
CSE 141, S2'06 Jeff Brown

Single-Cycle CPU
Datapath Design

"The Do-It-Yourself CPU Kit"

CSE 141, S2'06 Jeff Brown

The Big Picture: Where are We
Now?

• The Five Classic Components of a Computer

• Today’s Topic: Datapath Design, then Control Design

Control

Datapath

Memory

Processor

Input

Output

CSE 141, S2'06 Jeff Brown

The Big Picture: The Performance
Perspective

• Processor design (datapath and control) will determine:
– Clock cycle time

– Clock cycles per instruction

• Starting today:
– Single cycle processor:

 Advantage: One clock cycle per instruction
 Disadvantage: long cycle time

• ET = Insts * CPI * Cycle Time
Execute an

entire instruction

CSE 141, S2'06 Jeff Brown

• We're ready to look at an implementation of the MIPS simplified
to contain only:
– memory-reference instructions: lw, sw

– arithmetic-logical instructions: add, sub, and, or, slt

– control flow instructions: beq

• Generic Implementation:
– use the program counter (PC) to supply instruction address

– get the instruction from memory

– read registers

– use the instruction to decide exactly what to do

• All instructions use the ALU after reading the registers
memory-reference? arithmetic? control flow?

The Processor: Datapath & Control

CSE 141, S2'06 Jeff Brown

Review: The MIPS Instruction Formats

• All MIPS instructions are 32 bits long. The three instruction formats:

R-type

I-type

J-type
op target address

02631

6 bits 26 bits

op rs rt rd shamt funct

061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits

CSE 141, S2'06 Jeff Brown

The MIPS Subset

• R-type
– add rd, rs, rt

– sub, and, or, slt

• LOAD and STORE
– lw rt, rs, imm16

– sw rt, rs, imm16

• BRANCH:
– beq rs, rt, imm16

op rs rt rd shamt funct

061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits

op rs rt displacement

016212631

6 bits 16 bits5 bits5 bits

CSE 141, S2'06 Jeff Brown

Where We’re Going – The
High-level View

CSE 141, S2'06 Jeff Brown

Review: Two Types of Logic
Components

State
Element

clk

A

B
C = f(A,B,state)

Combinational
Logic

A

B
C = f(A,B)

CSE 141, S2'06 Jeff Brown

Clocking Methodology

• All storage elements are clocked by the same clock edge

Clk

Don’t Care

Setup Hold

.

.

.

.

.

.

.

.

.

.

.

.

Setup Hold

CSE 141, S2'06 Jeff Brown

Storage Element: Register

• Register
– Similar to the D Flip Flop except

 N-bit input and output
 Write Enable input

– Write Enable:
 0: Data Out will not change
 1: Data Out will become Data In (on the clock edge)

Clk

Data In

Write Enable

N N

Data Out

CSE 141, S2'06 Jeff Brown

Storage Element: Register File

• Register File consists of (32) registers:
– Two 32-bit output buses:

– One 32-bit input bus: busW

• Register is selected by:
– RR1 selects the register to put on bus “Read Data 1”

– RR2 selects the register to put on bus “Read Data 2”

– WR selects the register to be written
via WriteData when RegWrite is 1

• Clock input (CLK)

Clk

Write Data

RegWrite

32

32

Read Data 1

32

Read Data 2

32 32-bit
Registers

5

5

5

RR1

RR2

WR

CSE 141, S2'06 Jeff Brown

Storage Element: Memory

• Memory
– Two input buses: WriteData, Address
– One output bus: ReadData

• Memory word is selected by:
– Address selects the word to put on ReadData bus
– MemWrite = 1: address selects the memory word to be written via

the WriteData bus

• Clock input (CLK)
– The CLK input is a factor ONLY during write operation
– During read operation, behaves as a combinational logic block:

 Address valid => ReadData valid after “access time.”

Clk

Write Data

MemWrite

32 32

Read Data

Address

MemRead

CSE 141, S2'06 Jeff Brown

Register Transfer Language (RTL)

• is a mechanism for describing the movement and
manipulation of data between storage elements:

R[3] <- R[5] + R[7]
PC <- PC + 4 + R[5]
R[rd] <- R[rs] + R[rt]
R[rt] <- Mem[R[rs] + immed]

CSE 141, S2'06 Jeff Brown

Instruction Fetch and
Program Counter Management

CSE 141, S2'06 Jeff Brown

Overview of the Instruction Fetch Unit

• The common RTL operations
– Fetch the Instruction: inst <- mem[PC]
– Update the program counter:

 Sequential Code: PC <- PC + 4
 Branch and Jump PC <- “something else”

CSE 141, S2'06 Jeff Brown

Datapath for Register-Register Operations
• R[rd] <- R[rs] op R[rt] Example: add rd, rs, rt

– RR1, RR2, and WR comes from instruction’s rs, rt, and rd fields
– ALUoperation and RegWrite: control logic after decoding instruction

op rs rt rd shamt funct

061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

CSE 141, S2'06 Jeff Brown

Datapath for Load Operations
R[rt] <- Mem[R[rs] + SignExt[imm16]] Example: lw rt, rs, imm16

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits

CSE 141, S2'06 Jeff Brown

Datapath for Store Operations
Mem[R[rs] + SignExt[imm16]] <- R[rt] Example: sw rt, rs, imm16

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits

CSE 141, S2'06 Jeff Brown

Datapath for Branch Operations

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits

Z <- (rs == rt); if Z, PC = PC+4+imm16; else PC = PC+4
beq rs, rt, imm16

CSE 141, S2'06 Jeff Brown

Binary Arithmetic for the Next Address

• In theory, the PC is a 32-bit byte address into the instruction memory:

– Sequential operation: PC<31:0> = PC<31:0> + 4

– Branch operation: PC<31:0> = PC<31:0> + 4 + SignExt[Imm16] * 4

• The magic number “4” always comes up because:

– The 32-bit PC is a byte address

– And all our instructions are 4 bytes (32 bits) long

– The 2 LSBs of the 32-bit PC are always zeros

– There is no reason to have hardware to keep the 2 LSBs

• In practice, we can simplify the hardware by using a 30-bit PC<31:2>:

– Sequential operation: PC<31:2> = PC<31:2> + 1

– Branch operation: PC<31:2> = PC<31:2> + 1 + SignExt[Imm16]

– In either case: Instruction Memory Address = PC<31:2> concat “00”

CSE 141, S2'06 Jeff Brown

Putting it All Together: A Single Cycle Datapath

• We have everything except control signals

CSE 141, S2'06 Jeff Brown

The R-Format (e.g. add) Datapath

CSE 141, S2'06 Jeff Brown

The Load Datapath

CSE 141, S2'06 Jeff Brown

The store Datapath

CSE 141, S2'06 Jeff Brown

The beq Datapath

CSE 141, S2'06 Jeff Brown

Key Points

• CPU is just a collection of state and combinational logic
• We just designed a very rich processor, at least in terms of

functionality
• Performance = Insts * CPI * Cycle Time

– where does the single-cycle machine fit in?

