Singer Recognition and Modeling Singer Error

Johan Ismael
Stanford University

jismael@stanford.edu

1. Abstract

We propose a system for recognizing a singer based on
past observations of the singer’s voice qualities and their
ability to sing a given song. Such a system could be use-
ful to improve predictions in Query by Humming systems,
or as biometric identity data in consumer applications. As
we’ll describe in more details in the following sections,
we managed to obtain a fairly high accuracy on individ-
ual voice recognition by training a multi-class SVM using
Mel-frequency Cepstral Coefficients (MFCCs) as our main
features. We then tried to improve our accuracy by using in-
sight from QbH systems, that is, characterizing singers also
on how well they can perform specific notes. In the pro-
cess we developed a note segmentation system which shows
promising results using an unsupervised learning technique.
Finally, we made the problem harder by attempting to rec-
ognize singers with background music.

2. Introduction

Our original idea was to implement a Query by hum-
ming (QbH) system which goal would be to recognize the
songs people are humming, using a dataset of .wav files of
people humming songs corresponding to some ground truth
monophonic midi files[9]. Ideally, we would try to match
hums with mp3 files instead of midi but we quickly realized
that the melody extraction tools required to work with real
music simply do not exist yet.

To implement this system, our first goal was to extract
features, most precisely pitch and rythmic intervals (PIs and
LIRs), as suggested by B. Pardo et al.’s paper[7]. The idea
was to learn, for each person, what we call the singer’s er-
ror. Knowing this error we could, from a hum, reconstruct
the ground truth and then try to find a best match with our
database of midi files.

As we started to implement our first feature extractor,
we ran into the first roadblock: how to segment the origi-
nal hum into different notes, which is required to perform a
note by note comparison to the ground truth and build our
model? We tried to use two tools freely available [4][2]
but those did not give very good results. Our system is

Nicholas McGee
Stanford University

ndmcgee@stanford.edu

particularly sensitive to this step because with a few notes
wrongly recognized, the whole comparison could be mis-
aligned and therefore unusable. In addition, thanks to fur-
ther research we realized that the most successful QbH sys-
tems [6] today are not trying to directly match hums with
ground truth songs. They are instead matching hums with
labeled hums, which seems to make a lot of sense since a
hum and a ground truth are so far apart in terms of spectrum
that it’s almost like comparing carrots and tomatoes. And
here is our second roadblock: it seems necessary to have a
fairly big database of labeled hums. After unsuccessfully
asking the Interactive Audio Lab [1] to use their data, we fi-
nally decided to solve a different but related problem since
our QbH system seemed to be built on too many weak links.

We realized that with our dataset, we could solve another
problem: singer recognition. Would it be possible to recog-
nize someone singing a song, after training on them singing
other songs? How accurate can we be? Would this be pos-
sible with famous singers supported by instruments?

3. Early Prototypes
3.1. First QbH Prototype

For our initial, exploratory prototype, we built a quick
system in python which used the vamp melodia plugin [10],
to process input and target songs, and calculated the edit
distance between the input and each target song. For deter-
mining the cost of mismatches during edit distance calcula-
tion, we used a cost function which deemphasized common
errors such as octave and half-step misses note misses, but
without a more complex singer error model. On a set of
48 target songs and 8 user inputs, this prototype achieved 1
correct match, for an unimpressive 12.5% accuracy. At this
point we began to realize that there were many more un-
solved problems in processing the input for the system than
in the learning algorithm itself.

3.2. EigenSongs

Eigenfaces uses PCA to reduce the feature space of an
image by calculating a set of eigenvectors which capture
the systematic variances in a set of facial images (essen-

tially, determining the most important patterns in the im-
age)[12]. Because songs can similarly be interpreted as a
linear feature vector of amplitudes, we wanted to see if the
patterns in a song could be identified by performing PCA
on several aligned recording of the same song. We ran into
two roadblocks which caused us to abandon the idea. First,
we would need a very large set of samples per song to do
the initial PCA, and this was not practical given our dataset.
Second, and more importantly, it is very hard to evaluate
whether PCA is truly extracting useful information about
the song, or simply extracting noise. Our initial prototype
performed poorly, leading us to believe the technique was
probably not reliable enough to develop further.

Given these unsuccessful attempts and what we learned
from them, we decided to reformulate our problem and fo-
cus on singer recognition.

4. Singer Recognition: Description and Results
4.1. Overview of the Problem Solved

Our final system performs matching between unique in-
dividuals and audio clips of their voices. Given a record-
ing of a person singing (who is known to have appeared in
our training set), the system identifies which of the training
singers is singing the input song. This recognition is useful
for training and applying an individually tuned singer-error
model for QbH, as well as for general voice fingerprinting.

4.2. Dataset

We drew 69 singers from the MIR-QBSH database [9],
each of which had sung between 15 and 30 songs from a
pool of 48 possible songs. We used 10 of these songs as
training data to identify each singer, and tested our classifier
using the remaining data.

4.3. Features and Training

Our algorithm trains a multi-class SVM (using liblin-
ear[3]) based on the feature set extracted from each song
in our training data. We tried several different feature sets
during evaluation, but found that the most effective feature
set was a simple one. Figure 1 shows the first 20 MFCC’s
for two different singers side by side. As is apparent in the
figure, the cepstral breakdown of different singers’ voices
have perceivably different fingerprints. We found that the
first 40 MFCC’s provide the most useful information, with
the addition of more coefficients providing little benefit af-
ter that. We discuss other possible good features in Section
4.1.

4.4. Results

Our results using this model are surprisingly good, con-
sidering the small size of the feature set. As can be seen

Comparison of Two Singers' MFCC's

m Person 1
m Person 34

Value

-8

Figure 1. Noticeable differences appear in the MFCC'’s of different
singers

Accuracy over

35 Singers
Spectrogram 5.62%
20 MFCC’s 74.94 %
40 MFCC'’s 78.57%
40 MFCC’s + 78.22%
spectrogram
80 MFCC'’s 78.22%

Figure 2. Accuracy of our system using various feature sets

in Figure 3, on small numbers of unique singers, we were
able to identify around 90% of test recordings as the correct
singer. As the singer space increases, accuracy naturally
decreases (some singers have very similar voices, so match-
ing voice characteristics alone is not sufficient to distinguish
them), but this system could be useful in many cases. For
example, any device with multiple user accounts could use
audio input to detect users and log into the correct account
with a high degree of accuracy.

With these satisfying results, we decided to move for-
ward and experiment in two directions. First, what fea-
tures could we add to improve our accuracy? Second,
how would our system perform on harder problems such
as singer recognition with background music?

5. First Experiment: Improving Accuracy

Our first experiment aimed at improving the accuracy of
our system. To do so, the idea has been to add new features

Performance of 40 MFCCs with more singers

100%

80%
60%
40%
20%
0%
5 10 35 69

number of singers

Accuracy

Figure 3. Accuracy of our system in different singer spaces

in our model that are able to capture something that is char-
acteristic of a given singer and is not captured by MFCCs.

5.1. Using a Singer Error Model
5.1.1 The Idea

MFCCs are great at capturing the essence of someone’s
voice, whether they are singing or even just talking. So if
we could add a feature that leverages an attribute specific to
singing, it would probably be something that is not captured
by MFCCs. Moreover, as we were reading about QbH sys-
tems earlier in our project, we were excited about one ap-
proach: modeling singer error. But this time, we wouldn’t
model singer error in order to reconstruct the ground truth
of a song, but to characterize a particular singer. So how
can we do that?

We can see this error as some Gaussian noise. So we’ll
represent it by a normal distribution, centered on the ground
truth note, and we’ll consider that the variance represents
this error. Because we all have difficulties singing different
notes, it seems relevant to have one Gaussian per type of
note. Indeed, maybe singer A is really good a singing the
middle C, but is terrible when it comes to high A’s. Since
the original files that we’ll do the comparison with are using
the midi format, we’ll use midi notations to represent notes
everywhere. They range from 21 to 108. Let’s formalize
these ideas:

X; ~ N(i,o?) Vi e [21,108]

where the X;’s represent the note sung by a singer when
trying to render the actual note numbered .

To estimate these variances, we use the maximum likeli-
hood estimate on our training set. For each singer and each
note, we gather all the instances of what that singer actually
sang when trying to sing the given note. The variance is
then given by:

where the z;’s represent the notes sung by our singers.

Singer 1 ====Singer 2

350
300
250
200
150

100 - /M

60 62 64 65 67 69 72

w
o

Variance (half-step”2)

(=]

MIDI note number

Figure 4. Variances in note accuracy for different singers

At the end of this process, we have a vector of variances
per singer. The big issue is that to perform this estimation,
we need to be able to segment the hums into separate notes.
As stated in the introduction, note segmentation tools are
not quite perfect. However, to get an idea of how discrimi-
native our model was, we manually performed the note seg-
mentation for two singers, five songs each. After this (long)
process, we obtained the results shown in Figure 4

Though it is hard to draw solid conclusions out of two
singers but it seems the two we used would be fairly sepa-
rable with this characterization.

One observation with this model is that we are sensitive
to a change of octave. If a singer transcribes perfectly a song
one octave down, we’ll understand this as a pretty large er-
ror. But this is what we want: if you're always singing A4
instead of A5, we want to capture it even though the rendi-
tion might be nice to listen to.

5.1.2 Plugging into our current algorithm

Our learning algorithm uses MFCCs classifies singer with
one data point per singer,song pair whereas the model we’ve
just mentioned outputs one data point per singer. To solve
this problem we could calculate the maximum likelihood
estimate for our gaussians once per song. But that means
we would probably have very few samples per note for each
data point. To alleviate, we could use ’binning’ and divide
our range of notes into three separate bins: low range, mid-
range and high range. We would then end up three addi-
tional features for each data point: the error on the low range
notes, the error on the mid range notes and the error on the
high range notes.

Given the issues we had with note segmentation, we
haven’t had the opportunity to test the accuracy of our sys-
tem with these additional features. However, we tried to
improve note segmentation tools with unsupervised learn-
ing techniques.

54 T T T T T T T T

52 o] ©

4]
=]
=
|
_'-"'-'-FFH-'-’O

Pitch (midi number)
-y
[+ -]

/

True Song
Singer Pitch Values
o KMeans Cluster Results

E-
&
T

o

a4t 4

AV

42 L L L " L L L L
4] 1 2 3 4 5 6 T 8

Time
Figure 5. K-means clusters denoting the notes sung by the singer

Chromagram Evolution for User Input

Signal Intensity

0.51 0.77 1.02 1.28 1.54 1.79 2.05 2.30 2.56 — B

Time (s)

Chromagram Evolution for Ground Truth
—_C

0.3 —CH
0.25

—
0.2 — E
F

0.15

0.1 f < C G

0.05 =t
0 i A k —i#

0.00 028 056 0.84 111 1.39 1.67 1.95 — B

Signal Intensity

Time (s)

Figure 6. A comparison of chromatic composition

5.2. Segmenting Notes for Use in the Model

In developing the singer error model, one of the largest
problems we ran into is that available audio tools cannot ac-
curately identify notes being sung or hummed, thus making
it difficult to train based on singer error. While we per-
formed some manual labelling, this is not practical for large
datasets. K-means clustering provides a practical method

Ground-truth song

Calculation of
- singer error

Hum — Note segmentation
l Feature 1

—> SVM‘

Calculation of MFCCs | = Feature 2

Figure 7. Our ideal singer recognition system

for labelling large datasets where the target song is known
for each sample to be labelled. While it is often of primary
concern in clustering algorithms to avoid locally maximal
clusters, in our case we want the algorithm to settle into a
local maximum given by the closest fit to the actual, target
song. To achieve this, we seed the algorithm by choosing k
to be the number of notes in the target song, and setting the
means at the center of each target note. Notes which do not
occur in the user’s input naturally drop out because they do
not become associated with any sample points. Our algo-
rithm uses (time, frequency) tuples as coordinates for the
clustering algorithm, and the results on a sample song are
shown in Figure 5. Results are very good for songs where
the ground-truth song approximately matches the input in
tempo and key, but not when the two are misaligned. To
solve key alignment, we simply align the medians of the 2
inputs. Choosing the optimal tempo alignment is a much
more complicated problem which we believe leaves room
for future work.

Another problem we observed which causes clustering
to go awry is that clusters are often too close together, and
there are not enough samples to differentiate them. This can
be addressed by extracting more points to cluster on, but
how? Figure 6 shows the evolution of a chromagram over
time for the ground-truth song, as well as the noisier input
from a user. Notice that despite the noise, dominant fre-
quencies remain roughly consistent with the ground-truth
song. Including non-dominant chroma as points and dis-
counting their distance based on intensity would provide
more sample points and hopefully improve the clustering
algorithm.

5.3. The ideal system

An effective note segmentation system would allow us
to automate the singer error calculation. Figure 7 illustrates
what our ideal system would look like.

Total Accuracy on Accuracy on test
accuracy acapella test data with
data background music
Training on 56.3% 72% 0%
interviews
Training on 65.8% 100% 0%
interviews
and songs

Figure 8. Performance of our system recognizing famous singers

6. Second Experiment: Tackling more difficult
problems

In addition to attempting to improve the accuracy of our
system with more features, we were curious to see how well
our SVM would perform on harder problems. So we de-
cided to see what would happen if, after training our SVM
on two famous singers talking in interviews, we tested on
actual songs which featured both singing and instruments
in the background. We picked Thom Yorke, singer of the
British rock band Radiohead, and Barry Manilow, a famous
American singer, for our experiment. We gathered inter-
views of them on Youtube. For test data, we picked some of
their songs.

We obtained the results shown in Figure 8. Our first ob-
servation is that MFCCs don’t work anymore where there
is noise in the background. It would probably be helpful to
separate voice from background instruments, but that’s an-
other hard problem. Interestingly, it seems that it is possible
to train on spoken words as in interviews and obtain a de-
cent accuracy on acapella singing. The accuracy reaching
100% on acapella singing has one caveat: we are training
on different chunks of the same recording that we are using
for testing so the results are probably good because of an
overfitting problem.

7. Conclusions and Next Steps

We end this project with a better understanding of what
machine learning can do for music today. On the one hand,
spectrum analysis makes available very strong features like
MFCCs that are very useful for identifying specific audio
signals. On the other hand, when it comes to actually under-
standing the content, current solutions are ineffective or in-
consistent. This makes it very hard to automatically extract
features such as melody, or even notes, for use with learning
algorithms. The Music Information Retrieval (MIR) com-
munity has been very active and working on these different
problems. Hopefully, challenges such as source separation,
note segmentation and melody extraction will be overcome
in the near future and enable a lot of very exciting music-
related applications.

When it comes to future work, we are particularly ex-

cited to use unsupervised learning for note segmentation, as
opposed to pure signal processing approaches. Getting this
problem solved would hopefully improve our singer recog-
nition system, and even make QbH more addressable.

References

[1] The Interactive Audio Lab. http://music.cs.northwestern.edu/.

[2] MIRToolbox. https://www.jyu.fi/hum/laitokset/musiikki/
en/research/coe/materials/mirtoolbox.

[3] Liblinear — A Library for Large Linear Classification
http://www.csie.ntu.edu.tw/ cjlin/liblinear/

[4] The vamp audio analysis plugin system. http://vamp-
plugins.org/.

[5] Sonic annotator. http://omras2.org/SonicAnnotator.

[6] B. P. Arefin Huq, Mark Cartwright. Crowd-
sourcing a real-world on-line humming sys-
tem. Sound and Music Computing, 2010.

http://smcnetwork.org/files/proceedings/2010/64.pdf.

[7] D. L. et al. A query by humming system that learns from
experience. 2007.

[8] L. Myers. An exploration of voice biometrics. 2004.

[9] 1.-S.R. Jang. Mir-gbsh corpus. Available at the "MIR-QBSH
Corpus” link at http://www.cs.nthu.edu.tw/ jang.

[10] J. Salamon. Melodia - Melody extraction vamp plug-in.
http://mtg.upf.edu/technologies/melodia.

[11] J. Salamon et al. Tonal Representations for Mu-
sic Retrieval: From Version Identication to Query-
by-Humming http://www.justinsalamon.com/uploads/
4/3/9/4/4394963/salamon-mmir.pdf

[12] P. B. et al. Eigenfaces vs. fisherfaces: Recognition using
class specific linear projection. 1997.

[13] R. Kline et al. Approximate Matching Algorithms
for Music Information Retrieval Using Vocal Input
http://lyle.smu.edu/ mhd/8337sp07/kline.pdf

