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Single-Cycle CPU
Datapath Design

"The Do-It-Yourself CPU Kit"
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The Big Picture: Where are We 
Now?

• The Five Classic Components of a Computer

• Today’s Topic: Datapath Design, then Control Design
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The Big Picture: The Performance 
Perspective

• Processor design (datapath and control) will determine:
– Clock cycle time

– Clock cycles per instruction

• Starting today:
– Single cycle processor:

 Advantage: One clock cycle per instruction
 Disadvantage: long cycle time

• ET = Insts * CPI * Cycle Time
Execute an

entire instruction
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• We're ready to look at an implementation of the MIPS simplified 
to contain only:
– memory-reference instructions:  lw, sw 

– arithmetic-logical instructions:  add, sub, and, or, slt

– control flow instructions:  beq

• Generic Implementation:
– use the program counter (PC) to supply instruction address

– get the instruction from memory

– read registers

– use the instruction to decide exactly what to do

• All instructions use the ALU after reading the registers
memory-reference?  arithmetic? control flow?

The Processor:  Datapath & Control
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Review:  The MIPS Instruction Formats

• All MIPS instructions are 32 bits long.  The three  instruction formats:

R-type

I-type

J-type
op target address

02631

6 bits 26 bits

op rs rt rd shamt funct

061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits
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The MIPS Subset

• R-type
– add rd, rs, rt

– sub, and, or, slt

• LOAD and STORE
– lw rt, rs, imm16

– sw rt, rs, imm16

• BRANCH:
– beq rs, rt, imm16

op rs rt rd shamt funct

061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits

op rs rt displacement

016212631

6 bits 16 bits5 bits5 bits
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Where We’re Going – The 
High-level View
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Review:  Two Types of Logic 
Components

State
Element

clk

A

B
C = f(A,B,state)

Combinational
Logic

A

B
C = f(A,B)



CSE 141, S2'06 Jeff Brown

Clocking Methodology

• All storage elements are clocked by the same clock edge
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Storage Element: Register

• Register
– Similar to the D Flip Flop except

 N-bit input and output
 Write Enable input

– Write Enable:
 0: Data Out will not change
 1: Data Out will become Data In (on the clock edge)

Clk

Data In

Write Enable

N N

Data Out
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Storage Element: Register File

• Register File consists of (32) registers:
– Two 32-bit output buses:

– One 32-bit input bus: busW

• Register is selected by:
– RR1 selects the register to put on bus “Read Data 1”

– RR2 selects the register to put on bus “Read Data 2”

– WR selects the register to be  written
via WriteData when RegWrite is 1

• Clock input (CLK) 

Clk

Write Data

RegWrite

32
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Storage Element: Memory

• Memory
– Two input buses: WriteData, Address
– One output bus: ReadData

• Memory word is selected by:
– Address selects the word to put on ReadData bus
– MemWrite = 1: address selects the memory word to be written via 

the WriteData bus

• Clock input (CLK) 
– The CLK input is a factor ONLY during write operation
– During read operation, behaves  as a combinational logic block:

 Address valid => ReadData valid after “access time.”

Clk

Write Data 

MemWrite

32 32

Read Data

Address

MemRead
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Register Transfer Language (RTL)

• is a mechanism for describing the movement and 
manipulation of data between storage elements:

R[3] <- R[5] + R[7]
PC <- PC + 4 + R[5]
R[rd] <- R[rs] + R[rt]
R[rt] <- Mem[R[rs] + immed]
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Instruction Fetch and 
Program Counter Management
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Overview of the Instruction Fetch Unit

• The common RTL operations
– Fetch the Instruction: inst <- mem[PC]
– Update the program counter:

 Sequential Code: PC <- PC + 4 
 Branch and Jump   PC <- “something else”
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Datapath for Register-Register Operations
• R[rd] <- R[rs] op R[rt] Example: add    rd, rs, rt

– RR1, RR2, and WR comes from instruction’s rs, rt, and rd fields
– ALUoperation and RegWrite: control logic after decoding instruction     

        

op rs rt rd shamt funct

061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits
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Datapath for Load Operations
R[rt] <- Mem[R[rs] + SignExt[imm16]] Example: lw    rt, rs, imm16

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits
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Datapath for Store Operations
Mem[R[rs] + SignExt[imm16]] <- R[rt] Example: sw    rt, rs, imm16

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits



CSE 141, S2'06 Jeff Brown

Datapath for Branch Operations

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits

Z <- (rs == rt); if Z, PC = PC+4+imm16; else PC = PC+4 
beq    rs, rt, imm16
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Binary Arithmetic for the Next Address

• In theory, the PC is a 32-bit byte address into the instruction memory:

– Sequential operation: PC<31:0> = PC<31:0> + 4

– Branch operation: PC<31:0> = PC<31:0> + 4 + SignExt[Imm16] * 4

• The magic number “4” always comes up because:

– The 32-bit PC is a byte address

– And all our instructions are 4 bytes (32 bits) long

– The 2 LSBs of the 32-bit PC are always zeros

– There is no reason to have hardware to keep the 2 LSBs

• In practice, we can simplify the hardware by using a 30-bit PC<31:2>:

– Sequential operation: PC<31:2> = PC<31:2> + 1

– Branch operation: PC<31:2> = PC<31:2> + 1 + SignExt[Imm16]

– In either case: Instruction Memory Address = PC<31:2> concat “00”
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Putting it All Together: A Single Cycle Datapath

• We have everything except control signals
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The R-Format (e.g. add) Datapath
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The Load Datapath
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The store Datapath
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The beq Datapath
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Key Points

• CPU is just a collection of state and combinational logic
• We just designed a very rich processor, at least in terms of 

functionality
• Performance = Insts * CPI * Cycle Time

– where does the single-cycle machine fit in?


