Problem 1. Verify the identity

$$
\begin{equation*}
\frac{\sin x+\cos x}{\sin x-\cos x}=\frac{1+2 \sin x \cos x}{2 \sin ^{2} x-1} \tag{?}
\end{equation*}
$$

Solution. To verify that two fractions are identical it is enough to verify that the cross-products are identical, i.e. that

$$
\begin{align*}
& 2 \sin ^{3} x-\sin x+2 \sin ^{2} x \cos x-\cos x= \\
& =\sin x-\cos x+2 \sin ^{2} x \cos x-2 \sin x \cos ^{2} x \tag{?}
\end{align*}
$$

After canceling out identical terms in the left and the right parts we get

$$
\begin{equation*}
2 \sin ^{3} x-\sin x=\sin x-2 \sin x \cos ^{2} x \tag{?}
\end{equation*}
$$

Dividing both parts by $\sin x$ provides

$$
\begin{equation*}
2 \sin ^{2} x-1=1-2 \cos ^{2} x \tag{?}
\end{equation*}
$$

Finally, moving $-2 \cos ^{2} x$ to the left and -1 to the right we get

$$
2 \sin ^{2} x+2 \cos ^{2} x=2
$$

which is obviously equivalent to the first Pythagorean identity.

Problem 2. Verify the identity

$$
\begin{equation*}
\cot ^{2} \frac{u}{2}=\frac{\csc u+\cot u}{\csc u-\cot u} \tag{?}
\end{equation*}
$$

Solution. We will work with the right part of the alleged identity

$$
\frac{\csc u+\cot u}{\csc u-\cot u}=\frac{1 / \sin u+\cos u / \sin u}{1 / \sin u-\cos u / \sin u}
$$

Multiplying both the numerator and the denominator of the right part by $\sin u$ we get the expression $\frac{1+\cos u}{1-\cos u}$. Finally, recalling that by power reduction formulas $1+\cos u=2 \cos ^{2} \frac{u}{2}$ and $1-\cos u=2 \sin ^{2} \frac{u}{2}$ we obtain the desired identity.

In problems 3-5
(a) Describe all the solutions of the given trigonometric equation.
(b) List the solutions in the interval [$0,2 \pi$)(if any) and approximate them with the accuracy 0.0001 .

Problem $3 \sec ^{2} x-5 \sec x+1=0$.
Solution. (a) We have here an equation of the quadratic type. Applying the quadratic formula we obtain

$$
\sec x=\frac{5 \pm \sqrt{21}}{2}
$$

The sign minus provides a positive value smaller than 1 which is not in the range of $\sec x$; therefore we only have to consider the possibility

$$
\sec x=\frac{5+\sqrt{21}}{2}
$$

Or, equivalently

$$
\begin{aligned}
& \cos x=\frac{2}{5+\sqrt{21}}=\frac{2(5-\sqrt{21})}{(5+\sqrt{21})(5-\sqrt{21})}= \\
& =\frac{2(5-\sqrt{21})}{4}=\frac{5-\sqrt{21}}{2} .
\end{aligned}
$$

All the solutions of the last equation can be described as

$$
x= \pm \arccos \left(\frac{5-\sqrt{21}}{2}\right)+2 n \pi, \quad n \in Z
$$

(b) There are two solutions in the interval $[0,2 \pi)$:

$$
x=\arccos \left(\frac{5-\sqrt{21}}{2}\right) \approx 1.3605
$$

And

$$
x=2 \pi-\arccos \left(\frac{5-\sqrt{21}}{2}\right) \approx 4.923
$$

Problem $42 \sin x-3 \cos x=1$.
Solution (a) We transform the left part of the equation according to the formula

$$
A \sin x \pm B \cos x=\sqrt{A^{2}+B^{2}} \sin (x \pm \arctan (B / A))
$$

The equation now can be written as

$$
\sqrt{13} \sin (x-\arctan (3 / 2))=1
$$

Or

$$
\sin (x-\arctan (3 / 2))=1 / \sqrt{13}=\sqrt{13} / 13
$$

From here

$$
x-\arctan (3 / 2)=(-1)^{n} \arcsin (\sqrt{13} / 13)+n \pi, \quad n \in Z
$$

And finally

$$
x=(-1)^{n} \arcsin (\sqrt{13} / 13)+\arctan (3 / 2)+n \pi, \quad n \in Z
$$

(b) We have two solutions in the interval $[0,2 \pi)$ corresponding to the values $n=0$ and $n=1$.

$$
x=\arcsin (\sqrt{13} / 13)+\arctan (3 / 2) \approx 1.2638
$$

And

$$
x=-\arcsin (\sqrt{13} / 13)+\arctan (3 / 2)+\pi \approx 3.8434
$$

Problem $5 \cos 3 x-\cos 7 x=\sqrt{2} \sin 2 x$.
Solution (a) We will transform the left part according to the sum-to-product formula

$$
\cos A-\cos B=2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{B-A}{2}\right)
$$

Then the equation becomes

$$
2 \sin 5 x \sin 2 x=\sqrt{2} \sin 2 x
$$

Or

$$
\sin 2 x(2 \sin 5 x-\sqrt{2})=0
$$

If $\sin 2 x=0$ then $2 x=n \pi, \quad n \in Z$, or

$$
x=n \frac{\pi}{2}, \quad n \in Z \quad(*)
$$

If $\sin 5 x=\sqrt{2} / 2$ then

$$
5 x=(-1)^{n} \arcsin (\sqrt{2} / 2)+n \pi=(-1)^{n}(\pi / 4)+n \pi, \quad n \in Z
$$

Or

$$
x=(-1)^{n}(\pi / 20)+n(\pi / 5), \quad n \in Z \quad(* *)
$$

Formulas (${ }^{*}$) and (**) together define all the solutions of the equation
(b) It is easy to see the solutions provided by $\left({ }^{*}\right)$ in the interval $[0,2 \pi)$ are

$$
0, \pi / 2, \pi, 3 \pi / 2
$$

And the solutions provided by (${ }^{* *}$) in the same interval are $\pi / 20,3 \pi / 20,9 \pi / 20,11 \pi / 20,17 \pi / 20,19 \pi / 20,25 \pi / 20,27 \pi / 20$, $33 \pi / 20,35 \pi / 20$.

