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ABSTRACT 

Simulation modeling offers important and unique capabilities for analysis and 

design of service-oriented computing systems that must satisfy multiple, competing 

Qualities of Service (QoS) requirements. In order to aid design of service-based software 

systems (SBS), it is important to employ a suitable modeling framework that can account 

for the Service-Oriented Architecture (SOA) concepts. Toward this goal, this thesis 

develops a simulator that can represent and execute service-based software systems. A 

novel set of generic SOA-based models are developed based on the Discrete Event 

System Specification (DEVS) framework. The resulting SOA-based DEVS (SOAD) 

models can be created in the DEVS-Suite simulation environment, a newly developed 

extension of the DEVSJAVA Tracking Environment. The SOAD models are 

implemented and incorporated into the DEVS-Suite simulator which affords animation of 

simulation executions and visualization of simulation results as time trajectories. To 

demonstrate the modeling capabilities of SOAD, a hierarchical model of a travel agency 

services is developed. Simulation models for a Voice Communication System (VCS) are 

also developed according to a real SOA-based implementation of VCS. Future extensions 

for the SOAD simulator are proposed to enable modeling and simulation of adaptable 

service-based software systems. 
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1. Introduction 

1.1. A Statement of the Problem 

Modeling and Simulation has become a necessity for developing many kinds of 

complex, large scale systems. A major part of engineering systems is to develop models 

that can aid analysis and design activities. Models which describe both structural and 

behavioral specifications can be simulated in the virtual environments. They help to 

detect requirement and design errors in the early stage of product development cycles. 

This capability can significantly reduce the cost associated with eliminating errors in 

system implementation and testing development stages. A model can be written by using 

a variety of system specification formalisms. For example, the Discrete Event System 

Specification (DEVS), the Discrete Time System Specification (DTSS), and Differential 

Equation System Specification (DESS) formalisms can be used to simulate discrete event, 

discrete-time, and continuous models (B.P. Zeigler et al., 2000). Simulation is commonly 

used as a technique for better understanding of system/software designs, performance 

optimization, as well as undertaking the role of traditional experimentation. 

Currently the concept of Service Oriented Computing (SOC) paradigm is rapidly 

being adopted for developing distributed computing systems. The Service Oriented 

Architecture (SOA) is proposed for building software systems from services (Erl, 2006). 

This framework affords composition of various types of services for distributed 

applications built on different platforms. An important consideration in developing SOA-

based software systems (SBS) is supporting multiple quality of service (QoS) features, 

such as timeliness, throughput, accuracy and security (Yau et al., 2008).  To achieve this 
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goal, QoS Monitoring and Adaptation sub-systems, in combination with services, are 

needed to collect and analyze tradeoffs between multiple QoS features and to adapt the 

composition of services accordingly.  As shown in Figure 1, SBS with the Monitoring 

and Adaptation sub-systems is collectively referred to as Adaptable SBS (ASBS).  
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Figure 1. The conceptual view of ASBS (Yau et al., 2008) 

Simulation modeling can be used to study multiple QoS attributes of service-

based systems and thus determine desirable tradeoffs. In order to verify and validate the 

design of ASBS, in this research, the DEVS formalism is used to define the 

characteristics of ASBS. The DEVS framework, similar to other modeling and simulation 

approaches, supports analysis, design, and development of systems (B. P. Zeigler & 

Sarjoughian, 2003). This modeling formalism provides a rigorous basis for simulating 
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service-oriented software systems. A variety of object-oriented Modeling and Simulation 

(M&S) tools based on the DEVS formalism have been implemented in different 

programming languages (e.g., C++ and JAVA) and used to simulate many different kinds 

of systems such as command and communication software systems. In this research, we 

will use the DEVSJAVA (ACIMS, 2001) and the DEVSJAVA Tracking Environment 

(DTE) (H.S. Sarjoughian & Singh, 2004; Singh & Sarjoughian, 2003). The former 

supports animation of hierarchical models and the latter supports specifying and 

dynamically collecting simulation results as time charts and tabulated data. 

The DEVSJAVA shows a view of the entire hierarchy of the simulation model 

using components-within-components-style and animation of messages moving along the 

paths of the coupling between components during the simulation (Mather, 2003; B. P. 

Zeigler & Sarjoughian, 2003). The DEVSJAVA supports injecting inputs into the model 

during the simulation dynamically so users can easily analyze the dynamics of the 

simulated models.  

The DTE offers a graphical user interface to identify and enable semi-automated 

experimentations to track the simulation model data sets including states (i.e., Phase, 

Sigma, Time of the Next Event, Time of the Last Event) and input/output events. The 

DTE supports the concept of the experimental frame and an implementation of it is 

integrated with the DEVSJAVA simulator. It allows user flexibility to select and observe 

the simulation data sets which are tracked dynamically for any number of atomic and 

coupled models. While simulating a model on the DTE, the simulation data sets from the 

selected simulation models including user-defined statistical simulation are displayed in a 
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tabular format which is called the Tracking Log. To increase the usability of the DTE, a 

plotting tool called TimeView has been implemented. The design and implementation of 

the TimeView is based on the concept of components and display data in terms of time. 

The integration of the TimeView into the DTE can support run-time visualization of 

simulation. However, the TimeView did not account for the concept of time as used in 

the DTE. Such a capability is necessary for integrating the TimeView into the DTE 

environment. To aid this research and others (Elamvazhuthi, 2008; H. S. Sarjoughian, in 

preparation), the DEVS-Suite environment which integrates DEVSJAVA, DTE, and 

TimeView has been developed (Kim et al., in preparation). 

Currently a few approaches have been proposed for SOA-based simulation 

frameworks in order to help develop service-based software systems (Anderson et al., 

2005; Chang et al., 2005; Hiroyuki et al., 2006; John et al., 2006; Srini & Sheila, 2003; 

Tsai, Fan et al., 2006). These approaches are mainly focused on models that can be 

simulated for testing purposes of real services. While different modeling and simulation 

frameworks have been used to simulate service-based software systems, it is desirable to 

develop an approach where the basic concepts of time as well as software/hardware co-

design (Hild et al., 2002; Hu, 2007) can be explicitly modeled and simulated (H. 

Sarjoughian et al., 2008). Toward this goal, first we need to develop a generic set of 

SOA-based simulation models including the service broker, service provider, service 

client, service composition and router SOA components. Therefore, first we need to 

develop an approach to build an SOA-based DEVS (SOAD) simulator. Second, we need 

to develop simulated and actual service-based software system examples to examine the 
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capabilities of the SOAD simulator. The simulator is aimed at supporting simulation-

based verification and validation of SBS designs with multiple QoS attributes. 

Furthermore, the SOA-compliant DEVS framework (H. Sarjoughian et al., 2008) offers a 

basis for introducing the capability to model and simulate adaptive service-based 

software systems.        

1.2. Thesis Contribution 

The overall contribution of this thesis is the design and development of the new SOAD 

simulation environment which introduces the capability to model and simulate service-

based software systems as shown in Figure 2. Generic SOA-based simulation models are 

designed by introducing SOA modeling capabilities into the object-oriented DEVS-Suite 

environment. The SOAD environment supports modeling SOA-based primitive and 

composite services. Example simulation models are developed, executed, and evaluated 

to demonstrate how the SOAD simulator can support design and analysis of software-

based software systems. 

 

Figure 2. SOAD with M&A sub-systems 
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1.3. Thesis Organization 

 The remainder of this thesis is organized as follow. Chapter 2 reviews and 

discusses related background and research. It includes the detailed descriptions of the 

DEVSJAVA and DTE as well as the basic modeling and simulation concepts employed 

in this thesis. It describes the NSF Science of Design project including four critical QoS 

features and experimental scenarios along with the comparison to other SOA-based 

simulation approaches. Chapter 3 describes the development of the DEVS-Suite. Chapter 

4 presents the SOAD approach and the development of an abstract set of SOA-based 

simulation models for the service broker, service provider, service client, service 

composition, and network. In addition to these basic behavioral models, the observational 

model called transducer is introduced in this chapter in order to simplify simulation data 

collection for the services and network. Chapter 5 details two example models one of 

which (i.e., voice communication service) is based on actual software systems that are 

implemented with SOA and .Net technology. These simulation models are used to 

validate the abstract SOAD models that are developed against real experimentations.  

Finally, Chapter 6 presents conclusions and discusses future research. 

 

 

 

 

 

 



 

 

2. Background and Related Works 

This chapter discusses background information about the field of software 

modeling and simulation including the detailed description of the SimView and DTE and 

the related works on the SOA-based simulation approaches. Also it includes the 

introduction to the proposed NSF SOD project including four critical QoS features and 

experimental scenarios. 

2.1. Discrete Event System Specification (DEVS) 

 Simulation can make many software development process improvements in terms 

of cost, repeatability, and time. This observation can apply to SBS since it is also based 

on fundamental concept of components and their interactions. In this research, we use the 

Discrete Event System Specification (DEVS) formalism to specifying an SOA-based 

software system. The DEVS formalism provides a method to specify a software system 

using a time base, input, state, and output, and functions for determining next states and 

outputs given current states and inputs (B. P. Zeigler & Sarjoughian, 2003). In the DEVS, 

a system is consisting of two types of models: atomic and coupled models. 

An atomic model (B.P. Zeigler et al., 2000) is mathematically represented as, 

M = (X, Y, S, δext, δint, δcon, λ, ta) 

Where: 

• X is the set of input values 

• Y is the set of outputs 

• S is a set of states 

• δint : S → S is the internal transition function 
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• δext : Q × Xb  → S is the external transition function, where  

Q = {(s,e)| s∈S, 0 ≤ e ≤ ta(s)} is the total state set and e is the time elapsed since 

last transition 

• δcon : Q × Xb → S is the confluent transition function 

• λ: S → Y is the output function 

• ta: S → R+
0,∞ is the time advance function  

Coupled models in the DEVS can be represented by coupling two or more DEVS 

atomic models. A coupled model contains the set of components, the set of input ports, 

and the set of output ports. DEVS employs the concept of input and output ports to 

represent the connection between each component. The coupled model itself also can be 

used as a DEVS atomic model to form a larger coupled model (B. P. Zeigler & 

Sarjoughian, 2003) by coupling an output port of a component with an input port of 

others. To simulate a DEVS atomic/coupled model, the DEVSJAVA Simulation Viewer 

which provides animation of messages moving along the paths of the coupling between 

components and the Tracking Environment which provides a simple graphical user 

interface to identify and enable semi-automated experimentations to track the simulation 

model data sets are used.  

Mathematical representation of a coupled model (B.P. Zeigler et al., 2000) is 

described below. 

DN = (X, Y, D, {M i}, {I i}, {Z ij}) 

Where: 

• X is the set of external input values 
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• Y is the set of outputs 

• D is a set of components names; 

• For each i in D 

o Mi is a component model 

o Ii is the set of influences for i 

o For each j in Ii   

o Zij  is the i-to-j output translation function   

2.2. DEVSJAVA Simulation Environment  

2.2.1. DEVSJAVA Simulation Viewer 

The SimView provides a view of the arbitrary levels of coupled model using 

boxes-within-boxes-style and animation of messages moving along the paths of the 

coupling between components during the simulation (Mather, 2003). The interface of the 

SimView is shown in Figure 3. 
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Figure 3. The DEVSJAVA simulation viewer 

In addition to the visualization capabilities of the SimView, it allows users to 

inject input values into Inports of components dynamically during the simulation so that 

users can easily model and analyze the behavior and hierarchy of simulation model. 

Figure 3 shows that the EFP model is currently loaded into the SimView. We are 

also going to use this model for the DTE as a reference model of the DEVS. The EFP 

model consists of three atomic model components, as shown in Figure 4, the Generator 

which generates external events and sends them to the Transducer and Processor, the 

Processor which processes external events received from the Generator and send the 

simulation results to the Transducer, and the Transducer which records statistical results 
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of simulation and request start/stop of simulation to the Generator. The Generator and 

Transducer are coupled together to form the experimental frame.  

 

Figure 4. The EFP model in the DEVS 

2.3. Tracking Environment with TimeView 

2.3.1. Architecture Design of Tracking Environment 

 The Tracking Environment was developed based on the software architecture as 

shown in Figure 5 (b). The illustrated software architecture contains a conceptual 

interface layer called FAÇADE layer to handle data and control services required by the 

VIEW and CONTROLLER in conjunction with the classical Model-View-Control 

(MVC) paradigm as shown Figure 5 (a). As illustrated in Figure 5 (b), only the FACADE 

layer is allowed to interact with the MODEL and its inner components. In the traditional 

MVC paradigm, the simulation data sets displayed on the View are obtained directly 

from the simulation model. This means the View is also allowed to interact with the 
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MODEL. As mentioned earlier, the Tracking Environment supports dynamic 

configuration for monitoring of simulation behavior which implies the View is allowed to 

retrieve selected data for itself. 

By employing the FAÇADE layer into the traditional MVC, the software 

architecture gives important benefits to the design of the system (H.S. Sarjoughian & 

Singh, 2004; Singh & Sarjoughian, 2003). They include:  

• Enhanced encapsulation  

• Modularized development by layering technique. 

• Reduced complexity of dependencies between components 

• Improved weak coupling problem 
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(b) Software Architecture for the Tracking Environment 

Figure 5. Software architecture concept 

As shown in Figure 6, the Tracking Environment allows users to select the 

simulation data sets to be tracked such as state variables and input/output events for any 

number of atomic and coupled models. Thereafter, during the execution of simulation, 

the Tracking Environment provides two internal frames, the Tracking Log and the 

Console, to track and monitor the selected simulation data sets. The output of tracked 

(a) Traditional Software Architecture 
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simulation data sets with its state is displayed in a tabular format on the Tracking Log 

frame in addition to the Console frame which records received and sent events.  

 

 

Figure 6. Simulation Tracking Environment 

On the left side of the controller, the Tracking Environment provides the FModel 

Viewer which displays the hierarchy of the simulation model so that users are easily able 

to understand the structure of the simulation model and help them to select which atomic 

and coupled models to track and monitor. In general, the simulation data sets to track 
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need not always to be the same for all models. Hence the tracking options shown in 

Figure 6, which are for the Transducer atomic model in the GPT coupled model, will be 

changed when we select another model on the FModel Viewer.  

In addition, the Tracking Environment provides a user convenient option called 

the Real Time Factor which can adjust the scale of simulation logic time in order to get a 

faster/slower or even soft real-time response, as shown in Figure 6 at the bottom left of 

the Tracking Environment. For example, when a user adjusts the scale of Real Time 

Factor as 1, the logic time of the simulator in the Tracking Environment is corresponding 

to 1 second in the real-time and the simulation is executed under the soft real-time 

condition. 

2.3.2. TimeView 

 The TimeView, a separate un-timed viewer of data, was designed and 

implemented by Robert Flasher as part of his undergraduate senior project in the 

Computer Science and Engineering department at Arizona State University. It supports 

plotting data sets along the time axis. Source data can be input and output and state 

changes from atomic or coupled DEVS models. At runtime, data can be fed into the 

TimeView for plotting. For example, default and user defined data variables such as size 

of a queue can be automatically plotted as the time trajectory charts until the end of the 

simulation (see Figure 6). Therefore, users can monitor and track atomic models’ 

input/output and state changes during simulation. Currently the TimeView only accepts 

the primitive data types (e.g., double and string) for an event to be displayed on the time 

trajectory chart. 
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The current version of the TimeView increments each trajectory by a predefined 

time periods, for example, time is incremented by 10 units of time as shown in Figure 7 

and then plots the simulation data sets at the time instances events are received. This 

environment is similar to an oscilloscope and allows users the flexibility to adjust time 

period scale for every simulation run. The length of a trajectory that is viewable can also 

be specified.  

 

Figure 7. The TimeView UI 

2.3.3. Integration of TimeView into the Tracking Environment 

 2.3.3.1. Tracking options. As stated above, the TimeView does not have the 

concept of time and nor the capability of control. The TimeView is a simple tool to 

display a series of (x, y) values on the trend charts like an oscilloscope. Given the 

limitations, the TimeView is integrated into the Tracking Environment so that its 
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controller of the Tracking Environment can update the TimeView graph by 

synchronizing with the simulation time. Currently, the simulation data sets which are 

tracked and monitored by the Tracking Environment are the primitive data type including 

the String. Then the data types in the TimeView should also be consistent with the 

Tracking Environment. The user has the flexibility to select view options for any number 

of atomic/coupled models as well as the unit of each tracking data and X-axis and 

increment of X-axis, as shown in Figure 8. The TimeView can be invoked for each 

atomic/coupled model independently with selected simulation data sets.  

 

Figure 8. The Tracking options 

2.3.3.2. Data flow chart. After selecting one or both of the tracking view options 

(i.e., TimeView and TrackingLog), the Tracking Environment assigns a tracker for the 

simulation data sets to be tracked for atomic and coupled models. Figure 9 shows data 

flow of the DEVS Tracking Environment. Logically, whenever an input/output event 

occurs during the simulation execution, ModelTrackingComponent Class loops through 
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the tracker to get simulation data sets for the selected models. Originally the 

ModelTrackingComponent Class contains the method to get simulation data sets from the 

tracker as well as to construct the Tracking Log.  

 

Figure 9. Data flow of the DEVS Tracking Environment 

 To integrate TimeView into the DEVS Tracking Environment, TrackingControl 

Class is employed as an intermediate Class between TrackingLog and 

ModelTrackingComponents Classes (see Figure 10). Then, the logic to get simulation 

data sets for selected models is moved from ModelTrackingComponent Class into the 

TrackingControl Class which sends the data sets to TimeView or/and Tracking Log for 

runtime viewing as shown in Figure 10. Therefore, the role of 

ModelTrackingComponents Class is limited to construct the Tracking Log only.  
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Figure 10. Integration with the TimeView  

2.4. Service Oriented Architecture based Software System 

2.4.1. Service Oriented Architecture 

 SOA is a software architecture style aimed at dynamic discovery and use of 

services over a network. Before understanding SOA, we should understand the definition 

of each component in SOA clearly. Figure 11 show the conceptual model of SOA. 

Service provider provides services that may be used by other services. It can publish its 

service interface and access information to the service broker using Web Services 

Description Language (WSDL) (WSDL, 2001). A service can be described as (Chen & 

Tsai, 2008), 

• An interface between the producer and the consumer. 
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• A service is well-defined, self-contained, and does not depend on the context or 

state of other service. 

• Newly developed modules or just wrapped around existing legacy software to 

give them new interfaces.  

• A service is a unit of work done by a service provider to achieve desired end 

results for a consumer. 

• Provides loosely coupled Application Programming Interface (API), with 

standard interface, so that it can be discovered and called (invoked) by another 

service. 

The services can communicate with one another by exchanging messages. WSDL 

is an XML based language for describing Web services and how to access them. It 

includes the location of the service and the methods (called endpoints) that are exposed 

for other services to use. The service broker is a service repository and registry that stores 

information about the published services. A common implementation of service broker is 

the Universal Description, Discovery, and Integration (UDDI) developed by OASIS 

(OASIS, 2003). A proposed ideal features that a service broker should have are (Chen & 

Tsai, 2008), 

• Service registry 

• Service repository 

• Service specification and requirement 

• Application templates 

• GUI templates 
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• Collaboration protocols and templates 

• Policies 

• Database and ontology 

• Integrated testing and evaluation tools 

• Quality of service 

Service client lookups the service broker to search a desirable service by a key 

word or service name defined using WSDL. If a service is found, the service broker sends 

the service information stored in the repository back to the service client, then binding to 

service provider to invoke one of its operations available in the service using Simple 

Object Access Protocol (SOAP, 2003). SOAP is a XML based protocol to allow 

communication between SOA-based applications on different operation systems, 

technologies, and programming languages over HTTP (W3C, 2007). 

 

Figure 11. Service oriented architecture 

SOA enables service clients to be separated from service providers. Therefore, 

service clients do no need to know how the services are implemented, which platforms 

are used, or how they are distributed. It leverages the reusability of services. One of the 
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most important desired advantages of SOA is to rapidly compose distributed services. For 

the service composition, two methods may be used. They are 

• Orchestration: A central process which can be a service itself takes control over 

all involved services and coordinates the execution of different operations. BPEL 

(Business Process Execution Language) supports orchestration. 

• Choreography: There is no central coordinator. Each service involved can 

communicate with any partners. WS-CDL (Web Services Choreography 

Description Language) is a composition language that supports choreography 

2.4.2. Adaptable Service Based Software System 

 As stated previously, SOA enables dynamic composition of various types of 

services for distributed applications built on different platforms. Dynamic binding of 

services makes SBS more flexible and that is one of the most important advantages of 

using SOA. However, dynamic service composition requires the development of SBS 

with multiple QoS such as timeliness, throughput, accuracy, security, dependability, 

survivability, and availability. Service-based software systems need satisfy multiple QoS 

simultaneously and thus tradeoff among the QoS features is necessary. However, 

currently we do not have comprehensive understanding of these tradeoffs and 

relationships so that it is a challenge to satisfactorily manage multiple QoS features 

simultaneously. To overcome this, as shown in Figure 1, QoS Monitoring and Adaptation 

sub-systems may be used to collect data concerning QoS which can be analyzed to adapt 

the composition of services accordingly.   
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2.4.2.1. Four critical QoS features. Since we cannot study the tradeoffs of all QoS 

features due to limitation of time and resources, four QoS (i.e., timeliness, throughput, 

accuracy, and security) are important to be considered (Yau et al, 2008). However, in this 

work, security QoS feature is not considered.  

A set of experiments are devised to collect necessary data to develop a design 

approach for developing Adaptive Service-Based Software Based Systems. Two types of 

atomic services, communication intensive (Voice Communication) and computation 

intensive (Motion Detection) models, are developed (Yau et al, 2008). Voice 

Communication System (VCS) provides voice streaming service to multiple users 

simultaneously. For experimenting with this system, sampling rate, number of clients and 

buffer size are varied. Motion Detection System can also be considered. The Motion 

Detection (MD) service provides the rate of motion detected for a certain time period. 

Several motion detection algorithms are used to calculate the user request rates. The 

composite service can be constructed by combining these atomic services. However, a 

simple composite simulation service called Travel Agency service, which provides the 

closest resort place by zip code, is developed. The VC and Travel Agency services are 

used together to model and simulate a composite service. The MD service is not used 

since it is under development.  

 

 

 

 



24 

 

Table 1  

Four QoS Metrics Table 

QoS Features Metrics Experimental Data 

Accuracy 

Loss Rate 
The number of bits lost between 

two nodes after transmission 

Error Rate 
The frequency of erroneous bits 

between two nodes after 
transmission 

Timeliness 

Response Time 

The difference between the time of 
submitting a service request and the 

time of receiving a service 
confirmation 

Service Delay 
The difference between the time of 
submitting a service request and the 
time of receiving the service result 

Jitter 
Variation of delay generated by the 

transmission equipment 

Throughput 
Data rate The rate in which data are encoded 

Bandwidth 
The data transfer rate measured in 

bits per second 

Security Security Rating 
Initial security configuration 

Security events detected in runtime 

2.5. Related Works 

A SOA-based framework using High Level Architecture (HLA) Infrastructure 

(HLA, 1999) has been proposed to develop and evaluate SOA-based network centric and 

system-of-systems applications using  Process Specification and Modeling Language 

(PSML) (Tsai, Chun et al., 2006). From existing SOA services, composite services can be 
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synthesized and executable code generated for the actual application and simulated for 

testing purposes. The services are geographically distributed and interconnected as web 

services. The DEVS and PSML models have basic differences such as explicit 

representation of time, event preemption, and closure under coupling of model 

components. Another important difference is the mapping from DEVS and PSML to 

SOA. SOAD is defined in terms of the basic SOA elements (service client, service 

provider, and service broker) as well as the primitive and composite service composition. 

More generally, SOAD is grounded in system-theoretic modeling and simulation 

concepts whereas PSML is based on software modeling targeted for service-based 

computing systems (WinterSim, 2004).  

Some other tools are also proposed to support simulation of SOA-based software 

systems. A UML simulator is proposed to define interaction among web service by a 

UML model (Hiroyuki et al., 2006). By using Active Hyper-graph, it supports execution 

of the extended UML model called BPEL/UML which can support mapping elements of 

BPEL4WS document onto elements of UML active diagram and WSDL onto elements of 

UML class diagram. The interfaces of services are defined in order to validate interaction 

between BPEL/UML models and BPEL/UML models with real services. The Petri Net 

formalism is used to provide decision procedures for web service simulation, verification, 

and composition (Srini & Sheila, 2003). By using the DAML-S description of a Web 

service that is translated in situation calculus, KarmaSim simulator (Srinivas, 1999) 

automatically generates the Petri Nets in order to perform the desired analysis. These 
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UML simulator and Petri Net are focusing on supporting workflow design, rather than the 

individual component.  

There are other approaches to web service composition in terms of QoS properties. 

One research is focusing on the relationship between service chain complexity and QoS 

for the user (Anderson et al., 2005). Agent based approach is used to model a set of end-

users that request service invocations through the network. Users use a catalog that 

provides the name of a server where a requested service is located to find that service. 

The TouchGraph library (TouchGraph) is extended and used as a JAVA visualization 

tool to model service chaining, visualize network traffic and quantify service chain 

complexity. Simulation based Web service composition based on their QoS properties, 

such as performance, reliability, and availability, is proposed (Chang et al., 2005). Users 

can specify the service composition with QoS concerns by using the proposed Web 

Process Composer. Simulation is performed based on user composition and the 

simulation results are sent to the QoS Monitor to analyze and evaluate QoS of the web 

process. The evaluation results are feedback to the Web Process Composer to repeat the 

simulation until the desired QoS is achieved. This approach is somewhat similar to our 

ASBS approaches in terms of monitoring and adaptation capabilities. However, the 

ASBS consider multiple QoS features and their relationship (i.e., their satisfaction 

tradeoffs) with both hardware and software aspects rather than simple QoS features of 

web process. A performance engineering method for service composition is proposed 

(John et al., 2006). This approach is to apply performance test-bed generation techniques 

to software system based on SOA. Service composition can be described at a high level 
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using Business Process Modeling Notation (BPMN) or own ViTABaL-WS Web service 

composition notation. These high level service compositions can be extended with a 

lower level service composition model at the detailed service interface level in 

MaramaMTE which is JAVA based performance test-bed generation tool. The test-beds 

are executed for the service composition and results are provided to the engineer.  

Table 2 shows the comparisons between the approaches briefly reviewed in 

relation to SOAD. The explicit use of time (discrete values) in services is crucial in 

developing verifiably correct simulation models of dynamical real services (WinterSim, 

2004). The dynamic simulation model with an explicit representation of real time can be 

used instead of a real service and the time based QoS features such as throughput for the 

service can be collected. In Table 2, the Petri Nets formalism support for representing 

time, but situation calculus description translated from the DAML-S ontology to the Petri 

Nets does not explicitly represent use of time. Moreover, compare to the proposed SOAD, 

currently none of approaches described above can support dynamic changes of service 

composition and no concept for the separation of modeling SOA-based software system 

in terms of hardware and software are presented.  
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Table 2  

Comparisons of Approaches in Terms of M&S Concept 

Approach Formalism Components Timing Hierarchy Seq. / Parallel 

Service Chain Y Y Y - Y/Y 

MaramaMTE Y Y - Y Y/Y 

Petri-Net Y Y Y Y Y/Y 

Activity 

Hypergraph 
Y Y - Y Y/Y 

PSML-S Y Y Y Y Y/Y 

SOAD Y Y Y Y Y/Y 

 

 

 

 



 

 

3. Extension of Tracking Environment with SimView 

This chapter describes the integration process of the SimView into the DTE. 

Although these two simulation tools are built on the same DEVS formalism, the 

objectives of the simulation environments are different from each other and the 

integration of them into one environment is required to incorporate with Monitoring and 

Adaptation capabilities in our ASBS. In this chapter, in order to integrate two simulation 

environments into one consolidated simulation environment, we describe the decision 

process of selecting an architectural design pattern, a type of simulation model, and 

interface of the new simulation environment. 

   3.1. Analysis on the SimView and DTE 

 The brief descriptions of SimView and DTE are placed in Chapter 2.  In this 

section, we need to analyze more details of these simulation environments in terms of 

architecture design pattern, simulation model types, mechanism to load a model, and 

simulation control logic in order to make a right decision while integration process. For 

the purpose of validating our selection, the comparison between SimView and DTE for 

each category described above is performed and provided below.  

 3.1.1. Architectural Design Pattern 

 As described in the Chapter 2, the DTE was developed based on the traditional 

software architectural pattern called Model-View-Controller (MVC) as shown in the 

Figure 12. The traditional definition of each component is described below (Wikipedia). 

• Model: The domain-specific representation of the information on which the 

application operates. Domain logic, DEVS formalism for the case of our 
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simulation, adds meaning to raw data. In our simulation, we have a set of well 

defined JAVA based APIs to represent these models (ex, atomic model and 

coupled model).  

• View: The view renders the contents of a model. Multiple views can exist for an 

application.  

• Controller: Processes and responds to events, typically user actions, and may 

invoke changes on the model. 

 

Figure 12. Model-View-Controller pattern 

As shown in Figure 12, the solid lines indicate a direct association and the dashed 

lines indicate an indirect association. The separation of model and view allows users to 

create multiple views for the same model and increase reusability of models. This is one 

of the main reasons why we adopt the FACADE design pattern later. It also is easier for 

the developer to implement and maintain models for the application.  
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FAtomicSimulator
(from  sim ulation)

atomic
(from  m odeli ng)

FAtomicModel
(from  m odeli ng)

digraph
(from m odeli ng)

FCoupledModel
(from m odeli ng)

Controller
(from control ler)

FSimulator

(from sim ulation)...)

FSimulatorView
(from  view)

FModelView
(from  view)

View
(from view)

TimeView
(from timeView)

ModelTrackingComponent
(from view)

Tracker
(from view)

TrackingControl
(from view)

FModel
(from  m odeli ng)

FCoupledSimulator
(from  sim ulation)

RTCentralCoord
(from sim ulation)

 

Figure 13. MFVC framework for the Tracking Environment 

As discussed in the Chapter 2, based on the MVC framework, the DTE adopts the 

FAÇADE layer between Model layer and View-Controller layer. This is because DTE 

has multiple view options and we want to control and synchronize these view options by 

using one controller as well as other advantages described in the Chapter 2. The MVC 

framework with FACADE layer is referred as MFVC (Model-Façade-View-Controller). 
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In the traditional MVC paradigm, the simulation data sets displayed on the View are 

obtained directly from the simulation model which means the View is also allowed to 

interact with the Model. However, as shown in Figure 13, the Façade layer can only 

access to the Model and get a single set of simulation data to store. As mentioned earlier, 

the DTE supports dynamic configuration for monitoring of simulation behavior which 

implies the View is allowed to retrieve selected data for itself by getting data from the 

Façade layer. In addition, as a result of integrating the TimeView into the DTE, there are 

currently two view options, TimeView (TimeView class) and Tracking Log 

(ModelTrackingComponent class).  

Unlike the DTE architecture which has a solid architectural software design 

pattern, the SimView is not constructed by using a MVC design pattern. View and 

Control are integrated onto the one JAVA file (SimView.java) so that it is hard to 

maintain and update the software when there are modifications. Figure 14 displays the 

simple UML diagram to show how the SimView.java file is implemented as one 

application. We can easily recognize that all components are strongly tight and depending 

on each other so that it is not a good approach to build a robust software system in terms 

of modularity, reusability, and complexity of the software. Consequently, we decided to 

take the architectural approach of the DTE which is the MVC framework adapting 

FAÇADE layer and use the SimView as one of simulation view options that users can 

select in the DTE like existing TimeView and Tracking Log.  
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Figure 14. UML diagram for the SimView 

3.1.2. Simulation Model Type 

 As we stated in the Chapter 2, the objectives of these simulation environments are 

different from each other. SimView provides animation of simulation models and enables 

the modelers to specify models directly in the DEVS terms. On the other hand, the DTE 

which is built on the DEVSJAVA Simulation Environment without visualization parts 

provides visual user specified data selection and automated simulation data gathering 

along with the trend chart capability. Therefore, they require separate simulation model 

View 

Control 
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types for execution, for example, ViewableAtomic and ViewableDigraph models for the 

SimView and atomic and digraph models for the DTE. Figure 15 shows hierarchy of 

these simulation models in the DEVSJAVA. 

 

Figure 15. The hierarchy of simulation models 

As we can see, both models are built based on the DEVS formalism. Unlike 

simulation models for the DTE, SimView provides a view of the arbitrary levels of 

coupled model using boxes-within-boxes-style and the animation of messages moving 

along the paths of the coupling between components during the simulation (Mather, 

2003). Therefore, ViewableAtomic and ViewableDigraph are extended from the basic 

DTE Models 

SimView Models 
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DEVS model, atomic and digraph model, to support these capabilities. As a result, 

ViewableAtomic and ViewableDigraph models are adopted as default simulation models 

for the new simulation environment since they can provide not only behaviors and 

input/output data of the simulation model for the Tracking Environment, but also 

animation of the simulation model for the SimView without any modification. The 

Viewable models need to incorporate with the FAÇADE layer adopted as the 

architectural design pattern in the section 3.1.1. More details are provided later section.  

3.1.3. Model Loading Mechanism 

 Two types of model loading mechanisms are used for the existing simulation 

environments. The first method is used by DTE, as shown in Figure 16. 

 

Figure 16. Tracking Environment loading mechanism 

 In this method, a user must specify the name of model root directory and the path 

to the model class from that directory. Typically a user does not change the model 

directory often, the main problem of this approach is that a user must specify the entire 

path to the model whenever a different model is loaded into the simulation environment. 

Moreover, if a model is located in the different folder or different level of the folder 

structure, it is hard for a user to specify the entire path to the model at once. 
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 SimView uses the second mechanism currently as shown in Figure 17. A user 

must configure the path to packages of model classes and source files as well as model 

package names. After the configuration, a user must select a package name at the top of 

the SimView as rounded with red line, and then SimView will automatically display the 

list of available models in the selected package for model selection on the right scroll box. 

 

Figure 17. SimView loading mechanism 

 Consequently, the second mechanism is more convenient and logical for users to 

select a model to be simulated since it provides automation of the displaying the list of 

available models in the package. In addition, at the level of model selection, a user will 

have the option to choose view options, such as SimView and/or DTE, to be displayed on 

the consolidated environment.  
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3.1.4. Simulation Control Logics 

 Two simulation environments use the same type of control logic for the 

simulation. However, there are some slight differences in the purpose of each simulation 

environment. Figure 18 display the list of controls each simulation environment provides 

and how they are differ from each other. 

 

Figure 18. The list of Control Logics in the simulation environment 

 Step(n) and Pause controls are presented in the DTE, but not in the SimView. 

Alternatively, Animation Speed, which controls the speed of message moving, and Show 

coupling, which shows coupling between models, controls are only specialized for 

animation capabilities of the SimView. For the case of integration control logics, the new 

integrated simulation environment must support both capabilities of DTE and SimView 

so that all control logics including those specialized control logics must be presented.  

3.2. Integration of SimView into DTE 

 In the Chapter 3.1, the details on the SimView and DTE are analyzed in terms of 

the architectural design pattern, simulation model type, model loading mechanism, and 

simulation control logic. Based on the analysis performed in that section, the integration 
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process, as well as the final form of the consolidated simulation environment, is 

presented in this section. As analyzed in section 3.1, the DTE is built on the robust 

software architecture pattern called MVC design pattern. Therefore, the DTE becomes 

the base architecture of the new simulation environment. Subsequently the SimView is 

used as one of view options in the DTE since the DTE has adopted the FAÇADE layer to 

control multiple view options by a universal controller. In addition, as discussed in the 

section 3.1.2, ViewableAtomic and ViewableDigraph models become basic simulation 

models for the DEVS-Suite. 

3.2.1. Interface Integration 

 Since the model loading mechanism of the SimView provides more convenience 

and automation of displaying available models to the user, that mechanism adopted into 

the DEVS-Suite. In addition, for the user convenience, the DEVS-Suite provides user 

flexibility in that a user can select view options, SimView and/or Tracking at the level of 

model selection as shown in Figure 19. On the other hand, as discussed in Chapter 2, the 

user can select TimeView and/or Tracking Log at the level of model tracking option. A 

user must configure a path to the source packages and names of the packages which 

contain the model the user want to load. Consequently, after a user select a package, the 

DEVS-Suite searches available and validated simulation models in that selected package 

to display for selection by the user. Figure 20 displays the sequence diagram showing 

how the DEVS-Suite works for loading a model.   
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Figure 19. Interface of the DEVS-Suite 

Since the SimView is integrated into the Tracking Environment, the specialized 

control logics for the SimView such as Animation Speed and Show coupling must be 

presented in the DEVS-Suite controller as shown in the red circled area in Figure 19. 

Figure 19 also displays the SimView with the GPT model is loaded onto the DEVS-Suite.  
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 : Controller  : View  : LoadModel  : ConfigureDialog

View(ControllerInterface)

LoadModel( )

ConfigureDialog(Frame)

populateModelsBox(JComboBox)

loadSettings( )

loadModelAction( )

userGesture(String, Object)

populatePackagesBox(JComboBox)

loadModel(String[])

 

Figure 20. The sequence diagram for model loading mechanism 

3.2.2. Architecture Integration 

  Figure 21 shows the new MFVC framework for the DEVS-Suite. This class 

diagram contains only important classes for the purpose of simplification. The entire 

class hierarchy diagram is provided at the end of this chapter. Basically the 

implementation of FACADE layer does not have any changes, but the connection to the 

Model is altered to Viewable models and simulators as shown below.     
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Figure 21. The MFVC framework for the DEVS-Suite 

 Since the Viewable models and simulators are extended from the original DTE 

models and simulators, semantically this connection is satisfied with the requirements for 

the DTE as well as the SimView itself.  

 Finally, the SimView classes are integrated into the Model as a view option for 

the DTE. As shown in Figure 21, at the View class, the simulation data getting from the 

SimView 

Models 

View Options 



43 

 

Façade layer are sent to two view option classes, SimView (SimView) and Tracking 

Control (Tracking), based on the user selection. Figure 22 displays the simplified MFVC 

class diagram for the DEVS-Suite. Classes are grouped into one of the following 

packages, Model, Façade, View, and Control and the interrelationships between these 

packages and classes are presented in Figure 23.   

 

Figure 22. The simplified MFVC framework 

 In this chapter, Integration process of the SimView into the DTE is discussed for 

the purpose of supporting M&A capabilities in ASBS. The DEVS-Suite is now capable to 

provide simulation data so the Monitoring sub-system can analyze the service 

composition and adopt the control form the Adaptation sub-system which reflects the 
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dynamic binding of services by changing coupling between simulation models. Now the 

new simulation environment for the SOA-based simulation is ready. The next step is to 

develop a set of SOA-based simulation models to support desirable quality of service for 

ASBS. 
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Figure 23. MFVC component/package specification for DEVS-Suite 



 

 

4. DEVELOPMENT OF SOA BASED SIMULATION MODELS 

This chapter describes the SOA DEVS (SOAD) approach for modeling and 

simulating service-based software systems. Generic SOA-based simulation models are 

developed for service broker, service provider, service client and service composition as 

well as a simple network for simulating computer network traffic. In addition, a set of 

transducer models are developed to automate collection of simulation data sets for service 

and network models.  

4.1. SOAD Framework 

 To support simulation modeling of SOA-based software systems, our approach is 

to introduce SOA concept and capabilities into the DEVS framework (H. Sarjoughian et 

al., 2008). The extended DEVS framework with the SOA called SOA DEVS framework 

is developed in order to enable simulation based-design of service oriented computing. 

The approach provides a basis for verifying and validating the design of Monitoring and 

Adaptation sub-systems that conceptualized for Adaptive Service-based Software 

Systems. SOAD is designed and implemented using DEVS-Suite. In SOAD, both 

software and hardware components of service-based software systems are modeled. This 

is useful in order to model and simulate the role network (e.g., router) plays in the overall 

dynamics of system under consideration. As discussed in Chapter 2, there exists no 

simulator that is grounded in a system-theoretic modeling and simulation framework such 

as DEVS. By incorporating the SOA concept into the DEVS simulation models and 

accounting for hardware aspect of service-based software systems, SOA-compliant 

DEVS simulator can be developed (H. Sarjoughian et al., 2008). 
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4.1.1. Comparisons between the SOA and DEVS 

 Before extending the DEVS framework with the SOA concept and capabilities, it 

is important to compare these frameworks in terms of their concepts and capabilities 

since SOA and DEVS are used to develop real and simulated SBSs, respectively.

The comparisons between the SOA and DEVS framework are described below and 

shown in Table 3. 

 

 

 

 

 

 

 

 

 

 

Figure 24. SOA-based DEVS Modeling Approach 
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Table 3  

An Association between the DEVS and SOA Frameworks (H. Sarjoughian et al., 2008) 

SOA DEVS 

autonomous atomic and coupled models modularity 

composable hierarchy and closure under coupling 

formal contract inputs/output ports, variables, and couplings 

abstract logic 
〈X, S, Y, δext, δint, δconf, λ, ta〉 
〈X, Y, D, {M d}, EIC, IC, EOC〉 

reusable basic models 

stateless state-based 

loosely coupled dynamic structure 

discoverable dynamic structure 

• The concept of autonomous services corresponds to the concept of modularity of 

atomic and coupled models. DEVS models are defined in terms of generic 

functions (δext, δint, δconf, λ) and time (ta).  

• The formal contract corresponds to the input/output ports and messages (X and Y), 

and their couplings (EIC, EOC, IC) subject to the strict coupled model 

specification. The couplings in DEVS are fixed, although the use of coupling in a 
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simulation can be decided during simulation. The concept of coupling 

components via ports is absent in SOA. 

• The concept of service composability is similar to coupled model hierarchy. SOA 

composability is not constrained to have strict hierarchy. This is because DEVS 

hierarchy requires strict tree structure relationships among (atomic and coupled) 

model components. In SOA, composability is based on the broker service which 

is not defined in DEVS. In DEVS, input and output messages are sent and 

received via direct couplings – i.e., the coupled model contains the coupling 

relations between model components.   

• The concept of abstract logic in DEVS has a theoretical basis (abstract structural 

and behavior syntax with operational semantics) whereas SOA does not. For 

example, δext has template syntax that has to be completed given a component’s 

specific functions. In contrast, a service has an interface template, but without 

functionality.  

• The basic concept of reusability in SOA is more powerful than that of DEVS. 

This is because the broker concept with support for publishing services and 

identifying services are not defined in DEVS.  

• The concept of stateless services promotes loose coupling of composite services. 

The functions of a service can be arbitrary defined. Atomic and coupled model 

components require state information which includes time t (t ∈ S) in order to 

allow synchronization of events produced and consumed. The time-based 

dynamics of DEVS model components has a central role in simulation.  
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Based on the analysis in Table 3, we can notice that one fundamental difference 

between the DEVS and SOA is the use of the broker concept. In the SOA, all services 

must publish its service to the broker service in order to be discovered and composed 

with other services. Therefore, the connection between service providers and service 

client is only established by the broker service only.  

In DEVS, however, the broker concept is not accounted for and thus the DEVS 

atomic and coupled models are not SOA compliant even thought these models have 

important similarities to those of primitive and composite services. In fact, we can model 

a SOA-like software system by using the DEVS atomic model and coupled model and 

applying the concept of publish/subscribe ports and dynamic structure (Ramaswamy, 

2008). However, this approach to modeling service-based software systems is not SOA-

compliant since there is no model for the broker service.  

4.1.2. Mapping SOA Elements to the DEVS Elements 

 As stated previously, the SOA elements have similarities and differences with 

those of DEVS. We need to map these SOA elements into the DEVS models in order to 

develop the SOAD simulator. Below, Table 4 shows the correspondences between the 

SOA and DEVS elements. The SOA-compliant DEVS framework is characterized in 

terms of primitive, composite, and broker services (H. Sarjoughian et al., 2008) which in 

this thesis are referred to as service provider, service client, and service broker, 

respectively.  
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Table 4 

Correspondences between the DEVS and SOA Elements (H. Sarjoughian et al., 2008) 

SOA Model Elements SOAD Model Elements 

services (service provider, service client, 
service broker) 

atomic models 
(service provider, service client,  

service broker ) 

service description 
entity 

(service-information) 

messages 
entity 

(service-lookup and service-call) 

messaging framework ports and couplings 

service registry and discovery executive model 

composition of services  
coupled models 

(service providers) 

In Table 4, the service provider, service client, and service broker are mapped to 

DEVS atomic models. Similarly, composite service is mapped to a DEVS coupled model. 

In addition, the messages and their exchanges in the DEVS can be extended to represent 

service description and messages. DEVS model communications via messages, ports, and 

coupling can be used to represent the SOA publish/subscribe concept.    

4.2. Software Models 

 To realize the SOA-compliant DEVS framework, we need to develop the SOA-

based DEVS service provider, service client, and service broker models. In addition to 
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the primitive SOA-based service models, it is also necessary to develop a composite 

service model. 

4.2.1. SOA-Compliant DEVS Models 

 Based on the relationship defined between SOA and DEVS frameworks (see 

Table 4) the service provider, service client, and service broker are primitive services in 

the SOAD framework. As shown in Figure 25, the service provider and service client are 

defined to have specific ports for requesting and publishing services (H. Sarjoughian et 

al., 2008). Similarly, the service broker is defined to identify, publish, and found ports 

given its role with the service provider and client. The coupling relationships among the 

primitive service provider and service client with one broker are shown in Figure 25. 

Each of these SOA-based DEVS models are extended from the DEVS atomic model and 

are defined to have their unique structures and behaviors as described in Section 4.3. For 

example, a service provider publishes its service to the service broker and performs its 

own functionality as requested.  A service client looks up the service information through 

the service broker and may subscribe to the published service. The composition of 

services is represented by a coupled model.  A particular realization of the composite 

service is defined to be a composite service which contains at least two services. The 

composite service publishes its service as well as each of the services it contains to the 

service broker. The service broker stores the service definitions and sends them to the 

clients if the desired services are available. 

Three types of messages are defined for the SOAD simulator. They are service-

info, service-lookup, and service-call message, as shown in Table 4. Service-info 
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message which contain the description of the service is used between the service broker 

and the service provider and the service client. A service-lookup message is used by the 

service client in order to ascertain whether or not some desired services are available or 

not from the broker. The service-call message is used between the service client and the 

service provider. From the service client to the service provider, the service-call message 

contains a data for the specific method (endpoint) in the service and it contains the 

serviced result from the service provider to the service client.  

4.2.2. A Simple Network Model 

 We need to have a simple network model to represent hardware aspects of the 

SOAD framework as shown in Figure 26 (H. Sarjoughian et al., 2008). Basically the 
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Figure 25. SOA-compliant DEVS model  
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network model has capabilities of FIFO message queue, transmission delay, and traffic 

bandwidth.  
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Figure 26. Communication of messages  

4.3. Modeling of SOA-Compliant DEVS models 

 As stated in Chapter 2, each SOA component, service broker, service client, 

service provider, and composite service, has its own features and behaviors that should be 

modeled. However, it is impractical to model all possible features and behaviors of the 

component so that critical features that can represent the characteristics of the model are 

selected to be modeled. 

4.3.1. Service Broker Simulation Model 

There are many desirable features for the service broker as discussed in Chapter 2, 

but service broker simulation model is modeled with service registry feature only for 

simplicity as shown Figure 27. Basically service provider can publish its service 

description including endpoints information to the service broker and service client can 

find the service based on the desired endpoint along with the service name. Service 

broker store the received service-info messages as it is and return it to the service client 
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when the service-lookup message matches one of service-info message in the repository. 

Otherwise, it notices the service client that there is no information available.  

 

Figure 27. Service broker simulation model 

4.3.2. Service Client Simulation Model 

Service client simulation model is modeled with two behaviors such as looking up 

the service broker and invoking service provides. First, service client simulation model 

looks up the service broker using a desired endpoint along with the service name. The list 

of service providers that a service client simulation model wants to subscribe is 

constructed when a service client simulation model is defined. If the service client 

simulation model receives the service-info message from the service broker, then invoke 

the service provider; otherwise it may continue to look up the service broker for a given 

number. 

 

Figure 28. Service client simulation model 

4.3.3. Service Provider Simulation Model 

Service provider simulation model is modeled with its own performService() 

function that fulfills a set of specific services, as depicted in Figure 29. The service 

provider simulation model publishes its input ports as endpoints at the given time. It 
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should be able to handle multiple requests and service them simultaneously. Accessing 

information is supported by coupling and ports.   

 

Figure 29. Service provider simulation model 

4.3.4. Composite Service Simulation Model 

To model the composite service simulation model, orchestration is used as a 

simple service composition in SOAD as shown in Figure 30. There are number of ways 

to composite services as we discussed in Chapter 2. However, in this research, sequential 

service composition is implemented to narrow down the scope of this research. Service 

composition information should be defined in the service-information message model as 

binding information. Each primitive service provider in the composite model does not 

know the order of invocation.     

 

Figure 30. Composite service simulation model 
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4.4. Implementation of SOA-Compliant DEVS models 

As noted previously, a set of generic DEVS models, GenService, that represents 

static and dynamic software aspects of SOA capabilities are developed. In this section, 

we implement the structural specification of each proposed model and how they 

correspond with the DEVS specification. The GenService API contains several pre-

defined behavioral SOA-based simulation models that can be categorized into three types 

based on its characteristics: generic messages, primitive services, and composite service. 

The DEVS-Suite is used to simulate the specific model created by the generic GenService 

API, called Application Model.   

4. 4.1. Generic Messages 

 As shown in Figure 31, there are three principal usages, publication, lookup, and 

subscription, of message between services in the SOA. These three different usages 

require three discrete types of messages due to varying data requirements in each 

message. Consequently, three different types of messages are employed in the 

 

Figure 31. The message types in GenService 
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GenService API. They are derived from the Entity class in the DEVSJAVA API as 

shown in Figure 32. 

 

ServiceCallMessage

PacketSize : double = 32
name : String
Subscriber : String
Publisher : String
BindingInfo : ArrayList
Duration : Double
Data : Pair

(from GenService)
ServiceLookupMessage

Subscriber : String
ServiceName : String
Endpoint : String
duration : Double

(from GenService)

ServiceInfoMessage

receiver : String
ServiceName : String
Description : String
ServiceType : String
EndPoints : ArrayList
BindingInfo : ArrayList

(from GenService)

entity
(from GenCol)

 

Figure 32. Messages in the SOAD 

4.4.1.1. ServiceInfo and ServiceLookup messages. The WSDL is used in the real 

environment between services and service brokers. In the simulation environment, among 

the three message types, ServiceInfo and ServiceLookup represent characteristics of the 

WSDL (see Table 5).  

These messages are needed for publishing services and their discovery. The 

ServiceInfo message type is used to publish the service to the service broker. It contains 

the service definition given a service name, description, service type (atomic or 

composite), endpoints, and binding information as shown in Figure 32. The endpoint 

consists of two parts: exposed method name and argument type for the method. Currently 

the method is limited to accept only one argument to perform its functionality and later it 
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will need to be extended. Binding information contains the list of services with an 

endpoint. Logically the order of services in the list represents the order of service in the 

composition. This binding information feature is implemented partially for now, but it 

will be resolved in the next research to support dynamic service compost ion. The 

ServiceInfo message type is stored into the service broker class directly in order to lookup. 

Table 5  

WSDL and ServiceInfo and ServiceLookup Messages 

WSDL ServiceInfo ServiceLookup 

interface service name, endpoints service name, endpoint 

message n/a data 

service n/a (ports and couplings) n/a (ports and couplings) 

binding binding info n/a 

 

ServiceLookup message type contains the subscription information, the name of 

the service provider, the endpoint to service client, the data type to be sent, and the time 

frame to subscribe service. The name of the service provider and an endpoint in that 

service provider are used as key value to find the desired service information in the 

Service Broker. In reality, the service client can use a service description or a specific 

combination of service information to lookup the broker to locate a service. However, 

this capability is limited to use of service name with an endpoint for the simulation. 

4.4.1.2. ServiceCall message. The SOAP, XML based communication protocol, is 

used over HTTP in the communication between services.  In the simulation environment, 
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ServiceCall message type corresponding to the SOAP properties is employed for 

exchanging messages between services with the required data. Figure 32 shows the 

structure of ServiceCall message. The size of ServiceCall message depends on the size of 

service data plus the default size of packet, 32 Bytes. 

4.4.2. Primitive Services 

 The primitive services such as service provider, service client, and service broker 

as a DEVS atomic model are proposed as shown in the Figure 33. The default behavioral 

specification of the ViewableAtomic model is presented in the (B. P. Zeigler & 

Sarjoughian, 2003). These simulation services have a one-to-one correspondence with the 

SOA service. Services in the SOA can be considered as components in the component-

based system. Unlike a component, a service is fully self-contained and loosely coupled. 

atomic
(from modeling)

ViewableAtomic
(from modeling)

ServiceBroker

start : double
available_time : double
UDDI : ArrayList

publish()
subscribe()
publishCompositeService()

(from GenService)

ServiceProvider

Processing_time : double
Proc_time : double
total_size_packets : double
ServiceName : String
ServiceDescription : String
ServiceType : String
Endpoints : ArrayList
RequestList : ArrayList
msgQ : Queue

performService()
CheckDestination()

(from GenService)

ServiceClient

numOftry : int = 5
waitingTime : double = 1
serviceResponse : double = 100
startTime : double
lookupList : ArrayList

out()

(from GenService)

 

Figure 33. Primitive services in the SOAD 
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4.4.2.1. ServiceBroker model. ServiceBroker model has a container (UDDI) to 

store ServiceInfo messages as a service description. The desired service can be 

discovered by looking up an endpoint from the ServiceClient as a key. Figure 33 shows 

two important methods as characteristics of SOA, 

• Publish:  Store the published service information as a ServiceInfo message into 

the UDDI.  

• Subscribe:  Return the index of the matched service in the list. An endpoint from 

the service client is used to lookup the services. If no service is found, then a 

negative value is returned. Service Broker sends the matched service information 

(ServiceInfo) or “No Found” message to the client. 

 

4.4.2.2. ServiceClient model. ServiceClient model defines a service client in the 

SOA. A service client can be defined with the list of service that the service client wants 

to subscribe sequentially. At the beginning, a client with a given start time begins to look 

up the service broker to search whether the desired service is currently available or not. If 

the endpoint is not available or even if the service broker itself is not available yet, the 

service client attempts to lookup the service broker again after a set amount of time units 

until the specified number of attempts, which is currently set at 5 times as shown in 

Figure 33. If the endpoint is found and gets the service information, then the service 

client sends a message with a required data for the endpoint and then waits for the 

response from the service for the given response time, 100 time units. After completion 

of a service subscription, if there are more services remaining in the subscription list, then 
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the service client looks up the broker again and subscribes the service until no more 

services are in the list.  

4.4.2.3. ServiceProvider model. ServiceProvider model defines behavior of its 

specific service with a performService method. The performService receives a data from 

the service client as an argument and performs its specified service depending on the 

subscribed port (endpoint) using that data. Currently, we do not consider a service which 

contains multiple methods in it which means a service has only one endpoint to be 

subscribed upon request. As an initial behavior, all service providers need to publish their 

services to the Service Broker at the given time. Figure 33 shows the specifications of 

ServiceProvider.   

 Unlike other simulation models, the ServiceProvider model has two time logics, 

Processing Time and Service Duration, for a queue and a list, msgQ and RequestList 

respectively, as shown below. 

 

Figure 34. Internal Event function in the ServiceProvider 
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Processing Time is the required time for a request to be processed before 

servicing. In other words, a request needs to wait in the msgQ for the Processing Time. 

For example, if the Processing Time is 5 time units, then R4 in the Figure 34 has waited 

for 5 simulation time units before it is stored into the RequestList to be served for the 

requested Service Duration. All service requests, R1 to R4, in the RequestList are 

handled by the performService method for each request at a time.  

The functionality of the RequestList is to handle multiple user requests for the 

same endpoint or service simultaneously. As shown in Figure 35 (a), multiple service 

clients can subscribe the same endpoint at a time. In that case, at the programming level, 

endpoint objects from the same endpoint are created for and assigned to each request, as 

shown in Figure 34 (b). Therefore, it looks like only a service client subscribes this 

endpoint at a time. This capability is implemented by the RequestList. Multiple requests 

are stored in the RequestList and they are serviced simultaneously by iterating the entire 

list at one time. Then the simulation time is advanced.  

 

(a) 

 

(b) 

Figure 35. Connection between service clients and an endpoint 
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The internal event function as a DEVS atomic model loops itself by changing 

three states, “processing”, “looping”, and “servicing” sequentially as shown in Figure 34 

until msgQ and RequestList become empty. At the first “processing” state, if the 

Processing Time becomes zero, then the top request is pulled out from the msgQ and 

added into the RequestList. In the “looping” state, the service provider loops the 

RequestList to serve each request if the requested Service Duration for the request is not 

equal to zero and then send output messages to each corresponding service client by 

changing the state to “servicing”. If Service Duration for a request is zero, then it skips to 

the next request. At the “servicing” state, after all requests in the RequestList are handled, 

then it removes requests which have zero Service Duration from the RequestList. Finally, 

the state is changed to “processing” again for another loop.   

4.4.3. Composite Service Model 

The composite service model contains at least two service providers (either 

primitive or composite service) models to represent a composite service. The flow of 

service invocations needs to be specified at the service model design stage. Figure 36 

shows how the real services are composed using BPEL. This is a basic capability for 

hierarchical service provider composition which has to be extended to support different 

kinds of workflow patterns (Russell et al., 2006). 
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Figure 36. Business Process Execution Language 
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ServiceProvider

Processing_time : double
ServiceName : String
ServiceDescription : String
ServiceType : String
Endpoints : ArrayList
RequestList : ArrayList
msgQ : Queue

performService()

(from GenService)

ServiceTransducer

in : ArrayList
out : ArrayList
observation_time : double

compute_TP()
compute_TA()

(from GenService)

ServiceBroker

start : double
available_time : double
UDDI : ArrayList

publish()
subscribe()
publishCompositeService()

(from GenService)

ServiceRouter

trasmissionTime : double
network_traffic : double
outputPort : String

(from GenService)

CompositeService

PublisherList : ArrayList
CompositePublishersList : ArrayList
TransducerList : ArrayList
Endpoints : ArrayList
Router : ServiceRouter

EndpointsConstruct()
PublisherConstruct()
TransducerConstruct()
CompositeConstruction()
CouplingConstruct()

(from GenService)

1..*

1

1..*

1

1..*

1

1..*

1
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1

1

1

1

1

1

1

1

ViewableDigraph
(from modeling)

 

Figure 37. Composite service model 

4.4.4. Application Composition 

 As shown previously, a SOA-compliant DEVS model consists of a set of service 

provider and service client with a service broker. Default couplings between these 

primitive services are permanent. Therefore, we employ the ApplicationComposition 

model that constructs default coupling between the service models as shown in the Figure 

38.  



66 

 

ServiceRouter

trasmissionTime : double
network_traffic : double
outputPort : String

(from GenService)

ServiceClient

startTime : double
lookupList : ArrayLis t
ServiceRequest : ServiceCallMessage
lookUp : ServiceLookupMessage

(from GenService)

ServiceTransducer

in : ArrayList
out : ArrayList
observation_time : double

compute_TP()
compute_TA()

(from GenService)

ServiceProvider

Processing_time : double
ServiceName : String
ServiceDescription : String
ServiceType : String
Endpoints : ArrayList
RequestLis t : ArrayList
msgQ : Queue

performService()

(from GenService)

ApplicationComposition

BrokerList : ArrayList
RouterList : ArrayList
PublisherLis t : ArrayList
CompositePublishersList : ArrayList
SubscriberList : ArrayList
TransducerLis t : ArrayList

ServiceComposition()
ServiceComposition()
BrokerRouterConstruct()
PublisherConstruct()
CompositeConstruct()
SubscriberConstruct()
TransducerConstruct()
CouplingConstruct()

(from GenService)
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1
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1

ServiceBroker

start : double
available_time : double
UDDI : ArrayList

publish()
subscribe()
publishCompositeService()

(from GenService)
1

1

1

1

CompositeService

PublisherList : ArrayList
CompositePublishersList : ArrayLis t
TransducerList : ArrayList
Endpoints : ArrayList
Router : ServiceRouter

EndpointsConstruct()
PublisherConstruct()
TransducerConstruct()
CompositeConstruction()
CouplingConstruct()

(from GenService)
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1
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1

  

Figure 38. ApplicationComposition model 

 First of all, this generic composition model contains five empty construction 

methods which allow users to construct specification of each component in SOAD.  

As stated earlier, at least one service provider (either primitive or composite), one service 

client, and one service broker are required to compose a SOA-compliant DEVS 

application model. The cardinalities in Figure 38 represent that constraint. At the last, 

CouplingConstruct method which is used for coupling between each DEVS component 

in the five lists is predefined.  
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 4.4.5. ServiceTransducer Model 

ServiceTransducer

in : ArrayList
out : ArrayList
observation_time : double

compute_TP()
compute_TA()

(from GenService)

 

Figure 39. ServiceTransducer model 

 Transducer, an observational component, collects a set of simulation data for the 

service and it is attached to each service model, service provider, service client, and 

service broker. Transducer keeps track of all arrivals and departures for a given 

observation interval then turnaround time and throughput for the model can be computed 

as shown in Figure 39. 

• Turnaround time: the length of time between its arrival and its departure from the 

attached service. 

• Throughput: the average rate of message departures from the service, estimated 

by the number of requests processed during the observation interval, divided by 

the length of the interval. 

 

 

 

 



 

 

5. Simulation Experiments 

This chapter demonstrates the experiments of a set of SOAD simulation models 

discussed in Chapter 4. Using the simulation models, a set of the experimental scenarios 

such as the Voice Communication Service and Travel Agency Service are developed and 

simulated on the DEVS-Suite environment in order to verify and validate that the 

simulation models are suitable to represent the SOA concepts and capabilities.  

5.1. Service Composition and Configurations 

 The service composition can be defined with four configurations as shown in 

Table 6. These configurations are based on the number of service clients and providers, 

not on the number of service broker since there is only one broker in the service 

composition. The service composition must be able to support these configurations in 

terms of SOA concept and capabilities. 

Table 6  

Service Composition Configurations 

 Client Provider Broker 

Configuration 1 1 1 

1 
Configuration 2 n 1 

Configuration 3 1 n 

Configuration 4 n n 

5.2. Experimental Scenarios 

 Two experimental scenarios, such as the Voice Communication Service (VCS) 

System and the Travel Agency Service (TAS) System are developed in order to validate 

the SOAD simulation models.  
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5.2.1. Real Voice Communication Service System 

 A real experiment for the VCS system is developed to capture four critical QoS 

features, such as timeliness, throughput, accuracy, and security. The experiment is a 

simple network intensive service, where multiple service clients can use the VCS 

simultaneously to receive real-time voice data streams with various qualities of voice 

configured by a user-specified sampling rate as shown in Figure 40.  

 

Figure 40. Voice Communication service 

The real experiment is developed using C# in .Net and deployed on the .NET 

development server. Since the VCS is a network intensive service, throughput is mainly 

examined as a main QoS feature. Processor, Memory, Physical Disk, System, IP, UDP, 

TCP, Server, and Web Services are collected as the experimental data using Windows 

Performance Object. There are three experiment control variables, such as the sampling 

rate for recording the voice data stream, the number of service clients, and the buffer size 
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for storing the voice data before network. Table 7 shows the different setting for those 

control variables.  

Table 7  

The Experimental Control Variables Settings 

Sampling Rate (KHz) 44.1, 88.2, 132.3, 176.4, 220.5  

# of Service clients 1, 2, 3, 4, 5 

Buffer Size (KBytes) 16, 32, 48, 64, 80  

 

The real experiment has been run under 125 experimental conditions, and each 

experimental condition has 5 independent runs to collect 5 replicates of data set. For each 

individual replicate, 60 data observations are recorded. By comparing these data sets with 

simulation data sets, we can verify and validate our SOAD simulation models.  

 In the real experiment, the actual broker service is not presented since we 

assumed that the VCS has already been published to the service broker and service clients 

have looked up the broker to find the VCS, meaning that service clients already know the 

VCS information such as the URL of the VCS which are described in WSDL. However, 

in the SOAD framework, the broker must be implemented so that the SOA concepts and 

capabilities are represented by the generic simulation models.  

5.2.2. Travel Agency Service System 

 A simple simulation experiment called Travel Agency Service (TAS) system is 

designed to show the service composition with a composite service. For this service 

composition, we developed two primitive simulation services, such as the USZIP service 
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which provides the city name by a given zip code and the RESORT service which 

displays the closest resort place by a given city name. Then these primitive services are 

used to construct the TAS.  

Figure 41 depicts a simple experimental scenario of using the TAS. A service 

client invokes the TAS with a zip code (85281). The TAS sends the 85281 to the USZIP 

service and then the USZIP service provides a city name (Tempe) generated by the zip 

code to the RESORT service. The RESORT service then produce the closet resort name 

(the Phoenix Resort) by the city name and The TAS returns the result to the client.  

 

Figure 41. Travel Agency service composition 

5.3. Service Composition with Primitive Services 

 Based on the service configurations stated in Table 6, we can create several 

simulation scenarios for the VCS simulation. First of all, we need to construct instances 

of service providers including specifications of endpoints, service clients and a service 

broker as well as the hardware component, network, for a service composition.  
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5.3.1. Composition for the VCS Model with Configuration 1 

 Since we already have the ApplicationComposition class defined in Chapter 4, the 

composition of primitive services as well as the network for the VCS can be derived from 

the ApplicationComposition. In the ApplicationComposition class, as shown in Figure 42, 

six independent service lists are created to store instances of each component. For the 

VCS composition, we need to construct all participants at each construction function call 

and store them into the corresponding list. The order of each construction function call 

does not matter. However, the coupling construction function must be called at the last to 

automatically construct coupling between all components stored in the six service lists.   

 

Figure 42. The Service Composition class 
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5.3.1.1. Service broker and Network. Since we need only one broker and one 

network link in the configuration 1 for the VCS simulation, we construct a service broker 

with a service start time and a length of available time and a network link with a network 

bandwidth and store them into corresponding lists, as shown in Figure 43.  

 

Figure 43. Broker and Network construction 

 5.3.1.2. Service provider. As shown in Figure 44, qRate is defined as an endpoint 

which requires an argument in double data type to subscribe and store into the list of 

endpoints for the VCS. Then, the VCS is constructed with the service name, service 

description, service type, list of endpoints, and processing time for the request.  

 

Figure 44. Service provider construction 
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The basic behaviors and structures of the provider are already defined in the 

generic SerivceProvider class as stated in Chapter 4. Therefore, to construct the VCS, we 

need to define service specifications for qRate in the performService method as shown in 

Figure 45.  

 

Figure 45. qRate specification 

 Since the VCS returns the voice data streams with the requested sampling rate to 

the client, the size of returning messages vary based on the control variable setting 

discussed in Table 7. For the current setting, the buffer size for the network 

communication is set to 16 Kbytes and the average number of datagrams received by the 

service client is set to 260. These settings are adopted from the real experiment.  

Therefore, the size of each message from the VCS to the service client is the average 

number of messages multiple by the buffer size, that is, 4160 Kbytes. We ignored the 

datagrams header size, 32 Bytes, since it is a constant and negligible in size.  
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5.3.1.3. Service client. With the configuration 1, as shown in Figure 46, the VCS 

simulation has only one service client which is defined with the name of the client, the 

list of ServiceLookup messages that contains the client with an endpoint, the sampling 

rate, and the duration of time to subscribe to the service, and the time to look up the 

Service Broker. This Service Client is added into the list of clients to be coupled with 

other components in the simulation. The default structure and behavior of the client is 

defined in the generic ServiceClient class in Chapter 4.  

 

Figure 46. Service client construction 
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 5.3.1.4. Transducer. The list of transducers for each primitive service as well as 

the network is constructed to collect a set of simulation data as shown in Figure 47.  

These data sets are compared with the data sets collected from the real experiment in 

order to validate the SOAD simulation models. Transducers observe each component for 

a given length of time and then measure the performance metrics defined in each 

transducer model. For example, the transducer for the network link can measure the 

average transmission delay, total size of messages transmitted, and network utilizations 

as shown in Figure 48. 

 

Figure 47. Transducer construction 
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ServiceTransducer

in : ArrayList
out : ArrayList
observation_time : double

compute_TP()
compute_TA()

(from GenService)

BrokerTransd

name : String
Observation_time : double

BrokerTransd()
show_state()
numOfpublished()
numOflookup()
numOfFailure()
lengthOfAvail()

(from ServiceArc)

PublisherTransd

name : String

PublisherTransd()
show_state()
total_size_msgs()
numbOfSubscribers()

(from ServiceArc)

SubscriberTransd

name : String

SubscriberTransd()
show_state()
numbOfPublisher()
total_size_msgs()

(from ServiceArc)
RouterTransd

name : String
bandwidth : double
name2
time : double = 70
TimePt : double = 0

RouterTransd()
show_state()
avg_Transmission_delay()
total_size_msgs()
getNetUtilization()
getMinUtilzation()
getMaxUtilzation()

(from ServiceArc)

 

Figure 48. Transducers in the VCS 

 5.3.1.5. Coupling of services. The user takes a role of constructing a service 

broker, a network, the list of service clients, and the list of service providers while 

coupling between these components is automatically completed.  Figure 49 shows the 

service composition for the VCS simulation with the configuration 1. 
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Figure 49. Voice Communication service with Configuration 1 

5.3.2. Composition for the VCS Simulation with Configuration 2 

 Configuration 2 represents multiple clients with one provider and that is easily 

constructed since the generic provider class has the capability to handle multiple requests 

simultaneously as described in Chapter 4. Since the list of clients and the list of providers 

are maintained independently and coupling between these primitive services are already 

established, we only need to construct more clients to subscribe the VCS as shown in 

Figure 50.  

There are no changes with the service broker and the VCS. Therefore, the VCS 

with multiple clients as mentioned as configuration 2 are constructed as depicted in the 

Figure 51. As shown, the entire VCS simulation is not that different from the Figure 49, 

which only has one client, except for the number of client. However, the VCS can receive 

multiple requests and return a voice data stream with requested sampling rate back to 

clients simultaneously.  
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Figure 50. Service client construction with Configuration 2 

 

Figure 51. The VCS simulation with Configuration 2 

5.3.3. Validation on the SOAD Simulation Models. 

 Since configuration 3 and 4 use the simulated service, comparisons between the 

simulation data sets from the transducers and the real experimental data sets from the 

Window Performance Objects are conducted for the VCS system with configuration 1 
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and 2 so that the SOAD simulation models can be validated in terms of four critical QoS 

features, mainly throughput for the VCS system. Since it is more important for the aspect 

of service provider, we measured throughputs of the real VCS and simulated VCS with 

configuration 1 and 2 60 times. The simulation control variable settings for each case are 

shown in Table 8.  

Table 8  

The Simulation Control Variable Setting 

 Configuration 1 Configuration 2 

Sampling Rate 44.1 - 220.5 KHz 44.1 KHz 

# of Service clients 1 1-5 

Buffer Size 16 Kbytes 

  

With configuration 1, we collected two sets of data for both the real and simulated 

VCS (Roontiva et al., in preparation). First, we measure service provider throughputs 

with a fixed sampling rate 220.5 KHz for 60 times. Second, we adjusted the sampling rate 

from 44.1 KHz to 220.5 KHz and collected service provider throughputs. The results of 

the real and simulated VCS with configuration 1 are shown in Figure 52.   
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(a) The VCS Throughput by Sample Number 

 

(b) Sampling Rate vs. Service Provider Throughput 

Figure 52. The measurements of the VCS throughput with Configuration 1 
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 For the case of configuration 2, we measure throughputs with a fixed sampling 

rate 44.1 KHz for the both the real and simulated VCS by adjusting the number of service 

clients from 1 to 5. The actual measurements are presented in Table 9 and comparisons 

are shown in Figure 52. 

Table 9  

Throughputs for the Real and Simulated VCS by Number of Service Clients 

Number of Service Clients Throughput (Simulated) Throughput (Real) 

1 1.332300356 1.3459957 

2 2.670600711 2.693091272 

4 4.333476156 4.396452098 

5 5.311201423 5.388197829 

 

 

Figure 53. Comparison the throughputs between the real and simulated VCS 



83 

 

 Based on the comparisons between the simulation data and experimental data, 

there are differences between them; however the differences are negligible as shown in 

Figure 52 and 53 meaning that we can validate that the SOAD simulation models are 

suitable to represent the static software aspect of the SOA capabilities. 

5.3.4. Composition for the VCS Simulation with Configuration 3 

 Since the SOAD simulation models have been validated, we can extend the 

service composition with configuration 3. In this configuration, a service client 

subscribes multiple service providers. For this case, we can use two more primitive 

services developed for the TAS simulation, which are, USZIP service and RESORT 

service as shown in Figure 54 and add them into the service provider list for coupling.  

 

Figure 54. Service Provider construction with Configuration 3 
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Since we do not need complicated services, the specifications of endpoints in 

these services are really simple as shown in Figure 55.  

  

(a) USZIP (b) RESORT 

Figure 55. Specifications of endpoints in USZIP and RESORT services 

For the case of a service client, the lookup table is maintained to store the lookup 

messages for subscription. A service client looks up the broker at first to subscribe the 

VCS.  After completion of the VCS, a service client looks up the broker again if there are 

more services that the service client wants to subscribe in the lookup list.  The order of 

subscriptions needs to be specified as shown in the Figure 56. 
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Figure 56. Service clients construction with Configuration 3 

 Finally, Figure 57 shows the service composition for the configuration 3. 

 

Figure 57. The VCS simulation with Configuration 3 
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5.3.5. Composition for the VCS Simulation with Configuration 4 

 Configuration 4 is a consolidation of configuration 2 and 3 so that we need to 

construct multiple service clients as well as service providers. For the construction of 

service providers, we use the VCS, USZIP, and RESORT services. We modified little bit 

for client construction so that each service client subscribes to a different service provider.  

Figure 58 shows the service client construction, where Subscriber 1 subscribes the USZIP 

service, Subscriber 2 subscribes the VCS, and Subscriber 3 subscribes the RESORT 

service. Figure 59 is the service composition with configuration 4. 

 

Figure 58. Service client construction with Configuration 4 
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Figure 59. Service composition with Configuration 4 

  5.4. Service Composition with Composite Service 

 Since we have constructed two primitive services, USZIP and RESORT, and the 

USZIP service can provide a required data, the city name, for the RESORT service, we 

can construct a composite service, the TAS, by using them.  

5.4.1. Composition for the TAS simulation with configuration 4. 

 The service composition is shown in Figure 60. The services in the composite 

service class can be either a service provider or a service client in terms of a SOA 

concept. In addition, a service broker is not involved in the composite service class since 

only one universal service broker at the top architectural level is used as a repository for 

the composite service.  
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Figure 60. Composite service composition 

5.4.1.1. Endpoints construction. Since the TAS itself is a composite service, the 

TAS must have at least one endpoint to publish its functionality to the service broker. 

Figure 61 shows the endpoint construction for the TAS.  

 

Figure 61. Endpoints construction for the RBZ 

 

 



89 

 

5.4.1.2. Service provider construction. The specifications of endpoints in the 

USZIP and RESORT services are already defined previously. Therefore, we need to 

construct the primitive client list for the TAS using them as shown in Figure 62.  

 

Figure 62. Service client construction for the RBZ 

5.4.1.3. Service composition with the VCS and TAS. Now we have a primitive 

service, the VCS, and a composite service, the TAS and then we construct the service 

with configure 4 using VCS, TAS, and three clients, where two clients subscribe the VCS 

and one client subscribes the TAS. Since we have constructed all services except the TAS, 

we need to construct the TAS in the service composition as shown below.  
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Figure 63. Composite service construction 

Since there are no automatic ways to composite services at a run time currently, 

we need to specify the service binding information, or rather the order of primitive and/or 

composite services in the composite service so that the message contains the information 

concerning which service is the next receiver. This composite service must be published 

manually into the broker to be subscribed. Figure 63 shows the entire composite service 

composition with the VCS and the TAS. 



91 

 

 

Figure 64. The Composite service composition with the VCS and the TAS 

5.5 Scaling SOAD Models with the DEVS-Suite 

In addition to the simulation experiments that were developed for the 

configurations listed in Table 6, it is useful to determine how large of a system can be 

simulated in the DEVS-Suite for a given hardware computational resource.  The Voice 

Communication System with Configuration 2 is used to examine the scalability of the 

SOA and the DEVS-Suite. A representative set of simulation models having 20 to 7000 

model components were devised and simulated for the VCS system. For the convenience, 

the SimView is turned off and any set of data is tracked. Figure 65 shows how the 

number of service clients impacts the wall-clock simulation time given a desktop 

machine with Core 2 Duo 2.66 GHz CPU and 4GB RAM. As expected, the wall-clock 
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simulation time increases proportional to the number of service clients. The largest 

simulation executed contained 3500 service client models and 3500 transducer models. 

The total number of models in DEVS-Suite can be increased provided that more powerful 

hardware (more cache and virtual memory as well as higher speed single or multi-core 

processors). In particular, the default setting of the Java Virtual Machine can be changed 

to allow more virtual memory which is needed to load and execute larger number of 

objects. The DEVS-Suite, therefore, supports conducting relatively large-scale simulation 

on single machines and thus supports the scalability needs of the simulating service-based 

software systems.      

 

Figure 65. Execution scalability of the DEVS-Suite simulator  

    

 



 

 

6. Conclusion and Future Research 

6.1. Conclusion 

As stated previously, SOA-based software design for distributed computing 

systems poses new challenges to existing simulation tools. SOA enables dynamic 

composition of different types of services as needed. Dynamic service composition 

requires the development of high quality SBS that can simultaneously satisfy multiple 

QoS features. To achieve this goal, QoS Monitoring and Adaptation sub-systems are 

needed to collect and analyze tradeoffs between multiple QoS features and adapt the 

composition of services accordingly.  

 To develop the ASBS framework and support design, implementation, and testing 

of its Monitoring and Adaptation sub-systems, a suitable SOA-based simulation 

framework referred to as SOAD has been developed. We developed a set of service 

abstractions – service broker, service client, service provider, and their relationships, such 

as the service provider must publish its service to the service broker before being 

subscribed and the client only can find out the service provider via service broker. In 

addition to these SOA elements and relationships, a set of message types corresponding 

to WSDL and SOAP in the real SOA are also developed to comply with the SOA 

framework. Since SOAD simulator should account for the both hardware and software 

aspects of SOA, simple hardware components such as a network link is modeled. In 

addition a set of transducer models have been developed to collect data on services and 

network links. 

Since current existing simulation environments are not aimed to support early 

creation of designs for ASBS, we developed the new DEVS-Suite simulation 



94 

 

environment which extends the Tracking Environment and DEVSJAVA simulators. The 

capability to track, animate, and plot time-based simulation data sets helps analyze the 

dynamics of adaptive service-based software systems.  

 Models were developed for a voice communication system and a travel agency 

system. A real voice communication system was used to develop their simulated 

counterparts. The VCS simulation models demonstrated the ability to develop alternative 

design configurations and evaluating their dynamics using DEVS-Suite.  The resulting 

SOAD simulator demonstrated creation and validation of different simulation models and 

scenarios which is key for evaluating alternative adaptive service-based software systems 

in terms of their quality of service attributes.  

6.2. Future Research 

The current SOA-based simulation models do not support service-based software 

systems where services can be added or removed at run-time. Since the adaptation system 

in the ASBS requires dynamic service composition at run time, it is important for the 

SOAD simulation model to change its structure dynamically by adding or removing 

service models. Dynamic Structure DEVS modeling (Barros, 1997) is suitable to be 

incorporated into the SOAD simulator. As we stated, the SOAD should account for the 

both the hardware and software aspects of SOA and the DEVS/DOC, a 

software/hardware co-design approach has been developed (Hild et al., 2002; Hu, 2007). 

The SOAD should be extended with the DEVS/DOC capabilities so that details of 

hardware components can be modeled and simulated which in turn can provide a richer 

basis for the Monitoring sub-system. Furthermore, it is important for the SOAD simulator 
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to be integrated with the Monitoring and Adaptation sub-systems in order to have a 

testbed that can support ASBS design and simulation-based testing.  
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