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Abstract 

 

Speech is an elementary source of human interaction. The quality and intelligibility of 

speech signals during communication are generally degraded by the surrounding noise.  

Corrupted speech signals need therefore to be enhanced to improve quality and 

intelligibility. In the field of speech processing, much effort has been devoted to develop 

speech enhancement techniques in order to restore the speech signal by reducing the 

amount of disturbing noise. This thesis focuses on a single channel speech enhancement 

technique that performs noise reduction by spectral subtraction based on minimum 

statistics. Minimum statistics means that the power spectrum of the non-stationary noise 

signal is estimated by finding the minimum values of a smoothed power spectrum of the 

noisy speech signal and, thus, circumvents the speech activity detection problem. The 

performance of the spectral subtraction method is evaluated using single channel speech 

data and for a wide range of noise types with various noise levels. This evaluation is used 

in order to find optimum method parameter values, thereby improving this algorithm to 

make it more appropriate for speech communication purposes.  

 

The system is implemented in MATLAB and validated by considering different 

performance measure and for different Signal to Noise Ratio Improvement (SNRI) and 

Spectral Distortion (SD). The SNRI and SD were calculated for different filter bank 

settings such as different number of subbands and for different decimation and 

interpolation ratios. The method provides efficient speech enhancement in terms of SNRI 

and SD performance measures. 
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Chapter 1 

Introduction 

 

1.1 Introduction 

In today's technological era speech is the most important way of communication that 

began with fixed land-line telephony systems. In all forms of speech communication 

systems such as cellular phones, maintaining the speech quality and intelligibility in 

information exchange is the main challenge for the researchers. The performance of these 

systems in real-life applications dramatically degraded due to the presence of surrounding 

noise such as background noise, babble noise, impulse noise, musical noise and car noise 

causing distorted information exchange. The success of these innovative systems depends 

on the restoration of desired speech signal from the mixture of speech and noise and 

remains main goals in speech processing research.  

 

Many algorithms have been introduced to improve the perceptual quality of the speech 

signals from the corrupted input signals in communication systems [5] [6] [8] [12]. It is 

generally difficult to restore desired signal without distorting speech signal and the 

performance is limited by the trade-off between speech distortion and noise reduction. 

The most common scenario is the single channel system [24] where noise and speech 

come from the individual sources and a microphone records speech and noise, and it is 

the difficult situation to handle because, in recorded signal, speech and noise are 

correlated with each other. The computational complexity and cost of implementation in 

real-time applications such as mobile communications, hearing aids, intelligent hearing 

protectors and so forth is an important issue during proposed a speech enhancement 

algorithm. The spectral subtraction is one of the ways for speech enhancement. The 

spectral subtraction algorithm estimates the noise power spectrum from the noisy speech 
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power spectrum and then, estimates the clean speech power spectrum by subtracting this 

noise power spectrum from the noisy speech power spectrum. Since, last few decades 

many researches have been carried out on the spectral subtraction based methods because 

of its simplicity and ease of implementation on portable devices such as mobile 

communications [25].  

In this thesis, we see the performance of Spectral Subtraction Based on Minimum 

Statistics (SSBMS) algorithm in different noisy environment with various noise levels by 

changing the number of subband values as well as its method parameter values and find 

out the optimum values for which the algorithm gives the better SNRI and less SD. This 

method uses minimum statistics that eliminate the problem of the speech activity 

detector, gives a superior performance as compared to the conventional method of power 

spectral subtraction and decreases the residual noise [12]. 

 

1.2 Outline 

The thesis report is divided into five chapters. The remaining paper is organized as 

follows. Chapter 2 provides information about the speech enhancement techniques in 

both single and multichannel. It further introduces some noise characteristics and brief 

discussion on spectral subtraction. The theory behind the SSBMS algorithm is presented 

in chapter 3. Chapter 4 provides both the implementation of the algorithm and results. 

Finally, in chapter 5 the thesis is concluded and provides future research direction on 

SSBMS algorithm. 
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Chapter 2 

Background and Related Work 

 

2.1 Introduction 

In speech communication system, noise removed from corrupted speech signal has been a 

big challenge for the researchers since last few decades [26]. Many algorithms have been 

proposed that aimed at improvement in intelligibility, clarity and overall perceptual 

quality of degraded speech signal. Noise suppression and speech enhancement has many 

applications. Some of the important applications among these are as follows:  

 Mobile communication. 

 air-ground communication 

 ground-air communication 

 Emergency equipment like elevator, SOS alarm, vehicular emergency telephones. 

 Teleconferencing systems 

 Intelligent Hearing Protectors 

 Hearing aids 

 Speech recognition in noisy environments 

 VoIP 

 

 

2.2 Noise Analysis 

The problem of removing the noise poses a difficulty due to the random nature of the 

noise and the intrinsic complexities of speech [27]. So it is necessary to understand the 

noise characteristics to get the better performance from various speech enhancement 

methods. One method may perform well with one type of noise but the same may not 

perform well with different type of noise, so it is necessary to experiment on the method 
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with different types of noise. Noise characteristics are dependent on the statistical 

properties of the noise. Based on the nature and properties of the noise we can generally 

classify the noise into the following categories. 

 

Background Noise: In acoustical engineering, background noise is the random signals and 

come from all sources that are undesired. Background noise is additive noise that is 

normally uncorrelated with the speech signal and occurs in the different communication 

environment like traffic noise, crowded city streets, electrical and mechanical equipment 

noise, industrial environment, atmosphere conditions, etc. 

 

Babble noise: Babble noise in encountered whenever a crowd or group of people are 

talking together simultaneously (i.e. in a cafeteria, crowded classroom, party place), 

which has the characteristics and frequency range very close to the desired speech signal 

[1]. This phenomenon is also known as ‘’cocktail party effect’’.   

 

Impulse noise: Impulse noise is a high energy noise that generates almost instantaneous 

sharp sounds like slamming of doors, clicks and pops.  

 

Non-additive noise: It occurs due to non-linear behaviour of microphones and speakers, 

e.g., Lombard's effect due to speaker stress [2]. This effect is introduced when speech is 

produced in the presence of noise since the speaker has a trend to increase his vocal effort 

[3]. Due to this effect, the speech spectral properties are changed continuously compared 

to clean speech. 

 

Convolutive noise: This type of noise convolves with the signal in a time domain, e.g. 

changes in speech signal due to changes in environment or changes in microphones, etc. 

It is usually difficult to work with it as compared to additive noise. 

 

Some of the other types of noises are correlated noise (reverberations and echoes),             

multiplicative noise (signal distortion due to fading), etc.   
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2.3 Speech Enhancement Methods 

The term speech enhancement refers to methods aiming at recovering speech signal from 

a noisy observation. There are many ways to categorize speech enhancement algorithms. 

Each method has several specializations that are based on certain assumptions and 

constraints that depend on the distinct application and the environment scenarios. 

Therefore, it is almost impossible for a specific algorithm to perform optimally across all 

noise types.  

 

 

The noise reduction systems generally can be classified based on the number of input 

channels (one/multiple), domain of processing (time/frequency/spatial) and type of 

algorithm (non-adaptive/adaptive) [4][5][6][7]. The speech enhancement techniques can 

be divided into two broad classes based on single-microphone speech enhancement and 

multi-microphone speech enhancement techniques. 

 

2.3.1 Single Channel Speech Enhancement 

This algorithm estimates the clean speech signal from the noisy speech signal which is 

available in a single channel provided by one microphone, shown in Fig.1. 

 

Noise Reduction Process
x(n)=s(n)+d(n)

 Speech s(n)

Noise d(n)

Enhanced 

Signal y(n)

 

Figure 2.1 Single Channel Speech Enhancement System 

 

Most of the speech enhancement algorithms are based on this technique [28] and mostly 

applied in real time applications, for example, mobile communication, intelligent hearing 
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protectors, hearing aids and many more. Some proposed algorithms for single channel 

speech enhancement are [8]: 

 Short time spectrum based algorithms  

 Speech separation algorithms 

 Statistical model based algorithms 

 Hearing model based algorithms 

 Wavelet algorithm 

These methods are easy to build up, since these have less computational complexity and 

in addition, these have more constraints than multi-channel systems. In general single 

channel systems constitute by depending on different statistics of speech and unwanted 

noise that, work in most difficult situations where no prior knowledge of noise is 

available. The behaviour of these methods depends on Signal to Noise Ratios (SNR) and 

the features of the noise. Usually the methods assume that the noise is stationary when 

speech is active. They normally allow non-stationary noise between speech activity 

periods but in reality when the noise is non-stationary, the performance is dramatically 

decreased. 

 

2.3.2 Multichannel Speech Enhancement  

Multi-microphone method uses multiple signals to enhance the speech quality coming 

from more than one microphone.  These methods usually perform better in very low SNR 

and non-stationary noise than single channel. However, multi-microphone systems are 

more complex, since they have fewer constraints than single-microphone systems and are 

often difficult to carry out due to the equipment size limitation as these need minimum 

distance among the microphones to set up. These methods use spatiotemporal filtering or 

beam forming algorithms, which are given below. 

 

 Adaptive Noise Cancellation (ANC) 

 Blind Source Separation (BSS) 

 Delay and Sum Beam forming (DSB). 

 Linear Constraint Minimum Variance (LCMV) 

 Generalized Sidelobe Cancellation (GSC) 
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The Adaptive Noise Cancellation (ANC) is a well known speech enhancement technique 

that uses a primary channel containing corrupted signal and a reference channel 

containing noise correlated with primary channel noise to cancel highly correlated noise 

[9]. The reference input is filtered by an adaptive algorithm and subtracted from primary 

input signal in order to extract the desired speech signal. This algorithm has some leakage 

problem; if the primary signal is leaked into the reference signal then some original 

speech is cancelled and thus the speech quality decreases [10]. 

The Blind Source Separation (BSS) is used to separate a set of signals from a mixed 

signal and it is designed in such a way that it only performs in the criteria when speech 

and noise are independent [11]. 

 

The Delay and Sum beam forming (DSB) is the simplest algorithm for beam forming and 

its efficiency depends on the number of microphone used in a system. The Linear 

Constrained Minimum Variance (LCMV) algorithm is another kind of beam forming that 

takes the present signal and delayed samples to enhance the speech quality which may 

give the better result than DSB algorithm. The Generalized Sidelobe Cancellation (GSC) 

algorithm uses the microphone array for speech enhancement, and it is very attractive due 

to its efficient implementation. 

 

 

In this thesis, we worked on the single channel spectral subtraction based speech 

enhancement method. Many researches have been carried out for many decades on this 

method, so the rest of the discussion of this chapter would be on the basics of spectral 

subtraction. 
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2.4 Spectral Subtraction  

A basic block diagram of the spectral subtraction is given in figure 2.2 [5]. The noisy 

speech signal      is the input to the system. Initially, the input signal     is segmented 

into many short frames by the window function, and then DFT filter bank is applied to 

each of the frame for analysis and synthesis. The DFT signals are converted into phase 

and amplitude. The square magnitude |    |  has been modified by using different noise 

estimation and the noise subtraction rule. This modified amplitude is added with the 

phase and then inverse DFT with overlap add is applied to this signal to get the enhanced 

signal       

DFT Magnitude Square

IDFT

Subtraction

Magnitude

Phase 

information

Noisy speech

Enhanced 

speech signal

 

Figure 2.2 Basic Block Diagram of Spectral Subtraction 

 

2.4.1 Spectral Subtraction Basic 

The spectral subtraction method generally performs better in additive type of noise, where 

the power or the magnitude spectrum is recovered through  the subtraction of  the noisy 

speech signal spectrum by the  estimated noise spectrum, and this is the most common 

concept for the subtractive type algorithms that have a group of methods based on the  

subtraction rules [4][21]. These systems assume that the noise is stationary or a less 

varying process, and operate in the frequency domain. It estimates that the noise spectrum 
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from the noisy speech and updates the spectrum when the speech signal is absent. This 

updating is possible when the noise signal does not change significantly. In order to 

transform the frequency domain signal to time domain signal, the phase of the noisy 

speech signal is combined with modified magnitude spectrum, and then Inverse Discrete 

Fourier Transform (IDFT) is applied. 

Suppose      is a noise corrupted input speech signal which contains clean speech signal 

     and uncorrelated additive noise signal       , so the corrupted signal can be 

represented as: 

 

                                                                     (2.1) 

The spectral based speech enhancement is carried out frame by frame; therefore, a 

window      is multiplied with the input signal.   

The windowed signal can be expressed as: 

 

                                                                    (2.2)    

 

The DFT of the windowed signal can be written as: 

 

                                                               (2.3)   

 

 The   DFT of       is given by: 

 

      ∑         
      

    
  |     |                           (2.4) 
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Where |     |,      is the amplitude and phase of noise corrupted input signal and N is 

the window length. 

 

To get the power spectrum of the noisy speech signal, the equation (2.3) is multiplied by 

their complex conjugate and the equation becomes. 

 

|     |  |     |  |     |           
       

                     (2.5) 

 

By taking the expected value of equation (2.5), we get 

 {|     | }  

 {|     | }   {|     | }    {        
    }   {  

          }                                                            

 

In power spectral subtraction, considering that the noise signal       has zero mean and 

uncorrelated with clean speech signal     , the terms  {        
    } and 

 {  
          } becomes zero. Taking the above assumption into consideration the 

power spectral subtraction, subtracts the average estimated noise from the spectrum of the 

corrupted noise and thus the results of estimated clean speech signal are obtained. So the 

equation (2.6) becomes 

 

 {|     | }   {|     | }   {|     | }                                       (2.7) 

 

Now the phase adds directly with the amplitude of the estimated clean speech and the 

enhanced speech signal in the time domain is obtained according to: 

 

 {    }            { |    | }                                                    (2.8) 
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Chapter 3 

Spectral Subtraction based on Minimum Statistics 

 

3.1 Introduction 

The Spectral Subtraction Based on Minimum Statistics (SSBMS) is one of the influential 

method for speech enhancement, which is usually able to track non stationary noise 

signals [12]. The problem of conventional spectral subtraction method is the requirement 

of speech activity detector during noise power estimation [13], which increases 

computational complexity while spectral subtraction based on minimum statistics uses a 

finite window of sub-band noise power to estimate the noise power [14]. We have 

selected this algorithm because this needs no additional equipment due to its simplicity.  

 

The block diagram of the spectral subtraction method based on minimum statistics is 

shown in figure 3.1. This algorithm uses DFT filter bank for the analysis of disturbed 

speech signal, and modifies the short time spectral magnitude to make the synthesized 

signal as close to desired speech signal. The SNR of each sub-band is calculated by using 

estimated noise power to control the oversubtraction factor and this factor reduces the 

residual noise. The subtraction rule is designed by using estimated noise power with 

oversubtraction factor for computing the optimal weighting of spectral magnitudes. 
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Figure 3.1 Spectral Subtraction Based on Minimum Statistics 

3.2 Description of Algorithm 

Consider an input signal      contains zero mean speech signal      and zero mean 

noise signal      and that signals are statistically independent. 

 

                                                                 (3.1) 

 

Where, n denotes the discrete time index.  

 

The spectral processing is based on a DFT filter bank with      sub-bands and with 

decimation/interpolation ration R [15].The filter bank uses an array of band pass filter in 

which the signal divides into multiple components, where each component having a 

certain frequency sub-band of the original signal is shown in figure 3.2. 
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Figure 3.2 Basic Filter Bank Diagram 

The DFT of input signal      with window function      is given by [16] 

 

       ∑             
  

    

    
      
                                       (3.2) 

 

Where,   is the decimated time index and   is the frequency bins,                  

and                   .     

 

First of all, the long-time input signal is segmented into many short frames (P) by the 

window function; typically the range of frame duration is in between 1ms to 100ms 

[17].The amplitude of the short time signal depends on the chosen window function. 

Many window functions are available with different spectral characteristics and these 

should be chosen due to the requirements of analysis. The most elementary window is the 

rectangular window that provides a distorted analysis and its frequency response has high 

magnitude side lobes [22]. The DFT applies on the windowed short time signals for 

analysis of the spectrum and represent a variation in the spectrums of signals over time. 

Overlap is common in time windows since this gives better spectral analysis. 
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The overlap is usually given as  

 

  
    

 
                                                         (3.3) 

 

Typically the filter lengths are 64, 128, 256 and 512, and for these the overlap is 50% or 

75%.   

The total number of spectral frame can be calculated as: 

  
 

 
                                                             (3.4) 

Here, N is the input signal length.  

For a sampling rate   , the corresponding time index is given by 

 

                                                                (3.5) 

 

Consider a signal      with length N is the input to the system. The system has a window 

     of length      and decimation/interpolation ratio R, so that time overlapping is 

occurring. The framing procedure is shown in Figure 3.3.  
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Figure 3.3 Framing of the Input Signal 

 

The DFT filter bank then can be applied on each frame of the input signal. 

 

The DFT filter bank output is then converted to polar form for spectral analysis, i.e. in 

terms of phase and magnitude by the following equation (3.7).  

 

                                                                         (3.7) 

 

Where,  

       corresponds to the real part of        and        corresponds to the imaginary 

part of        
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Here, 

      =|      |  √                  and              (
      

      ⁄ )(3.8) 

 

The magnitude spectrum is modified by the noise estimation, and the subtraction rules, 

and hence this carries significant information. The phase without any modification is 

combined with the estimated spectrum for time domain restoration, since it is difficult to 

get an estimation of the phase [4], and from perceptual point of view it is believed that it 

does not carry any useful information in noise suppression [24]. 

Magnitude spectrum analysis is a combination of two main procedures 

 Noise power estimator 

 Subtraction rules 

 

3.2.1 Noise Power Estimation 

In our thesis we use minimum statistics algorithm for noise estimation which is proposed 

by Martin [12]. This algorithm can estimate instantaneous SNR of speech signals by 

using the combination of estimated minimum values of a smoothed power and 

instantaneous power spectrum with low computational complexity. 

 

3.2.1.1 Subband Signal Power Estimation 

To get the short time subband signal power        , the recursively smoothed 

periodograms is used [18]. The short time subband signal power is updated on a frame by 

frame basis which is given by: 

 

                           |      |                           (3.9) 
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Where |      | is the magnitude of the input signal spectra and α is the smoothing 

constant that takes the values in between 0.90 to 0.95 [12]. 

 

3.2.1.2 Subband Noise Power Estimation 

The minimum power is obtained from the short time subband signal power. For 

calculating the minimum power we have taken a window  , of length  . In order to 

reduce computational complexity       numbers of variables are added at the 

beginning of the short time subband power           . Then the minimum power 

          from the short time subband power        .is found by a sample wise 

comparison of the values within the window and then the minimum power is stored in the 

last position of the window. Whenever one minimum value is obtained, the window is 

updated by taking next short time subband power and the next minimum subband power 

is found in the same way. The window update for finding minimum noise power is 

continued until last subband power             is reached. 

The noise power estimation          is then calculated by using the minimum power  

          of the short time sub band signal power within the window of length       . 

 

                                                         (3.10) 

 

Where,      is the overestimation factor that is used to make the minimum power as 

noise power, with typically set values in the range 1.3 to 2 [19]. When      is set at 1.5, 

it gives better performance [12]. 
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3.2.2 SNR and Oversubtraction Factor Calculation: 

In general Signal to noise ratio (SNR) is defined as the ratio of the signal power to the 

noise power. SNR in each sub band is calculated to adjust the over subtraction factor 

          as  

                  (
                            

       
)                            

 

Oversubtraction factor can eliminate the residual spectral peaks. The large over 

subtraction factor not only remove the residual spectral peaks but also suppress some of 

the low energy components of the speech signal [12]. The speech quality is degraded by 

this undesirable effect. We calculated the over subtraction factor as a function of  

          and frequency bin   to maintain the speech quality [20]. 

 

          {

                                                                                  

  
 

  
                             

                                                     

  (3.12) 

 

3.2.3 Subtraction Rule 

The short time signal power |      |̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  is calculated by smoothing the squared magnitude 

of the input spectra with a first order recursive network. 

 

|      |̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅     |        |̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅         |      |                  (3.13) 

 

Where   is the smoothing constant and      . We used the Berouti et. al. proposal to 

subtract the spectral magnitude [21]. According the proposal spectral magnitude is 

subtracted with an over subtraction factor           and the maximum subtraction is 
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limited by a spectral floor constant                       [12]. The modified 

magnitude can be obtained by the following way 

 

|      |   {
√              |     |         √            

|     |                                    
             

 

Where, 

       (  √          
       

|      |̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 
) 

 

3.2.4 Reconstruction in Time Domain 

The modified magnitude |      | is directly added to the phase        by the following 

equation:  

 

       |      |                                                        (3.15) 

 

Many techniques are available to construct time domain signal from frequency domain 

signal [21]. The overlap-add IDFT is generally used for the filter bank analysis data to 

reconstruct the time domain signal. The IDFT is applied in each of the DFT frames to get 

a series of short time signals. These signals are then added together to reproduce the time 

domain signal with the same overlap which is used in the DFT filter bank. 

The IDFT of the signal        with the same window function      is given by [22] 

 

             
 

    
∑        

 
    

    
      
                          (3.16) 
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We consider the system with same window      of length      and interpolation ratio 

R, so that there is an occurrence of time overlapping. The overlap-add procedure is shown 

in Fig 3.4. 
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Figure 3.4 Overlap Add in Time Domain 
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Chapter 4 

Implementation and Results 

 

4.1 Introduction  

In this chapter we present the implementation and analysis of the Spectral Subtraction 

Based on Minimum Statistics (SSBMS) algorithm which is discussed in the previous 

chapter. Section 4.2 describes the details of the implementation and experimental setup of 

the system. This section also gives the optimum configuration by considering various 

parameters of the system. In section 4.3, we demonstrate the result from the performance 

evaluation. 

 

4.2 Implementation 

The offline implementation and evaluation of the SSBMS method are carried out in the 

MATLAB, as the implementation of any algorithm on the real-time system requires 

preliminary investigation. It is necessary to optimize the MATLAB code in order to 

reduce the computational load of the algorithm. The use of more ‘for’ loops degrades the 

efficiency of the program because of the access of the array elements. The matrix 

multiplication reduces the time complexity and ensures faster data processing. We have 

changed the ‘for’ loops by matrix processing to optimize the program. 

 

The experimental setup for the validation of single channel speech enhancement technique 

based on SSBMS is shown in figure 4.1. In this figure,      is the clean speech signal, 

     is the noise signal and      is the system input signal which contains the clean 
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speech signal and the noise signal               , and   is scaled by the desired SNR 

level.  

Where, 

    
    
   

 

The same filter bank is used for synthesis of the signals.   ,   ,   ,   ,    and    are 

the magnitude and phase of the signals     ,      and      respectively. The gain 

function   is calculated when    is passed through the system. Each signal after passing 

through G is added with the corresponding phase and then IDFT is applied to get the 

output signals      ,      ,      . 

Filter Bank G + Resynthesis
s(n) SM

SP

ys(n)

Filter Bank G + Resynthesis
x(n) XM

XP

yx(n)

Filter Bank G + Resynthesis
d(n) DM

DP

yd(n)

 

Figure 4.1 Experimental Setup 

 

In this thesis, we use ITU-T P.50 male and ITU-T P.50 female speech signal at the 

sampling frequency of 16 KHz as clean speech signal. ITU-T P.50 are the artificial voices 

that are used as test signals in telecommunication systems. The use of recommended 

artificial voices instead of real speech is the convenient way for the effective validation of 

the system. These ITU-T P.50 voices include 16 recorded sentences in each of 20 

languages and are developed by some ITU members [23]. Both signals are corrupted with 

the Gaussian Noise (GN), Car Noise (CAN), Factory Noise (FN), Wind Noise (WN) and 



 

Chapter 4. Implementation and Results  23  
 
 

Cafeteria Noise (CN) at -5 dB, 0 dB, 5 dB and 10 dB SNR for testing the system. The 

performance of the system is measured by SNRI and SD. The results are observed by 

changing the number of subbands and decimation/interpolation ratios. We have used 

64,128, 256 and 512 numbers of subbands with 75% and 50% overlapping. During 

experiment various values of the  ,   and      are used that created less effect to the 

algorithm performance in terms of SNRI and SD as shown in figure 4.2 and figure 4.3. In 

figure 4.4 and figure 4.5 the average SNRI and SD are obtained by using one fixed   and 

one      values. Then SNRI and SD are taken by varying   values from 0.80 to 0.89 and 

finally one SNRI and SD values are obtained from its average.  By varying   values from 

0.50 to 0.89, SNRI and one SD values are taken for further investigation by keeping   = 

0.9 and       = 0.01 as is shown in figure 4.4 and figure 4.5. From the figure 4.2 to figure 

4.5 it is clear that the SSBMS algorithm gives comparatively better performance if the 

values of  ,   ,      and      are set at 0.90, 0.86, 0.01 and 1.5. The performance of the 

algorithm is evaluated in different noisy environment from the above setting. The power 

spectral of the noises is shown in figure 4.6 to figure 4.9. 
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Figure 4.2 Average SNRI by changing  ,   and      

 

Figure 4.3 Average SD by changing  ,   and      
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Figure 4.4 SNRI by changing   value 

 

Figure 4.5 SD by changing   value 
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SNRI, Alpha = 0.9 and subf = 0.01
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SD, Alpha = 0.9 and subf = 0.01
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Figure 4.6 Power Spectral Density of Car Noise 

 

Figure 4.7 Power Spectral Density of Factory Noise 
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Figure 4.8 Power Spectral Density of Wind Noise 

 

Figure 4.9 Power Spectral Density of Cafeteria Noise 
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4.3 Results 

 

The SSBMS method gives on an average around 9 dB SNRI and -33 dB SD for all the 

situations tested for the both male and female speech signal. The SNRI and SD values are 

shown in Table 4.1 to Table 4.20. It is observed that both SNRI and SD vary a little bit 

depending on the number of subbands, overlap rates, types of noises and noise levels (-5 

dB, 0 dB, 5 dB and 10 dB). SNRI and SD are better for 75% overlap compared to 50% 

overlap for both male and female speech signals with GN as shown in Table 4.1 to Table 

4.4. The SNRI value of around 13 dB is achieved using 512, 256 and 128 number of 

subbands and a value of around 8 dB for 64 number of subbands for the same signals. The 

SD values decrease depending on the number of subbands and noise levels for both male 

and female speech signals with GN. The SD values varied form -29 dB to -37 dB. The 

SNRI and SD for both male and female speech signals with car noise are shown in Table 

4.5 to Table 4.8. The SNRI is around 17 dB for 512, 256 and 128 number of subbands 

with 75% overlap and 18 dB for 256 and 128 number of subbands with 50% overlap. The 

SD for both male and female speech signal is around -34 dB for CAN. It can be seen from 

Table 4.9 to Table 4.20 that the SNRI is much less for the same male and female speeches 

but mixed with the FN, WN and CN respectively. But the variation in SD values is nearly 

similar to GN and CAN mixed with that male and female speech. SNRI for both speeches 

is around 3-6 dB for FN, WN, and CN as shown in Table 4.9 to Table 4.20. It is 

calculated for -5 dB, 0 dB, 5 dB and 10 dB SNR. In case of wind noise the better SNRI is 

obtained while using 256 and 128 number of subbands in 75% and 50% overlap. The 

highest SNRI for WN is about 10 dB when female speech signal at 0dB SNR is processed 

by 128 number of subbands with 50% of overlap. For cafeteria noise SNRI always gives 

better result at 50% overlap as compared to 75% overlap. Figure 4.10 and figure 4.12 

show average SNRI plots for male and female speech with 75% overlap while the average 

SNRI plots for 50% overlap are shown in figure 4.11 and 4.13. The average spectral 

distortion plots for male and female speech with all cases are shown in figure 4.14 and 

figure 4.15. The computational complexity calculation for SSBMS algorithm is derived in 

section 4.4. 
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Input SNR in dB Number of Subbands SNRI in dB SD in dB 

 

-5 

512 13.244 -31.854 

256 13.474 -30.702 

128 13.322 -30.169 

64 12.785 -29.615 

 

0 

512 13.618 -33.633 

256 13.707 -31.955 

128 12.704 -30.701 

64 11.602 -29.812 

 

5 

512 13.141 -35.637 

256 12.690 -33.191 

128 11.148 -31.143 

64 09.434 -30.015 

 

10 

512 12.283 -37.300 

256 11.220 -34.092 

128 08.576 -31.471 

64 06.028 -30.142 

 

Table 4.1: SNRI and SD for Male Speech Signal with Gaussian Noise at 75% Overlap 

 

Input SNR in dB Number of Subbands SNRI in dB SD in dB 

 

-5 

512 13.811 -31.981 

256 14.722 -30.954 

128 12.268 -29.940 

64 09.984 -29.394 

 

0 

512 14.210 -33.601 

256 14.629 -32.445 

128 12.239 -30.669 

64 09.657 -29.628 

 

5 

512 13.493 -35.277 

256 13.727 -33.846 

128 10.864 -31.232 

64 07.620 -29.897 

 

10 

512 12.697 -36.640 

256 12.291 -34.808 

128 08.606 -31.663 

64 04.558 -30.060 

 

Table 4.2: SNRI and SD for Female Speech Signal with Gaussian Noise at 75% Overlap 
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Input SNR in dB Number of Subbands SNRI in dB SD in dB 

 

-5 

512 10.600 -31.127 

256 11.416 -30.464 

128 12.671 -30.304 

64 12.318 -30.021 

 

0 

512 11.429 -32.251 

256 12.462 -31.923 

128 13.041 -31.538 

64 12.639 -30.597 

 

5 

512 11.393 -33.295 

256 12.250 -33.399 

128 12.250 -32.792 

64 10.808 -31.124 

 

10 

512 10.867 -33.978 

256 11.341 -34.534 

128 10.799 -33.740 

64 08.474 -31.464 

 

Table 4.3: SNRI and SD for Male Speech Signal with Gaussian Noise at 50% Overlap 

 

Input SNR in dB Number of Subbands SNRI in dB SD in dB 

 

-5 

512 11.028 -31.200 

256 12.707 -31.060 

128 12.613 -30.354 

64 10.658 -29.548 

 

0 

512 11.812 -32.368 

256 13.241 -32.551 

128 13.034 -31.481 

64 11.141 -30.158 

 

5 

512 11.709 -33.350 

256 12.686 -34.090 

128 12.148 -32.739 

64 10.047 -30.817 

 

10 

512 11.222 -34.127 

256 11.953 -35.390 

128 10.763 -33.707 

64 07.766 -31.272 

 

Table 4.4: SNRI and SD for Female Speech Signal with Gaussian Noise at 50% Overlap 
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Input SNR in dB Number of Subbands SNRI in dB SD in dB 

 

-5 

512 17.083 -34.576 

256 18.456 -32.604 

128 16.238 -30.910 

64 14.954 -29.951 

 

0 

512 17.092 -35.858 

256 17.807 -33.391 

128 15.423 -31.217 

64 13.400 -30.521 

 

5 

512 16.324 -36.924 

256 16.060 -34.003 

128 13.201 -31.451 

64 10.577 -30.134 

 

10 

512 14.742 -37.903 

256 13.397 -34.500 

128 09.741 -31.612 

64 06.614 -30.195 
 

Table 4.5: SNRI and SD for Male Speech Signal with Car Noise at 75% Overlap 

 

Input SNR in dB Number of Subbands SNRI in dB SD in dB 

 

-5 

512 17.100 -33.957 

256 18.585 -32.789 

128 16.476 -30.771 

64 13..332 -29.879 

 

0 

512 17.029 -35.138 

256 17.557 -33.642 

128 15.345 -31.135 

64 11.784 -30.018 

 

5 

512 16.271 -36.224 

256 15.934 -34.391 

128 12.897 -31.463 

64 08.874 -30.155 

 

10 

512 14.964 -37.086 

256 13.854 -34.970 

128 09.657 -31.704 

64 05.176 -30.260 

 

Table 4.6: SNRI and SD for Female Speech Signal with Car Noise at 75% Overlap 
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Input SNR in dB Number of Subbands SNRI in dB SD in dB 

 

-5 

512 12.915 -32.905 

256 17.793 -32.651 

128 18.637 -32.207 

64 16.887 -30.794 

 

0 

512 13.470 -33.476 

256 17.563 -33.539 

128 17.730 -33.015 

64 15.507 -31.144 

 

5 

512 13.323 -33.861 

256 16.462 -34.301 

128 15.866 -32.638 

64 13.052 -31.422 

 

10 

512 12.218 -34.171 

256 14.543 -34.939 

128 13.137 -34.133 

64 09.571 -31.613 

 

Table 4.7: SNRI and SD for Male Speech Signal with Car Noise at 50% Overlap 

 

Input SNR in dB Number of Subbands SNRI in dB SD in dB 

 

-5 

512 13.261 -33.052 

256 17.874 -32.679 

128 18.336 -31.998 

64 16.429 -30.574 

 

0 

512 13.989 -33.788 

256 17.363 -33.606 

128 17.292 -32.708 

64 15.034 -30.940 

 

5 

512 14.184 -34.398 

256 15.410 -33.363 

128 15.410 -33.363 

64 12.360 -31.290 

 

10 

512 13.504 -34.797 

256 14.641 -35.002 

128 12.795 -33.928 

64 09.017 -31.573 

 

Table 4.8: SNRI and SD for Female Speech Signal with Car Noise at 50% Overlap 
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Input SNR in dB Number of Subbands SNRI in dB SD in dB 

 

-5 

512 3.218 -30.217 

256 2.995 -29.555 

128 2.280 -29.503 

64 2.573 -29.228 

 

0 

512 5.822 -31.545 

256   5.879 -30.269 

128 4.152 -29.767 

64 3.397 -29.348 

 

5 

512 6.906 -33.382 

256 7.002 -31.421 

128 5.125 -30.303 

64 3.396 -29.608 

 

10 

512 6.946 -35.278 

256 6.431 -32.668 

128 4.329 -30.872 

64 2.405 -29.863 

 

Table 4.9: SNRI and SD for Male Speech Signal with Factory Noise at 75% Overlap 

 

Input SNR in dB Number of Subbands SNRI in dB SD in dB 

 

-5 

512 4.774 -30.530 

256 4.609 -29.852 

128 2.611 -29.523 

64 2.426 -29.272 

 

0 

512 6.521 -31.744 

256 7.036 -30.793 

128 4.399 -29.821 

64 2.555 -29.359 

 

5 

512 7.215 -33.397 

256 7.920 -32.076 

128 5.238 -30.374 

64 2.574 -29.576 

 

10 

512 7.171 -35.091 

256 7.722 -33.464 

128 4.363 -31.016 

64 1.135 -29.821 

 

Table 4.10: SNRI and SD for Female Speech Signal with Factory Noise at 75% Overlap 
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Input SNR in dB Number of Subbands SNRI in dB SD in dB 

 

-5 

512 0.898 -30.052 

256 0.458 -29.479 

128 1.029 -29.343 

64 1.593 -29.445 

 

0 

512 2.888 -30.911 

256 3.489 -30.132 

128 3.447 -29.692 

64 3.123 -29.643 

 

5 

512 4.151 -32.085 

256 5.285 -31.279 

128 5.192 -30.622 

64 4.354 -30.175 

 

10 

512 4.540 -33.133 

256 5.497 -32.672 

128 4.904 -31.912 

64 3.695 -30.791 

 

Table 4.11: SNRI and SD for Male Speech Signal with Factory Noise at 50% Overlap 

 

 

Input SNR in dB Number of Subbands SNRI in dB SD in dB 

 

-5 

512 2.066 -30.363 

256 2.747 -30.017 

128 1.628 -29.569 

64 1.743 -29.309 

 

0 

512 3.515 -31.104 

256 5.026 -30.870 

128 4.002 -29.955 

64 2.636 -29.454 

 

5 

512 4.461 -32.169 

256 6.247 -32.224 

128 5.406 -30.774 

64 3.700 -29.903 

 

10 

512 4.726 -33.186 

256 6.438 -33.760 

128 5.027 -31.940 

64 2.987 -30.530 

 

Table 4.12: SNRI and SD for Female Speech Signal with Factory Noise at 50% Overlap 
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Input SNR in dB Number of Subbands SNRI in dB SD in dB 

 

-5 

512 3.406 -31.248 

256 7.125 -30.426 

128 9.299 -29.677 

64 4.644 -29.394 

 

0 

512 4.931 -32.412 

256 8.552 -31.222 

128 9.595 -29.992 

64 5.778 -29.557 

 

5 

512 5.877 -33.725 

256 8.583 -32.178 

128 8.530 -30.422 

64 5.690 -29.757 

 

10 

512 6.213 -35.018 

256 7.472 -33.160 

128 6.557 -30.817 

64 4.008 -29.938 

 

Table 4.13: SNRI and SD for Male Speech Signal with Wind Noise at 75% Overlap 

 

Input SNR in dB Number of Subbands SNRI in dB SD in dB 

 

-5 

512 4.043 -31.881 

256 8.211 -30.859 

128 9.039 -29.903 

64 3.909 -29.363 

 

0 

512 5.221 -33.025 

256 9.292 -31.673 

128 9.385 -30.182 

64 4.368 -29.426 

 

5 

512 6.065 -34.372 

256 9.337 -32.706 

128 8.375 -30.614 

64 3.965 -29.592 

 

10 

512 6.446 -35.712 

256 8.429 -33.772 

128 6.278 -31.107 

64 2.146 -29.799 

 

Table 4.14: SNRI and SD for Female Speech Signal with Wind Noise at 75% Overlap 
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Input SNR in dB Number of Subbands SNRI in dB SD in dB 

 

-5 

512 0.792 -31.048 

256 3.357 -30.485 

128 8.549 -29.946 

64 8.876 -29.454 

 

0 

512 2.261 -31.854 

256 4.997 -31.263 

128 9.444 -30.561 

64 9.007 -29.752 

 

5 

512 3.508 -32.654 

256 6.093 -32.233 

128 8.822 -31.505 

64 8.010 -30.228 

 

10 

512 4.354 -33.339 

256 6.284 -33.339 

128 7.284 -32.545 

64 6.038 -30.706 

 

Table 4.15: SNRI and SD for Male Speech Signal with Wind Noise at 50% Overlap 

 

 

Input SNR in dB Number of Subbands SNRI in dB SD in dB 

 

-5 

512 1.486 -31.346 

256 4.768 -31.272 

128 9.343 -30.207 

64 8.407 -29.491 

 

0 

512 2.683 -32.008 

256 6.195 -31.997 

128 10.138 -30.773 

64 8.316 -29.637 

 

5 

512 3.846 -32.796 

256 7.098 -33.031 

128 9.360 -31.628 

64 7.177 -30.018 

 

10 

512 4.587 -33.558 

256 7.092 -34.175 

128 7.691 -32.574 

64 5.033 -30.568 

 

Table 4.16: SNRI and SD for Female Speech Signal with Wind Noise at 50% Overlap 
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Input SNR in dB Number of Subbands SNRI in dB SD in dB 

 

-5 

512 3.396 -31.988 

256 3.097 -30.921 

128 0.146 -29.784 

64 -1.661 -29.334 

 

0 

512 4.568 -33.399 

256 4.796 -31.987 

128 2.248 -30.224 

64 -0.024 -29.479 

 

5 

512 5.213 -34.870 

256 5.661 -33.191 

128 3.524 -30.793 

64 1.210 -29.693 

 

10 

512 5.518 -36.228 

256 5.918 -34.277 

128 3.614 -31.328 

64 1.041 -29.910 

 

Table 4.17: SNRI and SD for Male Speech Signal with Cafeteria Noise at 75% Overlap 

 

Input SNR in dB Number of Subbands SNRI in dB SD in dB 

 

-5 

512 3.395 -31.987 

256 3.096 -30.920 

128 0.144 -29.784 

64 -1.66 -29.334 

 

0 

512 4.577 -33.414 

256 4.809 -31.999 

128 2.267 -30.230 

64 0 -29.481 

 

5 

512 5.208 -34.854 

256 5.655 -33.178 

128 3.517 -30.787 

64 1.204 -29.691 

 

10 

512 5.518 -36.229 

256 5.918 -34.278 

128 3.614 -31.328 

64 1.040 -29.910 

 

Table 4.18: SNRI and SD for Female Speech Signal with Cafeteria Noise at 75% Overlap 
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Input SNR in dB Number of Subbands SNRI in dB SD in dB 

 

-5 

512 3.348 -31.420 

256 3.098 -30.968 

128 2.573 -30.114 

64 0.748 -29.483 

 

0 

512 4.558 -32.192 

256 4.633 -32.071 

128 4.685 -30.850 

64 2.972 -29.846 

 

5 

512 5.489 -33.035 

256 5.498 -33.454 

128 5.799 -31.874 

64 4.097 -30.361 

 

10 

512 6.030 -33.764 

256 5.809 -34.765 

128 5.938 -32.946 

64 3.908 -30.890 

 

Table 4.19: SNRI and SD for Male Speech Signal with Cafeteria Noise at 50% Overlap 

 

Input SNR in dB Number of Subbands SNRI in dB SD in dB 

 

-5 

512 3.348 -31.420 

256 3.096 -30.968 

128 2.572 -30.114 

64 0.747 -29.483 

 

0 

512 4.569 -32.200 

256 4.646 -32.084 

128 4.703 -30.859 

64 2.990 -29.851 

 

5 

512 5.481 -33.026 

256 5.493 -33.439 

128 5.793 -31.863 

64 4.092 -30.356 

 

10 

512 5.481 -33.764 

256 5.493 -34.766 

128 5.793 -32.946 

64 4.092 -30.890 

 

Table 4.20: SNRI and SD for Female Speech Signal with Cafeteria Noise at 50% Overlap 

 



 

Chapter 4. Implementation and Results  39  
 
 

 

Figure 4.10: Average SNRI Using Male Speech Signal with 75% Overlap. 

 

 

Figure 4.11: Average SNRI Using Male Speech Signal with 50% Overlap. 
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Figure 4.12: Average SNRI Using Female Speech Signal with 75% Overlap. 

 

 

Figure 4.13: Average SNRI Using Female Speech Signal with 50% Overlap. 
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Figure 4.14: Average Spectral Distortion for Male Speech Signal. 

 

 

Figure 4.15: Average Spectral Distortion for Female Speech Signal 
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4.4 Computational Complexity 

Consider a signal      of length  . This is then divided into number of short time signal 

for analysis; each short time signal (each frame) carries some part of the previous signal 

because of time overlapping. The time overlapping is depending on the 

decimation/interpolation ratio  . So, the length of the each short time signal is based on 

the decimation/interpolation ratio and the data window     . Suppose,   is the short time 

signal length with decimation/interpolation ratio  .  

Now, the computational complexity of the Spectral Subtraction Based on Minimum 

Statistics algorithm for each frame is given in Table 4.21 

 

 

DFT and IDFT  Matrix Calculation Multiplication,         
Division,        
Addition,         

DFT Calculation Multiplication, (      
Addition,           

Angle Calculation Addition,     ) 

Square,         

Square Root,     ) 

Magnitude Calculation Division,       

Magnitude Square Calculation Multiplication, (   ) 

Short Time Signal Power and Short 

Time  Subband Signal Power 

Calculation 

Multiplication, (     ) 

Addition, (       ) 

Minimum Power Calculation Multiplication,         

Addition,         

Noise Power Calculation Multiplication, (   ) 

SNR Calculation Multiplication,       
Addition,       

Division,       

Oversubtraction Factor Calculation Addition,           

Division,           
Multiplication,           

Q Calculation Multiplication,      ) 

Addition,     ) 

Division,     ) 
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Improve Magnitude Calculation Multiplication,         

Square Root,         

Adding Angle with Improve 

Magnitude Calculation 

Multiplication,         

Addition,       

IDFT Calculation 

 
Multiplication,                   
Addition, (         ) 

Overlap Add Multiplication, (   ) 

Addition,       

 

Table 4.21 Computation Complexity of SSBMS Algorithm 

 

 

Total numbers of Multiplication, Division, Addition, Square and Square Root for each 

frame are given below, 

Multiplication,      
  

 
     

Division,        

Addition,      
  

 
    

Square,    

Square Root,    

Now, the total number of computational complexity for SSBMS algorithm in each sample   
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Chapter 5 

Conclusion 

 

In this thesis we have worked on noisy speech signal to enhance the speech. The SSBMS 

algorithm is successfully implemented and performance is observed in five different 

noisy environments. The performance analysis of the system has focused on its 

advantages and disadvantages i.e. where it gives high SNRI in slow varying noise as 

compared to non-stationary noise. It is clear that the selection of α and γ create less effect 

to the SNRI and SD but the selection of      has comparatively large effect on results. 

Generally a better SNRI is accompanied by a more SD signal i.e. the system 

compromises between high SNRI and low SD. After observing the results it is concluded 

that the SNRI and SD are comparatively better for both 512 and 256 subbands processed 

with 75% overlap for both male and female speech signals. It is also concluded that low 

SNR in the input signals gives high SD. The SD values are within -37dB to -29 dB for all 

the cases and increases linearly with SNR. The system provides good improvement on car 

noise for the both male and female speech with better SNRI and low SD. The maximum 

SNRI is achieved at 18 dB for both male and female speech signal for car noise at -5 dB 

SNR. The SSBMS algorithm also performs well in Gaussian noise, i.e. around 13 dB 

SNRI. In case of factory noise, wind noise and cafeteria noise the SNRI for the both male 

and female speech is around 5 dB. SSBMS algorithm is less complex and 

computationally efficient. This algorithm is successfully implemented and validated. 

Tables, plots and graphs that are presented in this thesis give the better view of results. 

 

In our thesis, we have simulated SSBMS algorithm in offline mode, and it can be 

implemented on real-time in the future. The output of the system contains very little 

background noise, although this noise is not influencing much the intelligibility of the 

speech but needs to be improved. The performance of the SSBMS algorithm can be 
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compared with other subtractive type algorithms implemented in the single channel for 

future work. 
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