the DTE since the DTE has adopted the FAÇADE layer to

control multiple view options by a universal controller. In addition, as discussed in the

section 3.1.2, ViewableAtomic and ViewableDigraph models become basic simulation

models for the DEVS-Suite.

3.2.1. Interface Integration

 Since the model loading mechanism of the SimView provides more convenience

and automation of displaying available models to the user, that mechanism adopted into

the DEVS-Suite. In addition, for the user convenience, the DEVS-Suite provides user

flexibility in that a user can select view options, SimView and/or Tracking at the level of

model selection as shown in Figure 19. On the other hand, as discussed in Chapter 2, the

user can select TimeView and/or Tracking Log at the level of model tracking option. A

user must configure a path to the source packages and names of the packages which

contain the model the user want to load. Consequently, after a user select a package, the

DEVS-Suite searches available and validated simulation models in that selected package

to display for selection by the user. Figure 20 displays the sequence diagram showing

how the DEVS-Suite works for loading a model.

40

Figure 19. Interface of the DEVS-Suite

Since the SimView is integrated into the Tracking Environment, the specialized

control logics for the SimView such as Animation Speed and Show coupling must be

presented in the DEVS-Suite controller as shown in the red circled area in Figure 19.

Figure 19 also displays the SimView with the GPT model is loaded onto the DEVS-Suite.

41

 : Controller : View : LoadModel : ConfigureDialog

View(ControllerInterface)

LoadModel()

ConfigureDialog(Frame)

populateModelsBox(JComboBox)

loadSettings()

loadModelAction()

userGesture(String, Object)

populatePackagesBox(JComboBox)

loadModel(String[])

Figure 20. The sequence diagram for model loading mechanism

3.2.2. Architecture Integration

 Figure 21 shows the new MFVC framework for the DEVS-Suite. This class

diagram contains only important classes for the purpose of simplification. The entire

class hierarchy diagram is provided at the end of this chapter. Basically the

implementation of FACADE layer does not have any changes, but the connection to the

Model is altered to Viewable models and simulators as shown below.

42

atomic
(from m odel ing)

RTCentralCoord
(from real T im e)

TunableCoordinator
(from real T im e)

digraph
(from m odeling)

SimViewCoupledCoordinator
(from sim ul ation)

FAtomicModel
(from m odel ing)

FCoupledModel
(from m odel ing)

devs
(from m odeli ng)

FAtomicSimulator
(from sim ulation)

ViewableAtomic
(from m odel ing)

FCoupledSimulator
(from sim ulation)

FModelView
(from view)

SimView
(from sim View)

View
(from view)

TimeView
(from tim eView)

Tracker
(from view)

ModelTrackingComponent
(from view)

TrackingControl
(from view)

ViewableDigraph
(from m odel ing)

FModel
(from m odeling)

FSimulatorView
(from view)

Controller
(from control ler)

FSimulator

(from sim ul ation)

Figure 21. The MFVC framework for the DEVS-Suite

 Since the Viewable models and simulators are extended from the original DTE

models and simulators, semantically this connection is satisfied with the requirements for

the DTE as well as the SimView itself.

 Finally, the SimView classes are integrated into the Model as a view option for

the DTE. As shown in Figure 21, at the View class, the simulation data getting from the

SimView

Models

View Options

43

Façade layer are sent to two view option classes, SimView (SimView) and Tracking

Control (Tracking), based on the user selection. Figure 22 displays the simplified MFVC

class diagram for the DEVS-Suite. Classes are grouped into one of the following

packages, Model, Façade, View, and Control and the interrelationships between these

packages and classes are presented in Figure 23.

Figure 22. The simplified MFVC framework

 In this chapter, Integration process of the SimView into the DTE is discussed for

the purpose of supporting M&A capabilities in ASBS. The DEVS-Suite is now capable to

provide simulation data so the Monitoring sub-system can analyze the service

composition and adopt the control form the Adaptation sub-system which reflects the

44

dynamic binding of services by changing coupling between simulation models. Now the

new simulation environment for the SOA-based simulation is ready. The next step is to

develop a set of SOA-based simulation models to support desirable quality of service for

ASBS.

45

Figure 23. MFVC component/package specification for DEVS-Suite

4. DEVELOPMENT OF SOA BASED SIMULATION MODELS

This chapter describes the SOA DEVS (SOAD) approach for modeling and

simulating service-based software systems. Generic SOA-based simulation models are

developed for service broker, service provider, service client and service composition as

well as a simple network for simulating computer network traffic. In addition, a set of

transducer models are developed to automate collection of simulation data sets for service

and network models.

4.1. SOAD Framework

 To support simulation modeling of SOA-based software systems, our approach is

to introduce SOA concept and capabilities into the DEVS framework (H. Sarjoughian et

al., 2008). The extended DEVS framework with the SOA called SOA DEVS framework

is developed in order to enable simulation based-design of service oriented computing.

The approach provides a basis for verifying and validating the design of Monitoring and

Adaptation sub-systems that conceptualized for Adaptive Service-based Software

Systems. SOAD is designed and implemented using DEVS-Suite. In SOAD, both

software and hardware components of service-based software systems are modeled. This

is useful in order to model and simulate the role network (e.g., router) plays in the overall

dynamics of system under consideration. As discussed in Chapter 2, there exists no

simulator that is grounded in a system-theoretic modeling and simulation framework such

as DEVS. By incorporating the SOA concept into the DEVS simulation models and

accounting for hardware aspect of service-based software systems, SOA-compliant

DEVS simulator can be developed (H. Sarjoughian et al., 2008).

46

4.1.1. Comparisons between the SOA and DEVS

 Before extending the DEVS framework with the SOA concept and capabilities, it

is important to compare these frameworks in terms of their concepts and capabilities

since SOA and DEVS are used to develop real and simulated SBSs, respectively.

The comparisons between the SOA and DEVS framework are described below and

shown in Table 3.

Figure 24. SOA-based DEVS Modeling Approach

47

Table 3

An Association between the DEVS and SOA Frameworks (H. Sarjoughian et al., 2008)

SOA DEVS

autonomous atomic and coupled models modularity

composable hierarchy and closure under coupling

formal contract inputs/output ports, variables, and couplings

abstract logic
〈X, S, Y, δext, δint, δconf, λ, ta〉
〈X, Y, D, {M d}, EIC, IC, EOC〉

reusable basic models

stateless state-based

loosely coupled dynamic structure

discoverable dynamic structure

• The concept of autonomous services corresponds to the concept of modularity of

atomic and coupled models. DEVS models are defined in terms of generic

functions (δext, δint, δconf, λ) and time (ta).

• The formal contract corresponds to the input/output ports and messages (X and Y),

and their couplings (EIC, EOC, IC) subject to the strict coupled model

specification. The couplings in DEVS are fixed, although the use of coupling in a

48

simulation can be decided during simulation. The concept of coupling

components via ports is absent in SOA.

• The concept of service composability is similar to coupled model hierarchy. SOA

composability is not constrained to have strict hierarchy. This is because DEVS

hierarchy requires strict tree structure relationships among (atomic and coupled)

model components. In SOA, composability is based on the broker service which

is not defined in DEVS. In DEVS, input and output messages are sent and

received via direct couplings – i.e., the coupled model contains the coupling

relations between model components.

• The concept of abstract logic in DEVS has a theoretical basis (abstract structural

and behavior syntax with operational semantics) whereas SOA does not. For

example, δext has template syntax that has to be completed given a component’s

specific functions. In contrast, a service has an interface template, but without

functionality.

• The basic concept of reusability in SOA is more powerful than that of DEVS.

This is because the broker concept with support for publishing services and

identifying services are not defined in DEVS.

• The concept of stateless services promotes loose coupling of composite services.

The functions of a service can be arbitrary defined. Atomic and coupled model

components require state information which includes time t (t ∈ S) in order to

allow synchronization of events produced and consumed. The time-based

dynamics of DEVS model components has a central role in simulation.

49

Based on the analysis in Table 3, we can notice that one fundamental difference

between the DEVS and SOA is the use of the broker concept. In the SOA, all services

must publish its service to the broker service in order to be discovered and composed

with other services. Therefore, the connection between service providers and service

client is only established by the broker service only.

In DEVS, however, the broker concept is not accounted for and thus the DEVS

atomic and coupled models are not SOA compliant even thought these models have

important similarities to those of primitive and composite services. In fact, we can model

a SOA-like software system by using the DEVS atomic model and coupled model and

applying the concept of publish/subscribe ports and dynamic structure (Ramaswamy,

2008). However, this approach to modeling service-based software systems is not SOA-

compliant since there is no model for the broker service.

4.1.2. Mapping SOA Elements to the DEVS Elements

 As stated previously, the SOA elements have similarities and differences with

those of DEVS. We need to map these SOA elements into the DEVS models in order to

develop the SOAD simulator. Below, Table 4 shows the correspondences between the

SOA and DEVS elements. The SOA-compliant DEVS framework is characterized in

terms of primitive, composite, and broker services (H. Sarjoughian et al., 2008) which in

this thesis are referred to as service provider, service client, and service broker,

respectively.

50

Table 4

Correspondences between the DEVS and SOA Elements (H. Sarjoughian et al., 2008)

SOA Model Elements SOAD Model Elements

services (service provider, service client,
service broker)

atomic models
(service provider, service client,

service broker)

service description
entity

(service-information)

messages
entity

(service-lookup and service-call)

messaging framework ports and couplings

service registry and discovery executive model

composition of services
coupled models

(service providers)

In Table 4, the service provider, service client, and service broker are mapped to

DEVS atomic models. Similarly, composite service is mapped to a DEVS coupled model.

In addition, the messages and their exchanges in the DEVS can be extended to represent

service description and messages. DEVS model communications via messages, ports, and

coupling can be used to represent the SOA publish/subscribe concept.

4.2. Software Models

 To realize the SOA-compliant DEVS framework, we need to develop the SOA-

based DEVS service provider, service client, and service broker models. In addition to

51

the primitive SOA-based service models, it is also necessary to develop a composite

service model.

4.2.1. SOA-Compliant DEVS Models

 Based on the relationship defined between SOA and DEVS frameworks (see

Table 4) the service provider, service client, and service broker are primitive services in

the SOAD framework. As shown in Figure 25, the service provider and service client are

defined to have specific ports for requesting and publishing services (H. Sarjoughian et

al., 2008). Similarly, the service broker is defined to identify, publish, and found ports

given its role with the service provider and client. The coupling relationships among the

primitive service provider and service client with one broker are shown in Figure 25.

Each of these SOA-based DEVS models are extended from the DEVS atomic model and

are defined to have their unique structures and behaviors as described in Section 4.3. For

example, a service provider publishes its service to the service broker and performs its

own functionality as requested. A service client looks up the service information through

the service broker and may subscribe to the published service. The composition of

services is represented by a coupled model. A particular realization of the composite

service is defined to be a composite service which contains at least two services. The

composite service publishes its service as well as each of the services it contains to the

service broker. The service broker stores the service definitions and sends them to the

clients if the desired services are available.

Three types of messages are defined for the SOAD simulator. They are service-

info, service-lookup, and service-call message, as shown in Table 4. Service-info

52

message which contain the description of the service is used between the service broker

and the service provider and the service client. A service-lookup message is used by the

service client in order to ascertain whether or not some desired services are available or

not from the broker. The service-call message is used between the service client and the

service provider. From the service client to the service provider, the service-call message

contains a data for the specific method (endpoint) in the service and it contains the

serviced result from the service provider to the service client.

4.2.2. A Simple Network Model

 We need to have a simple network model to represent hardware aspects of the

SOAD framework as shown in Figure 26 (H. Sarjoughian et al., 2008). Basically the

Publisher/Subscriber with Broker Coupled Model

Identify-
publisher

Broker

identify-
publisher

found-
publisher

Publisher

request-
services

publish-
service

publish-
service

Subscriber

F
ound-

publisher
publish-
service

identify-
publisher

request-
service

publish-
service

request and response messages input port output port

data service messages publish messages

msg

msg

Publisher/Subscriber with Broker Coupled Model

Identify-
publisher

Broker

identify-
publisher

found-
publisher

Publisher

request-
services

publish-
service

publish-
service

Subscriber

F
ound-

publisher
publish-
service

identify-
publisher

request-
service

publish-
service

request and response messages input port output port

data service messages publish messages

request and response messages input port output port

data service messages publish messages

msgmsg

msgmsg

Figure 25. SOA-compliant DEVS model

53

network model has capabilities of FIFO message queue, transmission delay, and traffic

bandwidth.

Identify-
publisherPublisher

request-
services

publish-
service

publish-
service

Subscriber

F
ound-

publisher
publish-
service

identify-
publisher

request-
service

Network

in out

msg

Identify-
publisherPublisher

request-
services

publish-
service

publish-
service

Subscriber

F
ound-

publisher
publish-
service

identify-
publisher

request-
service

Network

in out

msgmsg

Figure 26. Communication of messages

4.3. Modeling of SOA-Compliant DEVS models

 As stated in Chapter 2, each SOA component, service broker, service client,

service provider, and composite service, has its own features and behaviors that should be

modeled. However, it is impractical to model all possible features and behaviors of the

component so that critical features that can represent the characteristics of the model are

selected to be modeled.

4.3.1. Service Broker Simulation Model

There are many desirable features for the service broker as discussed in Chapter 2,

but service broker simulation model is modeled with service registry feature only for

simplicity as shown Figure 27. Basically service provider can publish its service

description including endpoints information to the service broker and service client can

find the service based on the desired endpoint along with the service name. Service

broker store the received service-info messages as it is and return it to the service client

54

when the service-lookup message matches one of service-info message in the repository.

Otherwise, it notices the service client that there is no information available.

Figure 27. Service broker simulation model

4.3.2. Service Client Simulation Model

Service client simulation model is modeled with two behaviors such as looking up

the service broker and invoking service provides. First, service client simulation model

looks up the service broker using a desired endpoint along with the service name. The list

of service providers that a service client simulation model wants to subscribe is

constructed when a service client simulation model is defined. If the service client

simulation model receives the service-info message from the service broker, then invoke

the service provider; otherwise it may continue to look up the service broker for a given

number.

Figure 28. Service client simulation model

4.3.3. Service Provider Simulation Model

Service provider simulation model is modeled with its own performService()

function that fulfills a set of specific services, as depicted in Figure 29. The service

provider simulation model publishes its input ports as endpoints at the given time. It

55

should be able to handle multiple requests and service them simultaneously. Accessing

information is supported by coupling and ports.

Figure 29. Service provider simulation model

4.3.4. Composite Service Simulation Model

To model the composite service simulation model, orchestration is used as a

simple service composition in SOAD as shown in Figure 30. There are number of ways

to composite services as we discussed in Chapter 2. However, in this research, sequential

service composition is implemented to narrow down the scope of this research. Service

composition information should be defined in the service-information message model as

binding information. Each primitive service provider in the composite model does not

know the order of invocation.

Figure 30. Composite service simulation model

56

4.4. Implementation of SOA-Compliant DEVS models

As noted previously, a set of generic DEVS models, GenService, that represents

static and dynamic software aspects of SOA capabilities are developed. In this section,

we implement the structural specification of each proposed model and how they

correspond with the DEVS specification. The GenService API contains several pre-

defined behavioral SOA-based simulation models that can be categorized into three types

based on its characteristics: generic messages, primitive services, and composite service.

The DEVS-Suite is used to simulate the specific model created by the generic GenService

API, called Application Model.

4. 4.1. Generic Messages

 As shown in Figure 31, there are three principal usages, publication, lookup, and

subscription, of message between services in the SOA. These three different usages

require three discrete types of messages due to varying data requirements in each

message. Consequently, three different types of messages are employed in the

Figure 31. The message types in GenService

57

GenService API. They are derived from the Entity class in the DEVSJAVA API as

shown in Figure 32.

ServiceCallMessage

PacketSize : double = 32
name : String
Subscriber : String
Publisher : String
BindingInfo : ArrayList
Duration : Double
Data : Pair

(from GenService)
ServiceLookupMessage

Subscriber : String
ServiceName : String
Endpoint : String
duration : Double

(from GenService)

ServiceInfoMessage

receiver : String
ServiceName : String
Description : String
ServiceType : String
EndPoints : ArrayList
BindingInfo : ArrayList

(from GenService)

entity
(from GenCol)

Figure 32. Messages in the SOAD

4.4.1.1. ServiceInfo and ServiceLookup messages. The WSDL is used in the real

environment between services and service brokers. In the simulation environment, among

the three message types, ServiceInfo and ServiceLookup represent characteristics of the

WSDL (see Table 5).

These messages are needed for publishing services and their discovery. The

ServiceInfo message type is used to publish the service to the service broker. It contains

the service definition given a service name, description, service type (atomic or

composite), endpoints, and binding information as shown in Figure 32. The endpoint

consists of two parts: exposed method name and argument type for the method. Currently

the method is limited to accept only one argument to perform its functionality and later it

58

will need to be extended. Binding information contains the list of services with an

endpoint. Logically the order of services in the list represents the order of service in the

composition. This binding information feature is implemented partially for now, but it

will be resolved in the next research to support dynamic service compost ion. The

ServiceInfo message type is stored into the service broker class directly in order to lookup.

Table 5

WSDL and ServiceInfo and ServiceLookup Messages

WSDL ServiceInfo ServiceLookup

interface service name, endpoints service name, endpoint

message n/a data

service n/a (ports and couplings) n/a (ports and couplings)

binding binding info n/a

ServiceLookup message type contains the subscription information, the name of

the service provider, the endpoint to service client, the data type to be sent, and the time

frame to subscribe service. The name of the service provider and an endpoint in that

service provider are used as key value to find the desired service information in the

Service Broker. In reality, the service client can use a service description or a specific

combination of service information to lookup the broker to locate a service. However,

this capability is limited to use of service name with an endpoint for the simulation.

4.4.1.2. ServiceCall message. The SOAP, XML based communication protocol, is

used over HTTP in the communication between services. In the simulation environment,

59

ServiceCall message type corresponding to the SOAP properties is employed for

exchanging messages between services with the required data. Figure 32 shows the

structure of ServiceCall message. The size of ServiceCall message depends on the size of

service data plus the default size of packet, 32 Bytes.

4.4.2. Primitive Services

 The primitive services such as service provider, service client, and service broker

as a DEVS atomic model are proposed as shown in the Figure 33. The default behavioral

specification of the ViewableAtomic model is presented in the (B. P. Zeigler &

Sarjoughian, 2003). These simulation services have a one-to-one correspondence with the

SOA service. Services in the SOA can be considered as components in the component-

based system. Unlike a component, a service is fully self-contained and loosely coupled.

atomic
(from modeling)

ViewableAtomic
(from modeling)

ServiceBroker

start : double
available_time : double
UDDI : ArrayList

publish()
subscribe()
publishCompositeService()

(from GenService)

ServiceProvider

Processing_time : double
Proc_time : double
total_size_packets : double
ServiceName : String
ServiceDescription : String
ServiceType : String
Endpoints : ArrayList
RequestList : ArrayList
msgQ : Queue

performService()
CheckDestination()

(from GenService)

ServiceClient

numOftry : int = 5
waitingTime : double = 1
serviceResponse : double = 100
startTime : double
lookupList : ArrayList

out()

(from GenService)

Figure 33. Primitive services in the SOAD

60

4.4.2.1. ServiceBroker model. ServiceBroker model has a container (UDDI) to

store ServiceInfo messages as a service description. The desired service can be

discovered by looking up an endpoint from the ServiceClient as a key. Figure 33 shows

two important methods as characteristics of SOA,

• Publish: Store the published service information as a ServiceInfo message into

the UDDI.

• Subscribe: Return the index of the matched service in the list. An endpoint from

the service client is used to lookup the services. If no service is found, then a

negative value is returned. Service Broker sends the matched service information

(ServiceInfo) or “No Found” message to the client.

4.4.2.2. ServiceClient model. ServiceClient model defines a service client in the

SOA. A service client can be defined with the list of service that the service client wants

to subscribe sequentially. At the beginning, a client with a given start time begins to look

up the service broker to search whether the desired service is currently available or not. If

the endpoint is not available or even if the service broker itself is not available yet, the

service client attempts to lookup the service broker again after a set amount of time units

until the specified number of attempts, which is currently set at 5 times as shown in

Figure 33. If the endpoint is found and gets the service information, then the service

client sends a message with a required data for the endpoint and then waits for the

response from the service for the given response time, 100 time units. After completion

of a service subscription, if there are more services remaining in the subscription list, then

61

the service client looks up the broker again and subscribes the service until no more

services are in the list.

4.4.2.3. ServiceProvider model. ServiceProvider model defines behavior of its

specific service with a performService method. The performService receives a data from

the service client as an argument and performs its specified service depending on the

subscribed port (endpoint) using that data. Currently, we do not consider a service which

contains multiple methods in it which means a service has only one endpoint to be

subscribed upon request. As an initial behavior, all service providers need to publish their

services to the Service Broker at the given time. Figure 33 shows the specifications of

ServiceProvider.

 Unlike other simulation models, the ServiceProvider model has two time logics,

Processing Time and Service Duration, for a queue and a list, msgQ and RequestList

respectively, as shown below.

Figure 34. Internal Event function in the ServiceProvider

62

Processing Time is the required time for a request to be processed before

servicing. In other words, a request needs to wait in the msgQ for the Processing Time.

For example, if the Processing Time is 5 time units, then R4 in the Figure 34 has waited

for 5 simulation time units before it is stored into the RequestList to be served for the

requested Service Duration. All service requests, R1 to R4, in the RequestList are

handled by the performService method for each request at a time.

The functionality of the RequestList is to handle multiple user requests for the

same endpoint or service simultaneously. As shown in Figure 35 (a), multiple service

clients can subscribe the same endpoint at a time. In that case, at the programming level,

endpoint objects from the same endpoint are created for and assigned to each request, as

shown in Figure 34 (b). Therefore, it looks like only a service client subscribes this

endpoint at a time. This capability is implemented by the RequestList. Multiple requests

are stored in the RequestList and they are serviced simultaneously by iterating the entire

list at one time. Then the simulation time is advanced.

(a)

(b)

Figure 35. Connection between service clients and an endpoint

63

The internal event function as a DEVS atomic model loops itself by changing

three states, “processing”, “looping”, and “servicing” sequentially as shown in Figure 34

until msgQ and RequestList become empty. At the first “processing” state, if the

Processing Time becomes zero, then the top request is pulled out from the msgQ and

added into the RequestList. In the “looping” state, the service provider loops the

RequestList to serve each request if the requested Service Duration for the request is not

equal to zero and then send output messages to each corresponding service client by

changing the state to “servicing”. If Service Duration for a request is zero, then it skips to

the next request. At the “servicing” state, after all requests in the RequestList are handled,

then it removes requests which have zero Service Duration from the RequestList. Finally,

the state is changed to “processing” again for another loop.

4.4.3. Composite Service Model

The composite service model contains at least two service providers (either

primitive or composite service) models to represent a composite service. The flow of

service invocations needs to be specified at the service model design stage. Figure 36

shows how the real services are composed using BPEL. This is a basic capability for

hierarchical service provider composition which has to be extended to support different

kinds of workflow patterns (Russell et al., 2006).

64

Figure 36. Business Process Execution Language

65

ServiceProvider

Processing_time : double
ServiceName : String
ServiceDescription : String
ServiceType : String
Endpoints : ArrayList
RequestList : ArrayList
msgQ : Queue

performService()

(from GenService)

ServiceTransducer

in : ArrayList
out : ArrayList
observation_time : double

compute_TP()
compute_TA()

(from GenService)

ServiceBroker

start : double
available_time : double
UDDI : ArrayList

publish()
subscribe()
publishCompositeService()

(from GenService)

ServiceRouter

trasmissionTime : double
network_traffic : double
outputPort : String

(from GenService)

CompositeService

PublisherList : ArrayList
CompositePublishersList : ArrayList
TransducerList : ArrayList
Endpoints : ArrayList
Router : ServiceRouter

EndpointsConstruct()
PublisherConstruct()
TransducerConstruct()
CompositeConstruction()
CouplingConstruct()

(from GenService)

1..*

1

1..*

1

1..*

1

1..*

1

0..*0..*

1

1

1

1

1

1

1

1

ViewableDigraph
(from modeling)

Figure 37. Composite service model

4.4.4. Application Composition

 As shown previously, a SOA-compliant DEVS model consists of a set of service

provider and service client with a service broker. Default couplings between these

primitive services are permanent. Therefore, we employ the ApplicationComposition

model that constructs default coupling between the service models as shown in the Figure

38.

66

ServiceRouter

trasmissionTime : double
network_traffic : double
outputPort : String

(from GenService)

ServiceClient

startTime : double
lookupList : ArrayLis t
ServiceRequest : ServiceCallMessage
lookUp : ServiceLookupMessage

(from GenService)

ServiceTransducer

in : ArrayList
out : ArrayList
observation_time : double

compute_TP()
compute_TA()

(from GenService)

ServiceProvider

Processing_time : double
ServiceName : String
ServiceDescription : String
ServiceType : String
Endpoints : ArrayList
RequestLis t : ArrayList
msgQ : Queue

performService()

(from GenService)

ApplicationComposition

BrokerList : ArrayList
RouterList : ArrayList
PublisherLis t : ArrayList
CompositePublishersList : ArrayList
SubscriberList : ArrayList
TransducerLis t : ArrayList

ServiceComposition()
ServiceComposition()
BrokerRouterConstruct()
PublisherConstruct()
CompositeConstruct()
SubscriberConstruct()
TransducerConstruct()
CouplingConstruct()

(from GenService)

1..*

1

1..*

1

1..*
1

1..*
1

1..*

1

1..*

1

1..*

1

1..*

1

ServiceBroker

start : double
available_time : double
UDDI : ArrayList

publish()
subscribe()
publishCompositeService()

(from GenService)
1

1

1

1

CompositeService

PublisherList : ArrayList
CompositePublishersList : ArrayLis t
TransducerList : ArrayList
Endpoints : ArrayList
Router : ServiceRouter

EndpointsConstruct()
PublisherConstruct()
TransducerConstruct()
CompositeConstruction()
CouplingConstruct()

(from GenService)

1 1..*1 1..*

0..*0..*

1

1

1

1

Figure 38. ApplicationComposition model

 First of all, this generic composition model contains five empty construction

methods which allow users to construct specification of each component in SOAD.

As stated earlier, at least one service provider (either primitive or composite), one service

client, and one service broker are required to compose a SOA-compliant DEVS

application model. The cardinalities in Figure 38 represent that constraint. At the last,

CouplingConstruct method which is used for coupling between each DEVS component

in the five lists is predefined.

67

 4.4.5. ServiceTransducer Model

ServiceTransducer

in : ArrayList
out : ArrayList
observation_time : double

compute_TP()
compute_TA()

(from GenService)

Figure 39. ServiceTransducer model

 Transducer, an observational component, collects a set of simulation data for the

service and it is attached to each service model, service provider, service client, and

service broker. Transducer keeps track of all arrivals and departures for a given

observation interval then turnaround time and throughput for the model can be computed

as shown in Figure 39.

• Turnaround time: the length of time between its arrival and its departure from the

attached service.

• Throughput: the average rate of message departures from the service, estimated

by the number of requests processed during the observation interval, divided by

the length of the interval.

5. Simulation Experiments

This chapter demonstrates the experiments of a set of SOAD simulation models

discussed in Chapter 4. Using the simulation models, a set of the experimental scenarios

such as the Voice Communication Service and Travel Agency Service are developed and

simulated on the DEVS-Suite environment in order to verify and validate that the

simulation models are suitable to represent the SOA concepts and capabilities.

5.1. Service Composition and Configurations

 The service composition can be defined with four configurations as shown in

Table 6. These configurations are based on the number of service clients and providers,

not on the number of service broker since there is only one broker in the service

composition. The service composition must be able to support these configurations in

terms of SOA concept and capabilities.

Table 6

Service Composition Configurations

 Client Provider Broker

Configuration 1 1 1

1
Configuration 2 n 1

Configuration 3 1 n

Configuration 4 n n

5.2. Experimental Scenarios

 Two experimental scenarios, such as the Voice Communication Service (VCS)

System and the Travel Agency Service (TAS) System are developed in order to validate

the SOAD simulation models.

69

5.2.1. Real Voice Communication Service System

 A real experiment for the VCS system is developed to capture four critical QoS

features, such as timeliness, throughput, accuracy, and security. The experiment is a

simple network intensive service, where multiple service clients can use the VCS

simultaneously to receive real-time voice data streams with various qualities of voice

configured by a user-specified sampling rate as shown in Figure 40.

Figure 40. Voice Communication service

The real experiment is developed using C# in .Net and deployed on the .NET

development server. Since the VCS is a network intensive service, throughput is mainly

examined as a main QoS feature. Processor, Memory, Physical Disk, System, IP, UDP,

TCP, Server, and Web Services are collected as the experimental data using Windows

Performance Object. There are three experiment control variables, such as the sampling

rate for recording the voice data stream, the number of service clients, and the buffer size

70

for storing the voice data before network. Table 7 shows the different setting for those

control variables.

Table 7

The Experimental Control Variables Settings

Sampling Rate (KHz) 44.1, 88.2, 132.3, 176.4, 220.5

of Service clients 1, 2, 3, 4, 5

Buffer Size (KBytes) 16, 32, 48, 64, 80

The real experiment has been run under 125 experimental conditions, and each

experimental condition has 5 independent runs to collect 5 replicates of data set. For each

individual replicate, 60 data observations are recorded. By comparing these data sets with

simulation data sets, we can verify and validate our SOAD simulation models.

 In the real experiment, the actual broker service is not presented since we

assumed that the VCS has already been published to the service broker and service clients

have looked up the broker to find the VCS, meaning that service clients already know the

VCS information such as the URL of the VCS which are described in WSDL. However,

in the SOAD framework, the broker must be implemented so that the SOA concepts and

capabilities are represented by the generic simulation models.

5.2.2. Travel Agency Service System

 A simple simulation experiment called Travel Agency Service (TAS) system is

designed to show the service composition with a composite service. For this service

composition, we developed two primitive simulation services, such as the USZIP service

71

which provides the city name by a given zip code and the RESORT service which

displays the closest resort place by a given city name. Then these primitive services are

used to construct the TAS.

Figure 41 depicts a simple experimental scenario of using the TAS. A service

client invokes the TAS with a zip code (85281). The TAS sends the 85281 to the USZIP

service and then the USZIP service provides a city name (Tempe) generated by the zip

code to the RESORT service. The RESORT service then produce the closet resort name

(the Phoenix Resort) by the city name and The TAS returns the result to the client.

Figure 41. Travel Agency service composition

5.3. Service Composition with Primitive Services

 Based on the service configurations stated in Table 6, we can create several

simulation scenarios for the VCS simulation. First of all, we need to construct instances

of service providers including specifications of endpoints, service clients and a service

broker as well as the hardware component, network, for a service composition.

72

5.3.1. Composition for the VCS Model with Configuration 1

 Since we already have the ApplicationComposition class defined in Chapter 4, the

composition of primitive services as well as the network for the VCS can be derived from

the ApplicationComposition. In the ApplicationComposition class, as shown in Figure 42,

six independent service lists are created to store instances of each component. For the

VCS composition, we need to construct all participants at each construction function call

and store them into the corresponding list. The order of each construction function call

does not matter. However, the coupling construction function must be called at the last to

automatically construct coupling between all components stored in the six service lists.

Figure 42. The Service Composition class

73

5.3.1.1. Service broker and Network. Since we need only one broker and one

network link in the configuration 1 for the VCS simulation, we construct a service broker

with a service start time and a length of available time and a network link with a network

bandwidth and store them into corresponding lists, as shown in Figure 43.

Figure 43. Broker and Network construction

 5.3.1.2. Service provider. As shown in Figure 44, qRate is defined as an endpoint

which requires an argument in double data type to subscribe and store into the list of

endpoints for the VCS. Then, the VCS is constructed with the service name, service

description, service type, list of endpoints, and processing time for the request.

Figure 44. Service provider construction

74

The basic behaviors and structures of the provider are already defined in the

generic SerivceProvider class as stated in Chapter 4. Therefore, to construct the VCS, we

need to define service specifications for qRate in the performService method as shown in

Figure 45.

Figure 45. qRate specification

 Since the VCS returns the voice data streams with the requested sampling rate to

the client, the size of returning messages vary based on the control variable setting

discussed in Table 7. For the current setting, the buffer size for the network

communication is set to 16 Kbytes and the average number of datagrams received by the

service client is set to 260. These settings are adopted from the real experiment.

Therefore, the size of each message from the VCS to the service client is the average

number of messages multiple by the buffer size, that is, 4160 Kbytes. We ignored the

datagrams header size, 32 Bytes, since it is a constant and negligible in size.

75

5.3.1.3. Service client. With the configuration 1, as shown in Figure 46, the VCS

simulation has only one service client which is defined with the name of the client, the

list of ServiceLookup messages that contains the client with an endpoint, the sampling

rate, and the duration of time to subscribe to the service, and the time to look up the

Service Broker. This Service Client is added into the list of clients to be coupled with

other components in the simulation. The default structure and behavior of the client is

defined in the generic ServiceClient class in Chapter 4.

Figure 46. Service client construction

76

 5.3.1.4. Transducer. The list of transducers for each primitive service as well as

the network is constructed to collect a set of simulation data as shown in Figure 47.

These data sets are compared with the data sets collected from the real experiment in

order to validate the SOAD simulation models. Transducers observe each component for

a given length of time and then measure the performance metrics defined in each

transducer model. For example, the transducer for the network link can measure the

average transmission delay, total size of messages transmitted, and network utilizations

as shown in Figure 48.

Figure 47. Transducer construction

77

ServiceTransducer

in : ArrayList
out : ArrayList
observation_time : double

compute_TP()
compute_TA()

(from GenService)

BrokerTransd

name : String
Observation_time : double

BrokerTransd()
show_state()
numOfpublished()
numOflookup()
numOfFailure()
lengthOfAvail()

(from ServiceArc)

PublisherTransd

name : String

PublisherTransd()
show_state()
total_size_msgs()
numbOfSubscribers()

(from ServiceArc)

SubscriberTransd

name : String

SubscriberTransd()
show_state()
numbOfPublisher()
total_size_msgs()

(from ServiceArc)
RouterTransd

name : String
bandwidth : double
name2
time : double = 70
TimePt : double = 0

RouterTransd()
show_state()
avg_Transmission_delay()
total_size_msgs()
getNetUtilization()
getMinUtilzation()
getMaxUtilzation()

(from ServiceArc)

Figure 48. Transducers in the VCS

 5.3.1.5. Coupling of services. The user takes a role of constructing a service

broker, a network, the list of service clients, and the list of service providers while

coupling between these components is automatically completed. Figure 49 shows the

service composition for the VCS simulation with the configuration 1.

78

Figure 49. Voice Communication service with Configuration 1

5.3.2. Composition for the VCS Simulation with Configuration 2

 Configuration 2 represents multiple clients with one provider and that is easily

constructed since the generic provider class has the capability to handle multiple requests

simultaneously as described in Chapter 4. Since the list of clients and the list of providers

are maintained independently and coupling between these primitive services are already

established, we only need to construct more clients to subscribe the VCS as shown in

Figure 50.

There are no changes with the service broker and the VCS. Therefore, the VCS

with multiple clients as mentioned as configuration 2 are constructed as depicted in the

Figure 51. As shown, the entire VCS simulation is not that different from the Figure 49,

which only has one client, except for the number of client. However, the VCS can receive

multiple requests and return a voice data stream with requested sampling rate back to

clients simultaneously.

79

Figure 50. Service client construction with Configuration 2

Figure 51. The VCS simulation with Configuration 2

5.3.3. Validation on the SOAD Simulation Models.

 Since configuration 3 and 4 use the simulated service, comparisons between the

simulation data sets from the transducers and the real experimental data sets from the

Window Performance Objects are conducted for the VCS system with configuration 1

80

and 2 so that the SOAD simulation models can be validated in terms of four critical QoS

features, mainly throughput for the VCS system. Since it is more important for the aspect

of service provider, we measured throughputs of the real VCS and simulated VCS with

configuration 1 and 2 60 times. The simulation control variable settings for each case are

shown in Table 8.

Table 8

The Simulation Control Variable Setting

 Configuration 1 Configuration 2

Sampling Rate 44.1 - 220.5 KHz 44.1 KHz

of Service clients 1 1-5

Buffer Size 16 Kbytes

With configuration 1, we collected two sets of data for both the real and simulated

VCS (Roontiva et al., in preparation). First, we measure service provider throughputs

with a fixed sampling rate 220.5 KHz for 60 times. Second, we adjusted the sampling rate

from 44.1 KHz to 220.5 KHz and collected service provider throughputs. The results of

the real and simulated VCS with configuration 1 are shown in Figure 52.

81

(a) The VCS Throughput by Sample Number

(b) Sampling Rate vs. Service Provider Throughput

Figure 52. The measurements of the VCS throughput with Configuration 1

82

 For the case of configuration 2, we measure throughputs with a fixed sampling

rate 44.1 KHz for the both the real and simulated VCS by adjusting the number of service

clients from 1 to 5. The actual measurements are presented in Table 9 and comparisons

are shown in Figure 52.

Table 9

Throughputs for the Real and Simulated VCS by Number of Service Clients

Number of Service Clients Throughput (Simulated) Throughput (Real)

1 1.332300356 1.3459957

2 2.670600711 2.693091272

4 4.333476156 4.396452098

5 5.311201423 5.388197829

Figure 53. Comparison the throughputs between the real and simulated VCS

83

 Based on the comparisons between the simulation data and experimental data,

there are differences between them; however the differences are negligible as shown in

Figure 52 and 53 meaning that we can validate that the SOAD simulation models are

suitable to represent the static software aspect of the SOA capabilities.

5.3.4. Composition for the VCS Simulation with Configuration 3

 Since the SOAD simulation models have been validated, we can extend the

service composition with configuration 3. In this configuration, a service client

subscribes multiple service providers. For this case, we can use two more primitive

services developed for the TAS simulation, which are, USZIP service and RESORT

service as shown in Figure 54 and add them into the service provider list for coupling.

Figure 54. Service Provider construction with Configuration 3

84

Since we do not need complicated services, the specifications of endpoints in

these services are really simple as shown in Figure 55.

(a) USZIP (b) RESORT

Figure 55. Specifications of endpoints in USZIP and RESORT services

For the case of a service client, the lookup table is maintained to store the lookup

messages for subscription. A service client looks up the broker at first to subscribe the

VCS. After completion of the VCS, a service client looks up the broker again if there are

more services that the service client wants to subscribe in the lookup list. The order of

subscriptions needs to be specified as shown in the Figure 56.

85

Figure 56. Service clients construction with Configuration 3

 Finally, Figure 57 shows the service composition for the configuration 3.

Figure 57. The VCS simulation with Configuration 3

86

5.3.5. Composition for the VCS Simulation with Configuration 4

 Configuration 4 is a consolidation of configuration 2 and 3 so that we need to

construct multiple service clients as well as service providers. For the construction of

service providers, we use the VCS, USZIP, and RESORT services. We modified little bit

for client construction so that each service client subscribes to a different service provider.

Figure 58 shows the service client construction, where Subscriber 1 subscribes the USZIP

service, Subscriber 2 subscribes the VCS, and Subscriber 3 subscribes the RESORT

service. Figure 59 is the service composition with configuration 4.

Figure 58. Service client construction with Configuration 4

87

Figure 59. Service composition with Configuration 4

 5.4. Service Composition with Composite Service

 Since we have constructed two primitive services, USZIP and RESORT, and the

USZIP service can provide a required data, the city name, for the RESORT service, we

can construct a composite service, the TAS, by using them.

5.4.1. Composition for the TAS simulation with configuration 4.

 The service composition is shown in Figure 60. The services in the composite

service class can be either a service provider or a service client in terms of a SOA

concept. In addition, a service broker is not involved in the composite service class since

only one universal service broker at the top architectural level is used as a repository for

the composite service.

88

Figure 60. Composite service composition

5.4.1.1. Endpoints construction. Since the TAS itself is a composite service, the

TAS must have at least one endpoint to publish its functionality to the service broker.

Figure 61 shows the endpoint construction for the TAS.

Figure 61. Endpoints construction for the RBZ

89

5.4.1.2. Service provider construction. The specifications of endpoints in the

USZIP and RESORT services are already defined previously. Therefore, we need to

construct the primitive client list for the TAS using them as shown in Figure 62.

Figure 62. Service client construction for the RBZ

5.4.1.3. Service composition with the VCS and TAS. Now we have a primitive

service, the VCS, and a composite service, the TAS and then we construct the service

with configure 4 using VCS, TAS, and three clients, where two clients subscribe the VCS

and one client subscribes the TAS. Since we have constructed all services except the TAS,

we need to construct the TAS in the service composition as shown below.

90

Figure 63. Composite service construction

Since there are no automatic ways to composite services at a run time currently,

we need to specify the service binding information, or rather the order of primitive and/or

composite services in the composite service so that the message contains the information

concerning which service is the next receiver. This composite service must be published

manually into the broker to be subscribed. Figure 63 shows the entire composite service

composition with the VCS and the TAS.

91

Figure 64. The Composite service composition with the VCS and the TAS

5.5 Scaling SOAD Models with the DEVS-Suite

In addition to the simulation experiments that were developed for the

configurations listed in Table 6, it is useful to determine how large of a system can be

simulated in the DEVS-Suite for a given hardware computational resource. The Voice

Communication System with Configuration 2 is used to examine the scalability of the

SOA and the DEVS-Suite. A representative set of simulation models having 20 to 7000

model components were devised and simulated for the VCS system. For the convenience,

the SimView is turned off and any set of data is tracked. Figure 65 shows how the

number of service clients impacts the wall-clock simulation time given a desktop

machine with Core 2 Duo 2.66 GHz CPU and 4GB RAM. As expected, the wall-clock

92

simulation time increases proportional to the number of service clients. The largest

simulation executed contained 3500 service client models and 3500 transducer models.

The total number of models in DEVS-Suite can be increased provided that more powerful

hardware (more cache and virtual memory as well as higher speed single or multi-core

processors). In particular, the default setting of the Java Virtual Machine can be changed

to allow more virtual memory which is needed to load and execute larger number of

objects. The DEVS-Suite, therefore, supports conducting relatively large-scale simulation

on single machines and thus supports the scalability needs of the simulating service-based

software systems.

Figure 65. Execution scalability of the DEVS-Suite simulator

6. Conclusion and Future Research

6.1. Conclusion

As stated previously, SOA-based software design for distributed computing

systems poses new challenges to existing simulation tools. SOA enables dynamic

composition of different types of services as needed. Dynamic service composition

requires the development of high quality SBS that can simultaneously satisfy multiple

QoS features. To achieve this goal, QoS Monitoring and Adaptation sub-systems are

needed to collect and analyze tradeoffs between multiple QoS features and adapt the

composition of services accordingly.

 To develop the ASBS framework and support design, implementation, and testing

of its Monitoring and Adaptation sub-systems, a suitable SOA-based simulation

framework referred to as SOAD has been developed. We developed a set of service

abstractions – service broker, service client, service provider, and their relationships, such

as the service provider must publish its service to the service broker before being

subscribed and the client only can find out the service provider via service broker. In

addition to these SOA elements and relationships, a set of message types corresponding

to WSDL and SOAP in the real SOA are also developed to comply with the SOA

framework. Since SOAD simulator should account for the both hardware and software

aspects of SOA, simple hardware components such as a network link is modeled. In

addition a set of transducer models have been developed to collect data on services and

network links.

Since current existing simulation environments are not aimed to support early

creation of designs for ASBS, we developed the new DEVS-Suite simulation

94

environment which extends the Tracking Environment and DEVSJAVA simulators. The

capability to track, animate, and plot time-based simulation data sets helps analyze the

dynamics of adaptive service-based software systems.

 Models were developed for a voice communication system and a travel agency

system. A real voice communication system was used to develop their simulated

counterparts. The VCS simulation models demonstrated the ability to develop alternative

design configurations and evaluating their dynamics using DEVS-Suite. The resulting

SOAD simulator demonstrated creation and validation of different simulation models and

scenarios which is key for evaluating alternative adaptive service-based software systems

in terms of their quality of service attributes.

6.2. Future Research

The current SOA-based simulation models do not support service-based software

systems where services can be added or removed at run-time. Since the adaptation system

in the ASBS requires dynamic service composition at run time, it is important for the

SOAD simulation model to change its structure dynamically by adding or removing

service models. Dynamic Structure DEVS modeling (Barros, 1997) is suitable to be

incorporated into the SOAD simulator. As we stated, the SOAD should account for the

both the hardware and software aspects of SOA and the DEVS/DOC, a

software/hardware co-design approach has been developed (Hild et al., 2002; Hu, 2007).

The SOAD should be extended with the DEVS/DOC capabilities so that details of

hardware components can be modeled and simulated which in turn can provide a richer

basis for the Monitoring sub-system. Furthermore, it is important for the SOAD simulator

95

to be integrated with the Monitoring and Adaptation sub-systems in order to have a

testbed that can support ASBS design and simulation-based testing.

References

ACIMS. (2001). Arizona Center for Integrative Modeling and Simulation. 2007, from

http://www.acims.arizona.edu/SOFTWARE

Anderson, C., Rothermich, J. A., & Bonabeau, E. (2005). Modeling, quantifying and

testing complex aggregate service chains. Proceedings of the 2005 IEEE

International Conference on Web Services, Orlando, Florida, USA.

Barros, F. (1997). Modeling formalisms for dynamic structure systems. ACM

Transactions on Modeling and Computer Simulation, 7(4), 501–515.

Chang, H., Song, H., Kim, W., Lee, K., Park, H., Kwon, S., et al. (2005). Simulation-

Based Web Service Composition: Framework and Performance Analysis. In

Systems Modeling and Simulation: Theory and Applications, pp. 352-360.

Chen, Y., & Tsai, W. T. (2008). Distributed Service-Oriented Software Development, .

Kendall/Hunt Publishing.

DEVS-Suite (2008), Computer Science and Engineering Department, Arizona State

University, from http:// acims1.eas.asu.edu/WebStarts.

Elamvazhuthi, V. (2008). Visual Component-Based System Modeling with Automated

Simulation Data Collection and Observation. Unpublished master's thesis.

Arizona State University, Tempe, AZ.

Erl, T. (2006). Service-Oriented Architecture Concepts, Technology and Design: Prentice

Hall.

97

Hild, D. R., Sarjoughian, H. S., & Zeigler, B. P. (2002). DEVS-DOC: A Modeling and

Simulation Environment Enabling Distributed Codesign. IEEE Transactions on

Systems, Man and Cybernetics, Part A, 32(1), 78–92.

Hiroyuki, K., Taku, F., Toshiyuki, M., & Sadatoshi, K. (2006). A UML Simulator for

Behavioral Validation of Systems Based on SOA. International Conference on

Next Generation Web Services Practices.

HLA. (1999). High Level Architecture. http://hla.dmso.mil [cited 2006]: Defense

Modeling and Simulation Office.

Hu, W. (2007). Visual and Persistent Co-Design Modeling for Network Systems.

Doctoral Dissertation. Arizona State University, Tempe, AZ.

John, G., John, H., Lei, L., & Na, L. (2006). Performance engineering of service

compositions. 2006 international workshop on Service-oriented software

engineering, Shanghai, China.

Kim, S., Sarjoughian, H. S., Flasher, R., & Elamvazhuthi, V. (in preparation). DEVS-

Suite: A Component-based Simulation Tool for Rapid Experimentation and

Evaluation.

Mather, J. (2003). The DEVSJAVA Simulation Viewer: A modular GUI that visualizes the

structure and behavior of hierarchical DEVS models. University of Arizona,

Tucson, AZ.

OASIS. (2003). OASIS UDDI Specifications TC. http://www.oasis-

open.org/specs/#uddiv3.0.2.

98

Ramaswamy, M. (2008). System Theory Based Modeling and Simulation of SOA-based

Software Systems. Unpublished master's thesis. Arizona State University, Tempe,

AZ.

Roontiva, A., Huang, D., Xu, X., Ye, N., & Yau, S. S. (in preparation). QoS Performance

Models of Cause-Effect Dynamics for QoS of Voice Communication Service:

Towards Adaptive Service-based Systems.

Russell, N., Hofstede, A. H. M. t., Aalst, W. M. P. v. d., & Mulyar, N. (2006). Workflow

control-flow patterns: A revised view. BPM Center Report BPM-06-22.

Sarjoughian, H., Kim, S., Ramaswamy, M., & Yau, S. (2008). A Simulation Framework

for Service-Oritented Computing Systems. Proceedings of the 2008 Winter

Simulation Conference.

Sarjoughian, H. S. (in preparation). A Unified Logical, Visual, and Persistent

Component-based Modeling Framework.

Sarjoughian, H. S., & Singh, K. R. (2004). Building Simulation Modeling Environments

Using Systems Theory and Software Architecture Principles. the Advanced

Simulation Technology Symposium, Washington DC, USA.

Singh, R., & Sarjoughian, H. S. (2003). Software Architecture for Object-Oriented

Simulation Modeling and Simulation Environments: Case Study and Approach.

SOAP. (2003). Simple Object Access Protocol (SOAP) 1.1.

http://www.w3.org/TR/SOAP/: W3C.

Srini, N., & Sheila, M. (2003). Analysis and simulation of Web services. Computer

Networks, 42(5), 675–693.

99

Srinivas, N. (1999). Reasoning About Actions in Narrative Understanding. Paper

presented at the Proceedings of the Sixteenth International Joint Conference on

Artificial Intelligence.

TouchGraph. from http://www.touchgraph.com/

Tsai, W. T., Chun, F., Yinong, C., & Paul, R. (2006). DDSOS: a dynamic distributed

service-oriented simulation framework. Simulation Symposium, 2006. 39th

Annual.

Tsai, W. T., Fan, C., & Chen, Y. (2006). DDSOS: a Dynamic Distributed Service-

Oriented Simulation Framework. 39th Annual Simulation Symposium, Huntsville,

AL, USA.

W3C. (2007). SOAP Version 1.2 Part 1: Messaging Framework. from

http://www.w3.org/TR/soap12-part1/

Wikipedia. (2006). Department of Defense Architecture Framework. Retrieved April 20,

2008, from

http://en.wikipedia.org/wiki/Department_of_Defense_Architecture_Framework

WinterSim. (2004). Future of Simulation. 2004 Winter Simulation Conference,

Washington DC, USA

Yau, S. S., Ye, N., Sarjoughian, H. S., & Huang, D. (2008, October). Developing Service-

based Software Systems with QoS Monitoring and Adaptation. Proceeding of the

12th IEEE Int'l Workshop on Future Trends of Distributed Computing Systems,

Honolulu, Hawaii, USA.

100

Zeigler, B. P., Praehofer, H., & Kim, T. G. (2000). Theory of Modeling and Simulation:

Integrating Discrete Event and Continuous Complex Dynamic Systems (Second

Edition ed.): Academic Press.

Zeigler, B. P., & Sarjoughian, H. S. (2003). Introduction to DEVS Modeling &

Simulation with JAVA: Developing Component-based Simulation Models. from

http://www.acims.arizona.edu/PUBLICATIONS/publications.shtml.

