
CHAPTER 14
General planar motion of a

single rigid object

The goal here is to generate equations of motion for general planar motion of a

(planar) rigid object that may roll, slide or be in free flight. Multi-object systems

are also considered so long as they do not involve kinematic constraints between the

bodies. Features of the solution that can be obtained from analysis are discussed, as

are numerical solutions.
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Many machine and structural parts move in straight-lines (Chapter
12) or circles (Chapters 13). But other things have with more general
motions, like a plane in unsteady flight or a connecting rod in a car
engine. Keeping track of sudch motion is a bit more difficult. To keep
things simpler we only treat these more general motions in 2-D this
chapter.

Mostly we will use these two modeling approximations:

� The objects are planar, or symmetric with respect to a plane; and

� They have planar motions in that plane.

A planar object is one where the whole object is flat and all its matter
is confined to one plane, say the xy plane. This is a palatable approx-
imation for a f piece cut out of flat sheet metal. For more substantial
real objects, like a full car, the approximation seems at a glance to be
terrible. But it turns out that so long as the motion is planar and the
car is reasonably idealized as symmetrical (left to right) that treating
the car as equivalent to its being squished into a plane does not intro-
duce any more approximation. Thus, even in this 3-D world we live in
with 3-D objects, it is fruitful to do 2-D analysis of the type you will
learn in this chapter.

A planar motion is one where the velocities of all points are in
the same constant plane, say a fixed xy plane, at all times and where
points with, say, the same z coordinate have the same velocity. The
positions of the points do not have to be in same plane for a planar
motion. Each point stays in a plane, but different points can be in
different planes, with each plane parallel to the others.

Example: A car going over a hill
Assume the road is straight in map view, say in the x direction. Assume the

whole width of the road has the same hump. Although the car is clearly not
planar, the car motion is probably close to planar, with the velocities of all
points in the car in the xy plane (see F ig: 14:1)

Example: Skewered sphere

A sphere skewered and rotating about a fixed axes in the Ok direction has a planar
motion (see F ig: 14:2). The points on the object do not all lie in a common

plane. But all of the velocities are orthogonal to Ok and thus in the xy plane.
This problem does fit in with the methods of this chapter. The symmetry of the
sphere with respect to the xy plane makes it so that the three-dimensional mass
distribution does not invalidate the two-dimensional analysis.

Figure 14.1: Planar motion of a 3D car.
If the car is symmetrical it can be stud-
ied by the means of this chapter.
Filename:tfigure-2D3Dcar
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z

Figure 14.2: Planar motion of a skew-
ered sphere. This can be studied by
the means in this chapter.
Filename:tfigure-ball
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Figure 14.3: Planar motion of a planar
object. But the plane of the motion is
not the plane of the object. This is not
a natural topic for this chapter.
Filename:tfigure-crookedplate

4
 Actually, a two-dimensional
analysis of the plate in this ex-
ample we would be legitimate in
this sense. Project all the plates
mass into the plane normal to the
O� direction. The projections of
the forces on this plane would be
correctly predicted, but three di-
mensional effects, like those asso-
ciated with dynamic imbalance,
would be lost in this projection.

Example: Skewered plate
A flat rectangular plate with normal On has a fixed axis of rotation in the direction
O� that makes a 45

�

to On (see F ig: 14:3). This is a planar object (a plane normal

to On) in planar motion (all velocities are in the plane normal to O�). But the plane
of motion is not the plane of the mass distribution, the object is not symmetric
with respect to a motion plane, o this example does not fit into the discussion of
this chapter 4
.

No real object is exactly planar and no real motion is exactly a planar
motion. But many objects are relatively flat and thin or symmetrical
and many motions are approximately planar motions. Thus many, if
not most, simple engineering analysis assume planar motion. For bod-
ies that are approximately symmetric about the xy plane of motion
(such as a car, if the asymmetrically placed driver’s mass etc: is ne-
glected), there is no loss in doing a two-dimensional planar rather than
full three dimensional analysis.

The plan of this chapter. We start with planar kinematics. Then
we evaluate and use expressions for the rates of change of linear and an-
gular momentum for planar bodies. Finally we discuss rolling, sliding
and collisions.

14.1 Description of motion: planar
rigid-object kinematics

We start our study of planar motion with the kinematic question: How
do points on a rigid object (or ‘body’) move? There are two reasons to
ask this question. First, velocities and accelerations of mass points are
needed to apply the momentum-balance equations. Second, formulas
for positions, velocities and accelerations of points are useful to un-
derstand mechanisms, machines where various parts (each one usually
idealized as a rigid object) are connected to each other with hinges and
bearings of one type of another.

The central observation in all rigid-object kinematics is that

all pairs of points on a single moving rigid object keep constant
distance from each other.

This is the definition of a rigid object. In this section you will learn
how to use rigidity to calculate positions, velocities and accelerations
of all points (millions and billions of them) on a rigid body given only
a few numbers (about 8 of them). This goal is achieved by putting
together the ideas from Chapter 11 (arbitrary motion of one particle),
Chapter 12 (straight-line motion), and chapter 13 (circular motion of
a rigid body in a plane).
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Displacement and rotation

When a planar object (read, say, body or machine part) B moves from
one configuration in the plane it has a displacement and a rotation. For
definiteness, we start in some reference position *. We mark a reference
point on the body that, in the reference configuration, coincides with a
fixed reference point, say 0. We also mark a (directed) line on the body
that, in the reference configuration, coincides with a fixed reference
line, say the positive x axis. The body never has to pass through this
reference position, however. For example, the position of an airplane
flying from New York to Mumbai is measured relative to a point in the
Gulf of Guinea 1000 miles west of Gabon, 1
even though the airplane
never goes there (nor does anyone want it to).

We could measure rotation by measuring the rotations of any lines
that connected any pair of points fixed to the object. For each line we
keep track of the angle that line makes with a line fixed in space, say
the positive x or y axis. Its simplest to stick to the convention that
counter-clockwise rotations are positive (F ig: 14:4). The angles �1,
�2 : : : , all change with time and are all different from each other. But
all the angles change the same amount, just like in section 13.3. We
can pick any one line we like for definiteness and measure the object
rotation by the rotation of that line. So

The net motion of a rigid planar object is described by translation,
the vector displacement of a reference point from a reference
position *

ro0=o D *
roo0 , and a rotation � of the object from the

reference orientation.

That is, the general planar motion of a rigid object is the general mo-
tion of a point plus circular motion about that point.

The position of a point on a moving rigid
object.

Let’s denote the reference configuration with a star (�). Given that
P on the object is at *

rP=0
� in the reference configuration, where is

it (What is *
rP=0?) after the object has been displaced by *

r00=0 and
rotated an angle �? An easy way to treat this is to write the new
position of P as (see F ig: 14:5)

*
rP=0 D *

r00=0 C *
rP=00 :

This is the base-independent or direct vector representation of the posi-
tion of P. The formula is correct no matter what base vectors are used
to represent the vectors in the formula. The vector *

r00=0 describes
translation, that’s half the story. The other term *

rP=00 we find by

1
That’s the location of O
�

lon-
gitude and O

�

latitude.

Figure 14.4: Rotation of object B is mea-
sured by the rotation of real or imag-
ined lines marked on the object. The
lines make different angles: �1 ¤ �2,

�2 ¤ �3 etc, but P�1 D P�2 D P�3 D : : : .

Angular velocity is defined as *! D ! Ok
with ! � P�1 D P�2 D P�3 D : : : .
Filename:tfigure-2Drotation
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Figure 14.5: The displacement and ro-
tation of a planar object relative to a
reference configuration.
Filename:tfigure-dispandrot
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Figure 14.6: It is generally best to take
positive ! to be counterclockwise when
viewed from the positive z axis.
Filename:tfigure-posomega

rotating *
rP=0

� as we did in Section 13.3. Thus, we can describe the
coordinates of a point as,�

*
rP=0

�
xy
D �

*
r00=0

�
xy� �� �

displacement

C �
R.�/

� �
*
rP=00

�
x0y0� �� �

rotation

(14.1)

or, writing out all the components of the vectors and matrices,�
xP
yP

�
D
�
x00=0
y00=0

�
C
�

cos � sin �
� sin � cos �

�"
x�
P=0

y�
P=0

#
: (14.2)

As the motion progresses the displacement
�
x00=0
y00=0

�
changes with time

as does the rotation angle � . We call eqn: .14:2/ the fixed basis or
component representation of the motion. It gives the components of
the position in terms of base vectors that are fixed in space.

Example:
If in the reference position a particle on a rigid object is at *

rP=0 D .1O{ C 2 O|/m

and the object displaces by *
r00=0 D .3O{C4 O|/m and rotates by ��=3 rad D 60deg

relative to that configuration, then its new position is:h
*
rP=0

i
xy

D
h
*
r00=0

i
xy

C �
R.�/

� h
*
rP=00

i
x0y0

D
2
4 x00=0

y00=0

3
5C

2
4 cos � sin �

� sin � cos �

3
5
2
4 x�P=0

y�P=0

3
5

D
8<
:
2
4 3

4

3
5C

2
4 cos�=3 sin�=3

� sin�=3 cos�=3

3
5
2
4 1

2

3
5
9=
; m

D
2
4 3:5Cp

3

5�p3=2

3
5 m

) *
rP=0 D

�
.3:5Cp

3/O{ C .5�p3=2/ O|
�

m

Finally, the changing base representation uses base vectors O{0; O| 0 that
are aligned with O{; O| in the reference configuration but which are glued
to the rotating object. If we define x0 and y0 as the x and y components
of P in the reference (*) configuration we have that

h
*
rP=0

�i
xy
D
h
*
rP=00

�i
x0y0

D
�
x0
y0

�
so *

rP=0 D
�
x00=0 O{ C y00=0 O|

�C�x0 O{0 C y0 O| 0� :
Often the changing-base notation the clearest, the component or fixed
base representation the best for computer calculations, and the base-
independent or direct-vector notation the quickest and easiest.

Angular velocity

Because all lines object B rotate at the same rate (at a given instant)
B’s rotation rate is the single number we call !B (‘omega b’). In order
to make various formulas work out we define a vector angular velocity
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with magnitude !B which is perpendicular to the xy plane:

*
!B D !B����

P�

Ok

where P� is the rate of change of the angle of any line marked on object
B.

So long as you are careful to define angular velocity by the rotation
of line segments and not by the motion of individual particles, the
concept of angular velocity in general motion is defined exactly as for
a object rotating about a fixed axis. A legitimate way to think about
planar motion of a rigid object is that any given point is moving in
circles about any other given point (relative to that point). When a
rigid object moves it always has an angular velocity (possibly zero).
If we call the object B (script B), we then call the object’s angular
velocity *

!B. In general it is best to use the sign convention that when
!B > 0 the object is rotating counterclockwise when viewed looking in
from the positive z axis (see F ig: 14:6).

The angular velocity vector *
!B of a object B describes it’s rate and

direction of rotation. For planar motions *
!B D !B Ok.

Relative velocity of two points on a rigid object

For any two points A and B glued to a rigid object B the relative
velocity of the points (‘the velocity of B relative to A’) is given by the
cross product of the angular velocity of the object with the relative
position of the two points:

*
vB=A � *

vB � *
vA D *

!B � *
rB=A: (14.3)

This formula says that the relative velocity of two points on a rigid
object is the same as would be predicted for one of the points if the
other were stationary. The derivation of this formula is the same as
for planar circular motion.

Note that even though we are doing planar kinematics, it is conve-
nient to use three dimensional cross products. Generally we will call
the plane of motion the xy plane and *

! will be in the z direction.
Because *

! � *
r must be perpendicular to *

! it is perpendicular to the
z axis. So this three dimensional cross product always gives a vector
in the xy plane that is perpendicular to *

r .

Figure 14.7: The relative velocity of
points A and B is in the xy plane and
perpendicular to the line segment AB.
Filename:tifigure-vperptoomega
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We can also represent the relative velocity in the changing base
notation as

*
vB=A D d

dt

�
x
0
B=A O{0 C x

0
B=A O| 0

�
D x

0
B=A

d

dt
O{0 C x

0
B=A

d

dt
O| 0

D x
0
B=A

*
!B � O{0 C x

0
B=A

*
!B � O| 0:

Finally, we can use the fixed-base or component notation:

�
*
vB=A

�
xy

D d

dt

�
xB=A
yB=A

�

D d

dt

(�
cos � sin �

� sin � cos �

�"
x�

B=A

y�
B=A

#)

D
� � P� sin � P� cos �
� P� cos � � P� sin �

�"
x�

B=A

y�
B=A

#

D
�

0 !

�! 0

� �
cos � sin �

� sin � cos �

�"
x�

B=A

y�
B=A

#

where x�
B=A

and y�
B=A

are the components of the position of B with
respect to A in the reference configuration and hence do not change
with time.

Absolute velocity of a point on a rigid object

If one knows the velocity of one point on a rigid object and one also
knows the angular velocity of the object, then one can find the velocity
of any other point. How? By addition. Say we know the velocity of
point A, the angular velocity of the object, and the relative position
of A and B, then

*
vB D *

vA C .
*
vB � *

vA/

D *
vA C *

vB=A

D *
vA C *

!B � *
rB=A����

*
r B�*rA

: (14.4)

That is, the absolute velocity of the point B is the absolute velocity
of the point A plus the velocity of the point B relative to the point A.
Because B and A are on the same rigid object, their relative velocity is
given by formula 14.4 above. For ease of understanding one pretends
one knows the quantities on the right and are trying to find the quan-
tity on the left. But the equation is valid and useful no matter which
quantities are known and which are not.
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An alternative approach is to differentiate the coordinate expression
eqn: .14:3/ (see Box 14.1 on 795).

Angular acceleration

We define the angular acceleration *
� (‘alpha’) of a rigid object as the

rate of change of angular velocity, *
� D P*!. The angular acceleration of

a object B is *
�B. For two-dimensional bodies moving in the plane both

the angular velocity and the angular acceleration are always perpen-
dicular to the plane. That is *

! D ! Ok and *
� D � Ok D P! Ok. In 2-D the

angular acceleration is only due to the speeding up or slowing down of
the rotation rate; i.e., � D P! D R� .

14.1 THEORY
Using matrices to find velocity from position

An alternative derivation for the velocity eqn: .14:3/ of
a point on a rigid object comes from differentiating the
matrix formula for the position (eqn: .14:3/). Denoting
*
rP=O as the reference position of the particle and *

rP0=O0

as the position relative to the reference point on the
moved object at the time of interest, we have:h
*
vP=0

i
xy

D d

dt

h
*
rP=0

i
xy

D d

dt

�
x00=0
y00=0

�

C d

dt

��
cos � sin �

� sin � cos �

� �
x�P=0

y�P=0

��

D
� Px�

00=0

Py�
00=0

�
C
"
� P� sin � P� cos �

� P� cos � � P� sin �

#�
x�P=0

y�P=0

�

D
� Px00=0
Py00=0

�

C
�

0 !
�! 0

� �
cos � sin �

� sin � cos �

� �
x�P=0

y�P=0

�

D
� Px00=0
Py00=0

�
C
�

0 !
�! 0

� h
*
rP0=00

i
xy
:

Thus, matrix product

�
0 !

�! 0

� h
*
rP0=00

i
xy

is equiv-

alent to the vector product *! � *
rP0=00 and the matrix�

0 !
�! 0

�
is sometimes called the angular velocity

matrix. It is an example of a so-called skew symmetric
matrix because it is the negative of its own transpose.
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Relative acceleration of two points on a rigid
object

For any two points A and B glued to a rigid object B, the acceleration
of B relative to A is

*
aB=A D d

dt

*
vB=A

D d

dt

�
*
!B � *

rB=A
	

D P*!B � *
rB=A C *

!B � .*vB=A/;
D P*!B � *

rB=A C *
!B � .*!B � *

rB=A/;

D �B Ok � *
rB=A C .�!2B*rB=A/; (14.5)

This is the base-independent or direct-vector expression for relative
acceleration. If point A has no acceleration, this formula is the same
as that for the acceleration of a point going in circles from chapter 7.
On a rigid object in 2D all two points on rigid object can do relative
to each other is to go in circles.

Equation (14.5) could also be derived, with some algebra, by taking
two time derivatives of the relative position coordinate expression�

*
rB=A

�
xy
D �

R.�/
� h

*
rB=A

�i
x0y0

or by taking two time derivatives of the changing base vector expression

*
rB=A D x0B=A O{0 C y0B=A O| 0:

Absolute acceleration of a point on a rigid
object

If one knows the acceleration of one point on a rigid body and the
angular velocity and acceleration of the body, then one can find the
acceleration of any other point. How?

*
aB D *

aA C .
*
aB � *

aA/ D *
aA C *

aB=A

D *
aA C *

!B � .*!B � *
rB=A/C P*!B � *

rB=A

D *
aA � !2B*rB=A C �B Ok � *

rB=A (14.6)

This is the base-independent or direct-vector expression for accelera-
tion. The fixed-base (component) and changing-base notations are
somewhat more complex.

Equation 14.7 is often called the three term acceleration formula.
The acceleration of a point B on a rigid object is the sum of three
terms. The first, *

aA, is the acceleration of some point A on the object.
The second term, *

!B � .*!B � *
rB=A), is the centripetal acceleration of
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B going in circles relative to A. It is directed from B towards A. The
third term, P*!B � *

rB=A, is due to the change in the magnitude of the
angular velocity and is in the direction normal to the line from A to
B.

Example: Robot arm
Given the configuration shown in F ig: 14:8 the acceleration of point B can be

found by thinking of link AB as the object B in eqn: .14:7/ and using what you
know about circular motion to find the acceleration of A:

*
aB D *

aA � !2B*
rB=A C �B Ok� *

rB=A

D
�
�!2OA` O| � P!OA`O{

�
�
�
!2AB`O{

�
C
�
P!AB

Ok� .`O{/
�

D �
�
P!OA`C !2AB`

�
O{ C

�
�!2OA`C P!AB`

�
O|

[Note that !AB ¤ P� where � is the angle between the links. Rather !AB D
!0A C P� .]

Computer graphics

Given one point given by the xy pair
�
x0
y0

�
we can find out what

happens to it by rotation �R� as�
x

y

�
D �R�

�
x0
y0

�
:

For example the point
�
0

2

�
gets changed by a 45 deg rotation to

�
x

y

�
D �R�

�
x0
y0

�
D

�
cos �

4
sin �

4

� sin �
4

cos �
4

� �
0

2

�

�
�
:7 :7

�:7 :7

� �
0

2

�
�
�
1:4

1:4

�
:

A translation is just a vector addition. For example the point
�
1:4

1:4

�
gets translated a distance 2 in the y direction by the addition of�
xt
yt

�
D
�
0

1

�
like this

�
x

y

�
translated

D
�
x

y

�
C
�
xt
yt

�
D
�
1:4

1:4

�
C
�
0

1

�
D
�
1:4

2:4

�
:

Putting these together the point
�
x0
y0

�
gets rotated and translated

by first multiplying by the rotation matrix and then adding the trans-
lation:�
x

y

�
D �R�

�
x0
y0

�
C
�
xt
yt

�
�

�
:7 :7

�:7 :7

� �
0

2

�
C
�
0

1

�
�
�
1:4

2:4

�
:

Figure 14.8: A two link robot arm.
Filename:tfigure-robotarm
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Figure 14.9: (a) A house drawn as 6
dots connected by line segments. The
first and last point are the same. (b)
The same house but rigidly rotated and
translated.
Filename:tfigure-rotatedhouse2

2
In 1D it takes just 3 numbers
and in 3D just 18. The unusual
patter (3,9,18) comes from rota-
tion being characterized by 0, 1,
and 3 numbers in 1, 2, and 3 di-
mensions, respectively.

A collection of points all rotated the same amount and then all trans-
lated the same amount keep their relative distances.

A picture is a set of points on a plane. If all the points are rotated
and translated the same amount the picture is rotated and translated.
Thus a picture of a rigid object described by points is rigidly rotated
and translated. On a computer line drawings are often represented as
a connect-the-dots picture. The picture is represented by the x and y
coordinates of the reference dots at the corners. These can be stored
in an array with the first row being the x coordinates and the second
row the y coordinates as explained on page 703. Each column of this
matrix represents one point of the connect-the-dots picture. Thus a
primitive picture of a house at the origin is given by the array

�P0� � �xy points originally� D
�
0 2 2 1 0 0

0 0 2 3 2 1

�

with the lower left corner of the house at the origin.
To rotate this picture we rotate each of the columns of the matrix

P0�. But this is exactly what is accomplished by the matrix multipli-
cation �R��P0�. To translate the points you add the translation vector
to each of the columns of the resulting matrix. Thus the whole picture
rotated by 45

�
and translated up by 1 is given by

�Pnew� D �R��P0�C
�
xt
yt

�
�

�
:7 :7

�:7 :7

�
�P0�C

�
0

1

�

which gives a new array of points that, when connected give the picture
shown. We have allowed the informal notation of adding a column
matrix to a rectangular matrix, by which we mean adding to each
column of the rectangular matrix.

To animate the motion of, say, a house flying in the Wizard of Oz
you would first define the house as the set of points �P0�. Then define,
maybe by means of numerical solution of differential equations, a set
of rotations and translations. Then for each rotation and translation
the picture of the house should be drawn, one after the other. The
sequence of such pictures is an animation of a flying and spinning
house.

Summary of the kinematics of one rigid object
in general 2D motion

You can use the position of one reference point and the rotation of the
object as simple kinematic measures of the entire motion of the object.
If you know the position, velocity, and acceleration of one point on a
rigid object (represented by 6 scalars, say) , and you know the rotation
angle, angular rate and angular acceleration (3 scalars) then you can
find the position, velocity and acceleration of any point on the object.
In 2D, just 9 numbers tell you the position, velocity, and acceleration
of any of the billions of points whose initial positions you know 2
.
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SAMPLE 14.1 Velocity of a point on a rigid body in planar
motion. An equilateral triangular plate ABC is in motion in the x-y
plane. At the instant shown in the figure, point B has velocity *

vB D
0:3m=sO{ C 0:6m=s O| and the plate has angular velocity *

! D 2 rad=s Ok.
Find the velocity of point A.

Solution We are given *
vB and !, and we need to find *

vA, the velocity of point A
on the same rigid body. We know that,

*
vA D *

vB C *
! � *

rA=B

Thus, to find *
vA, we need to find *

rA=B. Let us take an x-y coordinate system
whose origin coincides with point A of the plate at the instant of interest and the
x-axis is along AB. Then,

*
rA=B D *

rA � *
rB D *

0 � .0:2mO{/ D �0:2mO{

Thus,

*
vA D *

vB C *
! � *

rA=B

D .0:3O{ C 0:6 O|/m=sC 2 rad=s Ok � .�0:2O{/m

D .0:3O{ C 0:6 O|/m=s � 0:4 O| m=s

D .0:3O{ C 0:2 O|/m=s:

*
vA D .0:3O{ C 0:2 O|/m=s

SAMPLE 14.2 The instantaneous center of rotation. A rigid body
is in planar motion. At some instant t , the angular velocity of the body
is *
! D 5 rad=s Ok and the linear velocity of a point C on the body is

*
vC D 2m=sO{ � 5m=s O| . Find a point on the body, assuming it exists,
that has zero velocity. 3


Solution Let the point of zero velocity be O, with position vector *
rO=C with respect

to point C. Since *
vO D *

vCC*
! �*

rO=C, for *
vO to be zero, *

! �*
rO=C must be parallel

to and in the opposite direction of *
vC. Since *

! is out of plane, *
rO=C must be

normal to *
vC for the cross product to be parallel to *

vC. Now, let *
vC D vC O�. Then,

*
rO=C D r On where On ? O� and r D j*rO=Cj. Thus,

vC O�C ! Ok � r On D *
vO D *

0 (14.7)

Dotting eqn: .14:7/ with O�, we get

vC D !r ) r D vC

!
D
p
29m=s

5 rad=s
D 1:08m:

Since O� D *
vC=j*vCj D 0:37O{ � 0:93 O| , On D 0:93O{ C 0:37 O| . Thus

*
rO=C D r On D 1:08m.0:93O{ C 0:37 O|/ D 1mO{ C 0:4m O| :

*
rO=C D 1mO{ C 0:4m O|

A

C

B


vB

0.2 m

ı̂

̂

Figure 14.10:
Filename:sfig9-1-triang-1

3
 The point with zero velocity
is called the instantaneous center
of rotation. Sometimes this point
may lie outside the body.

x

y


vC

O

C

r

n̂

λ̂

ω

Figure 14.11:
Filename:sfig9-1-2-body
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Note: It is also possible to find *
rO=C purely by vector algebra. Assuming *

rO=C D
.x O{ C y O|/m and plugging into *

vO D *
vC C *

! � *
rO=C along with the given values,

we get
*
0 D .2 � 5y/m=sO{ C .�5 C 5x/m=s O| : Dotting this equation with O{ and O| ,

we get 2 � 5y D 0 and �5 C 5x D 0, which give x D 1 and y D 0:4. Thus,
*
rO=C D 1mO{ C 0:4m O| as obtained above.
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SAMPLE 14.3 A cheerleader throws her baton up in the air in the
vertical xy-plane. At an instant when the baton axis is at � D 60

�
from

the horizontal, the velocity of end A of the baton is *
vA D 2m=sO{ Cp

3m=s O| . At the same instant, end B of the baton has velocity in
the negative x-direction (but j*vB j is not known). If the length of the
baton is ` D 1

2
m and the center-of-mass is in the middle of the baton,

find the velocity of the center-of-mass.

Solution

We are given: *
vA D .2O{ C

p
3 O|/m=s

and *
vB D �vB O{

where vB D j*vB j is unknown. We need to find *
vG : Using the relative velocity

formula for two points on a rigid body, we can write:

*
vG D *

vA C *
! � *

r G=A (14.8)

Here, *
vA and *

r G=A are known. Thus, to find *
vG , we need to find *

! , the angular

velocity of the baton. Since the motion is in the vertical xy-plane, let *
! D ! Ok.

Then,

*
vB D *

vA C *
! � *

rA=B D *
vA C ! Ok � `.� cos � O{ C sin � O|/� �� �

*
rA=B

or � vB O{ D .2O{ C
p
3 O|/m=s � !`.cos � O| C sin � O{/

D .2O{ C
p
3 O|/m=s � !�1

2
m�. 1

2
O| C

p
3

2
O{/

Dotting both sides of this equation with O| we get:

0 D
p
3m=s � !

2
m�1
2

) ! D
p
3
6m
s
� 4
1 6m D 4

p
3 rad=s:

Now substituting the appropriate values in Eqn 14.8 we get:

*
vG D *

vA C ! Ok � `

2
.cos � O{ � sin � O|/� �� �

*
r G=A

D *
vA C

!`

2
.cos � O| C sin � O{/

D .2O{ C
p
3 O|/m=sC

p
3m=s�. 1

2
O| C

p
3

2
O{/

D .2C 3

2
/m=sO{ C .

p
3C

p
3

2
/m=s O|

D 3:5m=sO{ C 2:6m=s O|
*
vG D .3:5O{ C 2:6 O|/m=s

A

G

B

θ = 60

x

y


vA


vB

Figure 14.12:
Filename:sfig7-1-1

A

B


r A/B = (-cos θ ı̂ + sin θ ̂ )

ı̂

̂

θ





Figure 14.13:
Filename:sfig7-1-1a

A

B

θ

 /2


r G/A =  /2(cos ı̂ − sin ̂ )

ı̂

̂



θ θ

Figure 14.14:
Filename:sfig7-1-1b
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CG

A

B

L

ı̂

̂

θ

Figure 14.15:
Filename:sfig7-2-2a

SAMPLE 14.4 A board in the back of an accelerating truck. A
10 ft long board AB rests in the back of a flat-bed truck as shown in
Fig. 14.15. End A of the board is hinged to the bed of the truck. The
truck is going on a level road at 55 mph. In preparation for overtaking
a vehicle in the front the trucker accelerates at a constant rate 3 mph=s.
At the instant when the speed of the truck is 60 mph, the magnitude
of the relative velocity and relative acceleration of end B with respect
to the bed of the truck are 10 ft=s and 12 ft=s2, respectively. There
is wind and at this instant, the board has lost contact with point C.
If the angle � between the board and the bed is 45

�
at the instant

mentioned, find
1. the angular velocity and angular acceleration of the board,

2. the absolute velocity and absolute acceleration of point B, and

3. the acceleration of the center-of-mass of the board.

Solution At the instant of interest

*
vA D velocity of the truck D 60mph O{ D 88 ft=s O{
*
aA D acceleration of the truck D 3mph=s D 4:4 ft=s2 O{

j*vB=Aj D vB=A D magnitude of relative velocity of B D 10 ft=s

j*aB=Aj D aB=A D magnitude of relative acceleration of B D 12 ft=s2:

Let *
! D ! Ok be the angular velocity and P*! D P! Ok be the angular acceleration of the

board.

1. The relative velocity of end B of the board with respect to end A is

*
vB=A D *

! � *
rB=A D ! Ok � L.cos � O{ C sin � O|/

D !L.cos � O| � sin � O{/

) ! D j*vB=Aj
L

D vB=A

L
D 10 ft=s

10 ft
D 1 rad=s:

Note that we have taken the positive value for ! because the board is rotating
counterclockwise at the instant of interest (it is given that the board has lost
contact with point C).

Similarly, we can compute the angular acceleration:

*
aB=A D P*! � *

rB=A � !2*rB=A
D P! Ok � L.cos � O{ C sin � O|/ � !2L.cos � O{ C sin � O|/
D P!L.cos � O| � sin � O{/ � !2L.cos � O{ C sin � O|/

) j*aB=Aj D
q
. P!L/2 C .!2L/2 D aB=A (given)

) a2B=A D . P!L/2 C .!2L/2

) P! D

s
a2
B=A

L2
� !4 D

s�
12 ft=s2

10 ft

�2
� .1 rad=s/4

D �0:663 rad=s2:

Once again, we select the positive value for P! since we assume that the board
accelerates counterclockwise.

*
! D 1 rad=s Ok; P*! D 0:663 rad=s2 Ok
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2. The absolute velocity and the absolute acceleration of the end point B can
be found as follows.

*
vB D *

vA C *
vB=A

D vA O{ C vB=A.cos � O| � sin � O{/

D 88 ft=sO{ C 10 ft=s.
1p
2
O| � 1p

2
O{/

D 80:93 ft=sO{ C 7:07 ft=s O| :

*
aB D *

aA C *
aB=A

D *
aA C P*! � *

rB=A � !2*rB=A
D aA O{ C P! Ok � L.cos � O{ C sin � O|/ � !2L.cos � O{ C sin � O|/
D .aA � P!L sin � � !2L cos �/O{ C . P!L cos � � !2L sin �/ O|
D

�
4:4 ft=s2 � 0:66

s2
� 10 ft � 1p

2
� 1

s2
� 10 ft � 1p

2

�
O{

C
�
0:66

s2
� 10 ft � 1p

2
� 1

s2
� 10 ft � 1p

2

�
O|

D �7:34 ft=s2 O{ � 2:40 ft=s2 O| :

*
vB D .80:93O{ C 7:07 O|/ ft=s; *

aB D �.7:34O{ C 2:40 O|/ ft=s2:

3. Now, we can easily calculate the acceleration of the center-of-mass as follows.

*
aG D *

aA C *
aG=A

D aA O{ C P*! � *
r G=A � !2*r G=A

D aA O{ C P! Ok � L

2
.cos � O{ C sin � O|/ � !2L

2
.cos � O{ C sin � O|/

D aA O{ C P!L
2
.cos � O| � sin � O{/ � !2L

2
.cos � O{ C sin � O|/

D 4:4 ft=s2 O{ C 0:663 rad=s2 � 10 ft

2
� . 1p

2
O| � 1p

2
O{/

�.1 rad=s/2 � 10 ft

2
� . 1p

2
O{ C 1p

2
O|/

D �1:48 ft=s2 O{ � 1:19 ft=s2 O| :
*
aG D �.1:48O{ C 1:19 O|/ ft=s2

Comments: This problem is admittedly artificial. We, however, solve this problem

to show kinematic calculations.
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A

B

θ

ı̂

̂



Figure 14.16:
Filename:sfig9-2-rodontrack

SAMPLE 14.5 Tracking motion. A cart moves along a suspended
curved path. A rod AB of length ` D 1m hangs from the cart. End A
of the rod is attached to a motor on the cart. The other end B hangs
freely. The motor rotates the rod such that �.t/ D �0 sin.�t/ while the
cart moves along the path such that *

rA D t O{C t3

18
O| , where all variables

(r , t , etc.) are nondimensional.
1. Find the velocity and acceleration of point B as a function of

nondimensional time t .

2. Take �0 D �=3 and � D 6. Find and plot the position of the bar
at t D 0; 0:1; 0:3; 0:9; 1; 1:1; 1:2, and 1:5. Find and draw *

vB and
*
aB at the specified t .

Solution

1. The velocity and acceleration of point B are given by

*
vB D *

vA C *
vB=A D *

vA C *
! � *

rB=A

*
aB D *

aA C P*! � *
rB=A � !2*rB=A:

Thus, in order to find the velocity and acceleration of point B, we need to
find the velocity and acceleration of point A and the angular velocity and
angular acceleration of the bar. We are given the position of point A and the
angular position of the bar as functions of t . We can, therefore, find *

vA, *
aA,

*
! , and P*! by differentiating the given functions with respect to t .

*
rA D t O{ C t3

18
O|

) *
vA � P*rA D O{ C .t2=6/ O| (14.9)

) *
aA � P*vA D .t=3/ O| (14.10)

and
� Ok D �0 sin.�t/ Ok

) *
! � P� Ok D �0� cos.�t/ Ok (14.11)

) P*! � R� Ok D ��0�2 sin.�t/ Ok: (14.12)

So,

*
vB D *

vA C *
! � `.sin � O{ � cos � O|/

D O{ C .t2=6/ O| C ` P�.sin � O| C cos � O{/
D .1C ` P� cos �/O{ C .t2=6C ` P� sin �/ O| (14.13)

*
aB D *

aA C R� Ok � `.sin � O{ � cos � O|/ � P�2`.sin � O{ � cos � O|/
D .t=3/ O| C ` R� sin � O| C ` R� cos � O{ C ` P�2 sin � O{ C ` P�2 cos � O|
D `. R� cos � � P�2 sin �/O{ C �t=3C `. R� sin � C R�2 cos �/� O|

(14.14)

where � D �0 sin.�t/; P� D �0� cos.�t/, and R� D ��0�2 sin.�t/ D ��2�: Thus
*
vB and *

aB are functions of t .

2. The position of the rod at any time t is specified by the position of the two
end points A and B (or alternatively, the position of A and the angle of the
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rod �). The position of point A is easily determined by substituting the value
of t in the given expression for *

rA. The position of end B is given by

*
rB D *

rA C *
rB=A D t O{ C .t3=18/ O| C `.sin � O{ � cos � O|/

D .t C ` sin �/O{ C .t3=18 � ` cos �/ O| :

To compute the positions, velocities, and accelerations of end points A and
B at the given instants, we first compute � , P� , and R� , and then substitute
them in the expressions for *

rA;
*
rB ;

*
vA;

*
vB ;

*
aA, and *

aB . A pseudocode for
computer calculation is given below.

t = [0 0.1 0.3 0.9 1.0 1.1 1.2 1.5]

theta0=pi/3, L=.5, lam=6

for each t, compute

theta = theta0*sin(lam*t)

w = lam*theta0*cos(lam*t)

wdot = -lam^2*theta

% Position of A and B

xA=t, yA=t^3/18

xB = xA + L*sin(theta)

yB = yA - L*cos(theta)

% Velocity of A and B

uA = 1, vA = t^2/6

uB = uA + L*w.*cos(theta)

vB = vA + L*w.*sin(theta)

% Acceleration of A and B

axA = 0, ayA = t/3

axB = L*wdot*cos(theta) - L*w^2*sin(theta)

ayB = ayA + L*wdot*sin(theta) + L*w^2*cos(theta)

From the above calculation, we get the desired quantities at each t . For
example, at t D 0 we get,

xA = 0, yA = 0, xB = 0, yB = -0.5

uA = 1, vA = 0, uB = 4.14, vB = 0, axB = 0, ayB = 19.74

which means,

*
rA D *

0 ;
*
rB D �0:5 O|; *

vA D O{; *
vB D 4:14O{; *

aB D 19:74 O| :

The position of the bar, the velocity vectors at points A and B, and the
acceleration vector at B, thus obtained, are shown in F ig: 14:17 graphically.

4
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 We can take several values of
t , say 400 equally spaced values
between t D 0 and t D 4, and
draw the bar at each t to see
its motion and the trajectory of
its end points. F ig: 14:18 shows
such a graph.
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Figure 14.18: Graph of closely spaced
configuration of the bar between t D 0
to t D 4.
Filename:sfig9-1-rodconfig
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Figure 14.17: Position, velocity of the end points A and B, and acceleration of point B at
various time instants.
Filename:rodvelacc
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14.2 General planar mechanics of a
rigid-object

We now apply the kinematics ideas of the last section to the general
mechanics principles in Table I in the inside cover. The goal is to
understand the relation between forces and motion for a planar object
in general 2-D motion. The simple measures 1
of motion will be the
displacement, velocity and acceleration of one reference point 00 on the
object (*r00 ;

*
v00 and *

a00) and the rotation, angular velocity, and angular
acceleration of the object (�; *! and *

�).
We will treat all bodies as if they are squished into the plane and

moving in the plane. But the analysis is sensible for a object that is
symmetric with respect to the plane containing the velocities (see Box
14.2 on page 813).

The balance laws for a rigid object

As always, once you have defined the system and the forces acting
on it by drawing a free object diagram, the basic momentum balance
equations are applicable (and exact for engineering purposes). Namely,

Linear momentum balance:
X

*

F i D P*
L and

Angular momentum balance:
X

*

M i=0 D P*
H=O:

The same point 0, any point, is used on both sides of the angular
momentum balance equation.

We also have power balance which, for a system with no internal
energy or dissipation, is

Power balance: P D PEK:

The left hand sides of the momentum balance equations are evaluated
the same way, whether the system is composed of one object or many,
whether the bodies are deformable or not, and whether the points move
in straight lines, circles, hither and thither, or not at all. It is the
right hand sides of the momentum equations that involve the motion.
Similarly, in the energy balance equations the applied power P only
depends on the position of the forces and the motions of the material
points at those positions. But the kinetic energy EK and its rate of
change depend on the motion of the whole system. You already know
how to evaluate the momenta and energy, and their rates of change,
for a variety of special cases, namely

� Systems composed of particles where all the positions and accel-
erations are known (Chapter 5);

� Systems where all points have the same acceleration. That is, the
system moves like a rigid object that does not rotate (Chapter 6);
and

1
Advanced aside: What we
call “simple measures” are ex-
amples of “generalized coordi-
nates” in more advanced books.
The idea sounds intimidating,
but is simply this: If some-
thing can only move in a few
ways, you should only keep track
of the motion with that many
variables. The kinematics of a
rigid object (Sect. 14.1) allow us
to “evaluate” the motion quan-
tities, namely linear momentum,
angular momentum, kinetic en-
ergy, and their rates of change in
terms of these “simple measures”.
By “evaluate” we mean express
the motion quantities in terms of
these measures. The alternative
is as sums over Avogadro’s num-
ber of particles (There are on the
order of 1023 atoms in a typi-
cal engineering part.). Even ne-
glecting atoms and viewing mat-
ter as continuous we would still
be stuck with integrals over com-
plicated regions if we did not de-
scribe the motion with as few
variables as possible. In the case
of 2-D rigid object motion, the
position of a reference point (x
and y) with the rotation � is
called a set of minimal coordi-
nates. These, and their time
derivatives are the minimal infor-
mation needed to describe all im-
portant mechanics motion quan-
tities.
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� Systems where all points move in circles about the same fixed
axis. That is, the system moves like a rigid object that is rotating
about a fixed skewer (Chapters 7 and 8).

Now we go on to consider the general 2-D motions of a planar rigid

object. Its now a little harder to evaluate
*

L;
P*
L;

*

H =O;
P*
H=O; EK and PEK.

But not much.

Summary of the motion quantities

Table I in the back of the book describes the motion quantities for
various special cases, including the planar motions we consider in this
chapter. Most relevant is row (7).

The basic idea is that the momenta for general motion, which in-
volves translation and rotation, is the sum of the momenta (both lin-
ear and angular, and their rates of change too) from those two effects.
Namely, the linear momentum is described, as for any system with any
motion, by the motion of the center-of-mass

*

L D mtot
*
vcm and P*

L D mtot
*
acm; (14.15)

and the angular momentum has two contributions, one from the mo-
tion of the center-of-mass and one from rotation of the object about
the center of mass,

*

H =O D

Angular momentum
due to motion of the
center-of-mass

B
BN� �� �

*
rcm=O � .mtot

*
vcm/C

55 pt
�
�
����

I cm
zz

*
! (14.16)

and P*
H=O D *

rcm=O � .mtot
*
acm/C I cm

zz
P*!: (14.17)

An important special case for the angular momentum evaluation is
when the reference point is coincident with the center-of-mass. Then
the angular momentum and its rate of change simplify to

*

H cm D I cm
zz

*
! and P*

H cm D I cm
zz

P*!: (14.18)

The kinetic energy and its rate of change are given by
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EK D

kinetic energy from
center-of-mass motion

BBN� �� �
1

2
mtot v2cm����

*
vcm�*vcm

C

30 pt
��
� �� �

1

2
I cm
zz !

2 (14.19)

and PEK D mtot vcm Pvcm� �� �
*
vcm�*a cm

C I cm
zz ! P! (14.20)

The relations above are easily derived from the general center of mass
theorems at the end of chapter 5 (see box 14.2 on page 814 for some
of these derivations).

Equations of motion

Putting together the general balance equations and the expressions
for the motion quantities we can now write linear momentum balance,
angular momentum balance and power balance as:

LMB W
X

*

F i D mtot
*
acm; (a)

AMB W
X

*

MO D *
rcm=O � .mtot

*
acm/C I cm

zz
P*! (b)

or
X

*

Mcm D I cm
zz

P*!;

and Power W *

Ftot � *vcm C *
! � *

Mcm D mtotv Pv C I cm
zz ! P!: (c)

(14.21)

Independent equations?

Equations are only independent if no one of them can be derived from
the others. When counting equations and unknowns one needs to make
sure one is writing independent equations. How many independent
equations are in the set eqns: .14:21/abc applied to one free object
diagram? The short answer is 3.

The linear momentum balance equation eqn: .14:21/a yields two
independent equations by dotting with any two non-parallel vectors
(say, O{ and O|). Dotting with a third vector yields a dependent equation.

For any one reference point the angular momentum equation
eqn: .14:21/a yields one scalar equation. It is a vector equation but
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always has zero components in the O{ and O| directions. But angular
momentum equation can yield up to three independent equations by
being applied to any set of three non-colinear points.

The power balance equation is one scalar equation.
In total, however, the full set of equations above only makes up a

set of three independent equations.
To avoid thinking about what is or is not an independent set of

equations some people prefer to stick with one of the canonical sets of
independent equations:

� The coordinate based set (“old standard”)

– fLMBg�O{ or, equivalently,
P
Fx D mtotacmx

,
– fLMBg� O| or, equivalently,

P
Fy D mtotacmy

, and

– fAMBg� Ok or, equivalently,
P
Mcm D I cm

zz P!.

� Moment only (good for eliminating unknown reaction forces)

– fAMB about pt Ag� Ok (A is any point, on or off the ob-
ject)

– fAMB about pt Bg� Ok (B is any other point)
– fAMB about pt Cg� Ok (C is a third point not on the line

AB)

� Two moments and a force component

– fAMB about pt Ag� Ok (A is any point, on or off the ob-
ject)

– fAMB about pt Bg� Ok (B is any other point)

– fLMBg�O� (where O� is not perpendicular to the line AB)

� Two force components and a moment (also good for eliminating
unknown forces)

– fLMBg�O�1 (where O�1 is any unit vector)

– fLMBg�O�2 (where O�2 is any other unit vector)
– fAMB about pt Ag� Ok qquad (A is any point, on or off the

object)

Any of these will always do the job. The power balance equation is
often used as a consistency check rather than an independent equation.

From a theoretical point of view one might ask the related question
of which of the equations of motion can be derived from the others.
There are many answers. Here are some of them:

� Power balance follows from LMB and AMB,

� AMB about three non-colinear points implies LMB, and

� LMB and power balance yield AMB

Interestingly, there is no way to derive angular momentum balance
from linear momentum balance without the questionable microscopic
assumptions discussed in box ?? on page ??.
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Some simple examples

Here we consider some simple examples of unconstrained motion of a
rigid object.

Example: The simplest case: no force and no moment.
If the net force and moment applied to a object are zero we have:

LMB ) *
0 D mtot

*
acm and

AMB ) *
0 D I cm

zz P! Ok

so *
acm D *

0 and P! D 0 and the object moves at constant speed in a constant
direction with a constant rate of rotation, all determined by the initial conditions.
Throw an object in space and its center-of-mass goes in a straight line and it spins
at constant rate (subject to the 2-D restrictions of this chapter).

Example: Constant force applied to the center-of-mass.
In this case angular momentum balance about the center-of-mass again yields

that the rotation rate is constant. Linear momentum balance is now the same
as for a particle at the center-of-mass, i:e:; the center-of-mass has a parabolic
trajectory.

Near-earth (constant) gravity provides a simple example. An ‘X’ marked
at the center-of-mass of a clipboard tossed across a room follows a parabolic
trajectory (see F ig: 14:19).

Example: Constant force not at the center-of-mass.

Assume the only force applied to an object is a constant force
*
F D F O{ at A (see

F ig: 14:20). Then linear momentum balance gives us thatX
*
F i D P*

L ) F O{ D m*
aG ) *

aG D F=mO{ D constant:

So if the object starts at rest, the point G will move in a straight line in the
O{ direction (The common intuition that point G will be pulled up is incorrect).
Angular momentum about the center-of-mass givesX

*
Mcmi D P*

H cm )
n
*
rA=G �F O{ D I cm

zz
R� Ok
o

fg � Ok ) R� C F `

I cm
zz

sin � D 0;

with ` D j*rA=Gj, which is the pendulum equation. That is, the object can swing
back and forth about � D 0 just like a pendulum, approximately sinusoidally if

the angle � starts small and with P� initially also small. [One might wonder how
to do this experiment. One way would be with a jet on a space craft that keeps
re-orienting itself to keep in a constant spatial direction as the object changes
orientation. Another would be with a string tied to A and pulled from a great
distance.]

Example: The flight of an arrow or rocket.
As a primitive model of an arrow or rocket assume that the only force is from

drag on the fins at C and that this force opposes motion according to

*
F D �c*vC

where c is a drag coefficient (see F ig: 14:21). From linear momentum balance
we have: X

*
F i D P*

L ) *
F D m*

a

�c*vC D m P*v
m P*v D �c

�
*
v C *! � *

rC=G

�
D �c

�
*
v C P� Ok� .�`O�/

�
. Ok� O� D On/ ) P*v D c

m

� P�` On� *
v
�
:

Figure 14.19: The X marked at the
center-of-mass of a thrown spinning
clipboard follows a parabolic trajec-
tory.
Filename:tfigure-clipboard

 
⇀
F

ı̂

ĵG

A

θ

Figure 14.20: The only force applied to

the object is the constant force
*
F D

F O{ applied at point A. The resulting
motion is a constant acceleration of the
center-of-mass *

aG D .F=m/O{ and an
oscillatory motion of � identical to that
of a pendulum hinged at G.
Filename:tfigure-constforce

G

C
⇀
F

�

Figure 14.21: A rocket is pointed in the
direction � which makes and angle �
with the positive x axis. The position
and velocity of the center-of-mass at G
are called *

r and *
v . The velocity of the

tail is *
vC

Filename:tfigure-rocket
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So if *
v ; � and P� are known the acceleration P*v is calculated by the formula above.

Similarly angular momentum balance about G givesX
*
MG D P*

HG ) f*rC=G � *
F D I cm

zz P! Okg
fg � Ok ) I cm

zz P! D *
rC=G � *

F � Ok:

Then, making the same substitutions as before for *
rC=G and

*
F we get

P! D c`

I cm
zz

�O�� *
v � Ok� P�`

�
which determines the rate of change of ! if the present values of *

v ; � and P� are
known.

Setting up differential equations for solution

If one knows the forces and torques on a object in terms of the bod-
ies position, velocity, orientation and angular velocity one then has a
‘closed’ set of differential equations. That is, one has enough infor-
mation to define the equations for a mathematician or a computer to
solve them.

The full set of differential equations is gathered from linear and
angular momentum balance and also from simple kinematics. Namely,
one has the following set of 6 first order differential equations:

Px D vx;

Pvx D Fx=m;

Py D vy ;

Pvy D Fy=m;
P� D !; and
P! D Mcm=I

cm
zz ;

where the positions and velocities are the positions and velocities of
the center-of-mass. The expressions for Fx; Fy ; and Mcm may well be
complicated, as in the rocket example above.
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14.2 THEORY
2-D mechanics makes sense in a 3-D world

The math for two-dimensional mechanics analysis is
simpler than the math for three-dimensional analysis.
And thus easier to learn first. But we do actually live
in a three-dimensional world you might wonder at the
utility of learning something that is not right. There are
three answers.

1. Two dimensional analysis can give partial infor-
mation about the three-dimensional system that
is exactly the same as the three-dimensional anal-
ysis would give by projection, no matter what the
motion;

2. if the motion is planar the 2-D kinematics can be
used; and

3. if the object is planar or symmetric about the mo-
tion plane, and any constraints that hold the ob-
ject are also symmetric about the motion plane,
the 2-D analysis is not only correct, but complete.

Of course no machine is exactly planar or exactly sym-
metric, but if the approximation seems reasonable most
engineers will accept a small loss in accuracy for great
gain in simplicity.

a) Projection
First lets relax our assumption of 2-D motion. Consider
arbitrary 3-D motions of an arbitrarily complex system.
If we take the dot product of the linear momentum equa-
tions with O{ and O| and the angular momentum balance

equation with Ok we getnP *
F i D

P
mi

*
a i

o
� O{ )P

Fi x D
P
miai x ; (a)nP *

F i D
P
mi

*
a i

o
� O| )P

Fiy D
P
miaiy ; and (b)nP

*
r i � *

F i D
P

*
r i �mi*a i

o
� Ok

)P
ri xFiy � riyFi x D

P
mi .ri xaiy � riyai x/: (c)

(14.22)
These are exactly the equations of 2-D mechanics. That
is, if we only consider the planar components of the
forces, the planar components of the positions, and the
planar components of the motions, we get a correct but
partial set of the 3-D equations. In this sense 2-D anal-
ysis is correct but incomplete.

b) Planar motion
If all the velocities of the parts of a 3-D system have
no z component the motion is planar (in the xy plane).
Thus the right-hand sides of eqns: .14:22/ are not just
projections, but the whole story. Further, in the case of
rigid-object motion, the 2-D kinematics equation

*
vP D *

vGC! Ok�*
rP=G D *

vGC! Ok�
�
rP=Gx O{ C rP=Gy O|

�
(14.23)

also applies (the z component of the position drops out
of the cross product) and the expression for, say, the z
component of the angular momentum of a object about
its center-of-mass is

Hcmz D I cm
zz !:

Differentiating, or adding up the mi
*
a i terms we get,

Hcmz D I cm
zz !:

Similarly, the z component of the full angular momentum
balance equation for a 3-D rigid object in planar motion
is the same as the z component of eqn: .14:21/b.X

*
MO � Ok D

�
*
rcm=O � .mtot

*
acm/

�
� OkC I cm

zz P!
So for planar motion of 3-D rigid bodies one can do

a correct 2-D analysis with the full ease of analyzing a
planar object.

But this result is deceptively simple. The free ob-
ject diagram in 3-D most likely shows forces in the z
direction, pairs of forces in the x or y directions that are
applied at points with the same x and y coordinates but
different z values, or moments with components in the x
or y directions. Full information about these force and
moment components can’t be found from 2-D analysis.
That is,

the nature of the forces that it takes to keep a system
in planar motion can’t be found from a planar
analysis.

For example, a system rotating about the z axis which
is statically balanced but is dynamically imbalanced
(see section ??) has no net x or y reaction force, as a
planar analysis would reveal, yet the bearing reaction
forces are not zero.

Another example would be a plan view of a car in a
turn (assuming a stiff suspension). A 2-D analysis could
be accurate, but would no be complete enough to de-
scribe the tire reaction forces needed to keep the car flat.

c) Symmetric bodies and
planar bodies
If the rigid object has all its mass in the xy plane, or its
mass is symmetrically distributed about the xy plane,
and it is in planar motion in the xy plane thenP

miai z D 0 and�P
*
r i �mi*a i

	 � O{ D 0 and
�P

*
r i �mi*a i

	 � O| D 0

where *
r is measured relative to any point in the plane.

Thus, by linear and angular momentum balance,P
Fz D 0 andnP

*
r i � *

F i

o
� O{ D 0 and

nP
*
r i � *

F i

o
� O| D 0

so

A planar object or a symmetric object in planar
motion needs no force in the z direction and no
moment in the x or y direction to keep it in the
plane.

Systems that are symmetric or flat and moving in an
approximately planar manner, are thus both accurately
and completely modeled with a 2-D analysis. A slight
generalization of the result is to any object or collection
of objects whose center’s of mass are on the plane and
each of which is dynamically balanced for rotation about

a Ok axis through its center-of-mass.
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14.3 THEORY
The center-of-mass theorems for 2-D rigid bodies

That all the particles in a system are part of one planar
object in planar motion (in that plane) allows highly
useful simplification of the expressions for the motion
quantities, namely Eqns. 14.15 to 14.19. We can derive
these expressions from the center-of-mass theorems of
chapter 5. For completeness, we repeat some of those
derivations as the start of the derivations here. To
save space, we only use the integral (

R
) forms for the

general expressions; the derivations with sums (
P

) are
similar. In all cases position, velocity, and acceleration
are relative to a fixed point in space (that is *

r ;*v ; and
*
a mean *

r=0;
*
v=0; and *

a=0 respectively).

Linear momentum.
Here we show that to evaluate linear momentum and its
rate of change you only need to know the motion of the
center of mass.

*
L �

Z
*
v dm D

Z
d

dt
*
r dm D d

dt

Z
*
r dm D d

dt
.mtot

*
rcm/

D mtot
d

dt
*
rcm D mtot

*
vcm

By identical reasoning, or by differentiating the expres-
sion above with respect to time,

P*
L D mtot

*
acm

Thus for linear momentum balance one need not pay
heed to rotation, only the center-of-mass motion matters.

Angular momentum.
Here we attempt a derivation like the one above but get
slightly more complicated results. For simplicity we eval-
uate angular momentum and its rate of change relative
to the origin, but a very similar derivation would hold
relative to any fixed point C.

*
H =O �

Z
*
r � *

v dm

D
Z �

*
r � *

rcm C *
rcm

�� �*v � *
vcm C *

vcm

�
dm

D
Z �

*
r=cm C *

rcm

�
�
�
*
v=cm C *

vcm

�
dm

D
Z

*
r=cm � *

v=cm dmC
Z

*
rcm � *

vcm dm

C
Z

*
r=cm � *

vcm dmC
Z

*
rcm � *

v=cm dm

D
Z

*
r=cm � *

v=cm dmC *
rcm � *

vcm

Z
dm

C
�Z

*
r=cm dm

�
� �� �

*
0

�*
vcm C *

rcm �
�Z

*
v=cm dm

�
� �� �

*
0

D
Z

*
r=cm � *

v=cm dmC *
rcm � *

vcmmtot:

This much is true for any system in any motion. For
a rigid object we know about the motions of the parts.

Using the center-of-mass as a reference point we know
that for all points on the object *

v=cm D *! � *
r=cm. Thus

we can continue the derivation above, following the same
reasoning as was used in chapter 7 for circular motion of
rigid bodies:

*
H =O D

Z
*
r=cm �

�
*! � *

r=cm

�
dmC *

rcm � *
vcmmtot:

Using the identity for the triple cross product (see box ??
on page ??) or using the geometry of the cross product

directly with *! D ! Ok as in chapters 7 and 8 we get

*
H =O D ! Ok

Z
r2
=cm dmC *

rcm � *
vcmmtot:

Then defining I cm
zz � R

r2
=cm dm we get the desired re-

sult:

*
H =O D *

rcm � *
vcmmtot C I cm

zz !
Ok:

A similar derivation, or differentiation of the result above

(and using that . d
dt

*
r /� *

v D *
v � *

v D *
0 ) gives

P*
H=O D *

rcm � *
acmmtot C I cm

zz P! Ok:

The results above hold for any reference point, not just
the origin of the fixed coordinate system. Thus, relative
to a point instantaneously coinciding with the center-of-
mass

*
H cm D *

rcm=cm� �� �
*
0�*vcmmtotCIcm

zz ! Ok

D I cm
zz !

Ok:

and similarly

P*
H cm D I cm

zz P! Ok:

Kinetic energy.
Unsurprisingly the expression for kinetic energy and it’s
rate of change are also simplified by derivations very sim-
ilar to those above. Skipping the details (or leaving them
as an exercise for the peppy reader):

EK �
Z
1

2
*
v � *v dm

D 1

2
mtotv

2
cm C 1

2
I cm
zz !

2

and

PEK � d

dt
EK

D mtotv PvC I cm
zz ! P!:
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14.4 THEORY
The work of a moving force and of a couple

The work of a force acting on a object from state one to
state two is

W12 D
Z t2

t1

Pdt:

But sometimes we like to think not of the time integral of
the power, but of the path integral of the moving force.
So we rearrange this integral as follows.

W12 D
Z t2

t1

Pdt

D
Z t2

t1

*
F � *

vdt����
d
*
r

D
Z *

r 2

*
r 1

*
F � d*

r (14.24)

The validity of equation 14.24 depends on the force act-
ing on the same material point of the moving object as it
moves from position 1 to position 2; i.e., the force moves
with the object. If the material point of force application
changes with time, eqn: .14:24/ is senseless and should
be replaced with the following more generally applicable
equation:

W12 �
Z t2

t1

P dt D
Z t2

t1

*
F � *vdt (14.25)

where *
v is the velocity of the material point at the

instantaneous location of the applied force.

Hand drags on a passing
train: a subtlety
There is a subtle distinction between eqn: .14:24/ and
eqn: .14:25/. As an example think of standing still and
dragging your hand on a passing train. Your hand slows
down the train with the force

*
Fhand on train:

It might seem that the work of the hand on the train
is zero because your hand doesn’t move; work is force
times distance and the distance is zero and eqn: .14:24/
superficially evaluates toZ *

r 2

*
r 1

*
F � d*

r D 0:

But we have violated the condition for the validity of
eqn: .14:24/: the force be applied to a fixed material
point as time progresses. Whereas on the train your
hand smears a whole line of material points.

Clearly your hand does slow the train, so it must do
(negative) work on the train, as eqn: .14:25/ correctly
shows because

Pforce on train D *
Fhand on train � *vtrain ¤ 0:

The power of the hand force on the train is the force on
the train dotted with the velocity of the train (not with
the velocity of your hand. Thus, your hand does negative
work on the train. eqn: .14:25/ applies to the train and
eqn: .14:24/ does not.

On the other hand (so to speak) if one looks at the
power of the force on the hand we have:

*
Ftrain on hand D �*

Fhand on train

while the velocity of the hand is zero so

Pforce on hand D *
Ftrain on hand � *vhand D 0:

So the train does no work on your hand since while your
hand does (negative) work on the train. The difference,
of course, is mechanical energy lost to heat.

Work of an applied torque
By thinking of an applied torque as really a distribution
of forces, the work of an applied torque is the sum of
the contributions of the applied forces. If a collection
of forces equivalent to a torque is applied to one rigid

object the power of these forces turns out to be
*
M � *!.

At a given angular velocity a bigger torque applies more
power. And a given torque applies more power to a faster
spinning object.

Here’s a quick derivation for a collection of forces
*
Fi that add to zero acting at points with positions *

ri
relative to a reference point on the object o0.

P D
X

*
Fi � *vi

D
X

*
Fi �

�
*
vo0 C *! � *

ri=o0

�
D *

vo0 �
X

*
Fi����

*
0

C
X

*
Fi �

�
*! � *

ri=o0

�

D
X

*! �
�
*
ri=o0 � *

Fi

�
D *! �

X
*
ri=o0 � *

Fi

D *! � *
Mo0 (14.26)

Work of a general force
distribution
A general force distribution has, by reasoning close to
that above, a power of:

P D *
Ftot � *vo0 C *! � *

Mo0 : (14.27)

For a given force system applied to a given object in a
given motion any point o0 can be used. The terms in the
formula above will depend on o0, but the sum does not.
Besides the center-of-mass, another convenient locations
for o0 is a fixed hinge, in which case the applied force has
no power.
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Figure 14.22:
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SAMPLE 14.6 Free planar motion. A rigid rod of length ` D 1m
and massmr D 1 kg, and a rigid square plate of side 1m and massmp D
10 kg are launched in motion on a frictionless plane (e:g:; an ice hockey
rink) with exactly the same initial velocities *

vcm.0/ D 10m=sO{C1m=s O|
and *

!.0/ D 1 rad=s Ok. Both the rod and the plate have their center-of-
mass at the baseline at t D 0.

1. Which of the two is farther from the base line in 3 seconds and
which one has undergone more number of revolutions?

2. Find and draw the position of the bar at t D 1 sec and at t D 3 sec.

Solution

1. The free-body diagram of the rod is shown in F ig: 14:23. There are no
forces acting on the rod in the xy-plane. Although there is force of gravity
and the normal reaction of the surface acting on the rod, these forces are
inconsequential since they act normal to the xy-plane. Therefore, we do not
include these forces in our free-body diagram . The linear momentum balance
for the rod gives X

*
F D mr

*
a cm

*
0 D mr

P*v cm

) *
vcm D

Z
*
0 dt D constant D *

vcm0

) *
rcm D

Z
*
vcm0 dt D *

rcm0 C *
vcm0t (14.28)

It is clear from the analysis above that in the absence of any applied forces,
the position of the body depends only on the initial position and the initial
velocity. Since both the plate and the rod start from the same base line
with the same initial velocity, they travel the same distance from the base
line during any given time period; mass or its geometric distribution play no
role in the motion. Thus the center-of-mass of the rod and the plate will be
exactly the same distance (j*rcm.t/ � *

rcm0j D j*vcm0t j) at time t . Similarly,
the angular momentum balance about the center-of-mass of the rod givesX

*
Mcm D P*

H cm

*
0 D I cm

zz
P*!

) *
! D

Z
*
0 dt D constant D *

!0 D P�0 Ok

) � D
Z

P�0 dt D �0 C P�0t (14.29)

Thus the angular position of the body is also, as expected, independent of the
mass and mass distribution of the body, and depends entirely on the initial
position and the initial angular velocity. Therefore, both the rod and the
plate undergo exactly the same amount of rotation

�
�.t/ � �0 D P�0t

�
during

any given time.

2. We can find the position of the rod at t D 1 s and t D 3 s by substituting
these values of t in eqns: .14:28/ and 14.29. For convenience, let us assume

that *
rcm0 D

*
0 . From the initial configuration of the rod, we also know that
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�0 D 0.

*
rcm.t D 1 s/ D *

vcm0 � .1 s/ D .10m=sO{ C 1m=s O|/ � .1 s/10mO{ C 1m O|
*
rcm.t D 3 s/ D *

vcm0 � .3 s/ D 30mO{ C 3m O| :
�.t D 1 s/ D P�0 � .1 s/ D .1 rad=s/ � .1 s/ D 1 rad

�.t D 3 s/ D P�0 � .3 s/ D 3 rad:

Accordingly, we show the position of the rod in F ig: 14:24.

x

y
1 rad 3 rad

(10m,1m)
(30m,3m)

t = 0 t = 1 s
t = 3 s

Figure 14.24:
Filename:sfig9 2 rodposition
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Figure 14.25:
Filename:sfig9-2-diver
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Figure 14.26:
Filename:sfig9-2-diver-a

SAMPLE 14.7 A passive rigid diver. An experimental model of a
rigid diver is to be launched from a diving board that is 3m above the
water level. Say that the initial velocity of the center-of-mass and the
initial angular velocity of the diver can be controlled at launch. The
diver is launched into the dive in almost vertical position, and it is
required to be as vertical as possible at the very end of the dive (which
is marked by the position of the diver’s center-of-mass at 1m above the
water level). If the initial vertical velocity of the diver’s center-of-mass
is 3m=s, find the required initial angular velocity for the vertical entry
of the diver into the water.

Solution Once the diver leaves the diving board, it is in free flight under gravity,
i:e:; the only force acting on it is the force due to gravity. The free-body diagram of
the diver is shown in F ig: 14:26. The linear momentum balance for the diver givesX

*
F D m

*
a cm

�mg O| D m Ry O|
) Ry D �gX

*
Mcm D P*

H cm

*
0 D I cm

zz
R� Ok

) R� D 0:

From these equations of motion, it is clear that the linear and the angular motions
of the diver are uncoupled. We can easily solve the equations of motion to get

y.t/ D y0 C Py0 �
1

2
gt2

�.t/ D �0 C P�0t:

We need to find the initial angular speed P�0 such that � D � when y D 1m (the
center-of-mass position at the water entry). From the expression for �.t/, we get,
P�0 D �=t . Thus we need to find the value of t at the instant of water entry. We can
find t from the expression for y.t/ since we know that y D 1m at that instant, and
that y0 D 3m and Py0 D 3m=s. We have,

y D y0 C Py0 �
1

2
gt2

) t D
Py0 �

q
Py20 C 2g.y0 � y/
g

D 3m=s�
p
.3m=s/2 C 2 � 9:8m=s2 � .3m � 1m/

9:8m=s2

D 1:15 or � 0:53 s:

We reject the negative value of time as meaningless in this context. Thus it takes
the diver 1:15 s to complete the dive. Since, the diver must rotate by � during this
time, we have

P�0 D �=t D �=.1:15 s/ D 2:73 rad=s:

P�0 D 2:73 rad=s
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SAMPLE 14.8 A plate tumbling in space. A rectangular plate
of mass m D 0:5 kg; I cm

zz D 2:08 � 10�3 kg � m2, and dimensions a D
200mm and b D 100mm is pushed by a force

*

F D 0:5NO{, acting
at d D 30mm away from the mass-center, as shown in the figure.
Assume that the force remains constant in magnitude and direction
but remains attached to the material point P of the plate. There is no
gravity.

1. Find the initial acceleration of the mass-center.

2. Find the initial angular acceleration of the plate.

3. Write the equations of motion of the plate (for both linear and
angular motion).

Solution The only force acting on the plate is the applied force
*
F . Thus, F ig: 14:27

is also the free-body diagram of the plate at the start of motion.

1. From the linear momentum balance we get,X
*
F D m

*
a cm

) *
a cm D

P *
F

m
D 0:5NO{
0:5 kg

D 1m=s2 O{:

which is the initial acceleration of the mass-center.

*
a cm D 1m=s2 O{

2. From the angular momentum balance about the mass-center, we get

*
Mcm D P*

H cm

Fd Ok D I cm
zz

P*!

) P*! D Fd

I cm
zz

Ok D 0:5N � 0:03m

2:08 kg � m2
D 7:2 rad=s2 Ok

which is the initial angular acceleration of the plate.

P*! D 7:2 rad=s2 Ok
3. To find the equations of motion, we can use the linear momentum balance

and the angular momentum balance as we have done above. So, why aren’t
the equations obtained above for the linear acceleration, *

a cm D F=mO{, and

the angular acceleration, P*! D Fd=I cm
zz

Ok, qualified to be called equations of
motion? Because, they are not valid for a general configuration of the plate
during its motion. The expressions for the accelerations are valid only in the
initial configuration (and hence those are initial accelerations).

Let us first draw a free-body diagram of the plate in a general configuration
during its motion (see F ig: ??). Assume the center-of-mass to be displaced
by x O{ and y O| , and the longitudinal axis of the plate to be rotated by � Ok with
respect to the vertical (inertial y-axis). The applied force remains horizontal
and attached to the material point P, as stated in the problem. The linear
momentum balance gives

X
*
F D m

*
a cm ) *

a cm D
P *
F

m

or Rx O{ C Ry O| D F

m
O{ ) Rx D F

m
; Ry D 0:


F

a

b

d
P

ı̂

̂

Figure 14.27:
Filename:sfig9-tumblingplate1

P

ı̂

̂

x

y

θ

Figure 14.28: Free body diagram of the
plate at some instant t when the longi-
tudinal axis of the plate makes an angle
�.t/ with the fixed vertical axis.
Filename:sfig9-tumblingplate1a
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


F

a

b

d P

ı̂

̂

x

y

rP/cm

α

θ

θ

Figure 14.29: Geometry of the plate at
the instant t when the longitudinal axis
of the plate makes an angle �.t/ with
the fixed y-axis. The position of point
P is *

rP=cm which makes a fixed an-

gle �.D tan�1 d
b=2

/ with the transverse
axis of the plate. This angle is shown
here merely for ease of calculation.
Filename:sfig9 tumblingplate1b
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Figure 14.30:
Filename:sfig9 2 odesoln

Since F=m is constant, the equations of motion of the center-of-mass indicate
that the acceleration is constant and that the mass-center moves in the x-
direction.

Similarly, we now use angular momentum balance to determine the rotation
(angular motion) of the plate. The angular momentum balance about the
mass-center give

*
Mcm D P*

H cm

*
rP=cm � *

F D I cm
zz

R� Ok:
Now,

*
rP=cm D �r�cos.� C �/O{ C sin.� C �/ O|�

*
F D F O{

) *
rP=cm � *

F D F r sin.� C �/ Ok:
Thus,

R� D F r

I cm
zz

sin.� C �/

where r D
p
d2 C .b=2/2 and � D tan�1.2d=b/:

Thus, we have got the equations of motion for both the linear and the angular
motion.

Rx D F
m ; Ry D 0; R� D F r

I cm
zz

sin.� C �/

4. The equations of linear motion of the plate are very simple and we can solve
them at once to get

x.t/ D x0 C Px0t C
1

2

F

m
t2

y.t/ D y0 C Py0t:

If the plate starts from rest ( Px0 D 0; Py0 D 0) with the center-of-mass at the
origin (x0 D 0; y0 D 0), then we have

x.t/ D F

2m
t2; and y.t/ D 0:

Thus the center-of-mass moves along the x-axis with acceleration F=m.

The equation of angular motion of the plate is, however, not so simple. In
fact, it is a nonlinear ODE. It is very difficult to get an analytical solution of
this equation. However, we can solve it numerically using, say, a Runge-Kutta
ODE solver:

ODEs = {thetadot = w, wdot = (F*r/Icm)*sin(theta+a)}

IC = {theta(0) = 0, w(0) = 0}

Set F=.5, d=0.03; b=0.1; Icm=2.08e-03

compute r = sqrt(d^2+.25*b^2), a = atan(2*d/b)

Solve ODEs with IC for t=0 to t=10

Plot theta(t)

The plot obtained from this calculation is shown in F ig: 14:30.
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SAMPLE 14.9 Impulse-momentum. Consider the plate problem of
Sample 14.8 (page 819) again. Assume that the plate is at rest at t D 0

in the vertical upright position and that the force acts on the plate for
2 seconds.

1. Find the velocity of the center-of-mass of the plate at the end of
2 seconds.

2. Can you also find the angular velocity of the plate at the end of
2 seconds?

Solution

1. Since we are interested in finding the velocity at a particular instant t , given
the velocity at another instant t D 0, we can use the impulse-momentum
equations to find the desired velocity.

*
L2 � *

L1 D
Z t2

t1

X
*
F dt

m
*
vcm.t/ �m*

vcm.0/ D
Z t

0

*
F dt

) *
vcm.t/ D *

vcm.0/C
1

m

Z 2

0

*
F dt

D *
0 C 1

0:5 kg

Z 2

0
.0:5NO{/ dt

D 2m=sO{:
*
vcm.2 s/ D 2m=sO{

2. Now, let us try to find the angular velocity the same way, using angular
impulse-momentum relation. We have,

.
*
H cm/2 � .

*
H cm/1 D

Z t2

t1

X
*
Mcm dt

I cm
zz

*
!.t/ � I cm

zz
*
!.0/ D

Z t

0

X
*
Mcm dt

) *
!.t/ D *

!.0/C 1

I cm
zz

Z t

0

X
*
Mcm dt

D *
!.0/C 1

I cm
zz

Z t

0
.
*
rP=cm � *

F / dt

D *
0 C 1

I cm
zz

Z t

0
.F r sin.� C �/ Ok/ dt

D F r

I cm
zz

�Z t

0
sin.� C �/ dt

�
Ok:

Now, we are in trouble; how do we evaluate the integral? In the integrand, we
have � which is an implicit function of t . Unless we know how � depends on t
we cannot evaluate the integral. To find �.t/ we have to solve the equation of
angular motion we derived in the previous sample. However, we were not able
to solve for �.t/ analytically, we had to resort to numerical solution. Thus,
it is not possible to evaluate the integral above and, therefore, we cannot
find the angular velocity of the plate at the end of 2 seconds using impulse-
momentum equations. We could, however, find the desired velocity easily
from the numerical solution.



822 Chapter 14. Planar motion of an object 14.3. Kinematics of rolling and sliding

xC
B

C

O
x

sD = xC

y
D

R

rolling
contactA

φ
sD

ı̂

ĵ

Figure 14.31: Pure rolling of a round
wheel on a level support.
Filename:tfigure7-2D-pure-rolling

14.3 Kinematics of rolling and sliding

Pure rolling in 2-D

In this section, we would like to add to the vocabulary of special mo-
tions by considering pure rolling. Most commonly, one discusses pure
rolling of round objects on flat ground, like wheels and balls, and rolling
of round things on other round things like gears and cams.

2-D rolling of a round wheel on level ground

The simplest case, the no-slip rolling of a round wheel, is an instructive
starting point. First, we define the geometric and kinematic variables
as shown in F ig: 14:31. For convenience, we pick a point D which
was at xD D 0 at the start of rolling, when xC D 0. The key to the
kinematics is that:

The arc length traversed on the wheel is the distance traveled
by the wheel center.

That is,

xC D sD

D R�

) vC D PxC D R P�
) aC D PvC D RxC D R R�

So the rolling condition amounts to the following set of restrictions on
the position of C , *

rC , and the rotations of the wheel �:

*
rC D R� O{CR O|; *

vC D R P� O{; *
aC D R R� O{; *

! D � P� Ok; and *
� D P*! D � R� Ok:

If we want to track the motion of a particular point, say D, we could
do so by using the following parametric formula:

*
rD D *

rC C *
rD=C

D R.� O{ C O|/CR.� sin� O{ � cos� O|/
D R �.� � sin�/O{ C .1 � cos�/ O|/�

) *
vD D R

�
. P�.1 � cos�/O{ C P� sin� O|/� (14.30)

) *
aD D

BBM

assuming P�= constant

R P�2.sin� O{ C cos� O|/:

Note that if � D 0 or 2� or 4� , etc., then the point D is on the ground
and eqn: .14:30/ correctly gives that

*
vD D R

2
4 P�.1 � 1� �� �

cos.2n�/� �� �
0

3
5 O{ C P� sin.2n�/� �� �

0

O| D *

0 :
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Instantaneous Kinematics

Instead of tracking the wheel from its start, we could analyze the kine-
matics at the instant of interest. Here, we make the observation that
the wheel rolls without slip. Therefore, the point on the wheel touching
the ground has no velocity relative to the ground.

Velocity of point on
the wheel touching the
ground

BBN����
*
vA D

0pt
��
����

*
vB (14.31)

Now, we know how to calculate the velocity of points on a rigid body.
So,

*
vA D *

vC C *
vA=C ;

where, since A and C are on the same rigid body (F ig: 14:31), we
have from eqn: .13:35/ that

*
vA=C D *

! � *
rA=C :

Putting this equation together with eqn: .14:31/, we get

*
vA D *

vB

) *
vC����
vC O{

C *
!����
! Ok

� *
rA=C����
�R O|

D *

0

) vC O{ C !RO{ D *

0

) vC D �!R: (14.32)

We use *
vC D v O{ since the center of the wheel goes neither up nor

down. Note that if you measure the angle by �, like we did before,
then *

! D � P� Ok so that positive rotation rate is in the counter-clockwise
direction. Thus, vC D �!R D �.� P�/R D P�R.

Since there is always some point of the wheel touching the ground,
we know that vC D �!R for all time. Therefore,

*
aC D PvC O{ D � P!RO{:

Rolling of round objects on round surfaces

For round objects rolling on or in another round object, the analysis
is similar to that for rolling on a flat surface. A common application

A
B

C

γ

O

reference line

êθ

θ̇
R1 R2

B

Figure 14.32:
Filename:tfigure7-rolling-on-another
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14.5 The Sturmey-Archer hub

In 1903, the year the Wright Brothers first flew powered
airplanes, the Sturmey-Archer company patented the
internal-hub three-speed bicycle transmission. This
marvel of engineering was sold on the best bikes until
finicky but fast racing bicycles using derailleurs started
to push them out of the market in the 1960’s. Now, a
hundred years later, internal bicycle hubs (now made by
Shimano and Sachs) are having something of a revival,
particularly in Europe. These internal-hub transmis-
sions utilize a system called planetary gears, gears
which roll around other gears. See the figure below.

In order to understand this gear system, we need to
understand its kinematics—the motion of its parts.
Referring to figure above, the central ‘sun’ gear F is
stationary, at least we treat it as stationary in this
discussion since it is fixed to the bike frame, so it
is fixed in body F . The ‘planet’ gears roll around
the sun gear. Let’s call one of these planets P. The
spider S connects the centers of the rolling planets.
Finally, the ring gear R rotates around the sun.

Sun F 
(fixed frame)

Planet P
(rolls on sun)

Spider S
(connects
planets)

Ring R
(rolls around

planets)

The gear transmission steps up the angular velocity
when the spider S is driven and ring R, which moves
faster, is connected to the wheel. The transmis-
sion steps down the angular velocity when the ring
gear is driven and the slower spider is connected to
the wheel. The third ‘speed’ in the three-speed gear
transmission is direct drive (the wheel is driven directly).

What are the ‘gear ratios’ in the planetary gear
system? The ‘trick’ is to recognize that for rolling con-
tact that the contacting points have the same velocity,
*
vA D *

vB and *
vD D *

vE . Let’s define some terms.

*!S D !S Ok angular velocity of the spider

*!P D !P Ok angular velocity of the planet

*!R D !R Ok angular velocity of the ring

Now, we can find the relation of these angular velocities
as follows. Look at the velocity of point C in two ways.
First,

A point on the spider

BBN����
*
vC D

10 pt

��
����
*
vC

) *!S � *
rC D *

vB����
*
0

C*!P � *
rC=B

) !SrC D !PRP

) !P D rC

RP
!S (14.33)

Next, let’s look at point D and E :

*
vD D *

vE
*
vA C *

vD=A D *!R � *
rR

*
0 C *!P � *

rD=A D !R Ok� *
rR

!P .2RP / Oe� D !RrR Oe�

) !R D 2RP

rR

B
BM

!P D rC
RP
!S

!P����

!R D 2RP

rR

10 pt

��
����
rC

RP
!S

D 2.rS CRP /
B
BM

rR D rS C 2RP
rR����

!S

) !R
!S

D 2
1C RP

rS

1C 2RP
rS

D angular velocity step-up:

A B C
D

E

RP

rC

rS

rR

Rolling
contact:

O
F

R

S P

ı̂

ĵ

êθ ⇀
vA = ⇀

vB
⇀
vD = ⇀

vE
⇀
vC = ⇀

vC

Typically, the gears have radius ratio of
RP
rS

D 3
2

which

gives a gear ratio of 5
4

. Thus, the ratio of the highest gear

to the lowest gear on a Sturmey-Archer hub is 5
4
= 4
5
D

25
16

D 1:5625. You might compare this ratio to that of
a modern mountain bike, with eighteen or twenty-one
gears, where the ratio of the highest gear to the lowest
is about 4:1.
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is the so-called epicyclic, hypo-cyclic, or planetary gears (See Box 14.5
on planetary gears on page 824). Referring to F ig: 14:32, we can
calculate the velocity of C with respect to a fixed frame two ways and
compare:

*
vC D *

vB C *
vC=B

*
vC D

*
vB� �� �

*
vA����
*
0

C *
vB=A����
*
0

C*
vC=B :

P�.R1 CR2/ Oe� D !BR2 Oe�
) !B D

P�.R1 CR2/

R2
D P�.1C R1

R2
/:

Example: Two quarters.
The formula above can be tested in the case of R1 D R2 by using two quarters or
two dimes on a table. Roll one quarter, call it B, around another quarter pressed
fast to the table. You will see that as the rolling quarter B travels around the
stationary quarter one time, it makes two full revolutions. That is, the orientation
of B changes twice as fast as the angle of the line from the center of the stationary

quarter to its center. Or, in the language of the calculation above, !B D 2 P� .

Sliding

Although wheels and balls are known for rolling, they do sometimes
slide such as when a car screeches at fast acceleration or sudden braking
or when a bowling ball is released on the lane.

The sliding velocity is the velocity of the material point on the
wheel (or ball) relative to its contacting substrate. In the case of
pure rolling, the sliding velocity is zero. In the case of a ball or wheel
moving against a stationary support surface, whether round or curved,
the sliding velocity is

*
vsliding D *

vcircle center C *
! � *

rcontact=center (14.34)

Example: Bowling ball
The velocity of the point on the bowling ball instantaneously in contact with the

alley (ground) is *
vC D vG O{ C ! Ok � *

rC=G D .vG C !R/O{. So unless ! D �vG=R
the ball is sliding.

Note that, if sliding, the friction force on the ball opposes the slip of the ball
and tends to accelerate the balls rotation towards rolling. That is, for example,
if the ball is not rotating the sliding velocity is vG O{, the friction force is in the
�O{ direction and angular momentum balance about the center-of-mass implies
P! < 0 and a counter-clockwise rotational acceleration. No matter what the
initial velocity or rotational rate the ball will eventually roll. Figure 14.33: The bowling ball is sliding

so long as vG ¤ �!R
Filename:tfigure-bowlball
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frictionless

A

B

L

θ = 60 ı̂
̂x

y

Figure 14.34:
Filename:sfig7-2-2
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θ


r A/B =−L cos ı̂− L sin ̂


r A/B

−L sin ̂

−L cos ı̂

ı̂

̂

θ

θ

θ θ

Figure 14.35:
Filename:sfig7-2-2b

SAMPLE 14.10 Falling ladder: The ends of a ladder of length L D
3m slip along the frictionless wall and floor shown in Figure 14.34. At
the instant shown, when � D 60

�
, the angular speed P� D 1:15 rad=s

and the angular acceleration R� D 2:5 rad=s2. Find the absolute velocity
and acceleration of end B of the ladder.

Solution Since the ladder is falling, it is rotating clockwise. From the given infor-
mation:

*
! D P� Ok D �1:15 rad=s Ok
P*! D R� Ok D �2:5 rad=s2 Ok:

We need to find *
vB , the absolute velocity of end B, and *

aB , the absolute acceler-
ation of end B.

Since the end A slides along the wall and end the B slides along the floor, we
know the directions of *

vA;
*
vB ;

*
aA and *

aB .

Let *
vA D vA O|; *

aA D aA O|; *
vB D vB O{ and *

aB D aB O{ where the scalar quanti-
ties vA; aA; vB and aB are unknown.

Now, *
vA D *

vB C *
vA=B D *

vB C *
! � *

rA=B

or vA O| D vB O{ C P� Ok � L.� cos � O{ � sin � O|/� �� �
*
rA=B

D .vB C P�L sin �/O{ � P�L cos � O| :

Dotting both sides of the equation with O{, we get:

vA O| �O{����
0

D .vB C P�L sin �/ O{�O{����
1

C P�L cos � O| �O{����
0

) 0 D vB C P�L sin �

) vB D � P�L sin � D �.�1:15 rad=s/�3m�
p
3

2
D 2:99m=s:

*
vB D 2:9m=sO{

Similarly,

*
aA D *

aB C P*! � *
rA=B C

�!2*rA=B� �� �
*
! � .*! � *

rA=B /

aA O| D aB O{ C R� Ok � L.� cos � O{ � sin � O|/ � P�2L.� cos � O{ � sin � O|/
D .aB C R�L sin � C P�2L cos �/O{ C .� R�L cos � C P�2L sin �/ O| :

Dotting both sides of this equation with O{ (as we did for velocity) we get:

0 D aB C R�L sin � C P�2L cos �

) aB D � R�L sin � � P�2L cos �

D �.�2:5 rad=s2�3m�
p
3

2
/ � .�1:15 rad=s/2�3m�1

2

D 4:51m=s2:

*
aB D 4:51m=s2
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SAMPLE 14.11 A cylinder of diameter 500mm rolls down an inclined
plane with uniform acceleration (of the center-of-mass) a D 0:1m=s2.
At an instant t0, the mass-center has speed v0 D 0:5m=s.

1. Find the angular speed ! and the angular acceleration P! at t0.

2. How many revolutions does the cylinder make in the next 2 sec-
onds?

3. What is the distance travelled by the center-of-mass in those 2
seconds?

Solution This problem is about simple kinematic calculations. We are given the
velocity, Px, and the acceleration, Rx, of the center-of-mass. We are supposed to find
angular velocity !, angular acceleration P!, angular displacement � in 2 seconds, and
the corresponding linear distance x along the incline. The radius of the cylinder
R D diameter=2 D 0:25m.

1. From the kinematics of pure rolling,

! D Px
R
D 0:5m=s

0:25m
D 2 rad=s;

P! D Rx
R
D 0:1m=s2

0:25m
D 0:4 rad=s2:

! D 2 rad=s; P! D 0:4 rad=s2

2. We can find the number of revolutions the cylinder makes in 2 seconds by
solving for the angular displacement � in this time period. Since,

R� � P! D constant;

we integrate this equation twice and substitute the initial conditions, P�.t D
0/ D ! D 2 rad=s and �.t D 0/ D 0, to get

�.t/ D !t C 1

2
P!t2

) �.t D 2 s/ D .2 rad=s/ � .2 s/C 1

2
.0:4 rad=s/ � .4 s2/

D 4:8 rad D 4:8

2�
rev D 0:76 rev:

� D 0:76 rev

3. Now that we know the angular displacement � , the distance travelled by the
mass-center is the arc-length corresponding to � , i:e:;

x D R� D .0:25m/ � .4:8/ D 1:2m:

x D 1:2m

Note that we could have found the distance travelled by the mass-center by
integrating the equation Rx D 0:1m=s2 twice.

C

ı̂

̂

Figure 14.36:
Filename:sfig9-rolling-may00
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C

P

Q

ı̂

̂

Figure 14.38: The cylinder rolls on the
flat surface. Instantaneously, point P
on the cylinder is in contact with point
Q on the flat surface. For pure rolling,
points P and Q must have the same ve-
locity.
Filename:sfig7-rolling1a

SAMPLE 14.12 Condition of pure rolling. A cylinder of radius R D
20 cm rolls on a flat surface with absolute angular speed ! D 12 rad=s
under the conditions shown in the figure (In cases (ii) and (iii), you
may think of the ‘flat surface’ as a conveyor belt). In each case,

1. Write the condition for pure rolling.

2. Find the velocity of the center C of the cylinder.

C

P

C

P

C

Pv0 = 1m/s

v0 = 1m/s

( i )  Fixed base ( i i )  Base moves to the right ( i i i )  Base moves to the left

ı̂

̂

Figure 14.37:
Filename:sfig7-rolling1

Solution At any instant during rolling, the cylinder makes a point-contact with the
flat surface. Let the point of instantaneous contact on the cylinder be P, and let the
corresponding point on the flat surface be Q. The condition of pure rolling, in each
case, is *

vP D *
vQ, that is, there is no relative motion between the two contacting

points (a relative motion will imply slip). Now, we analyze each case.

Case(i) In this case, the bottom surface is fixed. Therefore,

1. The condition of pure rolling is: *
vP D *

vQ D *
0 :

2. Velocity of the center:

*
vC D *

vP C *
! � *

r C=P D *
0 C .�! Ok/ �R O|

D !RO{ D .12 rad=s/ � .0:2m/O{ D 2:4m=sO{:

Case(ii) In this case, the bottom surface moves with velocity *
v D 1m=sO{. There-

fore, *
vQ D 1m=sO{. Thus,

1. The condition of pure rolling is: *
vP D *

vQ D 1m=sO{:
2. Velocity of the center:

*
vC D *

vP C *
! � *

r C=P D v0 O{ C !RO{
D 1m=sO{ C 2:4m=sO{ D 3:4m=sO{:

Case(iii) In this case, the bottom surface moves with velocity *
v D �1m=sO{.

Therefore, *
vQ D �1m=sO{. Thus,

1. The condition of pure rolling is: *
vP D *

vQ D �1m=sO{:
2. Velocity of the center:

*
vC D *

vP C *
! � *

r C=P D �v0 O{ C !RO{
D �1m=sO{ C 2:4m=sO{ D 1:4m=sO{:

(a) W (i)*vP D *
0 ; (ii)*vP D 1m=sO{; (iii)*vP D �1m=sO{;

(b) W (i)*vC D 2:4m=sO{; (ii)*vC D 3:4m=sO{; (iii)*vC D 1:4m=sO{
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SAMPLE 14.13 Motion of a point on a disk rolling inside a
cylinder. A uniform disk of radius r rolls without slipping with con-
stant angular speed ! inside a fixed cylinder of radius R. A point P is
marked on the disk at a distance ` (` < r) from the center of the disk.
at a general time t during rolling, find

1. the position of point P,

2. the velocity of point P, and

3. the acceleration of point P

Solution Let the disk be vertically below the center of the cylinder at t D 0 s such
that point P is vertically above the center of the disk (Fig. 14.40). At this instant,
Q is the point of contact between the disk and the cylinder. Let the disk roll for
time t such that at instant t the line joining the two centers (line OC) makes an
angle � with its vertical position at t D 0 s. Since the disk has rolled for time t
at a constant angular speed !, point P has rotated counter-clockwise by an angle
� D !t from its original vertical position P’.

C

P

Pʹ

C

P

Q

O

C

P

(a) (b)

D

x

y

O
x

y

ω


rC


rP/C

l

φ

θθ
φφ

Figure 14.40: Geometry of motion: keeping track of point P while the disk rolls for time t ,
rotating by angle � D !t inside the cylinder.
Filename:sfig6-5-3a

1. Position of point P: From Fig. 14.40(b) we can write

*
rP D *

r C C *
rP=C D .R � r/O�OC C `O�CP

where

O�OC D a unit vector along OC D � sin� O{ � cos� O|;
O�CP D a unit vector along CP D � sin � O{ C cos � O| :

Thus,

*
rP D ��.R � r/ sin� � ` sin ��O{ C ��.R � r/ cos� C ` cos �� O| :

We have thus obtained an expression for the position vector of point P as a
function of � and � . Since we also want to find velocity and acceleration of
point P, it will be nice to express *

rP as a function of t . As noted above,
� D !t ; but how do we find � as a function of t? Note that the center of the
disk C is going around point O in circles with angular velocity � P� Ok. The disk,

R

r

P

Figure 14.39: A uniform disk of radius
r rolls without slipping inside a fixed
cylinder.
Filename:sfig6-5-3



830 Planar motion of an object

however, is rotating with angular velocity *
! D ! Ok about the instantaneous

center of rotation, point D. Therefore, we can calculate the velocity of point
C in two ways:

*
vC D *

vC

or *
! � *

r C=D D � P� Ok � *
r C=O

or ! Ok � r.�O�OC / D � P� Ok � .R � r/O�OC

or � !r. Ok � O�OC / D � P�.R � r/. Ok � O�OC /

) r

R � r ! D P�:

Integrating the last expression with respect to time, we obtain

� D r

R � r !t:

Let
q D r

R � r ;
then, the position vector of point P may now be written as

*
rP D ��.R�r/ sin.q!t/�` sin.!t/�O{C��.R�r/ cos.q!t/C` cos.!t/� O| : (14.35)

2. Velocity of point P: Differentiating Eqn. (14.35) once with respect to time
we get

*
vP D �!�.R � r/q cos.q!t/C ` cos.!t/�O{ C !�.R � r/q sin.q!t/ � ` sin.!t/� O| :

Substituting .R � r/q D r in *
vP we get

*
vP D �!r�fcos.q!t/C `

r
cos.!t/gO{ � fsin.q!t/ � `

r
sin.!t/g O|�: (14.36)

3. Acceleration of point P: Differentiating Eqn. (14.36) once with respect to
time we get

*
aP D �!2r��fq sin.q!t/C `

r
sin.!t/gO{ � fq cos.q!t/� `

r
cos.!t/g O|�: (14.37)

*
rP D ��.R � r/ sin.q!t/ � ` sin.!t/�O{ C ��.R � r/ cos.q!t/C ` cos.!t/� O|
*
vP D �!r�fcos.q!t/C `

r cos.!t/gO{ � fsin.q!t/ � `
r sin.!t/g O|�

*
aP D �!2r��fq sin.q!t/C `

r sin.!t/gO{ � fq cos.q!t/ � `
r cos.!t/g O|�



14.3. Kinematics of rolling and sliding 831

SAMPLE 14.14 The rolling disk: instantaneous kinematics. For
the rolling disk in Sample 14.13, let R D 4 ft; r D 1 ft and point P
be on the rim of the disk. Assume that at t D 0, the center of the
disk is vertically below the center of the cylinder and point P is on the
vertical line joining the two centers. If the disk is rolling at a constant
speed ! D � rad=s, find

1. the position of point P and center C at t D 1 s; 3 s; and 5:25 s,

2. the velocity of point P and center C at those instants, and

3. the acceleration of point P and center C at the same instants as
above.

Draw the position of the disk at the three instants and show the ve-
locities and accelerations found above.

Solution The general expressions for position, velocity, and acceleration of point
P obtained in Sample 14.13 can be used to find the position, velocity, and ac-
celeration of any point on the disk by substituting an appropriate value of ` in
equations (14.35), (14.36), and (14.37). Since R D 4r ,

q D r

R � r D
1

3
:

Now, point P is on the rim of the disk and point C is the center of the disk.
Therefore,

for point P: ` D r;

for point C: ` D 0:

Substituting these values for `, and q D 1=3 in equations (14.35), (14.36), and
(14.37) we get the following.

1. Position:

*
r C D �3r

�
sin

�
!t

3

�
O{ C cos

�
!t

3

�
O|
�
;

*
rP D *

r C C r ��sin .!t/ O{ C cos .!t/ O|� :

2. Velocity:

*
vC D �!r

�
cos

�
!t

3

�
O{ � sin

�
!t

3

�
O|
�
;

*
vP D �!r

��
cos

�
!t

3

�
C cos .!t/

�
O{ �

�
sin

�
!t

3

�
� sin .!t/

�
O|
�
:

3. Acceleration:

*
aC D !2r

3

�
sin

�
!t

3

�
O{ C cos

�
!t

3

�
O|
�
;

*
aP D !2r

��
1

3
sin

�
!t

3

�
C sin .!t/

�
O{ C

�
1

3
cos

�
!t

3

�
� cos .!t/

�
O|
�
:

We can now use these expressions to find the position, velocity, and accel-
eration of the two points at the instants of interest by substituting r D 1 ft,
! D � rad=s, and appropriate values of t . These values are shown in Ta-
ble 14.1.

The velocity and acceleration of the two points are shown in Figures 14.41(a) and
(b) respectively.
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C

C

C

C
P

P

P

P
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t = 1 s
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t = 5.25 s

vC

vP
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C

C

C
P

P

P

P

t = 0 s

t = 1 s

t = 3 s

t = 5.25 s

aC

aP

(a) (b)

Figure 14.41: (a) Velocity and (b) Acceleration of points P and C at t D 1 s; 3 s; and 5:25 s.
Filename:sfig6-5-4a

It is worthwhile to check the directions of velocities and the accelerations by

thinking about the velocity and acceleration of point P as a vector sum of the

velocity (same for acceleration) of the center of the disk and the velocity (same for

acceleration) of point P with respect to the center of the disk. Since the motions

involved are circular motions at constant rate, a visual inspection of the velocities

and the accelerations is not very difficult. Try it.

t 1 s 3 s 5.25 s

*
r C ( ft) 3.�

p
3
2
O{ � 1

2
O|/ 3 O| 3. 1p

2
O{ � 1p

2
O|/

*
rP ( ft) *

r C � O| *
r C � O| 4. 1p

2
O{ � 1p

2
O|/

*
vC ( ft=s) �.�1

2
O{ C

p
3
2
O|/ � O{ �.� 1p

2
O{ � 1p

2
O|/

*
vP ( ft=s) �.1

2
O{ C

p
3
2
O|/ 2� O{ *

0

*
aC . ft=s2/ �2

3
.
p
3
2
O{ C 1

2
O|/ ��2

3
O| �2

3
.� 1p

2
O{ C 1p

2
O|/

*
vP . ft=s2/ 11:86.:24O{ C :97 O|/ 2�2

3
O| 13:16.� 1p

2
O{ C 1p

2
O|/

Table 14.1: Position, velocity, and acceleration of point P and point C



14.3. Kinematics of rolling and sliding 833

SAMPLE 14.15 The rolling disk: path of a point on the disk.
For the rolling disk in Sample 14.13, take ! D � rad=s. Draw the path
of a point on the rim of the disk for one complete revolution of the
center of the disk around the cylinder for the following conditions:

1. R D 8r ,

2. R D 4r , and

3. R D 2r .

Solution In Sample 14.13, we obtained a general expression for the position of a
point on the disk as a function of time. By computing the position of the point for
various values of time t up to the time required to go around the cylinder for one
complete cycle, we can draw the path of the point. For the various given conditions,
the variable that changes in Eqn. (14.35) is q. We can write a computer program
to generate the path of any point on the disk for a given set of R and r . Here is a
pseudocode to generate the required path on a computer according to Eqn. (14.35).

A pseudocode to plot the path of a point on the disk:

(pseudo-code) program rollingdisk

%-------------------------------------------------------------

% This code plots the path of any point on a disk of radius

% ’r’ rolling with speed ’w’ inside a cylinder of radius ’R’.

% The point of interest is distance ’l’ away from the center of

% the disk. The coordinates x and y of the specified point P are

% calculated according to the relation mentioned above.

%--------------------------------------------------------------

phi = pi/50*[1,2,3,...,100] % make a vector phi from 0 to 2*pi

x = R*cos(phi) % create points on the outer cylinder

y = R*sin(phi)

plot y vs x % plot the outer cylinder

hold this plot % hold to overlay plots of paths

q = r/(R-r) % calculate q.

T = 2*pi/(q*w) % calculate time T for going around-

% the cylinder once at speed ’w’.

t = T/100*[1,2,3, ..., 100] % make a time vector t from 0 to T-

% taking 101 points.

rcx = -(R-r)*(sin(q*w*t)) % find the x coordinates of pt. C.

rcy = -(R-r)*(cos(q*w*t)) % find the y coordinates of pt. C.

rpx = rcx-l*sin(w*t) % find the x coordinates of pt. P.

rpy = rcy + l*cos(q*t) % find the y coordinates of pt. P.

plot rpy vs rpx % plot the path of P and the path

plot rcy vs rcx % of C. For path of C

Once coded, we can use this program to plot the paths of both the center and the
point P on the rim of the disk for the three given situations. Note that for any
point on the rim of the disk l D r (see Fig 14.40).
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1. Let R D 4 units. Then r D 0:5 for R D 8r . To plot the required path, we run
our program rollingdisk with desired input,

R = 4

r = 0.5

w = pi

l = 0.5

execute rollingdisk

The plot generated is shown in Fig.14.42 with a few graphic elements added
for illustrative purposes.

2. Similarly, for R D 4r we type:

R = 4

r = 1

w = pi

l = 1

execute rollingdisk

to plot the desired paths. The plot generated in this case is shown in Fig.14.43

3. The last one is the most interesting case. The plot obtained in this case by
typing:

R = 4

r = 2

w = pi

l = 2

execute rollingdisk

is shown in Fig.14.44. Point P just travels on a straight line! In fact, every
point on the rim of the disk goes back and forth on a straight line. Most
people find this motion odd at first sight. You can roughly verify the result
by cutting a whole twice the diameter of a coin (say a US quarter or dime)
in a piece of cardboard and rolling the coin around inside while watching a
marked point on the perimeter.

A curiosity. We just discovered something simple about the path of a point on the

edge of a circle rolling in another circle that is twice as big. The edge point moves

in a straight line. In contrast one might think about the motion of the center G of

a straight line segment that slides against two straight walls as in sample 14.23. A

problem couldn’t be more different. Naturally the path of point G is a circle (as

you can check physically by looking at the middle of a ruler as you hold it as you

sliding against a wall-floor corner).
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14.4 Mechanics of contact

Mechanics of contacting bodies: rolling and sliding A typical machine
part has forces that come from contact with other parts. In fact, with
the major exception of gravity, most of the forces that act on bodies of
engineering interest come from contact. Many of the forces you have
drawn in free body diagrams have been contact forces: The force of
the ground on an ideal wheel, of an axle on a bearing, etc.

We’d now like to consider some mechanics problems that involve
sliding or rolling contact. Once you understand the kinematics from
the previous section, there is nothing new in the mechanics. As al-
ways, the mechanics is linear momentum balance, angular momen-
tum balance and energy balance. Because we are considering single
rigid bodies in 2D the expressions for the motion quantities are espe-
cially simple (as you can look up in Table I at the back of the book):
P*
L D mtot

*
acm, P*

H =C D *
rcm=C � .mtot

*
acm/C I P! Ok (where I D I cm

zz ), and
EK D mtotv

2
cm=2C I!2=2.

The key to success, as usual, is the drawing of appropriate free
body diagrams (see Chapter 3 pages 88-91 and Chapter 6 pages 328-
9). The two cases one needs to consider as possible are rolling, where
the contact point has no relative velocity and the tangential reaction
force is unknown but less than �N , and sliding where the relative
velocity could be anything and the tangential reaction force is usually
assumed to have a magnitude of �N but oppose the relative motion.

For friction forces in rolling refer to chapter 2 on free body dia-
grams. Note that in pure rolling contact, the contact force does no
work because the material point of contact has no velocity. However,
when there is sliding mechanical energy is dissipated. The rate of loss
of kinetic and potential energy is

Rate of frictional dissipation D Pdiss D Ffriction � vslip (14.38)

where vslip is the relative velocity of the contacting slipping points. If
either the friction force (ideal lubrication) or sliding velocity (no slip)
is zero there is no dissipation. Work-energy relations and impulse-
momentum relations are useful to solve some problems both with and
without slip.

As for various problems throughout the text, it is often a savings of
calculation to use angular momentum balance (or moment balance in
statics) relative to a point where there are unknown reaction forces. For
rolling and slipping problems this often means making use of contact
points.

Example: Pure rolling on level ground
A ball or wheel rolling on level ground, with no air friction etc, rolls at constant

speed (see F ig: 14:45). This is most directly deduced from angular momentum

Figure 14.45: A ball rolls or slides on
level ground.
Filename:tfigure-levelrolling
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Figure 14.46: A ball rolls or slides down
a slope.
Filename:tfigure-sloperolling

balance about the contact point C:

*
MC D P*

HC ) *
rG=C ��mg O| D *

rG=C �m*
aG C P!I cm

zz
Ok

) *
0 D R O| � .�m P!RO{/C P!I cm

zz
Ok

dotting with Ok ) P! D 0 ) ! D constant:

Because for rolling vG D �!R we thus have that vG is a constant. [The result
can also be obtained by combining angular momentum balance about the center-
of-mass with linear momentum balance.]

Finally, linear momentum balance gives the reaction force at C to be
*
F D

mg O| . So,

assuming point contact, there is no rolling resistance.

Example: Bowling ball with initial sliding
A bowling ball is released with an initial speed of v0 and no rotation rate. What

is it’s subsequent motion? To start with, the motion is incompatible with rolling,
the bottom of the ball is sliding to the right. So there is a frictional force which
opposes motion and F D ��N (see F ig: 14:45). Linear and angular momentum
balance give:

LMB: ) f�F O{ CN O| �mg O| D maO{g
fg � O| ) N D mg

fg � O{ ) a D ��g
AMB=G: ) �R�mg D I cm

zz P!

) v D v0 ��gt and ! D ��Rmgt=I cm
zz

Thus the forward speed of the ball decreases linearly with time while the counter-
clockwise angular velocity decreases linearly with time.

This solution is only appropriate so long as there is rightward slip, vG >
�!R. Just like for a sliding block, there is no impetus for reversal, and the block
switches to pure rolling when

v D �!R) v0 ��gt D � ���Rmgt=I cm
zz

�
R) t D v0

�g
�
1C mR2

Icm
zz

� :
Note that the energy lost during sliding is less than �mg times the distance the
center of the ball moves during slip.

Example: Ball rolling down hill.
Assuming rolling we can find the acceleration of a ball as it rolls downhill (see

F ig: 14:46). We start out with the kinematic observations that *
aG D aG

O�,
that R! D �vG and that R P! D �aG. Angular momentum balance about the
stationary point on the ground instantaneously coinciding with the contact point
gives

AMB=C ) *
rG=C � .�mg O|/ D *

rG=C �m*
aG C I cm

zz P! Okn
�R sin�mg Ok D .R On/� .maG

O�/C I cm
zz P! Ok

o
fg � Ok ) �Rmg sin� D �RmaG � I cm

zz aG=R

) aG D g sin�
1CIcm

zz =.mR
2/
:

Which is less than the acceleration of a block sliding on a ramp without friction:
a D g sin� (unless the mass of the rolling ball is concentrated at the center with
I cm
zz D 0). Note that a very small ball rolls just as slowly. In the limit as the

ball radius goes to zero the behavior does not approach that of a point mass that
slides; the rolling remains significant.
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Example: Ball rolling down hill: energy approach
We can find the acceleration of the rolling ball using power balance or conserva-

tion of energy. For example

0 D d
dt
ET ) 0 D PEK C PEP

D d
dt

�
mv2=2C I cm

zz !
2=2

�C d
dt
.mgy/

D mv PvC I cm
zz ! P! Cmg Py

D mv PvC I cm
zz .v=R/ Pv=R �mg.sin�/v

assuming v ¤ 0) 0 D .mC I cm
zz =R

2/ Pv �mg sin�

) Pv D g sin�
1CIcm

zz =.mR
2/

as before.

Example: Does the ball slide?
How big is the coefficient of friction � needed to prevent slip for a ball rolling

down a hill? Use linear momentum balance to find the normal and frictional
components of the contact force, using the rolling example above.

AMB (
*
Ftot D m*

aG) )
n
N OnCF O��mg O| D maG

O�
o

fg � On ) N D mg cos�

fg � O� ) F Cmg sin� D m g sin�
1CIcm

zz =.mR
2/

F D �mg sin�
1CmR2=Icm

zz

Critical condition: ) � D jF j
N

D tan�
1CmR2=Icm

zz

If I cm
zz is very small (the mass concentrated near the center of the ball) then small

friction is needed to prevent rolling. For a uniform rubber ball on pavement
(with � � 1 and I cm

zz � 2mR2=5) the steepest slope for rolling without slip

is a steep � D tan�1.7=2/ � 74
�

. A metal hoop on the other hand (with
� � :3 and I cm

zz � mR2) will only roll without slip for slopes less than about

� D tan�1.:6/ � 31
�

.

Example: Oscillations of a ball in a bowl.
A round ball can oscillate back and forth in the bottom of a circular cross section
bowl or pipe (see F ig: 14:47). Similarly, a cylindrical object can roll inside a
pipe. What is the period of oscillation? Start with angular momentum balance
about the contact point

*
rG=C � .�mg O|/ D *

rG=C �m*
aG C I cm

zz P! Ok
rmg sin � Ok D �r Oer �

�
m
�
.R � r/ R� Oe� � .R � r/ P�2 Oer

��
CI cm

zz P! Ok:

Evaluating the cross products (using that Oer � Oet D Ok) and using the kinematics

from the previous section (that .R � r/ P� D �r!) and dotting the left and right

sides with Ok gives

.R � r/ R� D g sin �

1C I cm
zz =mr2

;

the tangential acceleration is the same as would have been predicted by putting
the ball on a constant slope of �� . Using the small angle approximation that
sin � D � the equation can be rearranged as a standard harmonic oscillator
equation

R� C
�

g

.R � r/.1C I cm
zz =mr2/

�
�;

If all the ball’s mass were concentrated in its middle (so I cm
zz D 0) this is naturally

the same as for a simple pendulum with length R� r . For any parameter values
the period of small oscillation is

T D 2�

s
.R � r/.1C I cm

zz =mr2/

g
:

Figure 14.47: A ball rolls in a round
cross-section bowl.
Filename:tfigure-ballinbowl
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For a marble, ball bearing, or AAA battery in a sideways glass (with R � r �
2 cm D :04m, I cm

zz =mr
2 � 2=5 and g � 10m=s2) this gives about one oscillation

every half second. See page ?? for the energy approach to this problem.
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SAMPLE 14.16 A rolling wheel with non-negligible mass. Con-
sider the wheel with mass m shown in figure 14.48. The wheel rolls
to the left without slipping. The free-body diagram of the wheel is
shown here again. Write the equation of motion of the wheel.

Solution We can write the equation of motion of the wheel in terms of either the
center-of-mass position x or the angular displacement of the wheel � . Since in pure
rolling, these two variables share a simple relationship (x D R�), we can easily get
the equation of motion in terms of x if we have the equation in terms of � and vice

versa. Let *
! D ! Ok and P*! D P! Ok.

Since all the forces are shown in the free body diagram, we can readily write
the angular momentum balance for the wheel. We choose the point of contact C as
our reference point for the angular momentum balance (because the gravity force,
�mg O| , the friction force �Ff riction O{, and the normal reaction of the ground N O| ,
all pass through the contact point C and therefore, produce no moment about this
point). We have

X
*
MC D P*

H =C

where

X
*
MC D

R O|� �� �
*
r cm=C �.F O�/

D R O| � F.� cos� O{ � sin� O|/
D FR cos� Ok

and P*
H =C D *

rcm=C �m*
a cm C I cm

zz
P*!

D R O| �m Rx����
� P!R

O{ C I cm
zz P! Ok

D m P!R2 OkC I cm
zz P! Ok

D .I cm
zz CmR2/ P! Ok:

Thus,
FR cos� Ok D .I cm

zz CmR2/ P! Ok
) P! � R� D FR cos�

I cm
zz CmR2

which is the equation of motion we are looking for. Note that we can easily substi-
tute R� D �Rx=R in the equation of motion above to get the equation of motion in
terms of the center-of-mass displacement x as

Rx D � FR2 cos�

I cm
zz CmR2

:

R� D FR cos�
I cm
zz CmR2

Comments: We could have, of course, used linear momentum balance with angular

momentum balance about the center-of-mass to derive the equation of motion.

Note, however, that the linear momentum balance will essentially give two scalar

equations in the x and y directions involving all forces shown in the free-body

diagram . The angular momentum balance , on the other hand, gets rid of some of

them. Depending on which forces are known, we may or may not need to use all

mg

cm

N

Ffriction

FR

C
ı̂

̂

φλ̂

Figure 14.48: FBD of a wheel with mass
m. Force F is applied by the axle.
Filename:tfigure2-wheel-mass-lhs
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the three scalar equations. In the final equation of motion, we must have only one

unknown.
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SAMPLE 14.17 Energy and power of a rolling wheel. A wheel
of diameter 2 ft and mass 20 lbm rolls without slipping on a horizontal
surface. The kinetic energy of the wheel is 1700 ft� lbf. Assume the
wheel to be a thin, uniform disk.

1. Find the rate of rotation of the wheel.

2. Find the average power required to bring the wheel to a complete
stop in 5 s.

Solution

1. Let ! be the rate of rotation of the wheel. Since the wheel rotates without
slip, its center-of-mass moves with speed vcm D !r . The wheel has both
translational and rotational kinetic energy. The total kinetic energy is

EK D 1

2
mv2cm C 1

2
I cm!2

D 1

2
m!2r2 C 1

2
I cm!2

D 1

2
.mr2 C I cm����

1
2mr2

/!2

D 3

4
mr2!2

) !2 D 4EK

3mr2

D 4 � 1700 ft� lbf

3 � 20 lbm�1 ft2

D 4 � 1700 � 32:2 6lbm�6 ft= s2

3 � 20 6lbm�6 ft
D 3649:33

1

s2

) ! D 60:4 rad=s:

! D 60:4 rad=s

Note: This rotational speed, by the way, is extremely high. At this speed
the center-of-mass moves at 60.4 ft=s!

2. Power is the rate of work done on a body or the rate of change of kinetic
energy. Here we are given the initial kinetic energy, the final kinetic energy
(zero) and the time to achieve the final state. Therefore, the average power
is,

P D EK1 �EK2

�t

D 1700 ft� lbf � 0
5 s

D 340 ft� lbf= s

D 340 ft� lbf= s � 1 hp

550 ft� lbf= s

D 0:62 hp

P D 0:62 hp

cm

r

Figure 14.49:
Filename:sfig7-4-1a
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Figure 14.50: FBD of a rolling wheel.
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SAMPLE 14.18 Equation of motion of a rolling wheel from en-
ergy balance. Consider the wheel with mass m from figure 14.50.
The free-body diagram of the wheel is shown here again. Derive the
equation of motion of the wheel using energy balance.

Solution From energy balance, we have

P D PEK

where
P D

X
*
F i � *v i

D �Ffriction O{ �

*
0����

*
vC CN O| �

*
0����

*
vC �mg O| �

v O{����
*
v cm CF O� �

v O{����
*
v cm

D �mgv. O{ � O|����
0

/C Fv. O� � O{����
� cos�

/

D �Fv cos�

and

PEK D d

dt
.
1

2
m Px2 C 1

2
I cm
zz

. Px=R/2����
P!2 /

D 1

2

d

dt
�.mC I cm

zz =R
2/ Px2�

D .mC I cm
zz =R

2/ Px Rx:
Thus,

�Fv cos� D .mC I cm
zz =R

2/ Px Rx
or � F 6 Px cos� D .mC I cm

zz =R
2/6 Px Rx

) Rx D � F cos�

mC I cm
zz =R

2
:

We can also write the equation of motion in terms of � by replacing Rx with R�R
giving,

R� D FR cos�

mC I cm
zz =R

2
:

Rx D � F cos�
mCI cm

zz =R
2

Comments: In the equations above (for calculating P ), we have set *
vC D *

0

because in pure rolling, the instantaneous velocity of the contact point is zero.

Note that the force due to gravity is normal to the direction of the velocity of the

center-of-mass. So, the only power supplied to the wheel is due to the force F O�
acting at the center-of-mass.
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SAMPLE 14.19 Equation of motion of a rolling disk on an in-
cline. A uniform circular disk of mass m D 1 kg and radius R D 0:4m
rolls down an inclined shown in the figure. Write the equation of mo-
tion of the disk assuming pure rolling, and find the distance travelled
by the center-of-mass in 2 s.

Solution The free-body diagram of the disk is shown in F ig: 14:52. In addition to
the base unit vectors O{ and O| , let us use unit vectors O� and On along the plane and
perpendicular to the plane, respectively, to express various vectors. We can write the
equation of motion using linear momentum balance or angular momentum balance.
However, note that if we use linear momentum balance we have two unknown forces
in the equation. On the other hand, if we use angular momentum balance about
the contact point C, these forces do not show up in the equation. So, let us use
angular momentum balance about point C:X

*
MC D P*

H =C

where X
*
MC D *

rO=C �m*
g D R On � .�mg O|/

D �Rmg sin� Ok
and

P*
H =C D �I cm

zz P! OkC
R On����

*
rO=C �m

R P! O�����
*
a cm

D �I cm
zz P! OkCmR2 P!. On � O�/

D �.I cm
zz CmR2/ P! Ok:

Thus,
�Rmg sin� Ok D �.I cm

zz CmR2/ P! Ok
) P! D g sin�

R�1C I cm
zz =.mR

2/�
:

P! D g sin�
R�1CI cm

zz =.mR
2/�

Note that in the above equation of motion, the right hand side is constant. So,
we can solve the equation for ! and � by simply integrating this equation and
substituting the initial conditions !.t D 0/ D 0 and �.t D 0/ D 0. Let us write the
equation of motion as P! D � where � D g sin�=R.1C I cm

zz =mR
2/. Then,

! � P� D �t C C1

� D 1

2
�t2 C C1t C C2:

Substituting the given initial conditions P�.0/ D 0 and �.0/ D 0, we get C1 D 0 and
C2 D 0, which implies that � D 1

2�t
2. Now, in pure rolling, x D R� . Therefore,

x.t/ D R�.t/ D 1

2
�t2 D 6R � 1

2

g sin�

6R.1C I cm
zz =mR

2/
t2

D 1

2

g sin�

1C
1
2mR

2

mR2

t2 D 1

3
.g sin�/t2

x.2 s/ D 1

3
� 9:8m=s2 � sin.30�/ � .2 s/2 D 6:53m:

x.2 s/ D 6:53m

C

ı̂

̂

Figure 14.51:
Filename:sfig9-rolling-incline1
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SAMPLE 14.20 Using Work and energy in pure rolling. Consider
the disk of Sample 14.19 rolling down the incline again. Suppose the
disk starts rolling from rest. Find the speed of the center-of-mass when
the disk is 2 m down the inclined plane.

Solution We are given that the disk rolls down, starting with zero initial velocity.
We are to find the speed of the center-of-mass after it has travelled 2 malong the
incline. We can, of course, solve this problem using equation of motion, by first
solving for the time t the disk takes to travel the given distance and then evaluating
the expression for speed !.t/ or x.t/ at that t . However, it is usually easier to
use work energy principle whenever positions are specified at two instants, speed is
specified at one of those instants, and speed is to be found at the other instant. This
is because we can, presumably, compute the work done on the system in travelling
the specified distance and relate it to the change in kinetic energy of the system
between the two instants. In the problem given here, let !1 and !2 be the initial
and final (after rolling down by d D 2m) angular speeds of the disk, respectively.
We know that in rolling, the kinetic energy is given by

EK D 1

2
m

.!R/2����
v2cm C1

2
I cm
zz !

2 D 1

2
.mR2 C I cm

zz /!
2:

Therefore,

�EK D EK2 �EK1 D
1

2
.mR2 C I cm

zz /.!
2
2 � !21 /: (14.39)

Now, let us calculate the work done by all the forces acting on the disk during the
displacement of he mass-center by d along the plane. Note that in ideal rolling, the
contact forces do no work. Therefore, the work done on the disk is only due to the
gravitational force:

W D .�mg O|/ � .d O�/ D �mgd.
� sin�����
O| � O� / D mgd sin�: (14.40)

From work-energy principle (integral form of power balance, P D PEK ), we know
that W D �EK. Therefore, from eqn: .14:39/ and eqn: .14:40/, we get

mgd sin� D 1

2
.mR2 C I cm

zz /.!
2
2 � !21 /

) !22 D !21 C
2mgd sin�

mR2 C I cm
zz

D !21 C
2gd sin�

R2
�
1C I cm

zz

mR2

�
D !21 C

4gd sin�

3R2
:

Substituting the values of g; d; �;R, etc., and setting !1 D 0, we get

!22 D 4 � .9:8m=s2/ � .2m/ � .sin.30�/
3 � .0:4m/2

D 81:67=s2

) !2 D 9:04 rad=s:

The corresponding speed of the center-of-mass is

vcm D !2R D 9:04 rad=s � 0:4m D 3:61m=s:

vcm D 3:61m=s
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SAMPLE 14.21 Impulse and momentum calculations in pure
rolling. Consider the disk of Sample 14.19 rolling down the incline
again. Find an expression for the rolling speed (!) of the disk after a
finite time �t , given the initial rolling speed !1.

Solution Once again, this problem can be solved by integrating the equation of
motion (as done in Sample 14.19). However, we will solve this problem here using
impulse-momentum relationship. Note that we need the speed of the disk !2, after
a finite time �t , given the initial speed !1. Since the forces acting on the disk do not
change during this time (assuming pure rolling), it is easy to calculate impulse and
then relate it to the change in the momenta of the disk between the two instants.

Now, from the linear impulse momentum relationship,
P *
F ��t D *

L2�*
L1, we have

.�F O�CN O{ �mg O|/�t D m.v2 � v1/O�: (14.41)

Dotting eqn: .14:41/ with O� gives

.�F �mg. O| � O�����
� sin�

//�t D m.v2 � v1/

.�F Cmg sin�/�t D mR.!2 � !1/: (14.42)

Similarly, the angular impulse-momentum relationship about the mass-center,
*
MO�t D .

*
H =O/2 � .

*
H =O/1, gives

.�FR Ok/�t D �I cm
zz .!2 � !1/ Ok

) FR�t D I cm
zz .!2 � !1/: (14.43)

Note that the other forces (N and mg) do not produce any moment about the
mass-center as they pass through this point. We can now eliminate the unknown
force F from eqn: .14:42/ and eqn: .14:43/ by multiplying eqn: .14:42/ with R and
adding to eqn: .14:43/:

mgR sin��t D .I cm
zz CmR2/.!2 � !1/

or g sin��t D R

�
1C I cm

zz

mR2

�
.!2 � !1/

) !2 D !1 C
g sin�

R
�
1C I cm

zz

mR2

��t:

!2 D !1 C g sin�

R
�
1C Icm

zz

mR2

��t
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Figure 14.55:
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Figure 14.57: A ladder, modeled as a
uniform rod of mass m and length `,
falls from a rest position at � D �o .<
�=2/ such that its ends slide along
frictionless vertical and horizontal sur-
faces.
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SAMPLE 14.22 Falling ladder. A ladder AB, modeled as a uniform
rigid rod of mass m and length `, rests against frictionless horizontal
and vertical surfaces. The ladder is released from rest at � D �o .�o <

�=2/. Assume the motion to be planar (in the vertical plane).
1. As the ladder falls, what is the path of the center-of-mass of the

ladder?

2. Find the equation of motion (e.g., a differential equation in terms
of � and its time derivatives) for the ladder.

3. How does the angular speed ! .D P�/ depend on �?

Solution Since the ladder is modeled by a uniform rod AB, its center-of-mass is
at G, half way between the two ends. As the ladder slides down, the end A moves
down along the vertical wall and the end B moves out along the floor. Note that
it is a single degree of freedom system as angle � (a single variable) is sufficient to
determine the position of every point on the ladder at any instant of time.

1. Path of the center-of-mass: Let the origin of our x-y coordinate system
be the intersection of the two surfaces on which the ends of the ladder slide
(see Fig. 14.58). The position vector of the center-of-mass G may be written
as

*
r G D *

rB C *
r G=B

D ` cos � O{ C `

2
.� cos � O{ C sin � O|/

D `

2
.cos � O{ C sin � O|/: (14.44)

Thus the coordinates of the center-of-mass are

xG D `

2
cos � and yG D `

2
sin �;

from which we get

x2G C y2G D `2

4

which is the equation of a circle of radius `
2 . Therefore, the center-of-mass

of the ladder follows a circular path of radius `
2 centered at the origin. Of

course, the center-of-mass traverses only that part of the circle which lies
between its initial position at � D �o and the final position at � D 0.

2. Equation of motion: The free-body diagram of the ladder is shown in
Fig. 14.59. Since there is no friction, the only forces acting at the end points
A and B are the normal reactions from the contacting surfaces. Now, writing

the the linear momentum balance (
P *
F D m

*
a ) for the ladder we get

N1 O{ C .N2 �mg/ O| D m
*
aG D m R*r G :

Differentiating eqn. (14.44) twice we get R*r G as

R*r G D `

2
�.� R� sin � � P�2 cos �/O{ C . R� cos � � P�2 sin �/ O|�:

Substituting this expression in the linear momentum balance equation above
and dotting both sides of the equation by O{ and then by O| we get

N1 D �1
2
m`. R� sin � C P�2 cos �/

N2 D 1

2
m`. R� cos � � P�2 sin �/Cmg:
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Next, we write the angular momentum balance for the ladder about its center-

of-mass,
P *
M =G D P*

H =G , where

X
*
M =G D

�
�N1

`

2
sin � CN2

`

2
cos �

�
Ok

D 1

2
m`. R� sin � C P�2 cos �/

`

2
sin � Ok

C
�
1

2
m`. R� cos � � P�2 sin �/Cmg

�
`

2
cos � Ok

D
�
1

4
m`2 R� C 1

2
mg` cos �

�
Ok

and
P*
H =G D Izz=G

P*! D 1

12
m`2 R�.� Ok/;

where P*! D R�.� Ok/ because � is measured positive in the clockwise direction

.� Ok/. Now, equating the two quantities
P *
M =G D P*

H =G and dotting both

sides with Ok we get

1

4
6m`2 R� C 1

2
6mg` cos � D � 1

12
6m`2 R�

or .
1

12
C 1

4
/`2 R� D �1

2
g` cos �

or R� D �3g
2`

cos � (14.45)

which is the required equation of motion. Unfortunately, it is a nonlinear
equation which does not have a nice closed form solution for �.t/.

3. Angular Speed of the ladder: To solve for the angular speed ! .D P�/ as a
function of � we need to express eqn. (14.45) in terms of !; � , and derivatives
of ! with respect to � . Now,

R� D P! D d!

dt
D d!

d�
� d�
dt

D !
d!

d�
:

Substituting in eqn. (14.45) and integrating both sides from the initial rest
position to an arbitrary position � we getZ !

0
! d! D �

Z �

�0

3g

2`
cos � d�

) 1

2
!2 D �3g

2`
.sin � � sin �0/

) ! D �
r
3g

`
.sin �0 � sin �/:

Since end B is sliding to the right, � is decreasing; hence it is the negative
sign in front of the square root which gives the correct answer, i:e:;

*
! D P�.� Ok/ D �

r
3g

`
.sin �0 � sin �/ Ok:
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SAMPLE 14.23 The falling ladder again. Consider the falling ladder
of Sample 14.10 again. The mass of the ladder is m and the length is
`. The ladder is released from rest at � D 80

�
.

1. At the instant when � D 45
�
, find the speed of the center-of-mass

of the ladder using energy.

2. Derive the equation of motion of the ladder using work-energy
balance.

Solution

1. Since there is no friction, there is no loss of energy between the two states:
�0 D 80

�
and �f D 45

�
. The only external forces on the ladder are

N1; N2; and mg as shown in the free body diagram. Since the displace-
ments of points A and B are perpendicular to the normal reactions of the
walls, N1 and N2, respectively, no work is done by these forces on the ladder.
The only force that does work is the force due to gravity. But this force is
conservative. Therefore, the conservation of energy holds between any two
states of the ladder during its fall.

Let E1 and E2 be the total energy of the ladder at �0 and �f , respectively.
Then

E1 D E2 (conservation of energy).

Now E1 D EK1����
K:E:

C EP1����
P:E:

D 0Cmgh1

D mg
`

2
sin �0

and E2 D EK2
CEP2 D

1

2
mv2G C 1

2
IG
zz!

2� �� �
EK2

Cmgh2:

Equating E1 and E2 we get

6mg `6 2 .sin �0 � sin �f / D 1

6 2 .6mv
2
G C 1

12
6m`2� �� �
IG
zz

!2/

or g`.sin �0 � sin �f / D v2G C 1

12
`2!2: (14.46)

Clearly, we cannot find vG from this equation alone because the equation
contains another unknown, !. So we need to find another equation which
relates vG and !. To find this equation we turn to kinematics. Note that

*
r G D `

2
.cos � O{ C sin � O|/

) *
vG D P*r G D `

2
.� sin � � P� O{ C cos � � P� O|/

) vG D j*vG j D
s
`2

4
.cos2 � C sin2 �/ P�2

D `

2
P� D `

2
!

) ! D 2vG

`
:
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Substituting the expression for ! in eqn: .14:46/ we get

g`.sin �0 � sin �f / D v2G C 1

12
6̀ 2�4v

2
G

6̀ 2

D 4

3
v2G

) vG D
r
3g`

4
.sin �0 � sin �f /

D 0:46
p
g`:

vG D 0:46
p
g`

2. Equation of motion: Since the ladder is a single degree of freedom system,
we can use the power equation to derive the equation of motion:

P D PEK :

For the ladder, the only force that does work is mg. This force acts on the
center-of-mass G. Therefore,

P D *
F �*v D �mg O| � *vG

D �mg O| �
�
`

2
.� sin � O{ C cos � O|/ P�

�

D �mg `
2
P� cos �:

Now, the rate of change of kinetic energy is

PEK D d

dt

�
1

2
mv2G C 1

2
IG
zz!

2

�

D d

dt

 
1

2
m
`2!2

4
C 1

2

m`2

12
!2

!

D m`2

4
! P! C m`2

12
! P!

D m`2

3
! P! � m`2

3
P� R� (since ! D P� and P! D R�):

Now equating P and PEK we get

6m`2
3
6 P� R� D �6mg `

2
6 P� cos �

) R� D �3g
2`

cos �

which is the same expression as obtained in Sample 14.22 (b).

R� D �3g
2`

cos �

Note: To do this problem we have assumed that the upper end of the ladder stays

in contact with the wall as it slides down. One might wonder if this is a consistent

assumption. Does this assumption correspond to the non-physical assumption that

the wall is capable of pulling on the ladder? Or in other words, if a real ladder was

sliding against a slippery wall and floor would it lose contact? The answer is yes.

One way of finding when contact would be lost is to calculate the normal reaction

N1 and finding out at what value of � it passes through zero. It turns out that N1

is zero at about � D 41�.
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SAMPLE 14.24 Rolling on an inclined plane. A wheel is made up
of three uniform disks— the center disk of mass m D 1 kg, radius r D
10 cm and two identical outer disks of mass M D 2 kg each and radius
R. The wheel rolls down an inclined wedge without slipping. The angle
of inclination of the wedge with horizontal is � D 30

�
. The radius of

the bigger disks is to be selected such that the linear acceleration of
the wheel center does not exceed 0.2g. Find the radius R of the bigger
disks.

Solution Since a bound is prescribed on the linear acceleration of the wheel and the
radius of the bigger disks is to be selected to satisfy this bound, we need to find an
expression for the acceleration of the wheel (hopefully) in terms of the radius R.

The free-body diagram of the wheel is shown in Fig. 14.64. In addition to the
weight .mC2M/g of the wheel and the normal reaction N of the wedge surface there
is an unknown force of friction Ff acting on the wheel at point C. This friction force
is necessary for the condition of rolling motion. You must realize, however, that
Ff ¤ �N because there is neither slipping nor a condition of impending slipping.
Thus the magnitude of Ff is not known yet.

Let the acceleration of the center-of-mass of the wheel be

*
aG D aG O�

and the angular acceleration of the wheel be

P*! D � P! Ok:

We assumed P*! to be in the negative Ok direction. But, if this assumption is wrong,
we will get a negative value for P!.

Now we write the equation of linear momentum balance for the wheel:X
*
F D mtotal

*
a cm

�.mC 2M/g O| CN On � Ff O� D .mC 2M/aG O�

This 2-D vector equation gives (at the most) two independent scalar equations. But
we have three unknowns: N; Ff ; and aG . Thus we do not have enough equations to
solve for the unknowns including the quantity of interest aG . So, we now write the
equation of angular momentum balance for the wheel about the point of contact
C (using *

r G=C D r On):

X
*
MC D P*

H =C

where
*
MC D *

r G=C � .mC 2M/g.� O|/
D r On � .mC 2M/g.� O|/
D �.mC 2M/gr sin � Ok (see Fig. 14.65)

and
P*
H =C D IGzz

P*! C *
r G=C �mtotal

*
aG

D IGzz .� P! Ok/ �mtotal P!r2 Ok
D .IGzz Cmtotalr

2/.� P! Ok/

D
2
4. 1
2
mr2 C 2 � 1

2
MR2/C

mtotal� �� �
.mC 2M/ r2

3
5 .� P! Ok/

D �
�
3

2
mr2 CM.R2 C 2r2/

�
P! Ok:
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Thus,

�.mC 2M/gr sin � Ok D �
�
3

2
mr2 CM.R2 C 2r2/

�
P! Ok

) P! D .mC 2M/gr sin �
3
2mr

2 CM.R2 C 2r2/
: (14.47)

Now we need to relate P! to aG . From the kinematics of rolling,

aG D P!r:

Therefore, from Eqn. (14.47) we get

aG D .mC 2M/gr2 sin �
3
2mr

2 CM.R2 C 2r2/
:

Now we can solve for R in terms of aG :

3

2
mr2 CM.R2 C 2r2/ D .mC 2M/gr2 sin �

aG

) M.R2 C 2r2/ D .mC 2M/g

aG
r2 sin � � 3

2
mr2

) R2 D .mC 2M/g

MaG
r2 sin � � 3m

2M
r2 � 2r2:

Since we require aG � 0:2g we get

R2 �
�
.mC 2M/g

M � 0:2g sin � � 3m

2M
� 2

�
r2

�
�
5 kg

0:4 kg
� 1
2
� 3 kg

4 kg
� 2

�
.0:1m/2

� 0:035m2

) R � 0:187m:

Thus the outer disks of radius 20 cm will do the job.

R � 18:7 cm
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Figure 14.66:
Filename:sfig9-rollandslide-ball1

mg

C

F
N ı̂

̂

v

ω

=μΝ

Figure 14.67: Free-body diagram of the
ball during sliding.
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SAMPLE 14.25 Which one starts rolling first — a marble or
a bowling ball? A marble and a bowling ball, made of the same
material, are launched on a horizontal platform with the same initial
velocity, say v0. The initial velocity is large enough so that both start
out sliding. Towards the end of their motion, both have pure rolling
motion. If the radius of the bowling ball is 16 times that of the marble,
find the instant, for each ball, when the sliding motion changes to
rolling motion.

Solution Let us consider one ball, say the bowling ball, first. Let the radius of the
ball be r and mass m. The ball starts with center-of-mass velocity *

v o D v0 O{. The
ball starts out sliding. During the sliding motion, the force of friction acting on the
ball must equal �N (see the FBD). The friction force creates a torque about the
mass-center which, in turn, starts the rolling motion of the ball. However, rolling
and sliding coexist for a while, till the speed of the mass-center slows down enough
to satisfy the pure rolling condition, v D !r . Let the instant of transition from the
mixed motion to pure rolling be t�. From linear momentum balance , we have

m Pv O{ D ��N O{ C .N �mg/ O| (14.48)

eqn: .14:48/ � O| ) N D mg

eqn: .14:48/ � O{ ) m Pv D ��N D ��mg
) Pv D ��g
) v D v0 � �gt: (14.49)

Similarly, from angular momentum balance about the mass-center, we get

�I cm
zz P! Ok D ��Nr Ok D ��mgr Ok
) P! D �mgr

I cm
zz

) ! D !0����
0

C�mgr
I cm
zz

t: (14.50)

At the instant of transition from mixed rolling and sliding to pure rolling, i:e:; at
t D t�, v D !r . Therefore, from eqn: .14:49/ and eqn: .14:50/, we get

v0 � �gt� D �mgr2

I cm
zz

t�

) v0 D �gt�.1C mr2

I cm
zz

/

) t� D v0

�g.1C mr2

I cm
zz
/
:

Now, for a sphere, I cm
zz D 2

5mr
2. Therefore,

t� D v0

�g.1C mr2
2
5mr2

/
D 2v0

7�g
:

Note that the expression for t� is independent of mass and radius of the ball!
Therefore, the bowling ball and the marble are going to change their mixed motion
to pure rolling at exactly the same instant. This is not an intuitive result.

t� D 2v0
7�g for both.
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SAMPLE 14.26 Transition from a mix of sliding and rolling to
pure rolling, using impulse-momentum. Consider the problem
in Sample 14.25 again: A ball of radius r D 10 cm and mass m D 1 kg
is launched horizontally with initial velocity v0 D 5m=s on a surface
with coefficient of friction � D 0:12. The ball starts sliding, rolls and
slides simultaneously for a while, and then rolls without sliding. Find
the time it takes to start pure rolling.

Solution Let us denote the time of transition from mixed motion (rolling and sliding)
to pure rolling by t�. At t D 0, we know that vcm D v0 D 5m=s, and !0 D 0. We
also know that at t D t�, vcm D vt� D !t�r , where r is the radius of the ball. We do
not know t� and vt� . However, we are considering a finite time event (during t�) and
the forces acting on the ball during this duration are known. Recall that impulse
momentum equations involve the net force on the body, the time of impulse, and
momenta of the body at the two instants. Momenta calculations involve velocities.
Therefore, we should be able to use impulse-momentum equations here and find the
desired unknowns. From linear impulse-momentum, we have�X

*
F
�
t� D mvt� O{ �mv0 O{

.��N O{ C .N �mg/ O|/ t� D m.vt� � v0/O{:
Dotting the above equation with O| and O{, respectively, we get

N D mg

�� N����
mg

t� D m.vt� � v0/

) � �gt� D vt� � v0: (14.51)

Similarly, from angular impulse-momentum relation about the mass-center, we getX
*
Mcmt

� D .
*
H cm/t� � .

*
H cm/0

.��Nr Ok/t� D .I cm
zz !t� � I cm

zz !0����
0

/.� Ok/

or � �mgrt� D �I cm
zz !t�

) !t� D �mgrt�=I cm
zz

) vt� � !t�r D �mgr2t�=I cm
zz :

Substituting this expression for vt� in eqn: .14:51/, we get

��gt� D �mgr2t�=I cm
zz � v0

) t� D v0

�g.1C mr2

I cm
zz
/

which is, of course, the same expression we obtained for t� in Sample 14.25. Again,
noting that I cm

zz D 2
5mr

2 for a sphere, we calculate the time of transition as

t� D 2v0

7�g
D 2 � .5m=s/

7 � .0:2/ � .9:8m=s2/
D 0:73 s:

t� D 0:73 s
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ω

Figure 14.68:
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Figure 14.69: Free-body diagram of the
ball during sliding.
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Figure 14.70: Two bodies collide at point
C. The only non-negligible collision im-

pulse is
*
P acting on body 2 (and �*

P

on body 1) at point C. The material
points on the contacting bodies are C1
and C2. The outward normal to body
1 at C1 is On.
Filename:tfigure-2Dcollision

14.5 Rigid object collision mechanics

Now we extend the concepts from 2D particle collisions (section 11.2
starting on page 612).

2D collisions

For collisions between rigid bodies with more general motions before
and after the collisions we depend on the three ideas from the start of
this section, namely that

I. Collision forces are big,

II. Collisions are quick, and

III. The laws of mechanics apply during the collision.

There are two extra assumptions that are needed in simple analysis:

IV. Collision forces are few. For a given rigid body there is one, or at
most two non-negligible collision forces. This is the real import of
idea (I) above. Because collision forces are big most other forces
can be neglected.

V. The collision force(s) act at a well defined point which does not
move during the collision.

Based on these assumptions one then uses linear and angular momen-
tum balance in their time-integrated form.

Example: Two bodies in space

Two bodies collide at point C. The impulse acting on body 2 is
*
P D R *

F coll dt .
If the mass and inertia properties of both bodies is known, as are the velocities
and rotation rates before the collision we have the following linear and angular
momentum balance equations for the two bodies:

�*
P D m1

�
*
v
C
G1 � *

v
�
G1

�
*
P D m2

�
*
v
C
G2 � *

v
�
G2

�
*
rC=G1 � .�*

P/ D I cm
zz

1
�
!
C
1
� !�

1

� Ok
*
rC=G2 � *

P D I cm
zz

2
�
!
C
2
� !�

2

� Ok:
(14.52)

These make up 6 scalar equations (2 for each momentum equation, 1 for each

angular momentum equation). There are 8 scalar unknowns: *
v
C
G1 (2), *

v
C
G2

(2), !C
1

(1), !C
2

(1), and
*
P (2). Thus the motion after the collision cannot be

determined.
[Note that linear and angular momentum balance for the system would give

equations which could be obtained by adding and subtracting combinations of
the equations above. So adding system momentum balance equations does not
add information (ie, adds linearly dependent equations).]

So, as for 1-D collisions, momentum balance is not enough to deter-
mine the outcome of the collision. Eqns. 14.52 aren’t enough. A thou-
sand different models and assumptions could be added to make the sys-
tem solvable. But there are only two cases that are non-controversial
and also relatively simple: 1) sticking collisions, and 2) frictionless
collisions.
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Sticking collisions

A ‘perfectly-plastic’ sticking collision is one where the relative velocities
of the two contacting points are assumed to go suddenly to zero. That
is

*
v
C
C1 D *

v
C
C2

Writing *
v
C
C1 D *

v
C
G1 C .!C1 Ok/ � *

rC=G1 and similarly for *
vC2 thus adds

a vector equation (2 scalar equations) to the equation set 14.52. This
gives 8 equations in 8 unknowns.

A little cleverness can reduce the problem to one of solving only 4
equations in 4 unknowns. Linear momentum balance for the system,
angular momentum balance for the system and angular momentum
balance for object 2 make up 4 scalar equations. None of these equa-
tions includes the impulse

*

P . Because the system moves as if hinged
at C1 after the collision, the state of motion after the system is fully
characterized by *

v
C
G1, !C1 , and !C2 . Thus we have 4 equations in 4

unknowns.
Example: One body is hugely massive: collision with an immovable
object
If body 2, say, is huge compared to body 1 then it can be taken to be immovable

and collision problems can be solved by only considering body 1 (see F ig: 14:71).
In the case of a sticking collision the full state of the system after the collision is

determined by !C
1

. This can be found from the single scalar equation obtained
from angular momentum balance about the collision point.

*
H

�
A D *

H
C
A

*
rG=A �m*

v
�
G C I cm

zz !
� Ok D *

rG=A �m*
v
C
G C I cm

zz !
C Ok

Because the state of the system before the collision is assumed known (the left
“-” side of the equation, and because the post-collision (+) state is a rotation
about A, this equation is one scalar equation in the one unknown !C. Note that
*
H

C
A could also be evaluated as

*
H

C
A D !CIAzz Ok. So one way of expressing the

post-collision state is as

!C D
�
*
rG=A �m*

v
�
G C I cm

zz !
� Ok

�
� Ok

IAzz
and *

v
C
G D !C Ok� *

rG=A:

Note also that the same *
rG=A is used on the right and left sides of the equation

because only the velocity and not the position is assumed to jump during the
collision.

The collision impulse
*
P can then be found from linear momentum balance

as
*
P D m

�
*
v
C
G � *

v
�
G

�
:

Sticking collisions are used as models of projectiles hitting targets, of
robot and animal limbs making contact with the ground, of monkeys
and acrobats grabbing hand holds, and of some particularly dead and
frictional collisions between solids (such as when a car trips on a curb).

Frictionless collisions

The second special case is that of a frictionless collision. Here we add
two assumptions:

immovable object

Figure 14.71: Sticking collision with an
immovable object. The box sticks at
A and then rotates about A. Angular
momentum about point A is conserved
in the collision.
Filename:tfigure-collimmovable
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Figure 14.72: Frictionless collision be-
tween two identical round objects. Ball
one is initially moving to the right, ball
2 is initially stationary. The impulse of

ball 1 on ball 2 is
*
P .

Filename:tfigure-poolballs

1. There is no friction so
*

P D P On. The number of unknowns is thus
reduces from 8 to 7.

2. There is a coefficient of (normal) restitution e.
The normal restitution coefficient is taken as a property of the col-

liding bodies. It is a given number with 0 < e < 1 with this defining
equation:

.
*
v
C
C2 � *

v
C
C1/ � On D �e.*v�C2 � *

v
�
C1/ � On:

This says that the normal part of the relative velocity of the contacting
points reverses sign and its magnitude is attenuated by e. This adds
a scalar equation to the set Eqns. 14.52 thus giving 7 scalar equations
(4 momentum, 2 angular momentum, 1 restitution) for 7 unknowns (4
velocity components, 2 angular velocities and the normal impulse).

The most popular application of the frictionless collision model is
for billiard or pool balls, or carrom pucks. These things have relatively
small coefficients of friction.

We state without proof that a frictionless collision with e D 1 con-
serves energy.

Example: Pool balls

Assume one ball approaches the other with initial velocity *
v
C
G1 D v O{ and has an

elastic frictionless collision with the other ball at a collision angle of � as shown

in F ig: 14:72. Defining On � cos � O{�sin � O| we have that
*
P D P On. To determine

the outcome of the equation we have the angular momentum balance equations
(about the center-of-mass) which trivially tell us that

!
C
1
D !

C
2
D 0

because the balls start with no spin and the frictionless collision impulses
*
P D P On

and �*
P D �P On have no moment about the center-of-mass. Linear momentum

balance for each of the balls

�P On D m*
v
C
G1 �mv O{

P On D m*
v
C
G2 � *

0

gives 4 scalar equations which are supplemented by the restitution equation (using
e D 1) �

�*
v
C� � On D �e ��*

v
�� � On

)�v cos � D *
v
C
G2 � On� *

v
C
G1 � On

which together make 5 scalar equations in the 5 scalar unknowns *
v
C
G1, *

v
C
G2, and

P (each vector has 2 unknown components). These have the solution

*
v
C
G1 D v sin �.sin � O{ C cos � O|/;

*
v
C
G1 D v cos �.cos � O{ � sin � O|/; and

P D mv cos �:

The solution can be checked by plugging back into the momentum and restitution
equations. Also, as promised, this e D 1 solution conserves kinetic energy. The
solution has the interesting property that the outgoing trajectories of the two
balls are orthogonal for all � but � D 0 in which case ball 1 comes to rest in
the collision. [The solution can be found graphically by looking for two outgoing
vectors which add to the original velocity of mass 1, where the sum of the squares
of the outgoing speeds must add to the square of the incoming speed.]
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Frictional collisions

For a collision with friction, but not so much that total sticking is ac-
curate, the modeling is complex and subtle. As of this writing there
are no standard acceptable ways of dealing with such situations. Com-
mercial simulation packages should be used for such with skeptical
caution. They are generally defective in that they can predict only a
limited range of phenomena and/or they can create energy even with
innocent input parameters.

Why is it hard to find a good collision law

Ideally one would like a rule to determine how bodies move after a
collision from how they move before the collision. Such a rule would
be called a collision law or a constitutive relation for collisions. That
accurate collision laws are rare at best might be surmised from the
basic problem that the phrase rigid body collisions is in some sense
a contradiction in terms, an oxymoron. The force generated in the
contact comes from material deformation, and deformation is just what
we generally try to neglect when doing rigid body mechanics.

There is a temptation to say that one wants to continue to neglect
deformation during the collision, but for in an infinitesimal contact
region. And some collision laws are formulated with this approach.
Even then, there are no reliable models for the deformation in that
small region, and such laws are doomed to inaccuracy in situations
where the deformation is not so limited.

For complex shaped bodies touching at various points that are gen-
erally not known a priori, no collision law is reliably accurate.
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SAMPLE 14.27 The vector equation m1
*
v1C m2

*
v2 D m1

*
v
C
1 C m2

*
v
C
2

expresses the conservation of linear momentum of two masses. Suppose
*
v1 D *

0 ;
*
v2 D �v0 O|; *

v
C
1 D vC1 O{ and *

v
C
2 D vC2t Oet C vC2n Oen, where

Oet D cos � O{ C sin � O| and Oen D � sin � O{ C cos � O| .
1. Obtain two independent scalar equations from the momentum

equation corresponding to projections in the Oen and Oet directions.

2. Assume that you are given another equation v02t D �v0 sin � . Set
up a matrix equation to solve for vC1 ; v

C
2t

, and vC2n from the three
equations.

Solution

1. The given equation of conservation of linear momentum is

m1
*
v 1����
0

Cm2
*
v 2 D m1

*
v
C
1 C m2

*
v
C
2

or �m2v0 O| D m1v
C
1 O{ Cm2.v

C
2t
Oet C vC2n Oen/: (14.53)

Dotting both sides of eqn: .14:53/ with Oen gives

�m2v0.

cos �����
Oen � O| / D m1v

C
1 .

� sin �����
Oen � O{ /Cm2v

C
2t
.

0����
Oen � Oet /Cm2v

C
2n
.

1����
Oen � Oen/

or �m2v0 cos � D �m1v
C
1 sin � Cm2v

C
2n
: (14.54)

Dotting both sides of eqn: .14:53/ with Oet gives

�m2v0.

sin �����
Oet � O| / D m1v

C
1 .

cos �����
Oet � O{ /Cm2v

C
2t
.

1����
Oet � Oet /Cm2v

C
2n
.

0����
Oet � Oen /

or �m2v0 sin � D m1v
C
1 cos � Cm2v

C
2t
: (14.55)

�m2v0 cos � D �m1v
C
1 sin � Cm2v

C
2n
; �m2v0 sin � D m1v

C
1 cos � Cm2v

C
2t

2. Now, we rearrange eqn: .14:54/ and 14.55 along with the third given equation,
v02t D �v0 sin � , so that all unknowns are on the left hand side and the known
quantities are on the right hand side of the equal sign. These equations, in
matrix form, are as follows.2

4 �m1 sin � 0 m2

�m1 cos � m2 0

0 1 0

3
5
8�<
�:

vC1
vC2t
vC2n

9>=
>; D

8<
:

�m2v0 cos �
�m2v0 sin �
�v0 sin �

9=
; :

This equation can be easily solved on a computer for the unknowns.
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SAMPLE 14.28 Cueing a billiard ball. A billiard ball is cued by
striking it horizontally at a distance d D 10mm above the center
of the ball. The ball has mass m D 0:2 kg and radius r D 30mm.
Immediately after the strike, the center-of-mass of the ball moves with
linear speed v D 1m=s. Find the angular speed of the ball immediately
after the strike. Ignore friction between the ball and the table during
the strike.

Solution Let the force imparted during the strike be F . Since the ball is cued by
giving a blow with the cue, F is an impulsive force. Impulsive forces, such as F , are
in general so large that all non-impulsive forces are negligible in comparison during
the time such forces act. Therefore, we can ignore all other forces .mg;N; f / acting
on the ball from its free body diagram during the strike.

Now, from the linear momentum balance of the ball we get

F O{ D P*
L or .F O{/dt D d

*
L )

Z
.F O{/dt D *

L2 � *
L1

where L2�L1 D �
*
L is the net change in the linear momentum of the ball during the

strike. Since the ball is at rest before the strike,
*
L1 D m

*
v 1����
0

D *
0 . Immediately

after the strike, *
v D v O{ D 1m=s.

Thus
*
L2 D m

*
v D 0:2 kg�1m=sO{ D 0:2N� sO{:

Hence

Z
.F O{/dt D 0:2N� sO{ or

Z
Fdt D 0:2N� s: (14.56)

To find the angular speed we apply the angular momentum balance. Let ! be the
angular speed immediately after the strike and *

! D ! Ok. Now,

X
*
Mcm D P*

H cm )
Z X

*
Mcm dt D

Z
d
*
H cm D .

*
H cm/2 � .

*
H cm/1:

Since
*
H cm D I zzcm

*
! and just before the strike, *

! D *
0 ;

.
*
H cm/1 � angular momentum just before the strike D *

0

.
*
H cm/2 � angular momentum just after the strike D I zzcm!

Ok;Z X
*
Mcm dt D I zzcm!

Ok D 2

5
mr2! Ok (since for a sphere, I zzcm D 2

5mr
2).

But
X

*
Mcm D �Fd Ok;

therefore �
Z
.Fd/dt Ok D 2

5
mr2! Ok

or � d����
constant

Z
Fdt D 2

5
mr2! ) ! D � 5d

2mr2

Z
Fdt:

Substituting the given values and
R
Fdt D 0:2N� s from equation 14.56 we get

! D � 5.0:01m/

2�0:2 kg�.0:03m/2
�0:2N� s D �27:78 rad=s:

The negative value makes sense because the ball will spin clockwise after the strike,
but we assumed that ! was anticlockwise.

! D �27:78 rad=s:

F

d

r

Figure 14.73:
Filename:sfig7-3-DH1
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Figure 14.74: FBD of the ball during the
strike. The nonimpulsive forces mg;N;
and f can be ignored in comparison to
the strike force F .
Filename:sfig7-3-DH2
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Figure 14.76: The free-body diagram of
the bar during collision. The impul-
sive force at the point of impact C is
so large that the force of gravity can be
completely ignored in comparison.
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1
Since C is a fixed point for the
motion of the bar after impact,

we could calculate
*

H
C
C as follows.

*

H
C
C D ICzz

*! D 1

3
m`2

����
ICzz

!.� Ok/:

SAMPLE 14.29 Falling stick. A uniform bar of length ` and mass m
falls on the ground at an angle � as shown in the figure. Just before
impact at point C, the entire bar has the same velocity v directed ver-
tically downwards. Assume that the collision at C is plastic, i:e:; end
C of the bar gets stuck to the ground upon impact.

1. Find the angular velocity of the bar just after impact.

2. Assuming � to be small, find the velocity of end B of the bar just
after impact.

Solution We are given that the impact at point C is plastic. That is, end C of the
bar has zero velocity after impact. Thus end C gets stuck to the ground. Then we
expect the rod to rotate about point C as rest of the bar moves (perhaps faster) to
touch the ground. The free-body diagram of the bar is shown in F ig: 14:76 during
the impact at point C. Note that we can ignore the force of gravity in comparison
to the large impulsive force Fc due to impact at C.

1. Now, if we carry out angular momentum balance about point C, there will be
no net moment acting on the bar, and therefore, angular momentum about
the impact point C is conserved. Distinguishing the kinematic quantities
before and after impact with superscripts ‘-’ and ‘+’, respectively, we get
from the conservation of angular momentum about point C,

*
H

�
C D *

H
C
C

I cm
zz

*
!
� C *

rG=C �m*
v
�
G D I cm

zz
*
!
C C *

rG=C �m*
v
C
G :

Now, we know that *
!
� D *

0 since every point on the bar has the same vertical

velocity *
v D �v O| , and that just after impact, *

v
C
G D *

!
C � *

rG=C where we

can take *
!
C D !.� Ok/. Thus, 1

*
H

�
C D *

rG=C �m*
v
�
G D .`=2/O� �mv.� O|/

D �mv`
2

cos � Ok .since O� D cos � O{ C sin � O|/
*
H

C
C D I cm

zz
*
!
C C *

rG=C �m.*!C � *
rG=C/

D �I cm
zz !

OkC .`=2/O� �m.�! Ok � `=2O�/� �� �
!`=2.� On/

D � 1

12
m`2! Ok � 1

4
m`2! Ok D �1

3
m`2! Ok:

Now, equating
*
H

�
C and

*
H

C
C we get

! D 3v

2`
cos �; ) *

! D �3v
2`

cos � Ok:

*
! D �3v

2`
cos � Ok

2. The velocity of the end B is now easily found using *
vB D *

vC C *
vB=C D *

vB=C

and *
vB=C D *

! � *
rB=C. Thus,

*
vB=C D *

! � *
rB=C D �! Ok � `O�

D �!` On D �3v
2

cos �.� sin � O{ C cos � O|/

but, for small � , cos � � 1, and sin � � 0. Therefore, *
vB=C D �3v

2 O| . Thus,
end B of the bar speeds up by one and a half times its original speed due to
the plastic impact at C.
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*
vB=C D �.3=2/v O|
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SAMPLE 14.30 tipping box. A box of mass m D 20 kg and dimen-
sions 2a D 1m and 2b D 0:4m moves along a horizontal surface with
uniform speed v D 1m=s. Suddenly, it bumps into an obstacle at A.
Assume that the impact is plastic and point A is at the lowest level
of the box. Determine if the box can tip over following the impact. If
not, what is the maximum v the box can have so that it does not tip
over after the impact.
Solution Whether the box can tip or not depends on whether it gets sufficient
initial angular speed just after collision to overcome the restoring moment due to
gravity about the point of rotation A. So, first we need to find the angular velocity
of the box immediately following the collision. The free-body diagram of the box

during collision is shown in F ig: 14:78. There is an impulse
*
P acting at the point of

impact. If we carry out the angular momentum balance about point A, we see that
the impulse at A produces no moment impulse about A, and therefore, the angular

momentum about point A has to be conserved. That is,
*
HA

C D *
HA

�
. Now,

*
HA

� D *
rG=A �m*

vG
� D .�b O{ C a O|/ �mv O{ D �mav Ok

Let the box have angular velocity *
!
C D ! Ok just after impact. Then,

*
HA

C D I cm
zz

*
!
C C *

rG=A �m*
vG

C D I cm
zz !

OkC r O� �m.! Ok � r O�/

D I cm
zz !

OkCmr2! Ok D 1

12
.4a2 C 4b2/m! OkCm.a2 C b2/! Ok

D 4

3
.a2 C b2/m! Ok:

Now equating the two momenta, we get

! D � 3a

4.a2 C b2/
v ) *

!
C D � 3a

4.a2 C b2/
v Ok:

Thus we know the angular velocity immediately after impact. Now let us find out if
it is enough to get over the hill, so to speak. We need to find the equation of motion
of the box for the motion that follows the impact. Once the impact is over (in a few
milliseconds), the usual forces show up on the free-body diagram (see F ig: 14:79).

We can find the equation of subsequent motion by carrying out angular momen-

tum balance about point A (the box rotates about this point),
P *
MA D P*

HA.

*
rG=A �mg.� O|/ D IAzz P! Ok

) P! D mgb

IAzz
D 3gb

4.a2 C b2/
:

Thus the angular acceleration (due to the restoring moment of the weight of the
box) is counterclockwise and constant. Therefore, we can use !2 D !20 C 2 P!�� to
find if the box can make it to the tipping position (the center-of-mass on the vertical
line through A). Let us take � to be positive in the clockwise direction (direction of
tipping). Then P! is negative. Starting from the position of impact, the box must
rotate by �� D tan�1.b=a/ in order to tip over. In this position, we must have
! � 0.

!2 D !20 � 2 P!�� � 0 ) !20 � 2 P!�� ) v2 � 24bg.a2 C b2/

9a2
��:

Substituting the given numerical values for a; b, and g D 9:8m=s2, we get

v � 1:52m=s2:

Thus the given initial speed of the box, v D 1m=s, is not enough for tipping over.

v � 1:52m=s2
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SAMPLE 14.31 Ball hits the bat. A uniform bar of mass m2 D 1 kg
and length 2` D 1m hangs vertically from a hinge at A. A ball of mass
m1 D 0:25 kg comes and hits the bar horizontally at point D with speed
v D 5m=s. The point of impact D is located at d D 0:75m from the
hinge point A. Assume that the collision between the ball and the bar
is plastic.

1. Find the velocity of point D on the bar immediately after impact.

2. Find the impulse on the bar at D due to the impact.

3. Find and plot the impulsive reaction at the hinge point A as a
function of d , the distance of the point of impact from the hinge
point. What is the value of d which makes the impulse at A to
be zero?

Solution The free-body diagram of the ball and the bar as a single system is shown

in F ig: 14:81 during impact. There is only one external impulsive force
*
FA acting at

the hinge point A. We take the ball and the bar together here so that the impulsive
force acting between the ball and the bar becomes internal to the system and we
are left with only one external force at A. Then, the angular momentum balance

about point A yields
P*
HA D *

0 since there is no net moment about A. Thus the
angular momentum about A is conserved during the impact.

1. Let us distinguish the kinematic quantities just before impact and immedi-
ately after impact with superscripts ‘-’ and ‘+’, respectively. Then, from the

conservation of angular momentum about point A, we get
*
H

�
A D *

H
C
A . Now,

*
H

�
A D .

*
H

�
A /ball C .

*
H

�
A /bar

D *
rD=A �m1

*
v
� C IAzz

*
!
�

D d O| �m1v.�O{/C *
0 D m1dv Ok:

Similarly,
*
H

C
A D *

rD=A �m1
*
v
C C IAzz

*
!
C

but, *
v
C D *

!
C � *

rD=A D �!d O{, where *
!
C D ! Ok (let). Hence,

*
H

C
A D d O| �m1.�!d O{/C

1

3
m2.2`/

2! Ok

D .m1d
2 C 4

3
m2`

2/! Ok:

Equating the two momenta, we get

! D m1dv

m1d2 C .4=3/m2`2

D v

d

�
1C 4

3
m2
m1

�
`
d

�2�
) *

vD D *
!
C � *

rD=A D !d.�O{/
D � v

1C 4
3
m2
m1

�
`
d

�2 O{:
Now, substituting the given numerical values, v D 5m=s, m1 D 0:25 kg, m2 D
1 kg, ` D 0:5m, and d D 0:75m, we get *

vD D �2:08m=sO{
*
vD D �2:08m=sO{

m2

m1

d

A

B

D

G 2�

Figure 14.80:
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Figure 14.81: The free-body diagram of
the ball and the bar together during
collision. The impulsive force at the
point of impact is internal to the sys-
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free-body diagram.
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2. To find the impulse at D due to the impact, we can consider either the ball or
the bar separately, and find the impulse by evaluating the change in the linear
momentum of the body. Let us consider the ball since it has only one impulse
acting on it. The free-body diagram of the ball during impact is shown in
F ig: 14:82. From the linear impulse-momentum relationship we get,

*
PD D

Z
*
FD dt D *

L
C � *

L
� D m1.

*
v
C � *

v
�
/

D m1

0
B@� v

1C 4
3
m2
m1

�
`
d

�2 O{ C v O{

1
CA

D m1v

0
B@1 � 1

1C 4
3
m2
m1

�
`
d

�2
1
CA O{:

Substituting the given numerical values, we get
*
PD D 0:73 kg�m=sO{. The

impulse on the bar is equal and opposite. Therefore, the impulse on the bar

is �*
PD D �0:73 kg�m=sO{.

Impulse at D D �0:73 kg�m=sO{
3. Now that we know the impulse at D, we can easily find the impulse at A

by applying impulse-momentum relationship to the bar. Since, the bar is
stationary just before impact, its initial momentum is zero. Thus, for the
bar, Z

.
*
FA � *

FD/dt D
*
L
C � *

L
� D *

L
C D m2

*
v
C
cm:

Denoting the impulse at A with
*
PA, the mass ratio m2=m1 by mr , and the

length ratio `=d byh q, and noting that *
v
C
cm D ! Ok � ` O| D �!`O{, we get

*
PA �

Z
*
FA dt D

Z
*
FD dt Cm2.�!`O{/

D m1v

 
1 � 1

1C 4
3mrq2

!
O{ �m2`

v

d
�
1C 4

3mrq2
� O{

D m1v

 
4
3mrq

2

1C 4
3mrq2

!
O{ �m2v

 
q

1C 4
3mrq2

!
O{

D .4=3/m2q
2 �m2q

1C 4
3mrq2

v O{ D q.4q � 3/
3
�
1C 4

3mrq2
� m2v O{:

Now, we are ready to graph the impulse at A as a function of q � `=d .
However, note that a better quantity to graph will be PA=.m1v/, that is, the
nondimensional impulse at A, normalized with respect to the initial linear
momentum m1v of the ball. The plot is shown in F ig: ??. It is clear from

the plot, as well as from the expression for
*
PA, that the impulse at A is zero

when q D 3=4 or d D 4`=3 D 2=3.2`/, that is, when the ball strikes at two
thirds the length of the bar. Note that this location of the impact point is
independent of the mass ratio mr .

d D 2=3.2`/ for
*
PA D *

0

Comment: This particular point of impact D (when d D 2=3.2`/) which induces

no impulse at the support point A is called the center of percussion. If you imagine

the bar to be a bat or a racquet and point A to be the location of your grip, then

hitting a ball at D gives you an impulse-free shot. In sports, point D is called a

sweet spot.
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SAMPLE 14.32 Flying dish and the solar panel. A uniform rectan-
gular plate of dimensions 2a D 2m and 2b D 1m and mass mP D 2 kg
drifts in space at a uniform speed vp D 10m=s (in a local Newtonian
reference frame) in the direction shown in the figure. Another circular
disk of radius R D 0:25m and mass mD D 1 kg is heading towards
the plate at a linear speed vD D 1m=s directed normal to the facing
edge of the plate. In addition, the disk is spinning at !D D 5 rad=s in
the clockwise direction. The plate and the disk collide at point A of
the plate, located at d D 0:8m from the center of the long edge. As-
sume that the collision is frictionless and purely elastic. Find the linear
and angular velocities of the plate and the disk immediately after the
collision.
Solution To find the linear as well as the angular velocities of the disk and the
plate, we will have to use linear and angular momentum-impulse relations. In
total, we have 7 scalar unknowns here — 4 for linear velocities of the disk and the
plate (each velocity has two components), 2 for the two angular velocities, and 1
for the collision impulse. Naturally, we need 7 independent equations. We have
6 independent equations from the linear and angular impulse-momentum balance
for the two bodies (3 each). We need one more equation. That equation is the
relationship between the normal components of the relative velocities of approach
and departure with the coefficient of restitution e (=1 for elastic collision). Thus
we have enough equations. Let us set up all the required equations. We can then
solve the equations using a computer.

The free-body diagrams of the disk and the plate together and the two separately
are shown in F ig: 14:85 and 14.86, respectively. Using an xy coordinate system
oriented as shown in F ig: 14:85, we can write

LMB for disk: mD.
*
v
C
D � *

v
�
D/ D �P O{

LMB for plate: mP .
*
v
C
P � *

v
�
P / D P O{

AMB for disk: I cm
D
.
*
!
C
D � *

!
�
D/ D *

0

AMB for plate: I cm
P
.
*
!
C
P � *

!
�
P / D *

rA=G � P O{
kinematics: O{ � f*vCAD � *

v
C
AP

D e.
*
v
�
AP

� *
v
�
AD
/g

where, in the last equation *
vAD and *

vAP refer to the velocities of the material
points located at A on the disk and on the plate, respectively. Other linear ve-
locities in the equations above refer to the velocities at the center-of-mass of the
corresponding bodies. We are given that *

v
�
D D vD O{; *v�P D �vP O{; *!�

D D �
D Ok,

and *
!
�
P D *

0 . Let us assume that *
!
C
D D !D Ok; *!C

P D !P Ok; vvC
D
D vC

Dx
O{ C vC

Dy
O| ,

and similarly, vvC
P
D vC

Px
O{ C vC

Py
O| . Then,

*
v
�
AD

D *
v
�
D C *

!
�
D � *

rA=O D vD O{ � !DR O|
*
v
C
AD

D *
v
C
D C *

!
C
D � *

rA=O D vC
Dx

O{ C .vC
Dy

C !C
D
R/ O|

*
v
�
AP

D *
v
�
P D �vP O{

*
v
C
AP

D *
v
C
P C *

!
C
P � *

rA=G D .vC
Px

� !C
P
d/O{ C .vC

Py
� !C

P
d/ O| :

Substituting these quantities in the kinematics equation above and dotting with the
normal direction at A, O{, we get

vC
Dx

� vC
Px

C !C
P
d D e����

1

.�vP � vD/ D �vP � vD : (14.57)

Now, let us extract the scalar equations from the impulse-momentum equations for
the disk and the plate by dotting with appropriate unit vectors.

Dotting LMB for the disk with O{ and O| , respectively, we get

O

A

Figure 14.84:
Filename:sfig9-5-diskplate
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Filename:sfig9-5-diskplate-a

A

G

ı̂
ĵ
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mD.v
C
Dx

� vD/ D �P (14.58)

mDv
C
Dy

D 0: (14.59)

Dotting LMB for the plate with O{ and O| , respectively, we get
mP .v

C
Px

� vP / D P (14.60)

mP v
C
Py

D 0: (14.61)

Dotting AMB for the disk and the plate with Ok, we get
I cm
D .!C

D
� !D/ D 0 (14.62)

I cm
P !C

P
D Pd: (14.63)

We have all the equations we need. Let us rearrange these equations in a matrix
form, taking the known quantities to the right and putting all unknowns to the left
side. We then, write eqns. (14.58)–(14.63), and then eqn: .14:57/ as

2
666666664

mD 0 0 0 0 0 �1
0 mD 0 0 0 0 0

0 0 mP 0 0 0 1

0 0 0 mP 0 0 0

0 0 0 0 I cm
D

0 0

0 0 0 0 0 I cm
P

�d
1 0 �1 0 0 d 0

3
777777775

8����������<
����������:

vC
Dx

vC
Dy

vC
Px

vC
Py

!C
D

!C
P
P

9>>>>>>>>>>=
>>>>>>>>>>;
D

8��������<
��������:

mDvD
0

mP vP
0

I cm
D
!D
0

�vP � vD

9>>>>>>>>=
>>>>>>>>;
:

Substituting the given numerical values for the masses and the pre-collision veloc-
ities, and the moments of inertia, I cm

D
D .1=2/mDR

2 and I cm
P

D .1=12/mP .4a
2 C

4b2/, and then solving the matrix equation on a computer, we get,

*
v
C
D D 0:34m=sO{; *

v
C
P D �9:67m=sO{

*
!
C
D D �5 rad=s Ok; *

!
C
P D �1:26 rad=s Ok

P D �0:66 kg�m=s:

You can easily check that the results obtained satisfy the conservation of linear
momentum for the plate and the disk taken together as one system.

*
v
C
D D 0:34m=sO{; *vCP D �9:67m=sO{; *!C

D D �5 rad=s Ok; *!C
P D �1:26 rad=s Ok

Comments: In this particular problem, the equations are simple enough to be

solved by hand. For example, eqns. (14.59), (14.61), and (14.62) are trivial to solve

and immediately give, vC
Dy

D 0; vC
Py

D 0, and !C
D
D !D D 5 rad=s. Rest of the

equations can be solved by usual eliminations and substitutions, etc. However, it is

important to learn how to set up these equations in matrix form so that no matter

how complicated the equations are, they can be easily solved on a computer. What

really counts is do you have 7 linear independent equations for the 7 unknowns. If

you do, you are home.



Problems for
Chapter 14

General planar motion of a single rigid body

14.1 Kinematics of
planar rigid-body
motion
14.1 The slender rod AB rests
against the step of height h, while
end “A” is moved along the ground
at a constant velocity vo. Find P� and
R� in terms of x, h, and vo. Is P� pos-
itive or negative? Is R� positive or
negative?

A

B

h

x

φ vo

Filename:pfigure-blue-98-1

14.2 A ten foot ladder is leaning be-
tween a floor and a wall. The top
of the ladder is sliding down the wall
at one foot per second. (The foot
is simultaneously sliding out on the
floor). When the ladder makes a 45
degree angle with the vertical what
is the speed of the midpoint of the
ladder?

14.3 A uniform rigid rod AB of
length ` D 1m rotates at a con-
stant angular speed ! about an un-
known fixed point. At the instant
shown, the velocities of the two ends
of the rod are *

vA D �1m=sO{ and
*
vB D 1m=s O| .

a) Find the angular velocity of
the rod.

b) Find the center of rotation of
the rod.

A

B

� = 1.0 m

θ = 45o

ı̂

ĵ

Filename:pfigure4-3-rp6

14.4 A square plate ABCD rotates
at a constant angular speed about an
unknown point in its plane. At the
instant shown, the velocities of the
two corner points A and D are *

vA D
�2 ft=s.O{ C O|/ and *

vD D �.2 ft=s/O{,
respectively.

a) Find the center of rotation of
the plate.

b) Find the acceleration of the
center of mass of the plate.

G

C

DA

B

ı̂

ĵ

�

Filename:pfigure4-3-rp7

14.5 Consider the motion of a rigid
ladder which can slide on a wall and
on the floor as shown in the figure.
The point A on the ladder moves
parallel to the wall. The point B
moves parallel to the floor. Yet, at
a given instant, both have velocities
that are consistent with the ladder
rotating about some special point,
the center of rotation (COR). Define
appropriate dimensions for the prob-
lem.

a) Find the COR for the ladder
when it is at some given posi-
tion (and moving, of course).
Hint, if a point is A is ‘going
in circles’ about another point
C, that other point C must be
in the direction perpendicular
to the motion of A.

b) As the ladder moves, the COR
changes with time. What is
the set of points on the plane
that are the COR’s for the lad-
der as it falls from straight up
to lying on the floor?

wall

floor

A

B

ladder

Filename:pfigure-blue-96-1

14.6 A car driver on a very boring
highway is carefully monitoring her
speed. Over a one hour period, the
car travels on a curve with constant
radius of curvature, � D 25mi, and
its speed increases uniformly from
50mph to 60mph. What is the ac-
celeration of the of the car half-way
through this one hour period, in path
coordinates?

14.7 Find expressions for Oet , at , an,
Oen, and the radius of curvature �, at
any position (or time) on the given
particle paths for

a) problem 10.11,

b) problem 10.12,

c) problem ??,

d) problem 10.14,

e) problem 10.13, and

f) problem 10.10.

14.8 A particle travels at non-
constant speed on an elliptical path

given by y2 D b2.1 � x2

a2
/. Carefully

sketch the ellipse for particular val-
ues of a and b. For various positions
of the particle on the path, sketch
the position vector *

r .t/; the polar
coordinate basis vectors Oer and Oe� ;
and the path coordinate basis vec-
tors Oen and Oet . At what points on
the path are Oer and Oen parallel(or Oe�
and Oet parallel)?

867
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14.2 General planar
mechanics of a rigid
body
14.9 The uniform rectangle of width
a D 1m, length b D 2m, and mass
m D 1 kg in the figure is sliding on
the xy-plane with no friction. At
the moment in question, point C
is at xC D 3m and yC D 2m.

The linear momentum is
*
L D 4O{ C

3 O| . kg�m=s/ and the angular mo-
mentum about the center of mass is
*
H cm D 5 Ok. kg�m=s2/. Find the ac-
celeration of any point on the body
that you choose. (Mark it.) [Hint:
You have been given some redundant
information.]

C

30o

no applied forces

a b

x

y

Filename:pfigure-blue-101-1

14.10 The vertical pole AB of mass
m and length ` is initially, at rest on
a frictionless surface. A tension T is
suddenly applied at A. What is Rxcm?

What is R�AB? What is RxB? Gravity
may be ignored.

T

m

B

A

�

x

y

Filename:pfigure-blue-95-1

14.11 Force on a stick in space.
2-D . No gravity. A uniform thin
stick with length ` and mass m is,
at the instant of interest, parallel to

the y axis and has no velocity and no

angular velocity. The force
*
F D F O{

with F > 0 is suddenly applied at
point A. The questions below con-

cern the instant after the force
*
F is

applied.

a) What is the acceleration of
point C , the center of mass?

b) What is the angular accelera-
tion of the stick?

c) What is the acceleration of the
point A?

d) (relatively harder) What addi-
tional force would have to be
applied to point B to make
point B’s acceleration zero?

A

C

B

�

⇀
F = F ı̂

ı̂

ĵ

Filename:pfigure-s94h10p2

14.12 A uniform thin rod of length
` and mass m stands vertically, with
one end resting on a frictionless sur-
face and the other held by someone’s
hand. The rod is released from rest,
displaced slightly from the vertical.
No forces are applied during the re-
lease. There is gravity.

a) Find the path of the center of
mass.

b) Find the force of the floor on
the end of the rod just before
the rod is horizontal.

14.13 A uniform disk, with mass
center labeled as point G, is sit-
ting motionless on the frictionless xy
plane. A massless peg is attached to
a point on its perimeter. This disk
has radius of 1m and mass of 10 kg.
A constant force of F D 1000N{ is
applied to the peg for :0001 s (one
ten-thousandth of a second).

a) What is the velocity of the
center of mass of the center of
the disk after the force is ap-
plied?

b) Assuming that the idealiza-
tions named in the problem
statement are exact is your an-
swer to (a) exact or approxi-
mate?

c) What is the angular velocity of
the disk after the force is ap-
plied?

d) Assuming that the idealiza-
tions named in the problem
statement are exact is your an-
swer to (c) exact or approxi-
mate?

14.14 A uniform thin flat disc is
floating in space. It has radius R and
mass m. A force F is applied to it a
distance d from the center in the y
direction. Treat this problem as two-
dimensional.

a) What is the acceleration of the
center of the disc?

b) What is the angular accelera-
tion of the disk?

R F

d

x

y

Filename:pfigure-blue-102-1

14.15 A uniform 1kg plate that is
one meter on a side is initially at rest
in the position shown. A constant

force
*
F D 1NO{ is applied at t D 0

and maintained henceforth. If you
need to calculate any quantity that
you don’t know, but can’t do the cal-
culation to find it, assume that the
value is given.

a) Find the position of G as
a function of time (the an-
swer should have numbers and
units).

b) Find a differential equation,
and initial conditions, that
when solved would give � as a
function of time. � is the coun-
terclockwise rotation of the
plate from the configuration
shown.
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c) Write computer commands
that would generate a drawing
of the outline of the plate at
t D 1 s. You can use hand cal-
culations or the computer for
as many of the intermediate
commands as you like. Hand
work and sketches should be
provided as needed to justify
or explain the computer work.

d) Run your code and show clear
output with labeled plots.
Mark output by hand to clar-
ify any points.

x

y

G

EFγ

Filename:S02p2p2flyingplate

14.16 A uniform rectangular metal
beam of massm hangs symmetrically
by two strings as shown in the figure.

a) Draw a free-body diagram of

the beam and evaluate
P *
F .

b) Repeat (a) immediately after
the left string is cut.

3

2

A B

m

Filename:pfig2-2-rp8

14.17 A uniform slender bar AB
of mass m is suspended from two
springs (each of spring constant K)
as shown. If spring 2 breaks, deter-
mine at that instant

a) the angular acceleration of the
bar,

b) the acceleration of point A,
and

c) the acceleration of point B.

BA

1 2

L

Filename:pfigure-blue-50-2

14.18 Two small spheres A and
B are connected by a rigid rod of
length ` D 1:0 ft and negligible mass.
The assembly is hung from a hook,
as shown. Sphere A is struck, sud-
denly breaking its contact with the
hook and giving it a horizontal veloc-
ity v0 D 3:0 ft=s which sends the as-
sembly into free fall. Determine the
angular momentum of the assembly
about its mass center at point G im-
mediately after A is hit. After the
center of mass has fallen two feet, de-
termine:

a) the angle � through which the
rod has rotated,

b) the velocity of sphere A,

c) the total kinetic energy of the
assembly of spheres A and B
and the rod, and

d) the acceleration of sphere A.

2 ft
B,2W

A,W

G

W = 5 lb

θ

v = v0

g

Filename:pfigure-blue-105-1

The next several problems con-
cern Work, power and energy 14.19
Verify that the expressions for work
done by a force F , W D F�S , and
by a moment M , W DM�� , are di-
mensionally correct if �S and �� are
linear and angular displacements re-
spectively.

14.20 A uniform disc of mass m and
radius r rotates with angular veloc-

ity ! Ok. Its center of mass translates
with velocity *

v D Px O{C Py O| in the xy-
plane. What is the total kinetic en-
ergy of the disk?

14.21 Calculate the energy stored in
a spring using the expression EP D
1
2k�

2 if the spring is compressed by
100 mm and the spring constant is
100 N/m.

14.22 In a rack and pinion system,
the rack is acted upon by a constant
force F D 50N and has speed v D
2m=s in the direction of the force.
Find the input power to the system.

F = 50 N

r

ω

Filename:pfig2-3-rp6

14.23 The driving gear in a com-
pound gear train rotates at constant
speed !0. The driving torque is Min.
If the driven gear rotates at a con-
stant speed !out , find:

a) the input power to the system,
and

b) the output torque of the sys-
tem assuming there is no
power loss in the system; i.e.,
power in = power out.

driving gear


radius r driven gear


radius R

M
ωin

ωout

Filename:pfig2-3-rp7

14.24 An elaborate frictionless gear
box has an input and output roller
with Vin D const . Assuming that
Vout D 7Vin and the force between
the left belt and roller is Fin D 3 lb:
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a) What is Fout (draw a picture
defining the signs of Fin and
Fout )?.

b) Is Fout greater or less than
the Fin? (Assume Fin > 0.)
Why?

black
box

(frictionless)

Positive
power in Positive

power out

Vin Vout

gear box

Filename:pfigure-blue-138-1

14.3 Kinematics of
rolling and sliding
14.25 A stone in a wheel. A
round wheel rolls to the right. At
time t D 0 it picks up a stone the
road. The stone is stuck in the edge
of the wheel. You want to know
the direction of the rock’s motion
just before and after it next hits the
ground. Here are some candidate an-
swers:

� When the stone approaches
the ground its motion is tan-
gent to the ground.

� The stone approaches the
ground at angle x (you name
it).

� When the stone approaches
the ground its motion is per-
pendicular to the ground.

� The stone approaches the
ground at various angles de-
pending on the following con-
ditions(...you list the condi-
tions.)

Although you could address this
question analytically, you are to try
to get a clear answer by looking at
computer generated plots. In par-
ticular, you are to plot the pebble’s
path for a small interval of time
near when the stone next touches the
ground. You should pick the param-
eters that make your case for an an-
swer the strongest. You may make
more than one plot.

Here are some steps to fol-
low:

a) Assuming the wheel has ra-
dius Rw and the pebble is a

distance Rp from the center
(not necessarily equal to Rw).
The pebble is directly below
the center of the wheel at time
t D 0. The wheel spins at con-
stant clockwise rate !. The
x-axis is on the ground and
x.t D 0/ D 0. The wheel
rolls without slipping. Using a
clear well labeled drawing (use
a compass and ruler or a com-
puter drawing program), show
that

x.t/ D !tRw �Rp sin.!t/

y.t/ D Rw �Rp cos.!t/

b) Using this relation, write a
program to make a plot of the
path of the pebble as the wheel
makes a little more than one
revolution. Also show the out-
line of the wheel and the peb-
ble itself at some intermedi-
ate time of interest. [Use any
software and computer that
pleases you.]

c) Change whatever you need to
change to make a good plot of
the pebble’s path for a small
amount of time as the peb-
ble approaches and leaves the
road. Also show the wheel and
the pebble at some time in this
interval.

d) In this configuration the peb-
ble moves a very small dis-
tance in a small time so your
axes need to be scaled. But
make sure your x- and y- axes
have the same scale so that
the path of the pebble and the
outline of the wheel will not be
distorted.

e) How does your computer out-
put buttress your claim that
the pebble approaches and
leaves the ground at the angles
you claim?

f) Think of something about the
pebble in the wheel that was
not explicitly asked in this
problem and explain it using
the computer, and/or hand
calculation and/or a drawing.

14.26 A uniform disk of radius r
rolls at a constant rate without slip.
A small ball of mass m is attached to

the outside edge of the disk. What
is the force required to hold the disk
in place when the mass is above the
center of the disk?

14.27 Rolling at constant rate.
A round disk rolls on the ground at
constant rate. It rolls 114 revolutions
over the time of interest.

a) Particle paths. Accurately
plot the paths of three points:
the center of the disk C, a
point on the outer edge that
is initially on the ground, and
a point that is initially half
way between the former two
points. [Hint: Write a para-
metric equation for the posi-
tion of the points. First find
a relation between ! and vC .
Then note that the position
of a point is the position of
the center plus the position of
the point relative to the cen-
ter.] Draw the paths on the
computer, make sure x and y
scales are the same.

b) Velocity of points. Find
the velocity of the points at
a few instants in the motion:
after 1

4 , 1
2 , 3

4 , and 1 revolu-
tion. Draw the velocity vec-
tor (by hand) on your plot.
Draw the direction accurately
and draw the lengths of the
vectors in proportion to their
magnitude. You can find the
velocity by differentiating the
position vector or by using rel-
ative motion formulas appro-
priately. Draw the disk at its
position after one quarter rev-
olution. Note that the veloc-
ity of the points is perpendic-
ular to the line connecting the
points to the ground contact.

c) Acceleration of points. Do
the same as above but for ac-
celeration. Note that the ac-
celeration of the points is par-
allel to the line connecting the
points to the center of the
disk.

C

P

Filename:pfigure-s94h11p2
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14.28 The concentric wheels are
welded to each other and roll without
slip on the rack and stationary sup-
port. The rack moves to the right at
vr D 1m=s. What is the velocity of
point A in the middle of the wheels
shown?

stationary support

concentric wheels

no slip

rack

2 cm
2 cm

A
vr

Filename:pfigure-blue-118-1

14.29 Questions (a) - (e) refer to
the cylinders in the configuration
shown figure. Question (f) is closely
related. Answer the questions in
terms of the given quantities (and
any other quantities you define if
needed).

a) What is the speed (magnitude
of velocity) of point c?

b) What is the speed of point P?

c) What is the magnitude of the
acceleration of point c?

d) What is the magnitude of the
acceleration of point P?

e) What is the radius of curva-
ture of the path of the particle
P at the point of interest?

f) In the special case of A D 2b
what is the curve which par-
ticle P traces (for all time)?
Sketch the path.

c
bP

O

A

ω

A

little cylinder (with outer radius b and
center at point c) rolls without slipping

inside a bigger fixed cylinder (with inner

radius A and center at point O). The
absolute angular velocity of the little

cylinder ! is constant. P is attached to

the outside edge of the little cylinder.
At the instant of interest, P is on the

line between O and c.

Filename:pfigure-blue-50-1

14.4 Mechanics of
contacting bodies:
rolling and sliding
14.30 A uniform disc of mass m and
radius r rolls without slip at constant
rate. What is the total kinetic en-
ergy of the disk?

14.31 A non-uniform disc of mass m
and radius r rolls without slip at con-
stant rate. The center of mass is lo-
cated at a distance r

2 from the center
of the disc. What is the total kinetic
energy of the disc when the center of
mass is directly above the center of
the disc?

14.32 Falling hoop. A bicycle
rim (no spokes, tube, tire, or hub)
is idealized as a hoop with mass m
and radius R. G is at the center
of the hoop. An inextensible string
is wrapped around the hoop and at-
tached to the ceiling. The hoop is
released from rest at the position
shown at t D 0.

a) Find yG at a later time t in
terms of any or all of m, R, g,
and t .

b) Does G move sideways as the
hoop falls and unrolls?

m,R
yG

Filename:p-s96-p3-2

14.33 A uniform disk with radius
R and mass m has a string wrapped
around it. The string is pulled with a
force F . The disk rolls without slip-
ping.

a) What is the angular acceler-

ation of the disk, *
�Disk D

� R� Ok? Make any reasonable as-
sumptions you need that are
consistent with the figure in-
formation and the laws of me-
chanics. State your assump-
tions.

b) Find the acceleration of the
point A in the figure.

A

F = 1N

x2 m

uniform disk,
I = 0.5 kg m2

M = 1 kg

G
Rolling contact,
no slip

Filename:pfigure-blue-43-1

14.34 If a pebble is stuck to the edge
of the wheel in problem 14.27, what
is the maximum speed of the peb-
ble during the motion? When is the
force on the pebble from the wheel
maximum? Draw a good FBD in-
cluding the force due to gravity.

C

P

Filename:pfigure-s94h11p2-a

14.35 Spool Rolling without
Slip and Pulled by a Cord. The
light-weight spool is nearly empty
but a lead ball with mass m has been
placed at its center. A force F is ap-
plied in the horizontal direction to
the cord wound around the wheel.
Dimensions are as marked. Coordi-
nate directions are as marked.

a) What is the acceleration of the
center of the spool?

b) What is the horizontal force of
the ground on the spool?

Ro

RiCroll without
slip F

ı̂

ĵ

Filename:pfigure-s94h11p5

14.36 A film spool is placed on a
very slippery table. Assume that the
film and reel (together) have mass
distributed the same as a uniform
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disk of radius Ri . What, in terms
of Ri ; Ro; m; g; O{; O| , and F are the
accelerations of points C and B at
the instant shown (the start of mo-
tion)?

Ro

Ri
C

B

frictionless


contact


(no friction) F

ı̂

̂

Filename:p-f96-f-4

14.37 Again, Spool Rolling
without Slip and Pulled by a
Cord. Reconsider the spool from
problem 14.35. This time, a force
F is applied vertically to the cord
wound around the wheel. In this
case, what is the acceleration of the
center of the spool? Is it possible
to pull the cord at some angle be-
tween horizontal and vertical so that
the angular acceleration of the spool
or the acceleration of the center of
mass is zero? If so, find the angle in
terms of Ri , R0, m, and F .

14.38 A napkin ring lies on a thick
velvet tablecloth. The thin ring
(of mass m, radius r) rolls without
slip as a mischievous child pulls the
tablecloth (mass M ) out with accel-
eration A. The ring starts at the
right end (x D d ). You can make a
reasonable physical model of this sit-
uation with an empty soda can and
a piece of paper on a flat table.

a) What is the ring’s acceleration
as the tablecloth is being with-
drawn?

b) How far has the tablecloth
moved to the right from its
starting point x D 0 when the
ring rolls off its left-hand end?

c) Clearly describe the subse-
quent motion of the ring.
Which way does it end up
rolling at what speed?

d) Would your answer to the pre-
vious question be different if
the ring slipped on the cloth
as the cloth was being pulled
out?

d
A

x

napkin ring

tableclothr

m

Filename:pfigure-blue-51-1

14.39 A block of mass M is sup-
ported by two rollers (uniform cylin-
ders) each of mass m and radius r .
They roll without slip on the block
and the ground. A force F is ap-
plied in the horizontal direction to
the right, as shown in the figure.
Given F , m, r , and M , find:

a) the acceleration of the block,

b) the acceleration of the cen-
ter of mass of this block/roller
system,

c) the reaction at the wheel
bases,

d) the force of the right wheel on
the block,

e) the acceleration of the wheel
centers, and

f) the angular acceleration of the
wheels.

F
M

g

Filename:pfigure-blue-108-2

14.40 Dropped spinning disk. 2-
D . A uniform disk of radius R and
mass m is gently dropped onto a sur-
face and doesn’t bounce. When it is
released it is spinning clockwise at

the rate P�0. The disk skids for a
while and then is eventually rolling.

a) What is the speed of the cen-
ter of the disk when the disk
is eventually rolling (answer in

terms of g, �, R, P�0, and m)?

b) In the transition from slipping
to rolling, energy is lost to fric-
tion. How does the amount
lost depend on the coefficient
of friction (and other parame-
ters)? How does this loss make
or not make sense in the limit
as � ! 0 and the dissipation
rate ! zero?

x

y

R

µ

θ̇ g

Filename:pfigure-s95q10

14.41 Disk on a conveyor belt. A
uniform metal cylinder with mass of
200 kg is carried on a conveyer belt
which moves at V0 D 3m=s. The
disk is not rotating when on the belt.
The disk is delivered to a flat hard
platform where it slides for a while
and ends up rolling. How fast is it
moving (i.e. what is the speed of the
center of mass) when it eventually
rolls?

no slip

belt

m = 200 kg
 r = 0.1m

rolling 
disk

no rotation

Vox

y

Filename:pfigure-s94h11p3

14.42 A rigid hoop with radius R
and mass m is rolling without slip
so that its center has translational
speed vo. It then hits a narrow bar
with height R=2. When the hoop
hits the bar suddenly it sticks and
doesn’t slide. It does hinge freely
about the bar, however. The grav-
itational constant is g. How big is
vo if the hoop just barely rolls over
the bar?

R

R/2

hoop of mass m

rigid bar
vo

g

Filename:pfigure-blue-87-5

14.43 2-D rolling of an unbal-
anced wheel. A wheel, modeled
as massless, has a point mass (mass
D m) at its perimeter. The wheel
is released from rest at the position
shown. The wheel makes contact
with coefficient of friction �.

a) What is the acceleration of the
point P just after the wheel is
released if � D 0?

b) What is the acceleration of the
point P just after the wheel is
released if � D 2?

c) Assuming the wheel rolls with-
out slip (no-slip requires, by
the way, that the friction be
high: � D 1) what is the ve-
locity of the point P just be-
fore it touches the ground?
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R
P ı̂

ĵ

g

Filename:pfigure-s94f1p1

14.44 Spool and mass. A reel
of mass M and moment of inertia
I cmzz D I rolls without slipping up-
wards on an incline with slope-angle
�. It is pulled up by a string at-
tached to mass m as shown. Find
the acceleration of point G in terms
of some or all ofM;m; I;R; r; �; g and
any base vectors you clearly define.

massless
pulley

no slip

M, I

m

G
R

r

g

α

Filename:s97f4

14.45 Two objects are released on
two identical ramps. One is a slid-
ing block (no friction), the other a
rolling hoop (no slip). Both have
the same mass, m, are in the same
gravity field and have the same dis-
tance to travel. It takes the sliding
mass 1 s to reach the bottom of the
ramp. How long does it take the
hoop? [Useful formula: “s D 1

2at
2”]

m

R m

φ

φ

L

L

g

Filename:pfigure-blue-51-2

14.46 The hoop is rolled down an
incline that is 30� from horizontal.
It does not slip. It does not fall over
sideways. It is let go from rest at t
= 0.

a) At t = 0C what is the accel-
eration of the hoop center of
mass?

b) At t = 0C what is the acceler-
ation of the point on the hoop
that is on the incline?

c) At t = 0C what is the acceler-
ation of the point on the hoop
that is furthest from the in-
cline?

d) After the hoop has descended
2 vertical meters (and traveled
an appropriate distance down
the incline) what is the ac-
celeration of the point on the
hoop that is (at that instant)
furthest from the incline?

30o

Filename:pfigure-blue-47-1

14.47 A uniform cylinder of mass
m and radius r rolls down an incline
without slip, as shown below. Deter-
mine: (a) the angular acceleration �
of the disk; (b) the minimum value of
the coefficient of friction � that will
insure no slip.

r

30o

g

Filename:pfigure-blue-49-3

14.48 Race of rollers. A uniform
disk with mass M0 and radius R0 is
allowed to roll down the frictionless
but quite slip-resistant (� D 1) 30�
ramp shown. It is raced against four
other objects (A, B, C and D), one
at a time. Who wins the races, or are
there ties? First try to construct any
plausible reasoning. Good answers
will be based, at least in part, on
careful use of equations of mechan-
ics.

a) Block A has the same mass
and has center of mass a dis-
tance R0 from the ramp. It
rolls on massless wheels with
frictionless bearings.

b) Uniform disk B has the same
mass (MB D M0) but twice
the radius (RB D 2R0).

c) Hollow pipe C has the same
mass (MC D M0) and the
same radius (RC D R0).

d) Uniform disk D has the same
radius (RD D R0) but twice
the mass (MD D 2M0).

Can you find a round object
which will roll as fast as the block
slides? How about a massless cylin-
der with a point mass in its center?
Can you find an object which will go
slower than the slowest or faster than
the fastest of these objects? What
would they be and why? (This prob-
lem is harder.)

L

BA

C D

θ

R0

R0

Filename:pfigure-s94h11p4

14.49 A roller of mass M and polar
moment of inertia about the center
of mass IG is connected to a spring
of stiffness K by a frictionless hinge
as shown in the figure. Consider two
kinds of friction between the roller
and the surface it moves on:

1. Perfect slipping (no friction),
and

2. Perfect rolling (infinite fric-
tion).

a) What is the period of oscilla-
tion in the first case?

b) What is the period of oscilla-
tion in the second case?



874 Chapter 14. Homework problems

K

roller, M, IG

Ghinge

friction

Filename:pfigure-blue-141-2

14.50 A uniform cylinder of mass
m and radius R rolls back and forth
without slipping through small am-
plitudes (i.e., the springs attached at
point A on the rim act linearly and
the vertical change in the height of
point A is negligible). The springs,
which act both in compression and
tension, are unextended when A is
directly over C.

a) Determine the differ-
ential equation of motion for
the cylinder’s center.

b) Calculate the natural fre-
quency of the system for small
oscillations.

R

C
x

Ak k

Filename:pfigure-blue-152-1

14.51 Hanging disk, 2-D. A uni-
form thin disk of radius R and mass
m hangs in a gravity field g from
a pair of massless springs each with
constant k. In the static equilibrium
configuration the springs are verti-
cal and attached to points A and B
on the right and left edges of the
disk. In the equilibrium configura-
tion the springs carry the weight,
the disk counter-clockwise rotation
is � D 0, and the downwards ver-
tical deflection is y D 0. Assume
throughout that the center of the
disk only moves up and down, and
that � is small so that the springs
may be regarded as vertical when
calculating their stretch (sin� � �
and cos� � 1).

a) Find R� and Ry in terms of some

or all of �; P�; y; Py; k;m;R, and
g.

b) Find the natural frequencies of
vibration in terms of some or
all of k;m;R, and g.

R B

A

k k

y

g

φγ

Filename:pfigure-disktwosprings

14.52 A disk rolls in a cylinder.
For all of the problems below, the
disk rolls without slip and s back and
forth due to gravity.

a) Sketch. Draw a neat sketch
of the disk in the cylinder.
The sketch should show all
variables, coordinates and di-
mension used in the problem.

b) FBD. Draw a free body dia-
gram of the disk.

c) Momentum
balance. Write the equa-
tions of linear and angular mo-
mentum balance for the disk.
Use the point on the cylin-
der which touches the disk for
the angular momentum bal-
ance equation. Leave as un-
known in these equations vari-
ables which you do not know.

d) Kinematics. The disk
rolling in the cylinder is a
one-degree-of-freedom system.
That is, the values of only one
coordinate and its derivatives
are enough to determine the
positions, velocities and accel-
erations of all points. The
angle that the line from the
center of the cylinder to the
center of the disk makes from
the vertical can be used as
such a variable. Find all
of the velocities and acceler-
ations needed in the momen-
tum balance equation in terms
of this variable and it’s deriva-
tive. [Hint: you’ll need to

think about the rolling contact
in order to do this part.]

e) Equation of motion. Write
the angular momentum bal-
ance equation as a single sec-
ond order differential equa-
tion.

f) Simple pendulum? Does
this equation reduce to the
equation for a pendulum with
a point mass and length equal
to the radius of the cylinder,
when the disk radius gets ar-
bitrarily small? Why, or why
not?

g) How many? How many
parts can one simple question
be divided into?

RC

RD

A

disk rolls without slip inside a bigger
cylinder.

Filename:h12-3

14.53 A uniform hoop of radius R1
and mass m rolls from rest down a
semi-circular track of radius R2 as
shown. Assume that no slipping oc-
curs. At what angle � does the hoop
leave the track and what is its angu-
lar velocity ! and the linear velocity
*
v of its center of mass at that in-
stant? If the hoop slides down the
track without friction, so that it does
not rotate, will it leave at a smaller
or larger angle � than if it rolls with-
out slip (as above)? Give a qualita-
tive argument to justify your answer.

HINT: Here is a geometric rela-
tionship between angle � hoop turns
through and angle � subtended by
its center when no slipping occurs:
� D �.R1 C R2/=R2�� . (You may or
may not need to use this hint.)



Chapter 14. Homework problems 875

c

(Hint)

R1

R2

O

A

O
A

θ

φω

t̂

n̂

Filename:pfigure-blue-46-1

14.5 Collisions
14.54 The two blocks shown in the
figure are identical except that one
rests on two springs while the other
one sits on two massless wheels.
Draw free-body diagrams of each
mass as each is struck by a ham-
mer. Here we are interested in the
free-body diagrams only during col-
lision. Therefore, ignore all forces
that are much smaller than the im-
pulsive forces. State in words why
the forces you choose to show should
not be ignored during the collision.

k k

m m

Filename:pfig2-1-rp9

14.55 These problems concerns two
colliding masses. In the first case In
(a) the smaller mass hits the hanging
mass from above at an angle 45� with
the vertical. In (b) second case the
smaller mass hits the hanging mass
from below at the same angle. As-
suming perfectly elastic impact be-
tween the balls, find the velocity of
the hanging mass just after the col-
lision. [Note, these problems are not
well posed and can only be solved
if you make additional modeling as-
sumptions.]

45
o

45
o

m

m

MM

V

V

(a) (b)

Filename:pfig2-2-rp7

14.56 A narrow pole is in the middle
of a pond with a 10m rope tied to it.
A frictionless ice skater of mass 50 kg
and speed 3m=s grabs the rope. The
rope slowly wraps around the pole.
What is the speed of the skater when
the rope is 5 m long? (A tricky ques-
tion.)

pole m = 50 kg
v0 = 3m/s

rope

10 m
5 m

Filename:pfigure-blue-49-1

14.57 The masses m and 3m are
joined by a light-weight bar of length
4`. If point A in the center of the bar
strikes fixed point B vertically with
velocity V0, and is not permitted to

rebound, find P� of the system imme-
diately after impact.

m
V0

3m

A

B

Neglect gravity

2�

4�

Neglect
gravity!

Filename:pfigure-blue-81-1

14.58 Two equal masses each of
mass m are joined by a massless rigid
rod of length `. The assembly strikes
the edge of a table as shown in the
figure, when the center of mass is
moving downward with a linear ve-
locity v and the system is rotat-
ing with angular velocity P� in the
counter-clockwise sense. The impact
is ’elastic’. Find the immediate sub-
sequent motion of the system, as-
suming that no energy is lost dur-
ing the impact and that there is no

gravity. Show that there is an in-
terchange of translational and rota-
tional kinetic energy.

�

φ̇

v

Filename:pfigure-blue-137-2

14.59 In the absence of gravity, a
thin rod of mass m and length `
is initially tumbling with constant
angular speed !o, in the counter-
clockwise direction, while its mass
center has constant speed vo, di-
rected as shown below. The end A
then makes a perfectly plastic colli-
sion with a rigid peg O (via a hook).
The velocity of the mass center hap-
pens to be perpendicular to the rod
just before impact.

a) What is the angular speed !f
immediately after impact?

b) What is the angular speed 10
seconds after impact? Why?

c) What is the loss in energy in
the plastic collision?

G

A

hookO

d

Before impact

O

G

Perfectly
plastic 

collision

vo

ωo

ωf

After impact

Filename:pfigure-blue-78-2

14.60 A gymnast of mass m and ex-
tended height L is performing on the
uneven parallel bars. About the x, y,
z axes which pass through her center
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of mass, her radii of gyration are kx ,
ky , and kz , respectively. Just before
she grasps the top bar, her fully ex-
tended body is horizontal and rotat-
ing with angular rate !; her center
of mass is then stationary. Neglect
any friction between the bar and her
hands and assume that she remains
rigid throughout the entire stunt.

a) What is the gymnast’s rota-
tion rate just after she grasps
the bar? State clearly any ap-
proximations/assumptions
that you make.

b) Calculate the linear speed
with which her hips (CM)
strike the lower bar. State all
assumptions/approximations.

c) Describe (in words, no equa-
tions please) her motion im-
mediately after her hips strike
the lower bar if she releases
her hands just prior to this im-
pact.

L/2

L/2

Just as top
bar is grasped

L 

cm

upper
bar lower

bar

ω

θ

y
z

Filename:pfigure-blue-130-2

14.61 An acrobat modelled as a
rigid body. An acrobat is modeled
as a uniform rigid mass m of length
l . The acrobat falls without rotation
in the position shown from height h
where she was stationary. She then
grabs a bar with a firm but slippery
grip. What is h so that after the sub-
sequent motion the acrobat ends up
in a stationary handstand? [ Hints:
Note what quantities are preserved
in what parts of the motion.]

L

h

bar

BEFORE

DURING

AFTER

Filename:pfigure-s94h10p4

14.62 A crude see-saw is built with
two supports separated by distance
d about which a rigid plank (mass
m, length L) can pivot smoothly.
The plank is placed symmetrically,
so that its center of mass is midway
between the supports when the plan
is at rest.

a) While the left end is resting
on the left support, the right
end of the plank is lifted to
an angle � and released. At
what angular velocity !1 will
the plank strike the right hand
support?

b) Following the impact, the left
end of the plank can pivot
purely about the right end if
d=L is properly chosen and
the right end does not bounce.
Find !2 under these circum-
stances.

θ

d

Just Before Collision

Just After Collision

c.m.

L

ω1

ω2

Filename:pfigure-blue-81-2

14.63 Baseball bat. In order to
convey the ideas without making the
calculation to complicated, some of
the simplifying assumptions here are
highly approximate. Assume that
a bat is a uniform rigid stick with
length L and mass ms . The motion
of the bat is a pivoting about one
end held firmly in place with hands
that rotate but do not move. The
swinging of the bat occurs by the ap-
plication of a constant torque Ms at
the hands over an angle of � D �=2
until the point of impact with the
ball. The ball has mass mb and ar-
rives perpendicular to the bat at an
absolute speed vb at a point a dis-

tance ` from the hands. The colli-
sion between the bat and the ball is
completely elastic.

a) To maximize the speed vhit of
the hit ball How heavy should
a baseball bat be? Where
should the ball hit the bat?
Here are some hints for one
way to approach the problem.

� Find the angular velocity
of the bat just before col-
lision by drawing a FBD
of the bat etc.

� Find the total energy of
the ball and bat system
just before the collision.

� Draw a FBD of the ball
and of the bat during the
collision (with this model
there is an impulse at
the hands on the bat).
Call the magnitude of
the impulse of the ball on
the bat (and vice versa)R
Fdt .

� Use various momentum
equations to find the an-
gular velocity of the bat
and velocity of the ball
just after the collision in
terms of

R
Fdt and other

quantities above. Use
these to find the energy
of the system just after
collision.

� Solve for the value ofR
Fdt that conserves en-

ergy. As a check you
should see if this also
predicts that the relative
separation speed of the
ball and bat (at the im-
pact point) is the same
as the relative approach
speed (it should be).

� You now know can cal-
culate vhit in terms of
mb ; ms ;Ms ; L; `, and vb .

� Find the maximum of
the above expression by
varying ms and `. Pick
numbers for the fixed
quantities if you like.

b) Can you explain in words what
is wrong with a bat that is too
light or too heavy?

c) Which aspects of the model
above do you think lead to
the biggest errors in predicting
what a real ball player should
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pick for a bat and place on the
bat to hit the ball?

d) Describe as clearly as possible
a different model of a baseball
swing that you think would
give a more accurate predic-
tion. (You need not do the cal-
culation).



Answers to *’d problems

2.55) rx D *
r � O{ D .3 cos � C 1:5 sin �/ ft; ry D *

r � O| D .3 sin � �
1:5 cos �/ ft:

2.77) No partial credit.
2.78) To get chicken road sin theta.

2.83)
*

N 1000Np
3
.O{ C O| C Ok/.

2.86) d D
q
3
2
.

2.90a) O�OB D 1p
50
.4O{ C 3 O| C 5 Ok/:

b) O�OA D 1p
34
.3 O| C 5 Ok/:

c)
*

F 1 D 5Np
34
.3 O| C 5 Ok/; *

F 2 D 7Np
50
.4O{ C 3 O| C 5 Ok/:

d) �AOB D 34:45 deg :
e) F1x D 0

f) *
rDO � *

F 1 D
�
100p
34
O| � 60p

34
Ok
�

N�m:
g) M� D 140p

50
N�m:

h) M� D 140p
50

N�m:(same as (7))

2.92a) On D 1
3
.2O{ C 2 O| C Ok/.

b) d D 1.
c) 1

3
.�2; 19; 11/.

2.94) `=
p
2

2.110) Yes.

2.122a)*r2 D *
r1 C

*

F1 � OkM1=j *F1j2,
*

F2 D
*

F1.

b)*r2 D *
r1 C

*

F1 � OkM1=j *F1j2 C c
*

F1 where c is any real number,
*

F2 D
*

F1.

c)
*

F2 D
*

0 and
*

M2 D
*

M1 applied at any point in the plane.

2.123a)*r2 D *
r1 C

*

F1 �
*

M1=j
*

F1j2,
*

F2 D
*

F1,
*

M2 D
*

M1 �
*

F1

*

F1=j
*

F1j2. If
*

F1 D
*

0 then
*

F2 D
*

0 ,
*

M2 D
*

M1, and *
r2 is any point at all in

space.

b)*r2 D *
r1 C

*

F1 �
*

M1=j
*

F1j2 C c
*

F1 where c is any real number,
*

F2 D
*

F1,
*

M2 D
*

M1 �
*

F1

*

F1=j
*

F1j2. See above for the special

890
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case of
*

F1 D
*

0 .
2.124) .0:5m; �0:4m/
3.1a) The forces and moments that show on a free body diagram,

the external forces and moments.
b) The forces and moments that show on a free body diagram, the

external forces and moments. No “inertial” or “acceleration”
forces show.

3.2) You don’t.
3.12) Note, no couples show on any of the free body diagrams re-

quested.
4.5) T1 D Nmg, T2 D .N � 1/mg, TN D .1/mg, and in general

Tn D .N C 1 � n/mg
4.23) (a)TAB D 30N, (b) TAB D 300

17
N, (c)TAB D 5

p
26
2

N
4.59) � � tan�1

�
.1 � �2/=2��

4.62) For this device to hold, � � 1. (Demanding � � 1 is large for
a practical device because typical rock friction has � � 0:5.
The too-large number follows from the simplified geometry
and numbers chosen for a homework problem.)

4.66) TAB D
p
10�mg=.3C �/

4.66) Minimum tension if rope slope is � (instead of 1=3)
4.68a) m

M
D R sin �

R cos �Cr D 2 sin �
1C2 cos �

.

b) T D mg D 2Mg sin �
1C2 cos �

.

c)
*

F C DMg
h
� 2 sin �
2 cos �C1 O{0 C O| 0

i
(where O{0 and O| 0 are aligned with

the horizontal and vertical directions)
c) tan� D sin �

2Ccos �
. Needs somewhat involved trigonometry, ge-

ometry, and algebra.
d) tan D m

M
D 2 sin �

1C2 cos �
.

4.69a) m
M
D R sin �

R cos �r
D 2 sin �

2 cos ��1 .

b) T D mg D 2Mg sin �
2 cos ��1 .

c)
*

F C D Mg
1�2 cos �

�sin � O{ C .cos � � 2/ O|�.
4.70a) F1

F2
D RoCRi sin�

Ro�Ri sin�

b) For Ro D 3Ri and � D 0:2, F1
F2
� 1:14.

4.75) None are true. The tension is 100N.
4.90) Maximum overhang when n!1is`.
4.93) Assuming no side-loads from floor the support from leg AB is

250N, TAB D �250N.
4.94) TIE D mg=2; TCH D p

2mg=2; TBH D �mg=2;Ax D
mg=2;Ay D mg=2;Az D mg

4.97g) TEH D 0 as you can find a number of ways.
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4.98a) Use axis EC.
b) Use axis AH.
c) Use O| axis through B.
d) Use axis DE.
e) Use axis EH.
f) Can’t do in one shot.

4.99) TAC D �p2mg D �1000p2N � �1410N (the bar is in com-
pression)

4.99) TIP D 0

4.99) TKL D p
2mg=6 D

�
1000

p
2=6

�
N � 408N (the bar is in

tension)
4.101) Hint: With reference to a free body diagram of the robot, use

moment balance about axis BC.
5.9) TAC D �1000N, (AC is in compression)
5.10) TAB D 173N
5.13) 12 of the 15 bars are zero-force members; all but BD, DG, and

GJ. The others carry no load but are needed for stability.
5.36) TEB D �11F=2
5.36) THI D �11bF=2a
5.36) TJK D �35bF=2a, (more than 3 times the compression of HI)
6.1) 1000N
6.2) 0:08 cm
6.3) 1160N
6.4) 5 cm
6.5) ke D 66:7N=cm; � D 0:75 cm
6.7) k D 20N=cm
6.8) Middle spring: � D 1 cm; side-springs � D 0:5 cm
6.12) Surprise! This pendulum is in equilibrium for all values of � .
6.37) 200N
6.48) N D .h.w C d/=d`/ Fh

6.55) Either by looking at part KAP or at part BAQ, if we think of
moment balance about A we see that the cutting force has to
fight about twice the torque in the gear mechanism as in the
ungeared mechanism. For example KAP is aided in its cutting
by the torque from the force at G.

6.56) The mechanism multiplies the force at B and C by a factor of
2 compared to having the handle hinged at A. The force at G
also gets (a shade less than) this force but with half the lever
arm. Together they give a force multiplication of (a shade less
than) 2+1=3.
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6.57) FP D 125N
6.57) FP D 125N
6.57) For the load at I, FP D 75N. For the load at J, FP D 250N .
6.57) With the welded handle there is just a simple lever and the

mechanical advantage comes from the horizontal distance be-
tween the load and hinge A. For the 4 bar mechanism the force
at C is the applied vertical load, no matter where it is applied.
So the lever arm is the horizontal distance from A to C.

6.58) FA D 500 lbf
6.59d) reduce the dimension marked “2 inches”. The smaller the less

the friction needed.
e) As the “2 inch” dimension is reduced to zero, the needed coef-

ficient of friction goes to zero and the forces squeezing the pipe
go to infinity. This is bad because it can damage the pipe. It
is also bad because a small pipe deformation will cause the
hinge on the wrench to snap through, like a so called “toggle
mechanism” and thus not grab at all.

6.60)
*

RA D *

0

6.60) T D 200 lbf
6.62) FD D `EC .`EH � d/F=d`CD
6.62) TCC 0 D .`EH=d � 1/ .`EC =`CD C 1/ F

6.62) As d ! 0; FD ! 1. Two problems: the amount of mo-
tion goes to zero and the assumption of rigidity becomes non-
negligibly inaccurate.

6.63) FN
�
b.a2 C b2/=a2/

�
F D 130F D 1300 lbf

6.63) The mechanism uses three tricks to multiply the force: a lever,
a wedge, and a toggle. Each of these multiplies by about 5.
Thus the nut-force FN is on the order of 53 D 125 times as
big as F .

7.3) .117
=2/m3 D 5:85 � 105N
7.4) Water starts to spill at h D 3rAB D 3m.

7.4) Assuming no friction at B,
*

FA D 2:25 � 105 O{ N
7.9a) �g�r2`

b) ��g�r2.h � `/, note the minus sign, it now takes force to lift
the can.

8.14) FAy D �500N;MA D �500=3N�m
8.15) V.`=2/ D �w`=8;M.`=2/ D w`2=16;Mmax D M.3`=8/ D

9wl2=128

8.17b) [Hint: at every height y the cross sectional area must be big
enough to hold the weight plus the wire below that point.
From this you can set up and a differential equation for the
cross sectional area A as a function of y. Find appropriate
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initial conditions and solve the equation. Once solved, the
volume of wire can be calculated as V D R 1

0 0miA.y/dy and
the mass as �V .]

9.1) a) a car with given thrust and drag, b) a person falling verti-
cally during bungy jumping, c) a speaker cone oscillating due
to magnetic forces on its coils and resistance from air pressure.

9.2) All points have equal velocity so all have the same velocity as
the center of mass, any point can be used to measure the car’s
position.

9.3) No. You need also to know v.0/. v.T / D v.0/ C R T
0 a.t/ dt .

Knowing a.t/ determines the change of v but not the value
v.T /.

9.4) (b)
9.5) (a) or (b), provided the linear acceleration starts from zero.
9.6) (c)
9.7) (b)
9.8) What’s this, 7th grade again? t D d=v D

.10 km/=.15mi= hr/ .1mi=1:61 km/� �� �
1

.60min= hr/� �� �
1

D 24:8min

9.11) x.3 s/ D 20m
9.15) (a) v.3 s/ D 2m=s in each case. (b) x.3 s/ D 3m for case (a),

x.3 s/ D 4m for case (b).
9.16) Fs D �

4
FT

9.48) Time span D 3�
p
m=k=2

9.51) (a) m RxCkx D F.t/, (b) m RxCkx D F.t/, and (c) m RyC2ky�
2k`0

yq
`2
0
Cy2

D F.t/

9.53b) mg � k.x � `0/ D m Rx
c) Rx C k

m
x D g C k`0

m

e) This solution is the static equilibrium position; i.e., when the
mass is hanging at rest, its weight is exactly balanced by the
upwards force of the spring at this constant position x.

f) ROx C k
m
Ox D 0

g) x.t/ D �
D � �`0 C mg

k

��
cos

q
k
m
t C .`0 C mg

k
/

h) period=2�
q
m
k

.

i) If the initial position D is more than `0 C 2mg=k, then the
spring is in compression for part of the motion. A floppy spring
would buckle.

9.55a) periodD 2�q
k
m

D 0:96 s

b) maximum amplitude=0:75 ft



Chapter A. Answers to *’d problems Answers to *’d problems 895

c) periodD 2
q
2h
g
C
q
m
k

h
� C 2 tan�1

q
mg
2kh

i
� 1:64 s.

9.56) LHS of Linear Momentum Balance:
P *

F D �.kx C b Px/O{ C
.N �mg/ O| .

9.69) *
aB D RxB O{ D 1

mB
��k4xB�k2.xB�xA/Cc1. PxD� PxB/Ck3.xD�

xB/�O{.
9.70) *

aB D RxB O{ D 1
mB
��k4xB � c1. PxB � PxA/C .k2 C k3/.xD � xB/�.

9.71b) If we start off by assuming that each mass undergoes simple
harmonic motion at the same frequency but different ampli-
tudes, we will find that this two-degree-of-freedom system has
two natural frequencies. Associated with each natural fre-
quency is a fixed ratio between the amplitudes of each mass.
Each mass will undergo simple harmonic motion at one of the
two natural frequencies only if the initial displacements of the
masses are in the fixed ratio associated with that frequency.

9.72a) Two normal modes.
b) x2 D const � x1 D const � .A sin.ct/ C B cos.ct//,where

const D �1.
c) !1 D

q
3k
m

, !2 D
q
k
m

.

9.74) vA D
r

mBk�2

m2
A
CmBmA .

9.79a) One normal mode: �1; 0; 0�.

b) The other two normal modes: �0; 1; 1�
p
17

4
�.

9.82a) ! D
q
2k
m

.

9.86) hmax D e2h.
9.91a) v0 D 1

m
.mvB CmBvB CmAvA/.

b) v1 D .mCmB/
m

vB .

c) (1) Eloss D 1
2
m
h
v20 �

�
mCmB
m

�
v2B

i
� 1

2
mAv

2
A. Eloss D

1
2
m
h
.mCmB/2

m
v2B � .mCmB/v

2
B

i
.

10.3a) *
v .5 s/ D .30O{ C 300 O|/m=s.

b) *
a.5 s/ D .6O{ C 120 O|/m=s2.

10.5) *
r .t/ D �

x0 C u0


� u0



cos.
t/
� O{ C .y0 C v0t / O| :

10.11) *
v D 2t m=s2 O{ C e

t
s m=s O| , *

a D 2m=s2 O{ C e
t
s m=s2 O| .

10.21) T3 D 13N

10.29) Equation of motion: �mg O| �b. Px2C Py2/
�

Px O{C Py O|p
Px2C Py2

�
D m. Rx O{C

Ry O|/.
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10.30a)System of equations:

Px D vx

Py D vy

Pvx D � b
m
vx

q
v2x C v2y

Pvy D �g � b

m
vy

q
v2x C v2y

11.4) No. You need to know the angular momenta of the parti-
cles relative to the center of mass to complete the calculation,
information which is not given.

11.9) The mass would stay on the z axis if the solution was exact.
11.9) The solution would be exactly periodic if the ratio of the

masses was infinite rather than just 1000. There are special
initial conditions for which the motion is periodic for any mass
ratio, the oscillations of the light mass need to be synchronous
with the in-and-out oscillations of the heavier nearly-circular-
motion masses.

11.10) The trajectories should all be parts of the same figure 8.
11.10) The trajectories trace and retrace the same figure 8.
11.10) The trajectories make a beautiful swirl resembling a figure 8.
11.10) The trajectories get wild, possibly ejecting one or more masses

off to infinity.

11.20) Hint: One test problem is this: *
v
�
1 D O{; *v�2 D

*

0 ;m1 D m2 D
1; e D 0; � D 0. This should have the solution *

v
C
1 D *

v
C
2 D

0:5O{; *P D :5O{.
12.2a) aB D

�
mB�mA
mACmB

�
g

b) T D 2 mAmB
mACmB g.

12.6) (a) *
aA D *

aB D F
m
O{, where O{ is parallel to the ground and

pointing to the right., (b) *
aA D 2F

m
O{, *
aB D 4F

m
O{, (c) *

aA D
F
2m
O{, *
aB D F

4m
O{, (d) *

aA D F
m
O{, *
aB D �F

m
O{.

12.8) aA
aB

D 81.

12.11) Tn D Pt
vt

n
N

.

12.14a)*aA D 5F
m
O{, *
aB D 25F

m
O{, where O{ is parallel to the ground and

points to the right.
b)*aA D g

.4m1Cm2/.2m2 �
p
3m2/O�1, *

aB D � g
2.4m1Cm2/.2m2 �p

3m2/O�2, where O�1 is parallel to the slope that mass m1 trav-
els along, pointing down and to the left, and O�2 is parallel to
the slope that mass m2 travels along, pointing down and to
the right.

12.18) angular frequency of vibration � � D
q
64k
65m

.
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12.25a)m RxC 4kx D A sin!t Cmg, where x is the distance measured
from the unstretched position of the center of the pulley.

b)The string will go slack if ! >
r
4k
m

�
1 � A

mg

�
.

12.26a)*aA D �9kd
mA

O{.
b)v D 3d

q
k
mA

12.32) TAB D 5
p
39
28

m.ay C g/

12.40) ax >
3
2
g

12.43) Can’t solve for TAB .
12.54d)Normal reaction at rear wheel: Nr D mgw

2.h�Cw/ , normal reac-
tion at front wheel: Nf D mg � mgw

2.h�Cw/ , deceleration of car:
acar D � �gw

2.h�Cw/ .
e)Normal reaction at rear wheel: Nr D mg � mgw

2.w��h/ , normal
reaction at front wheel: Nf D mgw

2.w��h/ , deceleration of car:
acar D � �gw

2.w��h/ . Car stops more quickly for front wheel
skidding. Car stops at same rate for front or rear wheel skid-
ding if h D 0.

f)Normal reaction at rear wheel: Nr D mg.w=2��h/
w

, normal
reaction at front wheel: Nf D mg.w=2C�h/

w
, deceleration of

car: acar D ��g.
g)No. Simple superposition just doesn’t work.
h)No reaction at rear wheel.
i) Reaction at rear wheel is negative. Not allowing for rotation

of the car in the xy-plane gives rise to this impossibility. In
actuality, the rear of the car would flip over the front.

12.55a)Hint: the answer reduces to a D `rg=h in the limit �!1.]
12.56a)*a D g.sin� � � cos�/O{, where O{ is parallel to the slope and

pointing downwards
b)*a D g sin�

c)*v D g.sin� � � cos�/t O{, *
r D g.sin� � � cos�/ t

2

2

d)*v D g sin�t O{, *
r D g sin� t

2

2
O{

12.58a)
*

RA D .1��/mg cos �
2

. O| 0 � �O{0/.
c)No tipping if NA D .1��/mg cos �

2
> 0; i.e., no tipping if � < 1

since cos � > 0 for 0 < � < �
2

.(Here � D 0:9)

12.60) braking accelerationD g.1
2

cos � � sin �/.

12.64a)v D d

q
k
m

.

b)The cart undergoes simple harmonic motion for any size os-
cillation.



898 Chapter A. Answers to *’d problems Answers to *’d problems

12.67a)*abike D FpLc
MRf

.

b)max(*abike/=
ga

aCbC2Rf .

12.68) TEF D 640
p
2 lbf.

12.69a)TBD D 92:6 lbm � ft=s2.
b)TGH D 5

p
61 lbm � ft=s2.

12.70b)TEH D 0

c) .RCx�TAB/O{C.RCy� TGDp
2
/ O|C.THECRCzC TGDp

2
/ Ok D m

*
a D

10N Ok.
d)

P *

Mcm D .TGDp
2
� THE � RCz /O{ C .RCz � TGDp

2
� THE / O| C

.TAB CRCx �RCy � TGDp
2
/ Ok D *

0

e)

RCx � TAB D 0

RCy �
TGDp
2
D 0

RCz C
TGDp
2
C TEH D 5N

�TEH C TGDp
2
�RCz D 0

�TEH � TGDp
2
CRCz D 0

TAB �
TGDp
2
CRCx �RCy D 0

f)RCx D 5N, RCy D 5N, RCz D 5N, TGD D 10p
2

N, TEH D 0N,
TAB D 5N.

g)Find moment about CD axis; e.g., .
P *

MC D *
r cm=C �m*

acm/�
O�CD, where O�CD is a unit vector in the direction of axis CD.

12.75a)FL D 1
2
mtotg.

b)*aP D 1
mtot

�2.T � FD/ �D� O{.
c)

*

F D
h
mw
mtot

.2T �D � 2FD/ � T C FD

i
O{ C .mwg � FL/ O| and

*

M D
.bFL � amwg/O{ C

h
.bFD � cT /C a mw

mtot
.2T �D � 2FD/

i
O| .

12.76) sideways force = FB O{ D wma
2`

O{.
13.16) F D 0:52 lbf D 2:3N
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13.22b) For � D 0�,

Oer D O{
Oet D O|
*
v D 2�r

�
O|

*
a D �4�

2r

�2
O{;

for � D 90�,

Oer D O|
Oet D �O{
*
v D �2�r

�
O{

*
a D �4�

2r

�2
O|;

and for � D 210�,

Oer D �
p
3

2
O{ � 1

2
O|

Oet D 1

2
O{ �

p
3

2
O|

*
v D �

p
3�r

�
O| C �r

�
O{

*
a D 2

p
3�2r

�2
O{ C 2�2r

�2
O| :

c)T D 4m�2r
�2

.
d)Tension is enough.

13.25b) .
P*
H=O/I D

*

0 ; .
P*
H=O/II D 0:0080N�m Ok.

c)Position-A: .
*

H =O/I D 0:012N�m � s Ok,.
*

H =O/II D 0:012N�m �
s Ok, Position-B: .

*

H =O/I0:012N�m � s Ok, .
*

H =O/II D 0:014N�m �
s Ok.]

13.27) r D kro
k�m!2o .

13.29) `0 D 0:2m
13.31b)T D 0:16�4N .

c)
*

H =O D 0:04�2 kg�m=s Ok
d)*r D �

p
2
2
� v cos.�t

4
/�O{ C �

p
2
2
C v sin.�t

4
/� O| .

13.33a)2mg.
b)! D

p
99g=r

c)r � 1m .r > 0:98m/
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13.36) (b) R� C 3g
2L

sin � D 0

13.39b)The solution is a simple multiple of the person’s weight.
13.41a) R� D �.g=L/ sin �

d) P� D �.g=L/ sin �; P� D �

f) Tmax D 30N

13.42a) Pv D ��v2
R

.

b)v D v0e
��� .

13.45a)The velocity of departure is *
vdep D

q
k.�`/2

m
� 2GR O| , where

O| is perpendicular to the curved end of the tube.
b)Just before leaving the tube the net force on the pellet is due

to the wall and gravity,
*

F net D �mg O| �m j*v dep j2
R

O{; Just after
leaving the tube, the net force on the pellet is only due to
gravity,

*

F net D �mg O| .
13.70) !min D 10 rpm and !max D 240 rpm
13.72) Izz D 0:125 kg � m2.
13.73a)0:2 kg � m2.

b)0:29m.
13.74) At 0:72` from either end
13.75a).Izz/min D m`2=2, about the midpoint.

b).Izz/max D m`2, about either end
13.76a)C

b)A

c)IAzz=I
B
zz D 2

d)smaller, rgyr D
p
ICzz=.3m/ D

p
2`

13.77a)Biggest: IOzz; smallest: IOyy D IOxx.

b)IOxx D
3

2
m`2 D IOyy . IOzz D 3m`2.

d)rgyr D `.

13.82a)!n D
r

gL.MCm
2 /CK

.MCm
3 /L

2CM R2

2

.

b)!n D
r
gL.MCm

2 /CK
.MCm

3 /L
2

. Frequency higher than in (a)

13.83a)I cmzz D 2m`2

b)P � A; B; C; or D
c)rgyr D `=

p
2

13.84) IOxx D IOyy D 0:3 kg � m2.

13.86a)IOzz D
2m

bh

Z b

0

Z hx=b

0

.x2 C y2/ dy dx.

13.100a)7.85 kW
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b)7.85 kW
c)750 rev/min
d)100N�m.

13.103a)vP D 2m=s.
b)*vP D �2m=sO{.
c)*aP D �4m=s2 O| .

d)*v r D 1m=sO�r , where O�r is a unit vector pointing in the direc-
tion of the rack, down and to the right.

e)No force needed to move at constant velocity.
13.104a)Pin D 7:33kilo-watts

b)500 rpm
c)Mout D 140N�m

13.108a)�B D 20 rad=s2 (CW)
b)a D 4m=s2 (up)
c)T D 280N.

13.111a)FB D 100 lbf.
c)vright D v.

13.119b)
(b) T D 2:29 s

(e) T D 1:99 s
(b) has a longer period than (e) does since in (b) the moment of inertia

about the center of mass (located at the same position as the
mass in (e)) is non-zero.

13.123a)R� D 0 rad=s2.
b)R� D sin �

m`
.Dk �mg/.

13.124b)�F.t/` cos� �mg` sin� C Tm D �m`2 R�.

13.125a)(a)
*

F D 0:33NO{ � 0:54N O| .

13.126a)T .r/ D m!2

2L
.L2 � r2/

b)at r D 0; i.e., at the center of rotation
c)r D L=

p
2

13.135a)Point at 2L=3 from A
b)mg=4 directed upwards.

13.136c)T D 2�p
g=`

q
1

12.d=`/
C d

`

g)d D 0:29 `

13.139a)Net force:
*

F net D �.3m!2L
2

/O{ � .m!
2L
2

/ O| , Net moment:
*

Mnet D *

0 .
b)Net force:

*

F net D �.3m!2L
2

/O{C .2mg� m!2L
2

/ O| , Net moment:
*

Mnet D 3mgL
2

Ok.
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13.140)Trev D
q
2MO`2�
3FRp

.

13.146)period = �

q
2m
k

.

13.148a)*� D R� Ok D� rad=s2 Ok (oops).
b)T D 538N.

13.149)*vB D
s
2gh�mB�2mA.sin �C� cos �/��
4mACmBC4mC

�
KC
RC

�2� .

13.150)*am D 0:188m=s2

14.7a)

Oet D
2t
s O{ C e

t
s O|q

4 t
2

s2
C e

2t
s

at D 4t m
s3
C e

2t
s m=s2q

4 t
2

s2
C e

2t
s

*
an D .2 � 2 ts/e

2t
s m=s2 O{ C .4 t

2

s2
� 4 ts/e

t
s m=s2 O|

4 t
2

s2
C e

2t
s

Oen D e
t
s O{ � 2 ts O|q
4 t

2

s2
C e

2t
s

� D .4 t
2

s2
C e

2t
s /

.2 � 2 ts/e
t
s

m

14.11a)*acm D F
m
O{.

b)*� D �6F
m`

Ok.

c)*aA D 4F
m
O{.

d)
*

FB D F
2
O{

14.14a)*a D F
m
O| .

b)*� D Fd

mR2

2

Ok.

14.24a)Fout D 3
7

lb.
b)Fout is always less than the Fin.

14.33a)*�Disk D �4
3

rad=s2 Ok.

b)*aA D 8
3

m=s2 O{.
14.35a)aC D .F=m/.1 �Ri=RO/O{.

b).�Ri=RO/F O{.
14.40a)speed v D R P�

3
.

b)The energy lost to friction is Ef ric D mR2 P�2
0

6
. The energy lost

to friction is independent of � for � > 0. Thus, the energy lost
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to friction is constant for given m, R, and P�0. As �! 0, the
transition time to rolling ! 1. It is not true, however, that
the energy lost to friction ! 0 as � ! 0. Since the energy
lost is constant for any � > 0, the disk will slip for longer
and longer times so that the distance of slip goes to infinity.
The dissipation rate ! 0 since the constant energy is divided
by increasing transition time. The energy lost is zero only for
� D 0.

14.41) V D 2m=s.

14.42) vo D 2
p
2gR
3

.
14.48) Accelerations of the center of mass, where O{ is parallel to the

slope and pointing down: (a) *
acm D g sin � O{, (b) *

acm D
2
3
g sin � O{, (c) *

acm D 1
2
g sin � O{, (d) *

acm D 2
3
g sin � O{. So, the

block is fastest, all uniform disks are second, and the hollow
pipe is third.

14.61) h D 2L=3]



Index

acceleration
absolute

general motion of a rigid
object, 796

centripetal, 797
circular motion, 680
circular motion at constant

rate, 676
2D, 676

circular motion at constant
rate, derivation, 677

general motion
cartesian coordinates,

553
one-dimensional motion,

427
relative

general motion of a rigid
object, 796

relative motion of points on
a rigid object, 708

accelerometer, 548
action and reaction

free-body diagrams, 157
partial FBD’s of interact-

ing bodies, 166
angular momentum about a

point C
theory

box, one-dimensional
motion, 648

angular momentum about a
point C

one-dimensional motion,
649

angular acceleration
general motion of a rigid

object, 795

2D, 795
angular frequency of vibration,

468
angular momentum

circular motion at constant
rate

2D, 737
angular velocity

general motion of a rigid
object, 793

2D, 793
rigid body in 2-D , 699

balancing units, 879
ball-and-socket joint

free-body diagrams, 161
belt drive, 777
bicycle helmet, 459
body forces

free-body diagrams, 154
brush gearing, 772
buoy, 484

c, linear damping coefficient,
474

Calculation strategies and
skills, 17

counting equations and un-
knowns, 93

understanding the ques-
tion, 17

cantilever resonator, 534
carrying units, 880
cartesian coordinates

general motion
acceleration, 553
position, 553
velocity, 553

904
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center of gravity, 122
center of percussion, 864
center-of-mass, 122
centrifugal force, 155
centripetal acceleration, 797
changing units, 880, 881
circular motion

simple pendulum, 689
Circular motion , 674
circular motion at constant rate

acceleration, 676
2D, 676

acceleration derivation, 677
angular momentum

2D, 737
kinematics, 676

2D, 676
kinetic energy

2D, 738
linear momentum

2D, 736
motion quantities

2D, 736
rate of change of angular

momentum
2D, 737

rate of change of linear mo-
mentum

2D, 736
velocity, 676

2D, 676
velocity derivation, 677

circular motion at variable rate
2-D and 3-D, 708
examples, 688
linear momentum balance,

739
collisions

free body diagrams, 854
computers, 20

graphing of curves, 676
constant rate circular motion

acceleration, 676
2D, 676

angular momentum
2D, 737

kinematics, 676
2D, 676

kinetic energy
2D, 738

linear momentum
2D, 736

motion quantities
2D, 736

rate of change of angular
momentum

2D, 737
rate of change of linear mo-

mentum
2D, 736

velocity, 676
2D, 676

constitutive laws
dashpots, 473
springs, 332
contact mechanics, 174

constrained bodies
one-dimensional motion,

646
constrained motion and applied

forces
free-body diagrams, 158

contact mechanics
constitutive laws, 174
friction, 175

Coulomb friction, 176,
184

normal force, 184
critical damping, 475
cross product, 72

distributive law, 83
special cases, 78

curve graphing, 676

D’Alembert, 436
D’Alembert’s mechanics, 436
dam design, 398
dam tipping, 397
damped oscillations, 464

measurement, 475
solutions, 475

damping coefficient, c, 474
dashpots
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free body diagrams, 473
differential equations

ordinary, 476
ordinary, summary box of

simplest ODE’s, 438
dimensionless variables, 883
dimensions, 879, 880
disk

moment of inertia, 724
dot product, 62

finding components using,
63

dot products
with other than the stan-

dard basis, 64
drawing free-body diagrams,

155
Dynamics of particles , 632
Dynamics: What Is It

How Is It Done?
calculation strategies and

skills, 17

EK, 449
Oe
R

, 677, 678
Oe� , 677, 678
eigenvalues, 505
eigenvectors, 505
energy balance equation

circular motion at constant
rate, 676

equivalent force systems
in free-body diagrams, 156

f , natural frequency of vibra-
tion, 468

flyball governor, 369
force

centrifugal, 155
what is, 28

force units, 880
forced oscillations

frequency response, 521
measurement, 523

forced oscillations and reso-
nance, 518

four-bar linkage, 371

free body diagrams
collisions, 854
ideal wheels, 181

Free body diagrams , 151
free-body diagrams, 153

ball-and-socket joint, 161
body forces, 154
constrained motion and ap-

plied forces, 158
cuts at hinges, 160
cuts at rigid connections,

158
definition and features, 153
equivalent force systems in,

156
how to draw, 155
interactions, 157
string, rope, wires, light

chain, 162
summary, 164

frequency response, 521
measurement, 523

friction, 175
Coulomb friction, 176, 184
normal force, 184

Fuller, Buckminster, 309

gears, 355
Sturmey-Archer hub, 824

General motion of a point
mass or system of point
masses

cartesian coordinates, 553
General Motion of a rigid body

pure rolling in 2-D
planetary gear, 824

pure rolling in2D
Sturmey-Archer hub, 824

rolling of round objects on
round surfaces, 823

General motion of a rigid body
pure rolling in 2-D , 822

General Motion of a Rigid Ob-
ject

acceleration
absolute, 796
relative, 796
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angular acceleration, 795
2D, 795

angular velocity
2D, 793

momenta balance, 807
summary of motion quanti-

ties, 808
velocity, 790

absolute, 794
relative, 793

General Motion of a Rigid ob-
ject

angular velocity, 793
General planar motion of parti-

cles and rigid bodies ,
788

graphing curves, 676
gyration, radius of, 721

*

H =C, 648, 649
P*
H =C, 648, 649
harmonic oscillator, 464
hinges

free-body diagrams, 160
hoop

moment of inertia, 724
hydrostatics, 384

�I�, 735
�I�, 720
ideal pulley

in a free body diagram, 212
ideal wheels

free body diagrams, 181
inertial forces, 436
interactions

free-body diagrams, 157

kinematics
circular motion at constant

rate, 676
2D, 676

one-dimensional motion,
426

kinetic energy
circular motion at constant

rate

2D, 738
one-dimensional motion,

449
*

L, 430
P*
L, 430
�, oscillation frequency, 468
left-hand side of the energy

equation
potential energy of a force,

574
work of a force, 574

length
units, 879, 880

lever, 352
light chain

free-body diagrams, 162
linear algebraic equations, 103
linear damping coefficient, c,

474
linear momentum

circular motion at constant
rate, 2-D , 736

one-dimensional motion,
430

linear momentum balance
circular motion at variable

rate, definition of, 739
logarithmic decrement, 475
loudspeaker

resonance, 526

mass
units, 879

mass-spring-dashpot, 464
matrices

solving systems of equa-
tions, 103

mechanics, its three pillars, 28
mechanics, what is it, 27
MEMS gyroscope, 505
MEMS resonator, 534, 547
mixed triple product, 79
moment of inertia

2-D examples, 724
polar, 721
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used in equations of me-
chanics, 735

moment of inertia, scalar and
matrix, 720

momenta balance
general motion of a rigid

object, 807
momentum balance equations

circular motion at constant
rate, 676

motion quantities
circular motion at constant

rate
2D, 736

one-dimensional motion,
430

natural frequency, 505
natural frequency of vibration,

f , 468
Negligible Motion: Statics

left-hand sides of the mo-
mentum balance equa-
tions, 193

non-Newtonian frames, 560
nonlinear oscillator, 697
nonlinear pendulum, 696
normal mode, 505

O’, 647
one-dimensional kine-

matics and mechanics,
426

one-dimensional motion
theory box, angu-

lar momentum about a
pointC , 648

ordinary differential equations
summary box of simplest

ODE’s, 438
oscillation frequency, �, 468
overdamping, 475

parallel axis theorem
2D, 721
2D, theory box, 723

Particle dynamics, 551

period of vibration, 468
perpendicular axis theorem

2-D , theory box, 723
perpendicular axis theorem for

planar objects, 722
plate

moment of inertia, 724
Plato

discussion of spinning in
circles, 710

point mass
moment of inertia, 724

polar coordinates
acceleration derivation, 678
unit vectors, 677
velocity derivation, 678

polar moment of inertia, 737
position

general motion
cartesian coordinates,

553
one-dimensional motion,

427
potential energy of a force, 574
Power and rate of change of ki-

netic energy, 572
product rule, 555
products of three vectors, 79
pseudo-force balance, 436
pseudo-moment balance, 436
pseudo-statics

equations, 436
pulley

ideal,in a free body dia-
gram, 212

pulleys, 636
pure rolling

2D, 822

radius of gyration, 721
RAP, pseudo-computer

language, 23
rate of change of linear momen-

tum
one-dimensional motion,

430
rate of change of a
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non-Newtonian frame, 560
Rate of change of a vector, 552
rate of change of a vector

frame dependency, 560
product rule, 555

rate of change of angular mo-
mentum about a point
C

one-dimensional motion,
649

rate of change of angular mo-
mentum

circular motion at constant
rate

2D, 737
rate of change of angular mo-

mentum about a point
C

theory
box, one-dimensional
motion, 648

rate of change of linear momen-
tum

circular motion at constant
rate, 2-D , 736

relation of force to motion, 31
relative motion

one-dimensional motion,
491

relative motion of points on a
rigid object, 708

acceleration, 708
velocity, 708

resonance, 518
loudspeaker, 526

resonant frequency, 534
rigid body motion

acceleration
absolute, 796

rigid connections
free-body diagrams, 158

rigid object motion, 808
acceleration

relative, 796
angular acceleration, 795
angular velocity, 793

2D, 793
centripetal acceleration,

797
general motion of a rigid

object, 807
velocity, 790

absolute, 794
relative, 793

rod
moment of inertia, 724

rolling of round objects on
round surfaces, 823

rope
free-body diagrams, 162

rotating frames
introduction, 709

scalar
summary tables, 52

separatrix, 697
simple pendulum, 689
slider crank, 368
sliding objects

one-dimensional motion,
650

sluice gate, 396
spring-mass system

examples, 473
springs, 330

free body diagrams, 332
parallel and series, 345, 480

statics
three-force members, 210
two-force bodies, 209

Straight Line Motion
2-D and 3-D forces, 646
acceleration, 427
kinetic energy, 449
linear momentum, 430
one-dimensional kinemat-

ics and mechanics, 426
one-dimensional motion

quantities, 430
position, 427
pulleys, 636
rate of change of linear mo-

mentum, 430
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velocity, 427
Straight-Line Motion, 632

Highly Constrained Bodies,
646

theory box, rate of change
of angular momentum
about a pointC , 648

Straight-line motion
angular momentum about

a point C, 649
rate of change of angu-

lar momentum about a
point C, 649

sliding objects, 650
string

free-body diagrams, 162
Sturmey-Archer hub, 824
sweet spot, 864

tensegrity structure, 273, 309
three-force members, 210
time

units, 879
Time derivative of a vector, 552
two degree of freedom system,

505
two-force bodies, 209

undamped harmonic oscillator
natural frequency of vibra-

tion, f , 468
oscillation frequency, �,

468
period of vibration, 468
solution, 467

underdamping, 475
unforced damped harmonic os-

cillator, 464
critical damping, 475
linear damping coefficient,

c, 474
logarithmic decrement, 475
overdamping, 475
solutions, 475
underdamping, 475

unforced harmonic oscillator
summary, 476

unit vectors
polar coordinates, 677

units
balancing, 879
carrying, 880
changing, 880, 881
computers and calculators,

883
consistent system of

table, 883
dimensionless variables,

883
force, 880
guidelines, 883
length, 879
mass, 879
time, 879

units and dimensions, 879

variable rate circular motion
2-D and 3-D, 708
examples, 688
linear momentum balance,

739
vector

cross product, 72
dot product, 62

finding components us-
ing, 63

how to write, 42
identities, 78
mixed triple product, 79
products of three vectors,

79
rate of change of a, 552

frame dependency, 560
non-Newtonian frame,

560
product rule, 555

skills, 66, 92
summary box, 53

vector equations
reduction of into scalar

equations, 103
Vector skills for mechanics , 40
vectors and scalars, 42
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vectors, matrices, and linear al-
gebraic equations, 103

velocity
absolute

general motion of a rigid
object, 794

circular motion, 680
circular motion at constant

rate, 676
2D, 676

circular motion at constant
rate, derivation, 677

general motion
cartesian coordinates,

553
general motion of a rigid

object, 790
one-dimensional motion,

427
relative

general motion of a rigid
object, 793

relative motion of points on
a rigid object, 708

Vibrations, 464
forced oscillations

frequency response, 521
forced oscillations and res-

onance, 518
resonance

loudspeaker, 526
undamped harmonic oscil-

lator
energy, 471
oscillation frequency, 468
period of vibration, 468
solution, 467

unforced damped harmonic
oscillator, 464

critical damping, 475
linear damping coeffi-

cient, c, 474
logarithmic decrement,

475
measurement, 475
overdamping, 475

solutions, 475
underdamping, 475

unforced harmonic oscilla-
tor

summary, 476
viscous drag, 461

wires
free-body diagrams, 162

work of a force, 574

Zero-force members, 271



912 Chapter A. Back inside Summary tables

Momenta and energy

Linear Momentum Angular Momentum Kinetic Energy

What system

⇀

L ˙⇀
L =

d

dt

⇀

L

⇀

H
C

˙⇀
H

C
=

d

dt

⇀

H
C

EK

In General

Lx ı̂ + L y ̂ + L z k̂

= mtot
⇀

vcm

= d

dt
.mtot

⇀

rcm/

L̇x ı̂ + L̇ y ̂ + L̇ z k̂

= mtot
⇀

acm

“F = ma”


HCx ı̂ + HCy ̂ + HCz k̂

=
⇀

r cm/C ×
⇀

vcmmtot +
⇀

H
cm

= d

dt
.no such thing/

ḢCx ı̂ + ḢCy ̂ + ḢCz k̂

=
⇀

r cm/C ×
⇀

acmmtot + ˙⇀
H

cm

= (no simple general expression)

1

2
mtot v

2

cm
+ EK/cm

One Particle P m
P

⇀

v
P

m
P

⇀

a
P

⇀

r P/C ×
⇀

v P m
P

⇀

r P/C ×
⇀

a
P
m

P

1

2
m

P
v

2

P

System of

Particles

∑

all particles i

mi

⇀

v i

∑

all particles i

mi

⇀

a i

∑

all particles

⇀

r i/C ×
⇀

v i mi

∑

all particles

⇀

r i/C ×
⇀

a i mi

1

2

∑

all particles

v
2

i
mi

Continuum

∫

all mass

⇀

v dm

∫

all mass

⇀

a dm

∫

all mass

⇀

r /C ×
⇀

v dm

∫

all mass

⇀

r /C ×
⇀

a dm

1

2

∫

all mass

v
2

dm

System of Systems

(eg. rigid bodies)

∑

all sub-systems

mi

⇀

v i

∑

all sub-systems

mi

⇀

a i

∑

all sub-systems

⇀

H
Ci

∑

all sub-systems

˙⇀
H

Ci

∑

all sub-systems

EKi

Rigid Bodies

One rigid body

(2D and 3D)
mtot

⇀

vcm
mtot

⇀

acm

⇀

r cm/C ×
⇀

vcmmtot + [Icm
] ·

⇀

ω
︸ ︷︷ ︸

⇀

H cm

⇀

r cm/C ×
⇀

acmmtot

+ [Icm
] · ˙⇀ω +

⇀

ω ×
⇀

H
cm

︸ ︷︷ ︸

˙⇀
H cm

1

2
mtot v

2

cm

+
1

2

⇀

ω · [Icm
] ·

⇀

ω

︸ ︷︷ ︸

EK/cm

2D rigid body

in xy plane

with
⇀

ω = ωk̂

mtot
⇀

vcm
mtot

⇀

acm

⇀

r cm/C ×
⇀

vcmmtot + I
cm

zz
ωk̂

︸ ︷︷ ︸
⇀

H cm

⇀

r cm/C ×
⇀

acmmtot + I
cm

zz
ω̇k̂

︸ ︷︷ ︸

˙⇀
H cm

1

2
mtot v

2

cm

+
1

2
I

cm

zz
ω

2

︸ ︷︷ ︸

EK/cm

One rigid body

if

C is a fixed point

if

C is a fixed point

(2D and 3D)

mtot
⇀

vcm mtot
⇀

acm [IC
] ·

⇀

ω =
⇀

HC [IC
] · ˙⇀ω +

⇀

ω ×
⇀

HC

1

2

⇀

ω · [I
C

] ·
⇀

ω

2D rigid body

with
⇀

ω = ωk̂

mtot
⇀

vcm mtot
⇀

acm I
C

zz
ωk̂

I
Co

zz
ω̇k̂

“
M = Iα”

1

2
I

C

zz
ω

2

TABLE I




(1)

(a) (b) (c) (d) (e)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

The table has used the following terms:

mtot =total mass of system,

mi = mass of body or subsystem i,
⇀

r cm/C = the position of the center of mass relative to

point C ,
⇀

v i = velocity of the center of mass of sub-system or

particle i ,
⇀

a i = acceleration of the center of mass of sub-system

i ,
⇀

H
Ci

= angular momentum of subsystem i relative to

point C.

˙⇀
H

Ci
= rate of change of angular momentum of sub-

system i relative to point C.

⇀

H
cm

=
∑

⇀

r
i/cm

× .mi

⇀

v i/ angular momentum about

the center of mass
˙⇀

H
cm

=
∑

⇀

r
i/cm

× .mi

⇀

a i/ rate of change of angular

momentum about the center of mass
⇀

ω is the angular velocity of a rigid body,

˙⇀ω =
⇀

α is the angular acceleration of the rigid body,

[Icm
] is the moment of inertia matrix of the rigid body

relative to the center of mass, and

[Io
] is the moment of inertia matrix of the rigid body

relative to a fixed point (not moving point) on the body.
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Table II. Methods for calculating velocity and acceleration

Some facts about path coordinates
The path of a particle is *

r .t/.

Oet �
d
*
r .s/

ds
; Oet D

d
*
r .t/

dt

dt

ds
D

*
v

v
; *� � d Oet

ds
D d Oet

dt

1

v
;

Oen D
*�

j*� j ; eb � Oet � Oen; � D 1

j*� j :

Summary of the direct differentiation method
In the direct differentiation method, using moving frame B, we calcu-
late *

vP by using a combination of the product rule of differentiation

and the facts that PO0{ D *
!B � O{0, PO0| D *

!B � O| 0, and
PO 0k D *

!B � Ok0, as
follows:

*
vP D d

dt

*
rP

D d

dt

�
*
rO 0=O C *

rP=O 0
�

D d

dt

h
.x O{ C y O| C z Ok/C .x0 O{0 C y0 O| 0 C z0 Ok0/

i
D . Px O{ C Py O| C Pz Ok/C . Px0 O{0 C Py0 O| 0 C Pz0 Ok0/Ch

x0.*!B � O{0/C y0.*!B � O| 0/C z0.*!B � Ok0/
i

but stop short of identifying these three groups of three terms as

*
vP D *

vO 0=O C P*r rel C *
!B � *

rP=O :

We would calculate *
aP similarly and would get a formula with 15 non-

zero terms (3 for each term in the ‘five-term’ acceleration formula).

Method Position Velocity Acceleration

In general, as measured

relative to the fixed frame

F.

*
r or *

r P or *
r P=O

*
v or *

vP or *
vP=F

*
a or *

aP or *
aP=F

Cartesian Coordinates rx O{C ry O| C rz Ok vx O{C vy O| C vz Ok
D Prx O{C Pry O| C Prz Ok

ax O{C ay O| C az Ok
D Pvx O{C Pvy O| C Pzz Ok
D Rrx O{C Rry O| C Rrz Ok

Polar Coordinates/

Cylindrical Coordinates

R Oe
R
C z Ok vR OeRC v� Oe� C vz Ok

D PR Oe
R
CR P� Oe� C Pz Ok

aR OeRC a� Oe� C az Ok
D . RR�R P�2/ Oe

R
C .R R�C 2 PR P�/ Oe� C Rz Ok

Path Coordinates not used v Oet
at Oet C an Oen

D Pv Oet C .v2=�/ Oen

Using data from a moving

frame B with origin at O0

and angular velocity

relative to the fixed frame

of *
!B. The point P 0 is

glued to B and

instantaneously coincides

with P .

*
r O0=O C*

r P=O0

*
vP 0=F C*

vP=B D

P*
r O0=O C *

!B �*
r P 0=O0� �� �

*
v P 0=F

CB P*
r P=O0� �� �
*
v P=B

*
aP 0=F C*

aP=BC 2
*
!B �*

vP=B D
*
aP 0=F� �� �

R*
r O0=O C*

!B �*
!B �*

r P 0=O0 C P*
!B �*

r P 0=O0

CB R*
r P=O0� �� �
*
aP=B

C2*!B �*
vP=B

‘the 5-term acceleration formula’

x

y

x'

y'

P

⇀
r P

⇀
r P/O′

⇀
r O′/O

B

F
O

O'

Figure A.3:
Filename:tfigure8-alt-app2
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Object [I ]

[I cm] = m

[
0 0 0
0 0 0
0 0 0

]

[I O ] = m





y2 + z2 xy xz
xy x2 + z2 yz
xz yz x2 + y2





[I cm] =




y2
/cm + z2

/cm x/cm y/cm x/cm z/cm

x/cm y/cm x2
/cm + z2

/cm y/cm z/cm

x/cm z/cm y/cm z/cm x2
/cm + y2

/cm



 d m

If the axes are principal axes of the body.
︷ ︸︸ ︷

[I cm] =
[

A 0 0
0 B 0
0 0 C

] With A, B, C ≥ 0 and A +
B ≥ C, B + C ≥ A, and
A + C ≥ B.

[I o] =

∫

∫

∫

∫





y2
/o + z2

/o x/o y/o x/oz/o

x/o y/o x2
/o + z2

/o y/oz/o

x/oz/o y/oz/o x2
/o + y2

/o



 d m

[I o] = [I cm] + m





y2
cm/o + z2

cm/o xcm/o ycm/o xcm/ozcm/o

xcm/o ycm/o x2
cm/o + z2

cm/o ycm/ozcm/o

xcm/ozcm/o ycm/ozcm/o x2
cm/o + y2

cm/o





︸ ︷︷ ︸

The 3D Parallel Axis Theorem

[I cm] =








y2
/cm x/cm y/cm 0

x/cm y/cm x2
/cm 0

0 0 x2
/cm + y2

/cm
︸ ︷︷ ︸

I cm
zz








d m

If the axes are principal axes of the body.
︷ ︸︸ ︷

[I cm] =
[

A 0 0
0 B 0
0 0 C

]
With A+B = C (The perpen-
dicular axis theorem). Also,
A ≥ 0, B ≥ 0.

[I o] =




y2
/o x/o y/o 0

x/o y/o x2
/o 0

0 0 x2
/o + y2

/o



d m

[I o] = [I cm] + m







y2
cm/o xcm/o ycm/o 0

xcm/o ycm/o x2
cm/o 0

0 0 x2
cm/o + y2

cm/o
︸ ︷︷ ︸

d2







︸ ︷︷ ︸

The 3D Parallel Axis Theorem. The 2D thm concerns the lower right terms of these 3 matrices.

General moments of inertia.  The tableshows a point mass, a general 3-D body,
and a general 2-D body. The most general cases of the perpeendicual axis theorem
and the parallel axis theorem are also shown..

Table III

x
O

y

z

Point mass

xO

y

z

General 3D body

xO

y

z

General 2D Body

d
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Object [I ]

I cm
zz = 1

12
m`2, [I cm] = 1

12
m`2

[
0 0 0
0 1 0
0 0 1

]

I O
zz = 1

3
m`2, [I O ] = 1

3
m`2

[
0 0 0
0 1 0
0 0 1

]

I cm
zz = m R2, [I cm] = m R2





1
2 0 0
0 1

2 0
0 0 1





I cm
zz = 1

2
m R2, [I cm] = m R2





1
4 0 0
0 1

4 0
0 0 1

2





I cm
zz = 1

12
m.a2 + b2/, [I cm] = 1

12
m





b2 0 0
0 a2 0
0 0 a2 + b2





[I cm] = 1

12
m





b2 + c2 0 0
0 a2 + c2 0
0 0 a2 + b2





[I cm] = 2

5
m R2

[
1 0 0
0 1 0
0 0 1

]

Table IV
Examples of Moment of Inertia

Moments of inertia of some simple objects. For the rod both the [I cm] and [I O ] (for
the end point at O) are shown. In the other cases only [I cm] is shown. To calculate [I O ]
relative to other points one has to use the parallel axis theorem. In all the cases shown the
coordinate axes are principal axes of the objects.

R
x

y

z

Uniform sphere

x

y

z

a

b

c

Solid Box

x

y

z

a

b

Rectangular plate

x

y

z

Uniform disk

R

x

y

Uniform hoop

R

z

x

y

z

Uniform rod

O
`•
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    Basic modeling.
What things are rigid?
What things can move and how?
How are things connected? Kinematics modeling.

Description of constraints.

Choose basic configuration
variables

Solve for unknown positions,
velocities and accelerations
of points of interest (hinges, centers of 
mass) in terms of knowns, or 
configuration variables, Also find
rotational angles, rates and accelerations.

Force modeling.
Contact forces, friction,
hinges, gravity, springs,
etc.

           Draw 
Free body diagrams 
 of system and components.

          Balance equations.

                 

Solve the balance equations for forces,
and accelerations of interest either for

A  configuration of 
interest.         

or

General configuration

solve for second derivatives
of configuration variables.
Set up ODEs and initial
conditions, and either

Solve 
numerically

or
Solve with 
pencil and paper

Plug the now-known configuration variables
into the balance equations and kinematics 
equations to solve for other quantities of 
interest (e.g. forces)

Make plots:
F vs t, 
position vs t,
trajectories,
animations

b. Statics or Instantaneous 
dynamics  analysis complete

a. Kinematics analysis complete

d. Dynamics analysis 
complete

c. "Inverse dynamics"
analysis complete

if motion is unknown if motion is knownor

1

2 3

4

5

6

7
8

Use forces and 
moments from 
FBDs  

Use positions, 
velocities and 
accelerations
from  kinematics .

and

   I. Linear momentum [force balance],
 II. Angular momentum [moment balance],
III. Energy or Power.

(for dynamics only)

(for dynamics)

(for dynamics)

(for dynamics)

(for dynamics)

(for dynamics)

B a s i c  f l o w  c h a r t  f o r  s o l v i n g  t h e  v a r i o u s  t y p e s  o f  d y n a m i c s  p r o b l e m s .   
S t a t i c s  o n l y  u s e s  t h e  s o l u t i o n  r o u t e  1      2       4       5       b .  
D y n a m i c s  u s e s  o t h e r  b o x e s  a s  n e e d e d .  
A t  f i r s t  r e a d i n g  t h i s  c h a r t  s h o w s  y o u  t h e  l o g i c  o f  t h e  s u b j e c t .
L a t e r  i t  i s  s e l f - e v i d e n t  a n d  i n t e r n a l i z e d  a s  t h e  a p p r o a c h  t o  s o l v e  p r o b l e m s .




