Single-Cycle CPU
Datapath Design

"The Do-It-Yourself CPU Kit"

The Big Picture: Where are We
Now?

e The Five Classic Components of a Computer

Processor

Input

Control

Memory

Datapath Output

e Today’s Topic: Datapath Design, then Control Design

The Big Picture: The Performance
Perspective

e Processor design (datapath and control) will determine:
— Clock cycle time
— Clock cycles per instruction

e Starting today:
— Single cycle processor:

= Advantage: One clock cycle per instruction
® Disadvantage: long cycle time

e ET =Insts * CPI * Cycle Time | |

Execute an
entire instructiop

The Processor: Datapath & Control

We're ready to look at an implementation of the MIPS simplified
to contain only:

— memory-reference instructions: 1w, sw

— arithmetic-logical instructions: add, sub, and, or, slt

— control flow instructions: beq

Generic Implementation:
— use the program counter (PC) to supply instruction address
— get the instruction from memory
— read registers
— use the instruction to decide exactly what to do

All instructions use the ALU after reading the registers
memory-reference? arithmetic? control flow?

Review: The MIPS Instruction Formats

R-type

I-type

J-type

All MIPS instructions are 32 bits long. The three instruction formats:

31 26 21 16 11 6
op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
31 26 21 16
op rs rt immediate
6 bits 5 bits 5 bits 16 bits
31 26
op target address

6 bits

26 bits

The MIPS Subset

e R-type

— addrd, rs, rt
— sub, and, or, slt

e LOAD and STORE

— Iwrt, rs, Imm16 1

— swrt, rs, iImm16

e BRANCH:
— beq s, rt, imm16

31 26 21 16 11 6
op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
26 21 16
op rs rt immediate
6 bits 5 bits 5 bits 16 bits
31 26 21 16
op rs rt displacement
6 bits 5 bits 5 bits 16 bits

Where We're Going — The
High-level View

PC

]

Address

Instruction
memory

Instruction

1

Data
Register #
Registers

Register #

Register #

>AL

Address

Data
memory

» Data

Review: Two Types of Logic
Components

— C=1(A,B,state)

A |
State
Flement
B
T
clk

Combinational
Logic

__ C=f(AB)

Clocking Methodology

Clk

Setupi Hold Setupi Hold

|

_:’ oy) Do

T

» All storage elements are clocked by the same clock edge

A\ 4
A\ 4

CSE 141, S2'06 Jeff Brown

Storage Element: Register

Write Enable
e Register
— Similar to the D Flip Flop except Dataln Data Out
® N-bit input and output N’] N’]
® Write Enable input
— Write Enable:
Clk

= (: Data Out will not change
=]: Data Out will become Data In (on the clock edge)

Storage Element: Register File

e Register File consists of (32) registers:

— Two 32-bit output buses:
— One 32-bit input bus: busW

e Register is selected by:

- selects the register to put on bus “Read Data 1>
- selects the register to put on bus “Read Data 2”

— selects the register to be written
via WriteData when RegWrite is 1

e Clock mput (CLK)

Write Data
32"
RRI
5
RR2 /
WR 2
5

RegWrite

Read Data 1

32 32-bit 32
Registers

Read Data 2
32"

Storage Element: Memory

MemWrite ‘ Address

. Memory Write Pata Read Dat?/. R
— Two input buses: WriteData, Address 3é1k "

=

— One output bus: ReadData

e Memory word 1s selected by:
— Address selects the word to put on ReadData bus

— MemWrite = 1: address selects the memory word to be written via
the WriteData bus

e Clock mput (CLK)

— The CLK input is a factor ONLY during write operation

— During read operation, behaves as a combinational logic block:
® Address valid => ReadData valid after “access time.”

MemRead

Register Transfer Language (RTL)

e 1s a mechanism for describing the movement and
manipulation of data between storage elements:

R[3] <- R[5] + R[7]

PC <- PC +4 + R][5]

R[rd] <- R[rs] + R]rt]

R[rt] <- Mem[R[rs] + immed]

Instruction Fetch and

Program Counter Management

Instruction
address

Instruction

Instruction
memory

a. Instruction memory

b. Program counter

>Add Sum

c. Adder

Overview of the Instruction Fetch Unit

e The common RTL operations
— Fetch the Instruction: inst <- mem[PC]

— Update the program counter:
= Sequential Code: PC <- PC + 4
® Branch and Jump PC <- “something else”

>Add

Read
address

Instruction

Instruction
memory

Datapath for Register-Register Operations

e R|rd] <- R[rs] op R]rt] Example: add rd, rs, rt
— RRI1, RR2, and WR comes from instruction’s rs, rt, and rd fields

— and : control logic after decoding instruction
31 26 21 16 11 6 0
op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
Read
register 1
Read |
data 1
Read Zero
Instruction register 2
_ Registers >ALU ALU
WI’I_’[E,;: result
register , Rt ea 2d
Write ala

| data

Datapath for Load Operations

R[rt] <- Mem[R[rs] + SignExt[imm16]]

Example: Iw rt, rs, imml6

31 26 21 16 0
op rs rt immediate
6 bits 5 bits 5 bits 16 bits
Read
register 1 Read \
Read data 1 "
Instruction register 2 Zero—>»
. Registers >ALU ALU
Write result »| Address F\;e?d
register Read ata
; data 2 "
| Write /
| data Data
. memaory
| Wirite
| data
16 _ 32
\ | Sign

‘.

extend

Datapath for Store Operations
Mem|[R[rs] + SignExt[imm16]] <- R[rt]

Example: sw rt, rs, imml6

31 26 21 16 0
op rs rt immediate
6 bits 5 bits 5 bits 16 bits
Read
register 1 Read \
Read data 1 "
Instruction register 2 Zero—>»
. Registers >ALU ALU
Write result »| Address F\;e?d
register Read ata
; data 2 "
| Write /
| data Data
. memaory
_| Write
| data
16 _ 32
\ | Sign
N lextend

Datapath for Branch Operations

Z <- (rs ==r1t); if Z, PC = PC+4+1imm16; else PC = PC+4

beq rs, rt, imml6
31 26 21 16

op rs rt immediate

6 bits 5 bits 5 bits 16 bits

PC + 4 from instruction datapath s

>Add Sum Branch target
»| Read
Instruction register 1 Read
Read data 1
register 2
Registers >ALU Zero To branch_
Write control logic
register Read
Wiite data 2
data
16 , 32
\ | Sign

N Tlextend

Binary Arithmetic for the Next Address

* In theory, the PC 1s a 32-bit byte address into the instruction memory:

— Sequential operation: PC<31:0>=PC<31:0>+4

— Branch operation: PC<31:0>=PC<31:0> + 4 + SignExt[Imm16] * 4
* The magic number “4” always comes up because:

— The 32-bit PC 1s a byte address

— And all our instructions are 4 bytes (32 bits) long

— The 2 LSBs of the 32-bit PC are always zeros

— There 1s no reason to have hardware to keep the 2 LSBs
e In practice, we can simplify the hardware by using a 30-bit PC<31:2>:

— Sequential operation: PC<31:2>=PC<31:2> + 1

— Branch operation: PC<31:2>=PC<31:2>+ 1 + SignExt[Imm]16]

— In either case: Instruction Memory Address = PC<31:2> concat “00”

Putting it All Together: A Single Cycle Datapath

* We have everything except control signals

4_;/ ALU

oxcg =

>Add result

Instruction [25 21] |Read
Read " | register 1 Read
+|PC address Instruction [20 16] _|Read data 1 ¢
Instruction register 2 Zero
1 i Read
S M [VitE data 2 ! > AL reébIEcJ Address Read 1
.) u register M data
Instruction Instruction [15 1] [x | |\write u M
memory t *[0] PP|gata Registers)(; X
Write Data 0
> 4ata Memory
Instruction [15 Q] 1\6 Sign } 32

™ extend
Instruction [5 0] r

The R-Format (e.g. add) Datapath

g

PC

Read
address

Instruction
[31 0]

Instruction

memory

ALU
>Add result

Instruction [25 21] |Read
" |register 1 Read
Instruction [20 16] _|Read data 1

register 2
1 i Read
M s VWrite data 2
u register

Instruction [15 11] | x Write
| 0] Pldaty Registers
Instruction [15 Q] 1\6 Sign
™ extend

Instruction [5 0]

oxcZ —

Zero

>ALU ALY
result

oxcg =

Write

v

32

data

Address

Read
data

Data

memory

oxcZ =

The Load Datapath

\&/

Add

4

PC

Read
address

Instruction
[31 0]

Instruction

memory

ALU
>Add result

Instruction [25 21] |Read
" |register 1 Read
Instruction [20 16] _|Read data 1

register 2
1 i Read
M s VWrite data 2
u register

Instruction [15 11] | x Write
| 0] Pldaty Registers
Instruction [15 Q] 1\6 Sign
™ extend

Instruction [5 0]

oxcZ —

Zero

>ALU ALY
result

oxcg =

Write

v

32

data

Address

Read
data

Data

memory

oxcZ =

The store Datapath

\&/

Add

4

PC

Read
address

Instruction
[31 0]

Instruction

memory

ALU
>Add result

Instruction [25 21] |Read
" |register 1 Read
Instruction [20 16] _|Read data 1

register 2
1 i Read
M s VWrite data 2
u register

Instruction [15 11] | x Write
| 0] Pldaty Registers
Instruction [15 Q] 1\6 Sign
™ extend

Instruction [5 0]

oxcZ —

Zero

>ALU ALY
result

oxcg =

Write

v

32

data

Address

Read
data

Data

memory

oxcZ =

The beq Datapath

\&/

Add

4

PC

Read
address

Instruction
[31 0]

Instruction

memory

ALU
>Add result

Instruction [25 21] |Read
" |register 1 Read
Instruction [20 16] _|Read data 1

register 2
1 i Read
M s VWrite data 2
u register

Instruction [15 11] | x Write
| 0] Pldaty Registers
Instruction [15 Q] 1\6 Sign
™ extend

Instruction [5 0]

oxcZ —

Zero

>ALU ALY
result

oxcg =

Write

v

32

data

Address

Read
data

Data

memory

oxcZ =

Key Points

e CPU 1sjust a collection of state and combinational logic

e We just designed a very rich processor, at least in terms of
functionality

e Performance = Insts * CPI * Cycle Time
— where does the single-cycle machine fit in?

