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Kuldip Paliwal, Kamil Wójcicki and Belinda Schwerin

Signal Processing Laboratory, Griffith School of Engineering, Griffith University, Nathan QLD 4111, Australia

Abstract

In this paper we investigate the modulation domain as an alternative to the acoustic domain for speech enhancement.
More specifically, we wish to determine how competitive the modulation domain is for spectral subtraction as compared
to the acoustic domain. For this purpose, we extend the traditional analysis-modification-synthesis framework to include
modulation domain processing. We then compensate the noisy modulation spectrum for additive noise distortion by
applying the spectral subtraction algorithm in the modulation domain. Using an objective speech quality measure as well
as formal subjective listening tests, we show that the proposed method results in improved speech quality. Furthermore,
the proposed method achieves better noise suppression than the MMSE method. In this study, the effect of modulation
frame duration on speech quality of the proposed enhancement method is also investigated. The results indicate that
modulation frame durations of 180–280 ms, provide a good compromise between different types of spectral distortions,
namely musical noise and temporal slurring. Thus given a proper selection of modulation frame duration, the proposed
modulation spectral subtraction does not suffer from musical noise artifacts typically associated with acoustic spectral
subtraction. In order to achieve further improvements in speech quality, we also propose and investigate fusion of
modulation spectral subtraction with the MMSE method. The fusion is performed in the short-time spectral domain by
combining the magnitude spectra of the above speech enhancement algorithms. Subjective and objective evaluation of
the speech enhancement fusion shows consistent speech quality improvements across input SNRs.

Key words: Speech enhancement, modulation spectral subtraction, speech enhancement fusion,
analysis-modification-synthesis (AMS), musical noise

1. Introduction

Speech enhancement aims at improving the quality of
noisy speech. This is normally accomplished by reducing
the noise (in such a way that the residual noise is not
annoying to the listener), while minimising the speech
distortion introduced during the enhancement process. In
this paper we concentrate on the single-channel speech
enhancement problem, where the signal is derived from a
single microphone. This is especially useful in mobile com-
munication applications, where only a single microphone
is available due to cost and size considerations.

Many popular single-channel speech enhancement
methods employ the analysis-modification-synthesis
(AMS) framework (Allen, 1977; Allen and Rabiner,
1977; Crochiere, 1980; Portnoff, 1981; Griffin and Lim,
1984; Quatieri, 2002) to perform enhancement in the
acoustic spectral domain (Loizou, 2007). The AMS
framework consists of three stages: 1) the analysis stage,
where the input speech is processed using the short-time

Fourier transform (STFT) analysis; 2) the modification
stage, where the noisy spectrum undergoes some kind
of modification; and 3) the synthesis stage, where the
inverse STFT is followed by the overlap-add synthesis to
reconstruct the output signal. In this paper, we investigate
speech enhancement in the modulation spectral domain
by extending the acoustic AMS framework to include
modulation domain processing.

Zadeh (1950) was perhaps the first to propose a two-
dimensional bi-frequency system, where the second di-
mension for frequency analysis was the transform of the
time variation of the standard (acoustic) frequency. More
recently, Atlas et al. (2004) defined acoustic frequency as
the axis of the first STFT of the input signal and modu-
lation frequency as the independent variable of the second
STFT transform. We therefore differentiate the acoustic
spectrum from the modulation spectrum as follows. The
acoustic spectrum is the STFT of the speech signal, while
the modulation spectrum at a given acoustic frequency
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is the STFT of the time series of the acoustic spectral
magnitudes at that frequency. The short-time modulation
spectrum is thus a function of time, acoustic frequency and
modulation frequency.

There is growing psychoacoustic and physiological ev-
idence to support the significance of the modulation
domain in the analysis of speech signals. Experiments
of Bacon and Grantham (1989), for example, showed
that there are channels in the auditory system which
are tuned for the detection of modulation frequencies.
Sheft and Yost (1990) showed that our perception of
temporal dynamics corresponds to our perceptual filtering
into modulation frequency channels and that faithful
representation of these modulations is critical to our
perception of speech. Experiments of Schreiner and
Urbas (1986) showed that a neural representation of
amplitude modulation is preserved through all levels of the
mammalian auditory system, including the highest level
of audition, the auditory cortex. Neurons in the auditory
cortex are thought to decompose the acoustic spectrum
into spectro-temporal modulation content (Mesgarani and
Shamma, 2005), and are best driven by sounds that com-
bine both spectral and temporal modulations (Kowalski
et al., 1996; Shamma, 1996; Depireux et al., 2001).

Low frequency modulations of sound have been shown
to be the fundamental carriers of information in speech
(Atlas and Shamma, 2003). Drullman et al. (1994b,a),
for example, investigated the importance of modulation
frequencies for intelligibility by applying low-pass and
high-pass filters to the temporal envelopes of acoustic
frequency subbands. They showed frequencies between
4 and 16 Hz to be important for intelligibility, with the
region around 4-5 Hz being the most significant. In a
similar study, Arai et al. (1996) showed that applying
band-pass filters between 1 and 16 Hz does not impair
speech intelligibility.

While the envelope of the acoustic magnitude spectrum
represents the shape of the vocal tract, the modulation
spectrum represents how the vocal tract changes as a
function of time. It is these temporal changes that convey
most of the linguistic information (or intelligibility) of
speech. In the above intelligibility studies, the lower limit
of 1 Hz stems from the fact that the slow vocal tract
changes do not convey much linguistic information. In
addition, the lower limit helps to make speech communi-
cation more robust, since the majority of noises occurring
in nature vary slowly as a function of time and hence
their modulation spectrum is dominated by modulation
frequencies below 1 Hz. The upper limit of 16 Hz is due
to the physiological limitation on how fast the vocal tract
is able to change with time.

Modulation domain processing has grown in popularity
finding applications in areas such as speech coding (Atlas
and Vinton, 2001; Thompson and Atlas, 2003; Atlas,
2003), speech recognition (Hermansky and Morgan, 1994;
Nadeu et al., 1997; Kingsbury et al., 1998; Kanedera
et al., 1999; Tyagi et al., 2003; Xiao et al., 2007; Lu

et al., 2010), speaker recognition (Vuuren and Hermansky,
1998; Malayath et al., 2000; Kinnunen, 2006; Kinnunen
et al., 2008), objective speech intelligibility evaluation
(Steeneken and Houtgast, 1980; Payton and Braida, 1999;
Greenberg and Arai, 2001; Goldsworthy and Greenberg,
2004; Kim, 2004) as well as speech enhancement. In the
latter category, a number of modulation filtering methods
have emerged. For example, Hermansky et al. (1995)
proposed the band-pass filtering of the time trajectories
of cubic-root compressed short-time power spectrum for
enhancement of speech corrupted by additive noise. More
recently in (Falk et al., 2007; Lyons and Paliwal, 2008),
similar band-pass filtering was applied to the time tra-
jectories of the short-time power spectrum for speech
enhancement.

There are two main limitations associated with typical
modulation filtering methods. First, they use a filter
design based on the long-term properties of the speech
modulation spectrum, while ignoring the properties of
noise. As a consequence, they fail to eliminate noise
components present within the speech modulation regions.
Second, the modulation filter is fixed and applied to the
entire signal, even though the properties of speech and
noise change over time. In the proposed method, we
attempt to address these limitations by processing the
modulation spectrum on a frame-by-frame basis. In our
approach, we assume the noise to be additive in nature
and enhance noisy speech by applying spectral subtraction
algorithm, similar to the one proposed by Berouti et al.
(1979), in the modulation domain.

In this paper, we evaluate how competitive the mod-
ulation domain is for speech enhancement as compared
to the acoustic domain. For this purpose, objective and
subjective speech enhancement experiments were carried
out. The results of these experiments demonstrate that the
modulation domain is a useful alternative to the acoustic
domain. We also investigate fusion of the proposed
technique with the MMSE method for further speech
quality improvements.

In the main body of this paper, we provide the enhance-
ment results for the case of speech corrupted by additive
white Gaussian noise (AWGN). We have also investigated
enhancement performance for various coloured noises and
the results were found to be qualitatively similar. In order
not to clutter the main body of this paper, we include the
results for the coloured noises in Appendix C.

The rest of this paper is organised as follows. Section 2
details the traditional AMS-based speech processing. Sec-
tion 3 presents details of the proposed modulation domain
speech enhancement method along with the discussion of
objective and subjective enhancement experiments and
their results. Section 4 gives the details of the proposed
speech enhancement fusion algorithm, along with experi-
mental evaluation and results. Final conclusions are drawn
in Section 5.
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2. Acoustic analysis-modification-synthesis

Let us consider an additive noise model

x(n) = s(n) + d(n), (1)

where n is the discrete-time index, while x(n), s(n) and
d(n) denote discrete-time signals of noisy speech, clean
speech and noise, respectively. Since speech can be
assumed to be quasi-stationary, it is analysed frame-wise
using the short-time Fourier analysis. The STFT of the
corrupted speech signal x(n) is given by

X(n, k) =

∞∑

l=−∞

x(l)w(n − l)e−j2πkl/N , (2)

where k refers to the index of the discrete acoustic
frequency, N is the acoustic frame duration (in samples)
and w(n) is an acoustic analysis window function.1 In
speech processing, the Hamming window with 20–40 ms
duration is typically employed (Paliwal and Wójcicki,
2008). Using STFT analysis we can represent Eq. (1) as

X(n, k) = S(n, k) + D(n, k), (3)

where X(n, k), S(n, k), and D(n, k) are the STFTs of noisy
speech, clean speech, and noise, respectively. Each of these
can be expressed in terms of acoustic magnitude spectrum
and acoustic phase spectrum. For instance, the STFT of
the noisy speech signal can be written in polar form as

X(n, k) =
∣∣X(n, k)

∣∣ej∠X(n,k), (4)

where
∣∣X(n, k)

∣∣ denotes the acoustic magnitude spectrum
and ∠X(n, k) denotes the acoustic phase spectrum.2

Traditional AMS-based speech enhancement methods
modify, or enhance, only the noisy acoustic magnitude
spectrum while keeping the noisy acoustic phase spectrum
unchanged. The reason for this is that for Hamming-
windowed frames (of 20–40 ms duration) the phase spec-
trum is considered unimportant for speech enhancement
(Wang and Lim, 1982; Shannon and Paliwal, 2006). Such
algorithms attempt to estimate the magnitude spectrum
of clean speech. Let us denote the enhanced magnitude
spectrum as

∣∣Ŝ(n, k)
∣∣, then the modified spectrum is

constructed by combining
∣∣Ŝ(n, k)

∣∣ with the noisy phase
spectrum, as follows

Y (n, k) =
∣∣Ŝ(n, k)

∣∣ej∠X(n,k). (5)

1Note that in principle, Eq. (2) could be computed for every
acoustic sample, however, in practice it is typically computed for
each acoustic frame (and acoustic frames are progressed by some
frame shift). We do not show this decimation explicitly in order to
keep the mathematical notation concise.

2In our discussions, when referring to the magnitude, phase or
(complex) spectra, the STFT modifier is implied unless otherwise
stated. Also, wherever appropriate, we employ the acoustic
and modulation modifiers to disambiguate between acoustic and
modulation domains.
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Fig. 1: Block diagram of a traditional AMS-based acoustic domain
speech enhancement procedure.

The enhanced speech signal, y(n), is constructed by
taking the inverse STFT of the modified acoustic spectrum
followed by least-squares overlap-add synthesis (Griffin
and Lim, 1984; Quatieri, 2002):

y(n) =
1

W0(n)

∞
X

l=−∞

" 

1

N

N−1
X

k=0

Y (l, k)ej2πnk/N

!

ws(l − n)

#

,

(6)

where ws(n) is the synthesis window function, and W0(n)
is given by

W0(n) =
∞∑

l=−∞

w2
s(l − n). (7)

In the present study, as the synthesis window we employ
the modified Hanning window (Griffin and Lim, 1984),
given by

ws(n) =

8

<

:

0.5 − 0.5 cos
“

2π(n+0.5)
N

”

, 0 ≤ n < N

0, otherwise
. (8)

Note that the use of the modified Hanning window means
that W0(n) in Eq. (7) is constant (i.e., independent of n).

A block diagram of a traditional AMS-based speech
enhancement framework is shown in Fig. 1.

3. Modulation spectral subtraction

3.1. Introduction

Classical spectral subtraction (Boll, 1979; Berouti et al.,
1979; Lim and Oppenheim, 1979) is an intuitive and
effective speech enhancement method for the removal of
additive noise. Spectral subtraction does, however, suffer
from perceptually annoying spectral artifacts refered to as
musical noise. Many approaches that attempt to address
this problem have been investigated in the literature (e.g.,
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∣∣Ŝ(η, k,m)
∣∣ =






(∣∣X (η, k,m)
∣∣γ − ρ

∣∣D̂(η, k,m)
∣∣γ

) 1

γ

, if
∣∣X (η, k,m)

∣∣γ − ρ
∣∣D̂(η, k,m)

∣∣γ ≥ β
∣∣D̂(η, k,m)

∣∣γ

(
β
∣∣D̂(η, k,m)

∣∣γ
) 1

γ

, otherwise

(11)

Vaseghi and Frayling-Cork, 1992; Cappe, 1994; Virag,
1999; Hasan et al., 2004; Hu and Loizou, 2004; Lu, 2007).

In this section, we propose to apply the spectral subtrac-
tion algorithm in the short-time modulation domain. Tra-
ditionally, the modulation spectrum has been computed
as the Fourier transform of the intensity envelope of a
band-pass filtered signal (e.g., Houtgast and Steeneken,
1985; Drullman et al., 1994a; Goldsworthy and Greenberg,
2004). The method proposed in our study, however,
uses the short-time Fourier transform (STFT) instead
of band-pass filtering. In the acoustic STFT domain,
the quantity closest to the intensity envelope of a band-
pass filtered signal is the magnitude-squared spectrum.
However, in the present paper we use the time trajectories
of the short-time acoustic magnitude spectrum for the
computation of the short-time modulation spectrum. This
choice is motivated from more recently reported papers
dealing with modulation-domain processing based speech
applications (Falk et al., 2007; Kim, 2005), and is also
justified empirically in Appendix B. Once the modulation
spectrum is computed, spectral subtraction is done in
the modulation magnitude-squared domain. Empirical
justification for use of modulation magnitude-squared
spectra is also given in Appendix B.

The proposed approach is then evaluated through both
objective and subjective speech enhancement experiments
as well as through spectrogram analysis. We show that
given a proper selection of modulation frame duration, the
proposed method results in improved speech quality and
does not suffer from musical noise artifacts.

3.2. Procedure

The proposed speech enhancement method extends the
traditional AMS-based acoustic domain enhancement to
the modulation domain. To achieve this, each frequency
component of the acoustic magnitude spectra, obtained
during the analysis stage of the acoustic AMS procedure
outlined in Section 2, is processed frame-wise across time
using a secondary (modulation) AMS framework. Thus
the modulation spectrum is computed using STFT analy-
sis as follows

X (η, k,m) =

∞∑

l=−∞

∣∣X(l, k)
∣∣v(η − l)e−j2πml/M , (9)

where η is the acoustic frame number,3 k refers to the index
of the discrete acoustic frequency, m refers to the index of
the discrete modulation frequency, M is the modulation
frame duration (in terms of acoustic frames) and v(η) is
a modulation analysis window function. The resulting
spectra can be expressed in polar form as

X (η, k,m) =
∣∣X (η, k,m)

∣∣ej∠X (η,k,m), (10)

where
∣∣X (η, k,m)

∣∣ is the modulation magnitude spectrum
and ∠X (η, k,m) is the modulation phase spectrum.

We propose to replace
∣∣X (η, k,m)

∣∣ with
∣∣Ŝ(η, k,m)

∣∣,
where

∣∣Ŝ(η, k,m)
∣∣ is an estimate of clean modulation

magnitude spectrum obtained using a spectral subtrac-
tion rule similar to the one proposed by Berouti et al.
(1979) and given by Eq. (11). In Eq. (11), ρ denotes
the subtraction factor that governs the amount of over-
subtraction; β is the spectral floor parameter used to
set spectral magnitude values falling below the spectral

floor,
(
β
∣∣D̂(η, k,m)

∣∣γ
) 1

γ

, to that spectral floor; and γ

determines the subtraction domain, e.g., for γ set to unity
the subtraction is performed in the magnitude spectral
domain, while for γ = 2 the subtraction is performed in
the magnitude-squared spectral domain.

The estimate of the modulation magnitude spectrum of
the noise, denoted by

∣∣D̂(η, k,m)
∣∣, is obtained based on

a decision from a simple voice activity detector (VAD)
(Loizou, 2007), applied in the modulation domain. The
VAD classifies each modulation domain segment as either
1 (speech present) or 0 (speech absent), using the following
binary rule

Φ(η, k) =

{
1, if φ(η, k) ≥ θ

0, otherwise
, (12)

where φ(η, k) denotes a modulation segment SNR com-
puted as follows

φ(η, k) = 10 log10





∑
m

∣∣X (η, k,m)
∣∣2

∑
m

∣∣D̂(η−1, k,m)
∣∣2



 (13)

3Note that in principle, Eq. (9) could be computed for every
acoustic frame, however, in practice we compute it for every
modulation frame. We do not show this decimation explicitly in
order to keep the mathematical notation concise.
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Fig. 2: Block diagram of the proposed AMS-based modulation domain
speech enhancement procedure.

and θ is an empirically determined speech presence thresh-
old. The noise estimate is updated during speech absence
using the following averaging rule (Virag, 1999)

∣∣D̂(η, k,m)
∣∣γ = λ

∣∣D̂(η−1, k,m)
∣∣γ + (1−λ)

∣∣X (η, k,m)
∣∣γ ,

(14)
where λ is a forgetting factor chosen depending on the
stationarity of the noise.4

The modified modulation spectrum is produced by
combining

∣∣Ŝ(η, k,m)
∣∣ with the noisy modulation phase

spectrum as follows

Z(η, k,m) =
∣∣Ŝ(η, k,m)

∣∣ej∠X (η,k,m). (15)

Note that unlike the acoustic phase spectrum, the mod-
ulation phase spectrum does contain useful information

4Note that due to the temporal processing over relatively long
frames, the use of VAD for noise estimation will not achieve truly
adaptive noise estimates. This is one of the limitations of the
proposed method as discussed in Section 3.4.

(Hermansky et al., 1995). In the present work, we
keep ∠X (η, k,m) unchanged, however, future work will
investigate approaches that can be used to enhance it. In
the present study, we obtain the estimate of the modified
acoustic magnitude spectrum

∣∣Ŝ(n, k)
∣∣, by taking the

inverse STFT of Z(η, k,m) followed by overlap-add with
synthesis windowing. A block diagram of the proposed
approach is shown in Fig. 2.

3.3. Experiments

In this section we detail objective and subjective speech
enhancement experiments that assess the suitability of
modulation spectral subtraction for speech enhancement.

3.3.1. Speech corpus

In our experiments we employ the Noizeus speech
corpus (Loizou, 2007; Hu and Loizou, 2007).5 Noizeus is
composed of 30 phonetically-balanced sentences belonging
to six speakers, three males and three females. The corpus
is sampled at 8 kHz and filtered to simulate receiving
frequency characteristics of telephone handsets. Noizeus
comes with non-stationary noises at different SNRs. For
our experiments we keep the clean part of the corpus
and generate noisy stimuli by degrading the clean stimuli
with additive white Gaussian noise (AWGN) at various
SNRs. The noisy stimuli are constructed such that they
begin with a noise only section long enough for (initial)
noise estimation in both acoustic and modulation domains
(approx. 500 ms).

3.3.2. Stimuli types

Modulation spectral subtraction (ModSpecSub) stimuli
were constructed using the procedure detailed in Sec-
tion 3.2. The acoustic frame duration was set to 32 ms,
with an 8 ms frame shift and the modulation frame
duration was set to 256 ms, with a 32 ms frame shift.
Note that modulation frame durations between 180 ms
and 280 ms were found to work well. However, at shorter
durations the musical noise was present, while at longer
durations a slurring effect was observed. The duration
of 256 ms was chosen as a good compromise. A more
detailed look at the effect of modulation frame duration
on speech quality of ModSpecSub stimuli is presented in
Appendix A. The Hamming window was used for both
the acoustic and modulation analysis windows. The FFT-
analysis length was set to 2N and 2M for the acoustic
and modulation AMS frameworks, respectively. The value
of the subtraction parameter ρ was selected as described
in (Berouti et al., 1979). The spectral floor parameter β

was set to 0.002. Magnitude-squared spectral subtraction
was used in the modulation domain, i.e., γ=2. The speech
presence threshold θ was set to 3 dB. The forgetting factor
λ was set to 0.98. Griffith and Lim’s method for windowed

5The Noizeus speech corpus is publicly available on-line at the
following url: http://www.utdallas.edu/~loizou/speech/noizeus.
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Fig. 3: Spectrograms of sp10 utterance, “The sky that morning
was clear and bright blue”, by a male speaker from the Noizeus
speech corpus: (a) clean speech (PESQ: 4.50); (b) speech degraded
by AWGN at 5 dB SNR (PESQ: 1.80); as well as the noisy speech
enhanced using: (c) acoustic spectral subtraction (SpecSub) (Berouti
et al., 1979) (PESQ: 2.07); (d) the MMSE method (Ephraim and
Malah, 1984) (PESQ: 2.26); and (e) modulation spectral subtraction
(ModSpecSub) (PESQ: 2.42).

overlap-add synthesis (Griffin and Lim, 1984) was used for
both acoustic and modulation syntheses.

For our experiments we have also generated stimuli
using two popular speech enhancement methods, namely
the acoustic spectral subtraction (SpecSub) (Berouti et al.,
1979) and the MMSE method (Ephraim and Malah,
1984). Publicly available reference implementation of
these methods (Loizou, 2007) was employed in our study.
In the SpecSub method, the subtraction was performed
in the magnitude-squared spectral domain, with the noise
spectrum estimates obtained through recursive averaging
of non-speech frames. Speech presence or absence was de-

termined using a voice activity detection (VAD) algorithm,
based on a simple segmental SNR measure (Loizou, 2007).
In the MMSE method, optimal estimates (in the minimum
mean square error sense) of the short-time spectral am-
plitudes were computed. The decision-directed approach
was used for the a priori SNR estimation, with the
smoothing factor α set to 0.98.6 In the MMSE method,
noise spectrum estimates were computed from non-speech
frames using recursive averaging with speech presence or
absence determined using a log-likelihood ratio based VAD
(Loizou, 2007). Further details on the implementation of
both methods are given in (Loizou, 2007).

In addition to the ModSpecSub, SpecSub, and MMSE
stimuli, clean and noisy speech stimuli were also included
in our experiments. Example spectrograms for the above
stimuli are shown in Fig. 3.7,8

3.3.3. Objective experiment

The objective experiment was carried out over the
Noizeus corpus for AWGN at 0, 5, 10 and 15 dB SNR.
Perceptual evaluation of speech quality (PESQ) (Rix et al.,
2001) was used to predict mean opinion scores for the
stimuli types outlined in Section 3.3.2.

3.3.4. Subjective experiment

The subjective evaluation was in a form of AB listening
tests that determine method preference. Two Noizeus
sentences (sp10 and sp27) belonging to male and female
speakers were included. AWGN at 5 dB SNR was inves-
tigated. The stimuli types detailed in Section 3.3.2 were
included. Fourteen English speaking listeners participated
in this experiment. None of the participants reported
any hearing defects. The listening tests were conducted
in a quiet room. The participants were familiarised with
the task during a short practice session. The actual test
consisted of 40 stimuli pairs played back in randomised
order over closed circumaural headphones at a comfortable
listening level. For each stimuli pair, the listeners were
presented with three labeled options on a digital computer
and asked to make a subjective preference. The first and
second options were used to indicate a preference for the
corresponding stimuli, while the third option was used to
indicate a similar preference for both stimuli. The listeners
were instructed to use the third option only when they did

6Please note that in the decision-directed approach for the a priori
SNR estimation, the smoothing parameter α has a significant effect
on the type and intensity of the residual noise present in the
enhanced speech (Cappe, 1994). While the MMSE stimuli used
in the experiments presented in the main body of this paper were
constructed with α set to 0.98, a supplementary examination of the
effect of α on speech quality of the MMSE stimuli is provided in
Appendix D.

7Note that all spectrograms, presented in this study, have the
dynamic range set to 60 dB. The highest spectral peaks are shown
in black, while the lowest spectral valleys (≥60 dB below the highest
peaks) are shown in white. Shades of gray are used in-between.

8The audio stimuli files are available on-line from the following
url: http://maxwell.me.gu.edu.au/spl/research/modspecsub/.
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Fig. 4: Speech enhancement results for the objective experiment
detailed in Section 3.3.3. The results are in terms of mean PESQ
scores as a function of input SNR (dB) for AWGN over the Noizeus
corpus.

not prefer one stimulus over the other. Pairwise scoring
was employed, with a score of +1 awarded to the prefered
method and +0 to the other. For a similar preference
response each method was awarded a score of +0.5. The
participants were allowed to re-listen to stimuli if required.
The responses were collected via keyboard. No feedback
was given.

3.4. Results and discussion

The results of the objective experiment, in terms of
mean PESQ scores, are shown in Fig. 4. The proposed
method performs consistently well across the SNR range,
with particular improvements shown for stimuli with lower
input SNRs. The MMSE method showed the next best
performance, with all enhancement methods achieving
comparable results at 15 dB SNR.

The results of the subjective experiment are shown in
Fig. 5. The subjective results are in terms of average
preference scores. A score of one for a particular stimuli
type, indicates that the stimuli type was always preferred.
On the other hand, a score of zero means that the stimuli
type was never preferred. Subjective results show that
the clean stimuli were always preferred, while the noisy
stimuli were the least preferred. Of the enhancement
methods tested, ModSpecSub achieved significantly better
preference scores (p < 0.01) than MMSE and SpecSub,
with SpecSub being the least preferred. Notably, the
subjective results are consistent with the corresponding
objective results (AWGN at 5 dB SNR). More detailed
subjective results, in the form of a method preference
confusion matrix are shown in Table 1(a) of Appendix F.

The above results can be explained as follows. The
acoustic spectral subtraction introduces spurious peaks
scattered throughout the non-speech regions of the
acoustic magnitude spectrum. At a given acoustic
frequency bin, these spectral magnitude values vary
over time (i.e., from frame to frame) causing audibly
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Fig. 5: Speech enhancement results for the subjective experiment
detailed in Section 3.3.4. The results are in terms of mean preference
scores for AWGN at 5 dB SNR for two Noizeus utterances (sp10 and
sp17).

annoying sounds referred to as the musical noise. This is
clearly visible in the SpecSub spectrogram of Fig. 3(c).
On the other hand, the proposed method subtracts
the modulation magnitude spectrum estimate of the
noise from the modulation magnitude spectrum of the
noisy speech along each acoustic frequency bin. While
some spectral magnitude variation is still present in the
resulting acoustic spectrum, the residual peaks have much
smaller magnitudes. As a result, ModSpecSub stimuli
do not suffer from the musical noise audible in SpecSub
stimuli (given a proper selection of modulation frame
duration as discussed in Appendix A). This can be seen
by comparing spectrograms in Fig. 3(c) and Fig. 3(e).

The MMSE method does not suffer from the problem
of musical noise (Cappe, 1994; Loizou, 2007), however,
it does not suppress background noise as effectively as
the proposed method. This can be seen by comparing
spectrograms in Fig. 3(d) and Fig. 3(e). In addition,
listeners found the residual noise present after MMSE
enhancement to be perceptually distracting. On the other
hand, the proposed method uses larger frame durations in
order to avoid musical noise (see Appendix A). As a result,
stationarity has to be assumed over a larger duration. This
causes temporal slurring distortion. This kind of distortion
is mostly absent in the MMSE stimuli constructed with
smoothing factor α set to 0.98. The need for longer
frame durations in the ModSpecSub method also means
that larger non-speech durations are required to update
noise estimates. This makes the proposed method less
adaptive to rapidly changing noise conditions. Finally, the
additional processing involved in the computation of the
modulation spectrum for each acoustic frequency bin, adds
to the computational expense of the ModSpecSub method.
In the next section, we propose to combine ModSpecSub
and MMSE algorithms in the acoustic STFT domain in
order to reduce some of their unwanted effects and to
achieve further improvements in speech quality.

We would also like to emphasise that the phase spectrum
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∣∣Ŝ(n, k)
∣∣ =

(
Ψ

(
σn

)∣∣YMMSE(n, k)
∣∣γ +

(
1 − Ψ(σn)

)∣∣YModSpecSub(n, k)
∣∣γ

) 1

γ

(16)

plays a more important role in the modulation domain
than in the acoustic domain (Hermansky et al., 1995).
While in this preliminary study we keep the noisy modu-
lation phase spectrum unchanged, in future work further
improvements may be possible by also processing the
modulation phase spectrum.

4. Speech enhancement fusion

4.1. Introduction

In the previous section, we have proposed the appli-
cation of spectral subtraction in the short-time modula-
tion domain. We have shown that modulation spectral
subtraction (ModSpecSub) improves speech quality and
does not suffer from musical noise artifacts associated
with acoustic spectral subtraction. ModSpecSub does,
however, introduce temporal slurring distortion. On the
other hand, the MMSE method does not suffer from the
slurring distortion, but it is less effective at removal of
background noise. In this section, we attempt to exploit
the strengths of the two methods, while trying to avoid
their weaknesses, by combining (or fusing) them in the
acoustic STFT domain. We then evaluate the proposed
approach against methods investigated in Section 3.

4.2. Procedure

Let
∣∣YMMSE(n, k)

∣∣ denote the acoustic STFT magnitude
spectrum of speech enhanced using the MMSE method
(Ephraim and Malah, 1984) and

∣∣YModSpecSub(n, k)
∣∣ be the

acoustic STFT magnitude spectrum of speech enhanced
using the ModSpecSub method. In the following discus-
sions we will refer to these as the MMSE magnitude spec-
trum and the ModSpecSub magnitude spectrum, respec-
tively. We propose to fuse ModSpecSub with the MMSE
method by combining their magnitude spectra as given
by Eq. (16), where Ψ(σn) is the fusion-weighting function,
σn is the a posteriori SNR (Ephraim and Malah, 1984) of
the nth acoustic segment averaged across frequency, and
γ determines the fusion domain (i.e., for γ=1 the fusion
is performed in the magnitude spectral domain, while for
γ=2 the fusion is performed in the magnitude-squared
spectral domain).

4.3. Fusion-weighting function

Empirically determined fusion-weighting function, em-
ployed in this study and shown in Fig. 6, is given by

Ψ(σ) =






0, if g(σ) ≤ 2
g(σ)−2

14 , if 2 < g(σ) < 16

1, if g(σ) ≥ 16

, (17)
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Fig. 6: Fusion-weighting function, Ψ(σ), as a function of average
a posteriori SNR, σ, as used in the construction of Fusion stimuli for
experiments detailed in Section 4.4.

where g(σ) = 10 log10(σ). The above weighting favours the
ModSpecSub method at low segment SNRs (i.e., during
speech pauses and low energy speech regions), while
stronger emphasis is given to the MMSE method at high
segment SNRs (i.e., during high energy speech regions).
Thus for Ψ(σ)=0 only ModSpecSub magnitude spectrum
is used, for 0<Ψ(σ)<1 a combination of ModSpecSub and
MMSE magnitude spectra is employed, while for Ψ(σ)=1
only MMSE magnitude spectrum is used. This allows us
to exploit the respective strengths of the two enhancement
methods.

4.4. Experiments

Objective and subjective speech enhancement exper-
iments were conducted to evaluate the performance of
the proposed approach against methods investigated in
Section 3. The details of these experiments are similar
to those presented in Section 3.3, with the differences
outlined below.

4.4.1. Stimuli types

Fusion stimuli were included in addition to the stim-
uli listed in Section 3.3.2. The Fusion stimuli were
constructed using the procedure outlined in Section 4.2.
The fusion was performed in magnitude-squared spectral
domain, i.e., γ = 2. Fusion-weighting function defined
in Section 4.3 was employed. The settings used to
generate MMSE and ModSpecSub magnitude spectra in
the proposed fusion were the same as those used for their
standalone counterparts.

Figure 7 gives a further insight into how the proposed
algorithm works. Clean and noisy speech spectrograms

8



Fig. 7: Spectrograms of sp10 utterance, “The sky that morning
was clear and bright blue”, by a male speaker from the Noizeus
speech corpus: (a) clean speech (PESQ: 4.50); (b) speech degraded
by AWGN at 5 dB SNR (PESQ: 1.80); as well as the noisy
speech enhanced using: (c) the MMSE method (Ephraim and
Malah, 1984) (PESQ: 2.26); (d) modulation spectral subtraction
(ModSpecSub) (PESQ: 2.42); and (f) ModSpecSub fusion with
MMSE (Fusion) (PESQ: 2.51); as well as (e) fusion-weighting
function Ψ(σn) computed across time for the noisy utterance shown
in the spectrogram of sub-plot (b).

are shown in Fig. 7(a) and Fig. 7(b), respectively. Spec-
trograms of noisy speech enhanced using MMSE and
ModSpecSub methods are shown in Fig. 7(c) and Fig. 7(d),
respectively. Figure 7(e) shows the fusion-weighting func-
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Fig. 8: Speech enhancement results for the objective experiment
detailed in Section 4.4.2. The results are in terms of mean PESQ
scores as a function of input SNR (dB) for AWGN over the Noizeus
corpus.
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Fig. 9: Speech enhancement results for the subjective experiment
detailed in Section 4.4.3. The results are in terms of mean preference
scores for AWGN at 5 dB SNR for two Noizeus utterances (sp10 and
sp17).

tion, Ψ(σn), for the given utterance. As can be seen, Ψ(σn)
is near zero during low energy speech regions as well as
during speech pauses. On the other hand, during high
energy speech regions, Ψ(σn) increases towards unity. The
spectrogram of speech enhanced using the Fusion method
is shown in Fig. 7(f).

4.4.2. Objective experiment

The objective experiment was again carried out over the
Noizeus corpus using the PESQ measure.

4.4.3. Subjective experiment

Two Noizeus sentences were employed for the subjective
tests. The first (sp10) belonged to a male speaker and
second (sp17) to a female speaker. Fourteen English
speaking listeners participated in this experiment. Five
of them were the same as in the previous experiment,
while the remaining nine were new. None of the listeners
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reported any hearing defects. The participants were
presented with 60 audio stimuli pairs for comparison.

4.5. Results and discussion

The results of the objective evaluation in terms of mean
PESQ scores are shown in Fig. 8. The results show
that the proposed fusion achieves small but consistent
speech quality improvement across the input SNR range
as compared to the ModSpecSub method.

This is confirmed by the results of the listening tests
shown in terms of average preference scores in Fig. 9.
The Fusion method achieves subjective preference im-
provements over the other speech enhancement methods
investigated in this comparison. These improvements were
found to be statistically significant at the 99% confidence
level, except for the case of Fusion versus ModSpecSub,
where the Fusion method was better on average but
the improvement was not statistically significantly (p =
0.0898). More detailed subjective results, in the form
of method preference confusion matrix, are shown in
Table 1(b) of Appendix F.

Results of an objective intelligibility evaluation in terms
mean speech-transmission index (STI) (Steeneken and
Houtgast, 1980) scores have been provided in Fig. 25
of Appendix E. These results show that the Fusion,
ModSpecSub and SpecSub methods achieve similar per-
formance, while being consistently better than the MMSE
method.

5. Conclusions

In this study, we have proposed to compensate noisy
speech for additive noise distortion by applying the spec-
tral subtraction algorithm in the modulation domain.
To evaluate the proposed approach, both objective and
subjective speech enhancement experiments were carried
out. The results of these experiments show that the
proposed method results in improved speech quality and it
does not suffer from musical noise typically associated with
spectral subtractive algorithms. These results indicate
that the modulation domain processing is a useful alter-
native to acoustic domain processing for the enhancement
of noisy speech. Future work will investigate the use of
other advanced enhancement techniques, such as MMSE,
Kalman filtering, etc., in the modulation domain.

We have also proposed to combine ModSpecSub and
MMSE methods in the STFT magnitude domain to
achieve further speech quality improvements. Through
this fusion we have exploited the strengths of both meth-
ods while to some degree limiting their weaknesses. The
fusion approach was also evaluated through objective
and subjective speech enhancement experiments. The
results of these experiments demonstrate that it is possible
to attain some objective and subjective improvements
through speech enhancement fusion in the acoustic STFT
domain.
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Fig. 10: Speech enhancement results for the objective experiment
detailed in Appendix A. The results are in terms of mean PESQ
scores as a function of modulation frame duration (ms) for AWGN
over the Noizeus corpus.

A. Effect of modulation frame duration on speech

quality of modulation spectral subtraction

stimuli

In order to determine a suitable modulation frame
duration, for the modulation spectral subtraction method
proposed in Section 3, we have conducted an objective
speech enhancement experiment as well as informal subjec-
tive listening tests and spectrogram analysis. The details
of these are briefly described in this appendix.

In the objective experiment, different modulation frame
durations were investigated. These ranged from 64 ms
to 768 ms. Mean PESQ scores were computed for
ModSpecSub stimuli over the Noizeus corpus for each
frame duration. AWGN at 0, 5, 10 and 15 dB SNR was
considered.

The results of the objective experiment are shown in
Fig. 10. In general, modulation frame durations between
64 ms and 280 ms yielded best PESQ improvements. At
higher input SNRs (10 and 15 dB) shorter frame durations
of approx. 80 ms produced highest PESQ scores, while at
lower input SNRs (0 and 5 dB) the improvement peak
was much broader, with highest PESQ scores achieved for
durations of 64–280 ms.

Figure 11(c,d,e) shows the spectrograms of the Mod-
SpecSub stimuli, constructed using the following modu-
lation frame durations: 64, 256 and 512 ms, respectively.
The frame duration of 64 ms resulted in the introduction of
strong musical noise, which can be seen in the spectrogram
of Fig. 11(c). On the other hand, a frame duration of
512 ms resulted in temporal slurring distortion as well
as somewhat poorer noise suppression. This can be
observed in the spectrogram of Fig. 11(e). Modulation
frame durations between 180 ms and 280 ms were found
to work well. A good compromise between musical noise
and temporal slurring was achieved with 256 ms frame
duration as shown in the spectrogram of Fig. 11(d). While
at the 256 ms duration some slurring is still present, this
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Fig. 11: Spectrograms of sp10 utterance, “The sky that morning
was clear and bright blue”, by a male speaker from the Noizeus
speech corpus: (a) clean speech (PESQ: 4.50); (b) speech degraded
by AWGN at 5 dB SNR (PESQ: 1.80); as well as the noisy speech
enhanced using modulation spectral subtraction (ModSpecSub) with
the following modulation frame durations: (c) 64 ms (PESQ: 2.38);
(d) 256 ms (PESQ: 2.42); and (e) 512 ms (PESQ: 2.16).

effect is much less perceptually distracting (as determined
through informal listening tests) than the musical noise.
Thus, when analysis window is too short, the enhanced
speech has musical noise, while for long frame durations,
lack of temporal localization results in temporal slurring
(Thompson and Atlas, 2003).

We have also investigated the effect of the modulation
window duration on speech intelligibility using the speech-
transmission index (STI) (Steeneken and Houtgast, 1980)
as an objective measure. A brief description of the STI
measure is included in Appendix E. The window durations
between 128 ms and 256 ms were found to have highest
intelligibility.

B. Effect of acoustic and modulation domain mag-

nitude spectrum exponents on speech quality

of modulation spectral subtraction stimuli

Traditional (acoustic domain) spectral subtraction
methods (Boll, 1979; Berouti et al., 1979; Lim and
Oppenheim, 1979) have been applied in the magnitude as
well as magnitude-squared (acoustic) spectral domains,
as clean speech and noise can be considered to be
additive in these domains. Additivity in the magnitude
domain has been justified by the fact that at high
SNRs, the phase spectrum remains largely unchanged
by additive noise distortion (Loizou, 2007). Additivity
in the magnitude-squared domain has been justified by
assuming the speech signal s(n) and noise signal d(n)
(see Eq. (1)) to be uncorrelated; making the cross-terms
(between clean speech and noise) in the computation of
the autocorrelation function (or, the power spectrum) of
the noisy speech to be zero.

In the present study, we propose to apply the spectral
subtraction method in the short-time modulation domain.
Since both the acoustic magnitude and magnitude-squared
domains are additive, one can compute the modulation
spectrum from either the acoustic magnitude or acoustic
magnitude-squared trajectories. Using similar arguments
to those presented for acoustic magnitude and magnitude-
squared domain additivity, the additivity assumption can
be extended to the modulation magnitude and magnitude-
squared domains. Therefore, modulation domain spectral
subtraction can be carried out on either the modulation
magnitude or magnitude-squared spectra.

Thus, for the implementation of modulation domain
spectral subtraction, the following two questions have
to be answered. First, should the short-time modula-
tion spectrum be derived from the time trajectories of
the acoustic magnitude or magnitude-squared spectra?
Second, in the short-time modulation spectral domain,
should the subtraction be performed on the magnitude or
magnitude-squared spectra? In this appendix, we try to
answer these two questions experimentally by considering
the following four combinations:

1. MAG-MAG: corresponding to acoustic magnitude
and modulation magnitude;

2. MAG-POW: corresponding to acoustic magnitude
and modulation magnitude-squared;

3. POW-MAG: corresponding to acoustic magnitude-
squared and modulation magnitude; and

4. POW-POW: corresponding to acoustic magnitude-
squared and modulation magnitude-squared.

Experiments were conducted to examine the effect of
each choice on objective speech quality. The Noizeus
speech corpus, corrupted by AWGN at 0, 5, 10 and 15 dB
SNR, was used. Mean PESQ scores were computed over
all 30 Noizeus sentences, for each of the four combinations
and each SNR.
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Fig. 12: Speech enhancement results for the objective experiment
detailed in Appendix B. Results for various magnitude spectrum
exponent combinations are shown. The results are in terms of mean
PESQ scores as a function of input SNR (dB) for AWGN over the
Noizeus corpus.

The objective results in terms of mean PESQ scores are
shown in Fig. 12. The MAG-POW combination is shown
to work best, with all other combinations achieving lower
scores. Based on informal listening tests and analysis of
spectrograms shown in Fig. 13, the following qualitative
comments can be made about the quality of speech
enhanced using the spectral subtraction method applied in
the short-time modulation domain using each of the com-
binations described above. The MAG-MAG combination
has improved noise suppression, but the speech content
is overly suppressed. The effect is clearly visible in the
spectrogram of Fig. 13(c). The MAG-POW combination
(Fig. 13(d)) produces the best sounding speech. The
POW-MAG combination (Fig. 13(e)) results in poorer
noise suppression and the residual noise is musical in
nature. The POW-POW combination (Fig. 13(f)) is by
far the most audibly distracting to listen to, due to the
presence of strong musical noise. The above observations
affirm that out of the four choices investigated in our
experiment, the MAG-POW combination is best suited
for the application of the spectral subtraction algorithm
in the short-time modulation domain.

Fig. 13: Spectrograms of sp10 utterance, “The sky that morning
was clear and bright blue”, by a male speaker from the Noizeus
speech corpus: (a) clean speech (PESQ: 4.50); (b) speech degraded
by AWGN at 5 dB SNR (PESQ: 1.80); as well as the noisy
speech enhanced using modulation spectral subtraction with various
exponents for acoustic and modulation spectra within the dual-AMS
framework: (ModSpecSub) (c) MAG-MAG (PESQ: 2.22); (d) MAG-
POW (PESQ: 2.42); (e) POW-MAG (PESQ: 2.37); and (f) POW-
POW (PESQ: 2.19).
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C. Speech enhancement results for coloured noises

In this paper we have proposed to apply the spectral
subtraction algorithm in the modulation domain. More
specifically, we have formulated a dual-AMS framework
where the classical spectral subtraction method (Berouti
et al., 1979) is applied after the second analysis stage (i.e.,
in the short-time modulation domain instead of the short-
time acoustic domain employed in the original work of
Berouti et al. (1979)). Since the effect of noise on speech is
dependent on the frequency, and the SNR of noisy speech
varies across the acoustic spectrum (Kamath and Loizou,
2002), it is reasonable to expect that the ModSpecSub
method will attain better performance for coloured noises
than the acoustic spectral subtraction. This is because
one of the strengths of the proposed algorithm is that each
subband is processed independently and thus it is the time
trajectories in each subband that are important and not
the relative levels in-between bands at a given time instant.
It is also for this reason that the modulation spectral
subtraction method avoids much of the musical noise
problem associated with the acoustic spectral subtraction.

This appendix includes some additional results for
various coloured noises, including airport, babble, car,
exhibition, restaurant, street, subway and train. Mean
PESQ scores for the different noise types are shown in
Fig. 14. Both ModSpecSub and Fusion have generally
achieved higher improvements than the other methods
tested. The Fusion method showed best improvements
for car, exhibition and train noise types, while for the
remaining noises, both Fusion and ModSpecSub methods
achieved comparable results.

Example spectrograms for the various noise types are
shown in Figs. 15–22.
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Fig. 14: Speech enhancement results for the objective experiment detailed in Appendix C. The results are in terms of mean PESQ scores as
a function of input SNR (dB) for various coloured noises over the Noizeus corpus.
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Fig. 15: Spectrograms of sp10 utterance, “The sky that morning
was clear and bright blue”, by a male speaker from the Noizeus
speech corpus: (a) clean speech (PESQ: 4.50); (b) speech degraded by
airport noise at 5 dB SNR (PESQ: 2.24); as well as the noisy speech
enhanced using: (c) acoustic spectral subtraction (SpecSub) (Berouti
et al., 1979) (PESQ: 2.34); (d) the MMSE method (Ephraim and
Malah, 1984) (PESQ: 2.54); (e) modulation spectral subtraction
(ModSpecSub) (PESQ: 2.55); and (f) ModSpecSub fusion with
MMSE (Fusion) (PESQ: 2.59).

Fig. 16: Spectrograms of sp10 utterance, “The sky that morning
was clear and bright blue”, by a male speaker from the Noizeus
speech corpus: (a) clean speech (PESQ: 4.50); (b) speech degraded by
babble noise at 5 dB SNR (PESQ: 2.19); as well as the noisy speech
enhanced using: (c) acoustic spectral subtraction (SpecSub) (Berouti
et al., 1979) (PESQ: 2.25); (d) the MMSE method (Ephraim and
Malah, 1984) (PESQ: 2.45); (e) modulation spectral subtraction
(ModSpecSub) (PESQ: 2.39); and (f) ModSpecSub fusion with
MMSE (Fusion) (PESQ: 2.46).
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Fig. 17: Spectrograms of sp10 utterance, “The sky that morning
was clear and bright blue”, by a male speaker from the Noizeus
speech corpus: (a) clean speech (PESQ: 4.50); (b) speech degraded
by car noise at 5 dB SNR (PESQ: 2.13); as well as the noisy speech
enhanced using: (c) acoustic spectral subtraction (SpecSub) (Berouti
et al., 1979) (PESQ: 2.41); (d) the MMSE method (Ephraim and
Malah, 1984) (PESQ: 2.66); (e) modulation spectral subtraction
(ModSpecSub) (PESQ: 2.60); and (f) ModSpecSub fusion with
MMSE (Fusion) (PESQ: 2.67).

Fig. 18: Spectrograms of sp10 utterance, “The sky that morning
was clear and bright blue”, by a male speaker from the Noizeus
speech corpus: (a) clean speech (PESQ: 4.50); (b) speech degraded
by exhibition noise at 5 dB SNR (PESQ: 1.85); as well as the noisy
speech enhanced using: (c) acoustic spectral subtraction (SpecSub)
(Berouti et al., 1979) (PESQ: 1.93); (d) the MMSE method
(Ephraim and Malah, 1984) (PESQ: 2.19); (e) modulation spectral
subtraction (ModSpecSub) (PESQ: 2.27); and (f) ModSpecSub
fusion with MMSE (Fusion) (PESQ: 2.33).
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Fig. 19: Spectrograms of sp10 utterance, “The sky that morning
was clear and bright blue”, by a male speaker from the Noizeus
speech corpus: (a) clean speech (PESQ: 4.50); (b) speech degraded by
restaurant noise at 5 dB SNR (PESQ: 2.23); as well as the noisy
speech enhanced using: (c) acoustic spectral subtraction (SpecSub)
(Berouti et al., 1979) (PESQ: 2.02); (d) the MMSE method
(Ephraim and Malah, 1984) (PESQ: 2.32); (e) modulation spectral
subtraction (ModSpecSub) (PESQ: 2.26); and (f) ModSpecSub
fusion with MMSE (Fusion) (PESQ: 2.37).

Fig. 20: Spectrograms of sp10 utterance, “The sky that morning
was clear and bright blue”, by a male speaker from the Noizeus
speech corpus: (a) clean speech (PESQ: 4.50); (b) speech degraded by
street noise at 5 dB SNR (PESQ: 2.00); as well as the noisy speech
enhanced using: (c) acoustic spectral subtraction (SpecSub) (Berouti
et al., 1979) (PESQ: 2.24); (d) the MMSE method (Ephraim and
Malah, 1984) (PESQ: 2.40); (e) modulation spectral subtraction
(ModSpecSub) (PESQ: 2.39); and (f) ModSpecSub fusion with
MMSE (Fusion) (PESQ: 2.50).
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Fig. 21: Spectrograms of sp10 utterance, “The sky that morning
was clear and bright blue”, by a male speaker from the Noizeus
speech corpus: (a) clean speech (PESQ: 4.50); (b) speech degraded
by subway noise at 5 dB SNR (PESQ: 2.00); as well as the noisy
speech enhanced using: (c) acoustic spectral subtraction (SpecSub)
(Berouti et al., 1979) (PESQ: 2.09); (d) the MMSE method
(Ephraim and Malah, 1984) (PESQ: 2.22); (e) modulation spectral
subtraction (ModSpecSub) (PESQ: 2.42); and (f) ModSpecSub
fusion with MMSE (Fusion) (PESQ: 2.45).

Fig. 22: Spectrograms of sp10 utterance, “The sky that morning
was clear and bright blue”, by a male speaker from the Noizeus
speech corpus: (a) clean speech (PESQ: 4.50); (b) speech degraded by
train noise at 5 dB SNR (PESQ: 2.13); as well as the noisy speech
enhanced using: (c) acoustic spectral subtraction (SpecSub) (Berouti
et al., 1979) (PESQ: 1.94); (d) the MMSE method (Ephraim and
Malah, 1984) (PESQ: 2.25); (e) modulation spectral subtraction
(ModSpecSub) (PESQ: 2.30); and (f) ModSpecSub fusion with
MMSE (Fusion) (PESQ: 2.30).
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D. Slurring versus musical noise distortion: a

closer comparison of the modulation spectral

subtraction algorithm with the MMSE method

The noise suppression in the MMSE method for speech
enhancement (Ephraim and Malah, 1984, 1985) is achieved
by applying a frequency dependent spectral gain function
G(p, ωk) to the short-time spectrum of the noisy speech
X(p, ωk) (Cappe, 1994).9 The spectral gain function can
be expressed in terms of the a priori and a posteriori

SNRs, Rprio(p, ωk) and Rpost(p, ωk), respectively. While
Rpost(p, ωk) is a local SNR estimate computed from
the current short-time frame, Rprio(p, ωk) is an estimate
computed from both the current and previous short-time
frames.

Decision-directed approach is a popular method for the a

priori SNR estimation. In the decision-directed approach
the parameter of particular importance is α (Cappe, 1994).
The parameter α is a weight which determines how much
of the SNR estimate is based on the current frame and how
much is based on the previous frame. The choice of α has a
significant effect on the type and intensity of residual noise
of the enhanced speech. For α ≥ 0.9, the musical noise is
reduced. However, values of α very close to one result in
temporal distortion during transient parts. This distortion
is sometimes described as a slurring or echoing effect. On
the other hand, for values of α < 0.9 musical noise is
introduced. The choice of α is thus a trade-off between
introduction of the musical noise versus introduction of
the temporal slurring distortion. The α = 0.98 setting
has been employed in the literature (Ephraim and Malah,
1984) and recommended as a good compromise for the
above trade-off (Cappe, 1994).

Different types of residual noise distortion can have a
different effect on the quality and intelligibility of enhanced
speech. For example, the musical noise will typically
be associated with somewhat reduced speech quality as
compared to the temporal slurring. On the other hand, the
musical noise distortion will not affect speech intelligibility
as adversely as the temporal slurring.

In order to make the comparison of the methods pro-
posed in this work with the MMSE method as fair as
possible, in this appendix we compare the MMSE stimuli,
constructed with various settings for the α parameter, with
the ModSpecSub and Fusion stimuli. For this purpose an
objective experiment was carried-out over all 30 utterances
of the Noizeus corpus, each corrupted by AWGN at 0, 5,
10 and 15 dB SNR. Three α settings were considered: 0.80,
0.98 and 0.998. The results of the objective experiment,
in terms of mean PESQ scores, are given in Fig. 23. The
α = 0.98 setting produced higher objective scores than the
other α settings considered. The ModSpecSub and Fusion
methods performed better than the MMSE method for all
three MMSE α settings investigated.

9For the purposes of this appendix we adopt mathematical
notation used by Cappe (1994).
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Fig. 23: Speech enhancement results for the objective experiment
detailed in Appendix D. The results are in terms of mean PESQ
scores as a function of input SNR (dB) for AWGN over the Noizeus
corpus. For the MMSE method, three settings for the parameter α

were considered: 0.8, 0.98 and 0.998.

Example spectrograms of the stimuli used in the above
experiment are shown in Fig. 24. The spectrograms of
MMSE enhanced speech are shown in Fig. 24(c,d,e) for α

set to 0.998, 0.98 and 0.80, respectively. The α = 0.998
(Fig. 24(c)) results in the best noise attenuation with
the residual noise exhibiting little variance. However,
during transients temporal slurring is introduced. For
α = 0.98 (Fig. 24(d)) the temporal slurring distortion
has been reduced and the residual noise is not musical in
nature, however, the variance and intensity of the residual
noise have increased. For α = 0.80 (Fig. 24(e)) the
temporal slurring distortion has been eliminated, however,
the enhanced speech suffers from poor noise reduction and
a strong musical noise artefact. The results of informal
subjective listening tests confirm the above observations.
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Fig. 24: Spectrograms of sp10 utterance, “The sky that morning
was clear and bright blue”, by a male speaker from the Noizeus
speech corpus: (a) clean speech (PESQ: 4.50); (b) speech degraded
by AWGN at 5 dB SNR (PESQ: 1.80); as well as the noisy speech
enhanced using the MMSE method (Ephraim and Malah, 1984)
with: (c) α = 0.998 (PESQ: 2.00); (d) α = 0.98 (PESQ: 2.26);
(e) α = 0.80 (PESQ: 2.06). Also included are the following:
(f) modulation spectral subtraction (ModSpecSub) (PESQ: 2.42);
and (g) ModSpecSub fusion with MMSE (Fusion) (PESQ: 2.51).
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E. Objective intelligibility results

In speech enhancement we are primarily interested in
the suppression of noise from noise corrupted speech
so that the quality can be improved. Speech quality
is a measure which quantifies how nice speech sounds
and includes attributes such as intelligibility, naturalness,
roughness of noise, etc. In the main body of this paper
we have solely concentrated on the overall quality aspect
of enhanced speech. However, in some speech process-
ing applications (e.g., automatic speech recognition), it
is the intelligibility attribute that is perhaps the most
important. By intelligibility we mean understanding (or
recognition) of the individual linguistic items spoken (such
as phonemes, syllables, words).

In this appendix, we provide some indication of the
intelligibility of enhanced speech by using an objective
intelligibility measure, namely the speech-transmission in-
dex (STI) (Steeneken and Houtgast, 1980). STI measures
the extent to which slow temporal intensity envelope mod-
ulations are preserved in degraded listening environments
(Payton and Braida, 1999). It is these slow intensity
variations that are important for speech intelligibility.
We employ the speech-based STI computation procedure
where speech signal is used as a probe. Under this
framework, the original and processed speech signals are
passed separately through a bank of seven octave band
filters. Each filtered signal is squared and low pass
filtered (with cut-off frequency of 32 kHz) to derive the
temporal intensity envelope. The power spectrum of
the temporal intensity envelope is subjected to one-third
octave band analysis. The components over each of the
14 one-third octave band intervals (with centres ranging
from 0.63 Hz to 12.7 Hz) are summed, producing 98
modulation indices. The resulting modulation spectrum of
the original speech, along with the modulation spectrum
of the processed speech, can then be used to compute the
modulation transfer function (MTF), which in turn is used
to compute STI. We employ three different approaches for
the computation of the MTF. The first approach is by
Houtgast and Steeneken (1985), the second is by Drullman
et al. (1994b) and the third is by Payton et al. (2002).
The details of MTF and STI computations are given in
Goldsworthy and Greenberg (2004).

An enhancement experiment was performed over all 30
Noizeus utterances, each corrupted by AWGN at 0, 5, 10
and 15 dB SNR. The results of the experiment, in terms
of mean STI scores for Houtgast and Steeneken (1985),
Drullman et al. (1994b) and Payton et al. (2002) methods,
are shown in Fig. 25(a,b,c), respectively. The results
suggest that the ModSpecSub and Fusion methods do not
adversely affect speech intelligibility. On the contrary, sig-
nificant intelligibility improvement was observed over that
of noisy speech. The proposed methods achieved mean
STI scores comparable to those produced by the acoustic
spectral subtraction method and performed consistently
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Fig. 25: Speech enhancement results for the objective experiment
detailed in Appendix E. The objective intelligibility results are in
terms of mean speech-based STI as a function of input SNR (dB)
for AWGN over the Noizeus corpus. The results for the following
speech-based STI variants are shown: (a) Houtgast and Steeneken
(1985) method; (b) Drullman et al. (1994b) method; and (c) Payton
et al. (2002) method.

better than the MMSE method.10 The above observations
are consistent across all three speech-based STI variants
employed in our evaluation.

10Note that at low SNRs, the mean STI measure for the spectral
subtraction method is better than that of the MMSE method.
However, in terms of speech quality measured through listening tests
and PESQ measure (Section 3.4), the opposite is the case.

21



F. Subjective method preference confusion matri-

ces

Detailed results of the listening tests, described in
Sections 3.3.4 and 4.4.3, are given in Tables 1(a) and 1(b),
respectively. The results are in terms of subjective method
preference confusion matrices, which can be read and
interpreted as follows. For a given experiment, method
labels are listed at the start of each row and at the top
of each column. The scores shown in each row are mean
subjective preferences for the method identified by the row
label versus the methods identified by each column label.
The scores are averaged across same method pairs. The
minimum score is zero and the maximum score is one. A
score of zero (one) means that the method identified by the
row label was never (always) preferred over the method
with the corresponding column label. For example, noisy
speech was never preferred over the clean speech, since
the Noisy versus Clean score is zero. Similarly, a score
of 0.89 for ModSpecSub with respect to MMSE given
in Table 1(b), indicates that ModSpecSub (89%) was
generally preferred over MMSE (11%).

The results of Table 1(a) show that ModSpecSub was
preferred over Noisy, SpecSub and MMSE. These improve-
ments were found to be statistically significant (p<0.01).
The results of Table 1(b) show that Fusion was preferred
over the Noisy, SpecSub, MMSE and ModSpecSub. Fusion
achieved significantly higher preference over Noisy, Spec-
Sub and MMSE (p< 0.01). However, while Fusion (58%)
was found to perform better on average than ModSpecSub
(42%), the improvement was not statistically significant
(p=0.0898).

A note on the consistency of the subjective results
between experiments of Section 3 and Section 4. For the
most part, the subjective results are consistent between
the experiments. For both experiments, the ModSpecSub
method achieves significantly higher preference scores over
the SpecSub and MMSE methods in both experiments.
However, some of the listeners in the second experiment
have shown a stronger dislike towards the acoustic spectral
subtraction – favouring Noisy over SpecSub stimuli. This
is not at all surprising, as musical noise is very perceptually
annoying, while AWGN can (for some listeners) be easier
to “tune out”.
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