Site Inspection of the Grimes Property Site near Keokuk, Iowa TDD # R-07-8611-10 IA0133SIP December 16, 1986

Submitted to Paul Doherty, ARPO Prepared by Region VII E&E/FIT Task Leader: Neal Hudson

30324994 Superfund

TABLE OF CONTENTS

PAGE	. <u>F</u>			SECTION
1-1	••••	• • • •	INTRODUCTION	1
2-1	• • • • •	• • •,•	BACKGROUND INFORMATION	2
3-1			GEOLOGY/HYDROLOGEOLOGY	3
4-1			SAMPLING ACTIVITIES	4
5-1			DATA REVIEW	5
6-1			CONCLUSIONS	6

LIST OF FIGURES

- 1.1 Site Location Map
- 4.1 Sample Location Map Site Sketch
- 4.2 Private Wells Sample Locations

APPENDICES

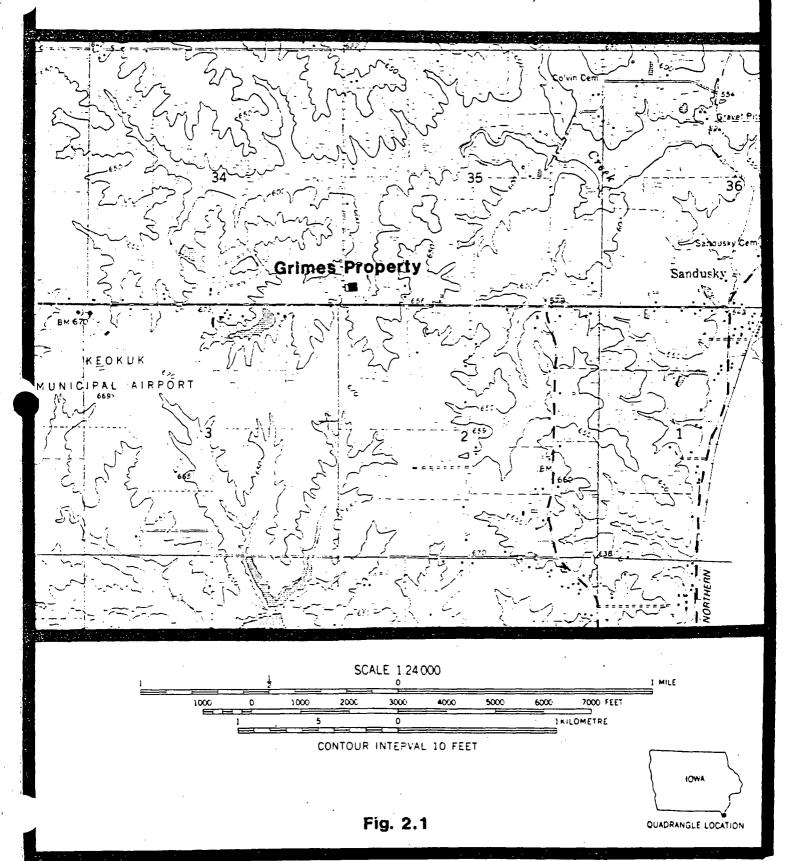
- A: HRS Worksheet
- B: Data Transmittal
- C: Sample Field Sheets
- D: Grimes Property Well Log Information
- E: Analytical Results Previous Well Sampling
- F: Addresses of Property Owners

SECTION 1: INTRODUCTION

The Ecology and Environment, Inc. Field Investigation Team (E&E/FIT) performed a Site Investigation of the Grimes Property near Keokuk, Iowa as directed by the Region VII U. S. Environmental Protection Agency (EPA) under Technical Directive Document (TDD) R-07-8605-03A. This property is located on the site of a former industrial landfill and solvent burning area. The site is now privately owned and used as the residence of the owner. The sole water source is from a well drilled through the filled area. Activities performed during the site investigation were intended to evaluate potential contamination of the surface or groundwater by the wastes disposed of at the site.

SECTION 2: BACKGROUND INFORMATON

2.1 SITE DESCRIPTION


The Grimes property is located approximately four miles north of Keokuk, Iowa, off Airport Road about two miles east of Highway 218 (Fig. 2.1). The legal description of the site is SW 1/4, SW 1/4, SW 1/4 Section 35, T. 66 n. R. 5 W, Lee County, Iowa. The site occupies approximately five acres and was previously used by the Sheller Globe Corporation of Keokuk for open burning of solvents and disposal of industrial waste materials. The landfill was operated from 1947 to 1970. The industrial wastes may include rubber weather stripping, paint sludge, methylene chloride, methyl ethyl ketone, isopropyl and butyl alcohol, toluene diisocyanates, and resin containing freon. There are no records of quantities or types of wastes disposed of in the landfill (Ref. 1).

2.2 SITE HISTORY

The Grimes residence was built on the property in December of 1980. Domestic water is obtained via a 300' well located approximately 50' northeast of the house (Figure 4.1). Information regarding the driller and the well log is included in Appendix D.

Previous sampling of the Grimes' well was performed in October of 1980. Analytical results appear in Appendix E. Also shown are results from an upgradient and downgradient well. This information was made available to the Iowa Department of Environmental Quality by Sheller-Globe Corporation in January of 1981. No information was given as to who performed the sampling or to the depth and location of the upgradient and downgradient wells.

KEOKUK QUADRANGLE IOWA-MISSOURI-ILLINOIS 7.5 MINUTE SERIES (TOPOGRAPHIC)

SECTION 3: GEOLOGY/HYDROGEOLOGY

The Grimes property is located on the crest of a gently sloping hill. Surface water drainage is toward the northeast through unnamed intermittent streams into Lamalees Creek and ultimately into the Mississippi River (Fig. 2.1) approximately 2.5 miles downstream.

Unconsolidated deposits of the area are comprised of mixtures of glacial drift and alluvium. Two types of surficial aquifers are used for drinking water: the glacial drift aquifer and the buried channel aquifer. The immediate area was cut by a pre-glacial stream channel which is now buried under glacial and more recent alluvial deposits. Sediments in this buried channel aquifer consist of sands and gravel and may yield as much as 100 gallons of water per minute to local wells. Static water levels in these wells may be up to 175 feet deep. This buried stream channel overlays a shale aquiclude of Devonian Age (Ref. 3).

Residents also draw drinking water from the glacial drift aquifer which includes thick layers of soil with a heterogeneous nature with respect to grain size and mineralogy. Where it consists mainly of silt and clay, the aquifer does not yield much water, but locally there are lenses or beds of sand and gravel which are thick and widespread enough to serve as a dependable water source. Static water levels in the drift aquifer are commonly 10 to 50 feet below the land surface. This glacial drift aquifer is commonly underlain by limestone of Mississippian age (Ref. 3).

A well log from an on-site drinking water well showed that the primary unconsolidated deposits in the vicinity of the landfill consists of glacial till. This till extends to a depth of 117 feet and consists of alternating clay and sand layers. Underlying the till is a limestone member from the lower Augusta formation, Mississippian

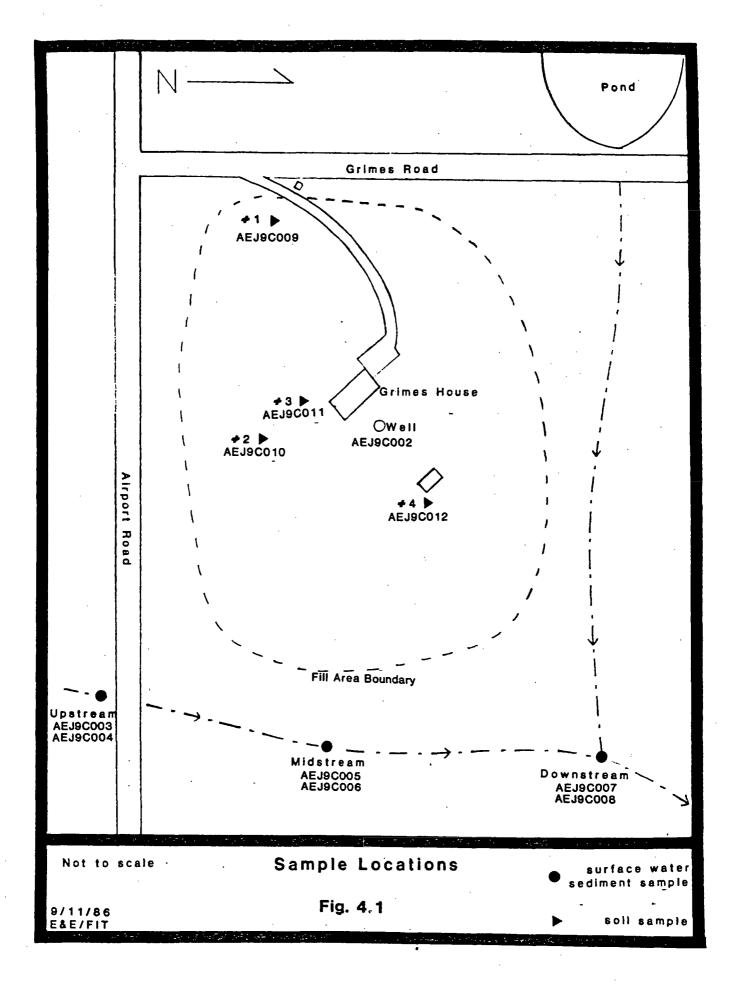
in age. This limestone extends to 300 feet with alternating beds of shale and clay. The final depth of the well is 300 feet and is set on a shale probably Devonian in age. Although the Grimes well is located within the boundaries of the landfill the log for the well did not describe debris or fill materials expected.

The water table in the drift aquifer generally slopes from high land areas toward the streams and changes noticeably throughout the year. Levels in drift and buried-channel aquifers respond rapidly to recharge from precipitation. Due to the variety of sediments, there are probably many confined and perched water zones located in the unconsolidated materials (Ref. 3).

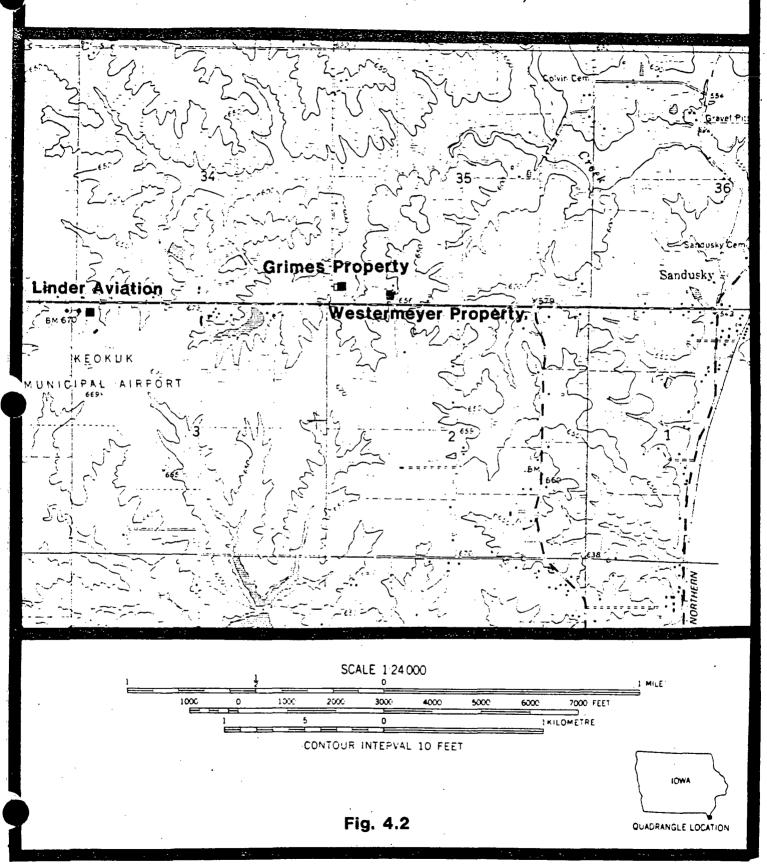
SECTION 4: SAMPLING ACTIVITIES

4.1 SURFACE WATER/SEDIMENT SAMPLES

A total of three stream sediment samples were collected from an intermittent stream located at the base and east of the landfilled area. Each sample was a composite of four aliquots, each representing the first six inches of depth. All sample locations are identified in Figure 4.1. Surface water samples consisted of three samples collected from the same locations as the stream sediment samples. Upgradient conditions will be established by the upstream sediment and water sample. The midstream sediment/water sample was collected near a possible leachate seep into the stream as indicated by a rust discoloration of the stream sediment.


4.2 SURFACE SOIL SAMPLES

A total of four surface soil samples were collected on the Grimes property representing a depth of 0-12". Sample locations were selected by visual inspection of the site. Samples were prepared by homogenizing a single aliquot collected from 0-12" depth. One soil sample was duplicated for QA/QC.


4.3 GROUNDWATER SAMPLES

Three private wells were sampled: Grimes well, Keokuk Airport well, and Westermeyer well. Private well locations are shown in Figure 4.2.

The Grimes well is used for drinking and other household uses. A holding capacity of approximately 60-90 gallons made it necessary to let the water run for approximately 20 minutes before the sample was collected. Information regarding the drilling of this well is included in Appendix D. A duplicate sample of the Grimes well water was taken for OA/OC.

KEOKUK QUADRANGLE IOWA-MISSOURI-ILLINOIS 7.5 MINUTE SERIES (TOPOGRAPHIC)

The upgradient well was located at the Keokuk Municipal Airport. Since previous testing had shown the well to contain bacterial contamination. it is no longer used as drinking water. The sample was collected from a spigot directly on the well and the water was run for five minutes to purge the contents of the pipes. No information was available on the depth of the well. The well is presumed to be screened in the shallow subsurface due to the presence of the bacterial contamination.

The third well sampled was located on the property immediately east of the Grimes property on the opposite side of the valley. Water from the well is used for drinking and other household uses. The sample was collected from an outside spigot and the water was purged from the pipes prior to collection. The well was set at a depth of 49 feet. No drilling log was kept by the owners. Addresses of the property owners appear in Appendix F.

4.4 ANALYTICAL PARAMETERS

Each sample was collected for the following parameters:

- Acid fraction
- Base/neutral fraction
- Volatile organic fraction
- Total metal fraction

4.5 SAMPLE HANDLING

All water samples were preserved in the following manner:

<u>Parameter</u>	Preservative
B/N/A	Ice
Volatiles	Ice
Total Metals	HNO ₃ /Ice

All soil/sediment samples were preserved in the following manner:

Parameter	Preservative
B/N/A	None
Volatiles	Ice
Total Metals	None

Samples remained in the custody of the task leader until being transferred to Joyce Woods of the Region VII EPA laboratory on Thursday, August 28, 1986 at 1045 hours.

SECTION 5: DATA REVIEW

5.1 SURFACE WATER/SEDIMENT SAMPLES

Surface water and sediment samples were collected at three locations along the intermittant stream immediately east of the site.

5.1.1 Organics - Surface Water/Sediment

Only one compound was reported for one surface water sample. The value was twenty times less than the reported detection limit for the other samples.

Positive results for sediment samples are shown below:

Sample Description	Sample #	2-Butanone	Toluene	Results in ug/kg 4-Methylphenol
Upstream sediment	AEJ9C004	-	-	-
Midstream sediment	AEJ9C006	2.10 M	-	
Downstream sediment	AEJ9C008	14.0 M	1600	220 M

See Data Transmittal (Appendix B) for explanation of qualifer codes.

The only significant contaminant found was toluene in the down-stream sample. This location does not clearly identify the Grimes Property as the likely source and could be explained by a small gasoline spill. (See sample location diagram, Fig. 4.1).

5.1.2 Metals - Surface Water/Sediment

No significant hazardous metals concentrations were found in any surface water or associated sediment samples. Managanese concentrations suggest a possible release; however, differentiation between upgradient and downgradient samples is insufficient to attribute the elevated downstream values to the site.

Selected results are tabulated below:

Sample ID	Sample #	BA	Mn	Pb	<u>An</u> .
Upstream water	AEJ9C003	220	620	5.00	42.0 U
Midstream water	AEJ9C005	140 M	1900	5.00 M	51.0 U
Downstream water	AEJ9C007	220	4600	3.00	97.0 U
Upstream sediment	AEJ9C004	75.0	370 J	11.0	39.0
Midstream sediment	AEJ9C006	28.0M	170 J	9.40	37.0
Downstream sediment	AEJ9C008	100 M	390 J	24.0	550

5.2 Soil Samples

Surface soil samples representing the first 12 inches of depth were collected from four locations on site. Sample points were chosen from those areas exhibiting the greatest evidence of contamination (i.e. stressed vegetation, exposed rubber stripping).

5.2.1 Organics-Soil

Soil sample #3 contained low, but measurable levels of six volatile compounds (see table below). No other compounds were detected above contract laboratory program detection limits except for two phthalate compounds which appear as common contaminants.

Significant results are tabulated below:

•	Soil #3	Soil #4
Contaminant	(AEJ9CO11)	(AEJ9C012)
Trichloroethene	70.0	6.4 U
Benzene	9.0	6.40 U
Toluene	93.0	6.40 U
Ethyl Benzene	59.0	6.40 U
Styrene	16.0	6.40 U
Total Xylenes	01.0	6.40 U
Bis(2 ethyl hexyl)phthalate	15,000 U	6,200
Di-N-Octol Phthalate	15,000 U	7,300

5.2.1 Metals-Soil

No significant concentrations of metals were found in any of the four on-site soil samples. Variation of measurable constituents was minimal.

5.3 GROUNDWATER SAMPLES

Three private wells were sampled including the Grimes well, Keokuk Airport and Westermeyer Property well (See Fig. 4.2).

5.3.1 Organics-Groundwater

Only one compound was reported as detectable in the three goundwater samples, that being 80.0 ug/L 2-Butanone in the Westermeyer well. However, due to a failure to meet all quality assurance criteria for the Contract Lab Program, the value was estimated ("J" qualified).

5.3.2 Metals-Groundwater

No significant differences were notable between the background, downgradient and Grimes wells. However, lead and zinc concentrations for the Grimes well are near drinking water maximums and deserve some consideration.

Notable metals results appear below:

mple # Pb	<u>Zn</u>
	00 M 120 U 3700
J9C002D 25.0	2700
	

SECTION 6: CONCLUSIONS

Without an observed release to surface or groundwater this site does not earn a Hazard Ranking System(HRS) score of 28.5 required for an NPL candidate. Overall HRS scores were 46.38 with an observed release to groundwater and 28.23 without. A surface water release would raise the score slightly to 28.32. It should also be noted that the relatively high score with no release reflects a high estimate for waste quantity (>2500 cubic yards) which may not accurately depict conditions at this site. Data presented in this report does not change the draft HRS scores, therefore scores were not recalculated. An HRS worksheet is included as Appendix A.

High lead and zinc concentrations in the Grimes well cannot be attributed to the disposed wastes without additional well installation both immediately upgradient and downgradient of the site. Present contamination could be the result of plumbing connections associated with the Grimes well. Low metals concentrations in the apparent leachate seep sample (midstream water/sediment, AEJ9C005, AEJ9C006) support the theory of plumbing contamination.

Absence of any strong evidence of hazardous waste disposal on site and low contaminant concentrations in the apparent leachate seep sample suggest that no hazard is posed by the former landfilling operations. However, attention should be paid to the borderline drinking water levels of lead and zinc in the Grimes well, and the owner should be made aware of these results. Due to the fact that the Grimes well is located within the fill area, the possibility exists for seepage of contaminants along the well casing should seals or casing failure occur. Therefore, any change in water taste or color should be noted as a possible threat to suitability as drinking water.

References

- 1) Preliminary Assessment of Grimes Property, completed by Paul Landy of the Iowa Department of Water, Air, and Waste Management, August 11, 1983.
- 2) Keokuk, Iowa Quadrangle 7.5 Minute Topographic Map, United States Geological Survey, photo revised 1975.
- 3) Groundwater Resources of Lee County, Open File Report 80-56WRD, Iowa Geological Survey.

APPENDIX A HRS Worksheet

APPENDIX B

Data Transmittal

DATE 1017/86

Subject Transmittal of Laboratory Data

Robert D. Kleopfer, Ph. DON Chief, Laboratory Branch, ENSV

·· Hensley

Analyses have been completed for the following activities and the data results are attached.

Activity No.	Description
AEJ9C	Grimes Property
	(complete transmitta)
	1
	,
	·

Attachments

cc: Data Files

_		
1	Site Name: Grimes Property Site Number: 9C Location: Keokuk Iowa Site Code: AEJ	:
-		
:	Collected: YR: 86 MD: 2 Day: 1 Time: 0900 Leader: Hudson Sample Number: AEJ9Cool SMD #:	 : :
2		
	Sample Media (circle one):	
•		2
ı	SOIL, DUST, RINSATE, SEDIMENT, WATER, OTHER:	:
1		:
	Sample Split (circle one): YES (ND)	
٠	Jampie Spire (critical one). 123	•
I		:
_		
_		
:	Sample Container : Tag Color : Preservative : Analysis Requested	:
_	1 LITER CUBI : WHITE : HND3/ICE : TOTAL METALS	
:	· · · · · · · · · · · · · · · · · · ·	:
:	80oz. BOTTLE : PURPLE : ICE : A/B/N	:
:	VOA SET : - PURPLE : ICE : VOA	:
	: UMB :	•
٠	Wife.	:
3	: <i>p</i>	:
:	:	:
		_
٠		=
:		:
		•
		•
•	•	=
1	· · · · · · · · · · · · · · · · · · ·	:
:	260 —	:
2	Depth: 360 Pan #: Aliquots:	
		•
•	Samplers: N. Hudson, E. Hubect	:
•	Samplers: N. IINGSPA . C. MURCT	:
:	·	:
1	S. Martin	
-		•
_		
	COMMENTS OF FIELD PERSONNEL	
_	The second with a passed of the second secon	
_		
:		:
:	Site Description:	•
,		•
•		. •
1		:
:	Grimes Well	•
2		
		•
2		:
		:
		ż
•		•
		š
8.		:

: Site Name: Grimes Property Site Number: 9C : Location: Keokuk Iowa Site Code: AEJ	t t
Collected: YR: 86 MO: 8 Day: 24 Time: 0900 Leader: Hudson Sample Number: AEJ9C022 D SMD #: Sample Media (circle one): SOIL, DUST, RINSATE, SEDIMENT, WATER DTHER: Sample Split (circle one): YES ND	: : : : : : : : : : : : : : : : : : : :
: Sample Container : Tag Color : Preservative : Analysis Requested	:
1 LITER CUBI : WHITE : HN03/ICE : TOTAL METALS 2002. BOTTLE : PURPLE : ICE : A/B/N VOA SET : DURPLE : ICE : VOA LIME : Depth: 300 Pan #: Aliquots: Samplers: N. Hudson, E. Halont S. Marti:	:::::::::::::::::::::::::::::::::::::::
COMMENTS OF FIELD PERSONNEL	
Grimes Well (duplicate)	

:	Site Name: Grimes Property Site Number: 9C Location: Keokuk Iowa Site Code: AEJ	-
:	Collected: YR: 86 MD: 08 Day: 26 Time: 020 Leader: Hudson Sample Number: AEJ9C003 SMD #: Sample Media (circle one): SOIL, DUST, RINSATE, SEDIMENT, WATER, DTHER:	
:	Sample Split (circle one): YES NO	; ; ;
: 5	Sample Container : Tag Color : Preservative : Analysis Requested	 ;
:::::::::::::::::::::::::::::::::::::::	1 LITER CUBI : WHITE : HN03/ICE : TOTAL METALS 80oz. BOTTLE : PURPLE : ICE : A/B/N VOA SET : PURPLE : ICE : VOA : UME : : NR# : : Depth: Par #: Aliquots: Samplers: Hulson/Hubert	
	COMMENTS OF FIELD PERSONNEL	_
	Site Description: Upstream Surface Water	

: Site Name: Grimes Property : Location: Keokuk Iowa	Site Number: 9C : Site Code: AEJ :
: Collected: YR: 86 MD: 28 Day: 26 Time: 093: : Sample Number: AEJ9C004 SMD : Sample Media (circle one):	
SOIL, DUST, RINSATE, SEDIMENT, WATER, Sample Split (circle one): YES ND	OTHER:
: Sample Container : Tag Color : Preservative	: Analysis Requested :
B oz. JAR : PURPLE : B oz. JAR : WHITE DURDLE ICE	: A/B/N : TOTAL METALS : VDA : : : : : : : : : : : : : : : : : : :
: Site Description: Upstream Sed:ment :	; : : : : :
	:

	imber: 9C : Code: AEJ :		
: Collected: YR: 86 MD:08 Day:26 Time: 1000 Leader	: Hudson :		
: Sample Number: AEJ9C005 SMD #:			
: Sample Media (circle one): : SOIL, DUST, RINSATE, SEDIMENT, WATER DTHER:			
: SDIE, DOST, KINSHIE, SEDIMENI, WHIER, DINER:			
: Sample Split (circle one): YES (NO)	•		
	•		
: Sample Container : Tag Color : Preservative : Analy	sis Requested :		
: 1 LITER CUBI : WHITE : HN03/ICE : TOTA	AL METALS :		
: 80oz. BDTTLE : PURPLE : ICE : A/B/			
: VOA SET : PURPLE : ICE : VOA			
: LIME : :	:		
: ARA : :	. :		
:			
	:		
	:		
	•		
	:		
: Depth: Pari #: Aliquots:	<u> </u>		
: Samplers: Hudson/Habert	:		
1	:		
	:		
COMMENTS OF FIELD PERSONNEL			
•	:		
: Site Description:	:		
• • • • • • • • • • • • • • • • • • • •			
Mid Stream Water	:		
	•		
•	: -		
1	•		
• · · · · · · · · · · · · · · · · · · ·	•		
:	:		
:			

: Site Name: Grimes Property : Location: Keokuk Iowa	Site Number: 9C : Site Code: AEJ :
: Collected: YR: 86 MO:08 Day:26 Time:	/000 Leader: Hudson :
Sample Number: AEJ9C006	SMO #:
: Sample Media (circle one): : SDIL, DUST, RINSATE, SEDIMENT, WATE	R, DTHER:
: Sample Split (circle cre): YES NO	:
: Sample Container : Tag Color : Preservat	ive : Analysis Requested :
: 8 oz. JAR : PURPLE : 8 oz. JAR : WHITE :	: A/B/N : TOTAL METALS :
: VOA SET : PURPLE : ICE	: VOA
: CIME :	:
	:
	:
	:
Depth: 0-6" Pan #:	Aliquots: 4
Samplers: Hudson / Hubert	: :
COMMENTS OF FIELD PERSO	NNEL
: Site Description:	. ;
: MAIN CHAN CO. 1.	;
Mid Stream Scdim	ent:
± 1	:
• 5	
•	•
:	:

: Site Name: Grimes Property Site Number: 9C : Location: Keokuk Iowa Site Code: AEJ :			
Collected: YR: 86 MD: 08 Day: 26 Time: 1030 Leader: Hudson Sample Number: AEJ9CO 07 SMD #: Sample Media (circle one): SOIL, DUST, RINSATE, SEDIMENT, WATER OTHER: Sample Split (circle one): YES ND			
: Sample Container : Tag Color : Preservative : Analysis Requested :			
1 LITER CUPI : WHITE : HN03/ICE : TOTAL METALS 80cz. ROTTLE : PURPLE : ICE : A/B/N VOA SET : PURPLE : ICE : VOA : CIMB : Depth: Pan #: Aliquots: Samplers: Hulson Hubry			
COMMENTS OF FIELD PERSONNEL			
Site Description: Down Stream water			

: 5	Site Name: Grimes Property Location: Keokuk Iowa	Site Number: 9C : Site Code: AEJ :
: S	Sample Number: AEJ9COS SMD Sample Media (circle one): SDIL, DUST, RINSATE, SEDIMENT, WATER, Sample Split (circle one): YES ND	#: : : : : : :
: Sa	ample Container : Tag Color : Preservative	: Analysis Requested :
	B oz. JAR : PURPLE : B oz. JAR : WHITE : VDA SET : DIRDLE : ICE LIME : Depth: 0-6" Pari #: - Al Samplers: Hudson / Hubert	A/E/N TOTAL METALS VOA iquots:
	COMMENTS OF FIELD PERSONNEL	
: : : : : : : : : : : : : : : : : : : :	Site Description: Down Stream Sedime	eat ::

: Site Name: Grimes Property Site Number: 9C : Location: Keokuk Jowa Site Code: AEJ	1
: Collected: YR: 86 MD: 27 Day: 26 Time: 100 Leader: Hudson : Sample Number: AEJ9CO 9 SMD W: : Sample Media (circle one): : SOIL, DUST, RINSATE, SEDIMENT, WATER, DTHER: : Sample Split (circle one): YES NO	
: Sample Container : Tag Color : Preservative : Analysis Requested	
B oz. JAR : PURPLE : A/E/N B oz. JAR : WHITE : TOTAL METALS VOA SET : DIRPLE : ICE : VOA Depth: 0-6" Par *: — Aliquots: Samplers: Martin COMMENTS OF FIELD PERSONNEL	
Soil #1 - near SW corner & landfill	

: Site Name: Grimes Property Site Number: Location: Keokuk Iowa Site Code:	
Collected: YR: 86 MO: 08 Day: 26 Time: 150 Leader: Hude Sample Number: AEJ9CO10 SMD #: Sample Media (circle one): SOIL, DUST, RINSATE, SEDIMENT, WATER, DTHER: Sample Split (circle one): YES ND	: :
: Sample Container : Tag Color : Preservative : Analysis Re : B oz. JAR : PURPLE : : A/E/N : B oz. JAR : WHITE : : TOTAL META : VDA SET : DURPLE : ICE : VDA : CIME : : : Depth: D-12	:
COMMENTS OF FIELD PERSONNEL Site Description: S: #2 - near SE corner & landfill	:

: Site Name: Grimes Property Site Number: 9C : Location: Keokuk Iowa Site Code: AEJ	:
Collected: YR: 86 MD: 08 Day: 26 Time: 1130 Leader: Hudson Sample Number: AEJ9Colo D SMO W: Sample Media (circle one): SOIL DUST, RINSATE, SEDIMENT, WATER, OTHER: Sample Split (circle one): YES NO	:
: Sample Container : Tag Color : Preservative : Analysis Requested	
B oz. JAR : PURPLE : A/E/N B oz. JAR : WHITE : TOTAL METALS VDA SET : DIRDLE : ICE : VDA LIME : Depth: O-D Par #: — Aliquots: Samplers: Martin	
COMMENTS OF FIELD PERSONNEL	
Soil #2 duplicate	: : : : : : : : : : : : : : : : : : : :

: Site Name: Grimes Property Site Number: 9C : Location: Keokuk Iowa Site Code: AEJ	:
: Collected: YR: 86 MO:08 Day: 26 Time: 1200 Leader: Hudson : Sample Number: AEJ9CO] SMO #:	:
Sample Media (circle one): SOIL DUST, RINSATE, SEDIMENT, WATER, DTHER: Sample Split (circle one): YES ND	:
: Sample Container : Tag Color : Preservative : Analysis Requested	. – <u>–</u>
B oz. JAR : PURPLE : A/E/N B oz. JAR : WHITE : TOTAL METALS VDA SET : DURPLE : ICE : VDA LIME : Depth: O-Q" Pari #: - Aliquots: Samplers: Martin	
COMMENTS OF FIELD PERSONNEL Site Description: So: # 3	

: Site Name: Grimes Property : Location: Keokuk Iowa	Site Number: 9C : Site Code: AEJ :
Collected: YR: 86 MD: 2 Day: 26 Time: Sample Number: AEJ9C012 S Sample Media (circle one): DUST, RINSATE, SEDIMENT, WATER Sample Split (circle one): YES	#MO #: :
: Sample Container : Tag Color : Preservati	ve : Analysis Requested :
B oz. JAR : PURPLE : B oz. JAR : WHITE : VDA SET : DURDLE : ICE LIME : Depth: O-D' Pan #: Samplers: Hubet COMMENTS OF FIELD PERSONS	: A/E/N : TOTAL METALS : VDA : : : : : : : : : : : : : : : : : : :
Site Description: Soil #4	:
1 1 1 1	; ; ;

: Site Name: Gr : Location: Ke		Site Number: 9C Site Code: AEJ	
Sample N Sample Media Soil, DUST,	umber: AEJ9C0 13 F	NT, WATER, OTHER:	:
: Sample Contain	er : Tag Color :	Preservative : Analysis Reques	ted :
: 1 LITER CUBI : BOOZ. BOTTLE : VOA SET : : : : : : : : : : : : : : : : : : :	PURPLE LUME VRA	HND3/ICE : TOTAL METALS ICE : A/B/N ICE : VDA : : : : : : : : : : : : : : : : : : :	:
COMMENTS OF FIELD PERSONNEL			
: Site Descript : : : : : : : :	ion: Field Blau	•	:

Site Name: Grimes Property Location: Keokuk Iowa Site Code: AEJ	:
Collected: YR: 86 MD: 98 Day: 26 Time: 1315 Leader: Hudson Sample Number: AEJ9CO/ 4 SMO #: Sample Media (circle one): SOIL, DUST, RINSATE, SEDIMENT, WATER DTHER: Sample Split (circle one): YES NO	3
: Sample Container : Tag Color : Preservative : Analysis Requeste	 d :
: 1 LITER CUBI : WHITE : HN03/ICE : TOTAL METALS : 80oz. BOTTLE : PURPLE : ICE : A/B/N : VOA SET : DURDLE : ICE : VOA : LIMB : : : MUB : : : Depth: Par #: Aliquots:	:
COMMENTS OF FIELD PERSONNEL	
Site Description: Upgradient Well : : : : : : : : : : : : : : : : :	:::::::::::::::::::::::::::::::::::::::

: Site Name: Grimes Property : Location: Keokuk Iowa	Site Number: 90 : Site Code: AEJ :
: Collected: YR: 86 MD: 08 Day: 26 Time: 44: : Sample Number: AEJ9C0/5 SMC : Sample Media (circle one): : SOIL, DUST, RINSATE, SEDIMENT, WATER. : Sample Split (circle one): YES NO) #: : : : : : : : : : : : : : : : : : :
: Sample Container : Tag Color : Preservative	e: Analysis Requested :
I LITER CUBI : WHITE : HN03/ICE : BOCZ. BOTTLE : PURPLE : ICE : ICE : LIMB : LI	: A/B/N : VOA : : : : : : : : : : : : : : : : : : :
Site Description: Downgradiont well	:

ANALYSIS TYPE: TOTAL METALS (CONTRACTOR)

TITLE: GRIMES PROPERTY

LAB: CHEMTECH

TAMPLE PREP: ____ ANALYST/ENTRY: E29

MATRIX: WATER

METHOD: 9001H0//

REVIEWER: FLACTION

UNITS: UG/L CASE: 6370 DATE: 09/25/86

SAMPLE NUMBERS

COMPOUND	AEJ90002		AEJ9C002D		AEJ9C003		AEJ90005	
ALUHINUM	200	U	200	υ	2300.		200	
ANTIMONY	60.0	บ	60.0	บ	60.0	. U	60.0	
ARSENIC	10.0	U	10.0	U	5.00	н	10.0	
FARIUM	200	U	200	Ū	220		140	
FERYLLIUM	5.00	U	5.00	Ū	5.00	Ú	5.00	
CADMIUM	5.00	U	5.00	Ü	5.00	Ü	5.00	
CALCIUM	34000.	34000.			92000.		180000	
CHROMIUM	10.0	U	10.0	U	10.0	U	10.0	
COBALT	50.0	U	50.0	U	50.0	U	50.0	
COPPER	33.0		22.0	н	25.0	U	25.0	
IRON	1100.		370		3300.		2700.	
T-LEAD	55.0		25.0		5.00		5.00	1
HAGNESIUM	23000.		22000.		34000.		46000.	
MANGANESE	15.0	U	15.0	U	620		1900.	
MERCURY .	0.2	U	0.2	U	0.2	U	0.2	
RICKEL	40.0	U	40.0	U	40.0	U	40.0	ŧ
FOTASSIUM	2900.	H	2800.	H	3800.	M	5200.	
SELENIUM	5.00	U	5.00	U	12.0	. J	5.00	ŧ
TLVER	8.00	M	7.00	M	10.0	U	10.0	l
DIUM	200000.		200000.		32000.		96000.	
.ALLIUM	10.0	U	10.0	U	10.0	U	10.0	l.
IIN	· N/A	I	NZA	I	N/A	I	N/A	
VANADIUM	50.0	U	50.0	U	50.0	· U	50.0	Ł
ZINC	3700.		2700.		42.0	U	51.0	L
CYANITIE	-N/A	I	N/A	I	N/A	I	N/A	

ANALYSIS TYPE: TOTAL METALS (CONTRACTOR)

LE: GRIMES PROPERTY

HE: CHEMTECH

SAMPLE PREP:____ ANALYST/ENTRY: E30 REVIEWER: - 40

MATRIX: SEDIMENT

אבדאסם: 9001H0

UNITS: MG/KG

CASE: 6370 DATE: 09/25/86 ·

COMFOUND	AEJ9CO	04	AEJ9C006		AEJ9C0	08	AEJ9CO	09
ALUMINUM	4600.		1900.	٠	6600.		14000.	
ANTIMONY	39.0	U	36.0	u	46.0	U	38.0	1
ARSENIC	5.20	J	2.40	M	9.20	Ĵ	16.0	`
BARIUM	75.0	М	28.0	M	100	M	150	•
BERYLLIUM	3.30	U	3.00	Ü	3.90	ü	3.20	- 1
CAUMIUM	3.30	U	3.00	U	3.90	Ü	7.90	•
CALCIUM	3200.	H	3200.		6400.	_	1500	00
CHROMIUM	9,60	J	5.80	J	13.0	J	35.0	00.
COBALT	6.50	н	30.0	U	6.50	H	5.10	,
COFFER	7.00	M	15.0	Ū	11.0	М	52.0	'
IRON	10000.		6700.	_	11000.	••	12000.	
. LEAD	11.0		9.40		24.0		160	
HAGNESIUM	930	М	560	М	1400.	н	5700.	
MHNGANESE	370	J	170	J	390	J	230	
HERCURY	0.13	U	0.12	ับ	0.15	U	0.13	_
CKEL	8.60	M	5.10	M	13.0	н	45.0	
ASSIUM	410	М	170	H	630	H	97.0	4
- r LENIUM	3.30	ប	3.00	Ü	3.90	Ü	3.20	U
SILVER	5.50	U	٤.10	Ū	7,70	Ü	6.40	U
SODIUM	410	H	3000.	Ū	580	H	1700.	<u> </u>
THALLIUM	6.50	U	6.10	Ū	7.70	Ü	6.40	U
NIT	N/A	I	N/A	Ī	N/A	I	N/A	U
VANADIUM	21.0	н	13.0	หื	22.0	мÎ	24.0	М
ZINC	39.0		37.0		550		23000.	11
CYANIDE	N/A	1	N/A	I	N/A	I	N/A	

ANALYSIS TYPE: TOTAL METALS (CONTRACTOR)

TITLE: GRIMES PROPERTY

LAB: CHEMTECH

*FLE PREF:____ ANALYST/ENTRY: E29

MATRIX: WATER
METHOD: 9001M077 W
REVIEWER: -4

CASE: 6370 DATE: 09/25/86

UNITS: UG/L

COMPOUND	AEJ9C0	007 AEJ90		13F	AEJ9C0	1 4	14 AEJ9C015	
ALUHINUM	1200.		110	н	200 .	υ	200	,
ARTIMONY	60.0	U	60.0	Ü	60.0	. U	60.0	
✓ ARSENIC	5.00	H	10.0	U	10.0	U		
PARIUM	_ 220	••	200	U	150		10.0	1
BERYLLIUM	5.00	U	5.00	U		M	200	1
/ CADMIUM	5.00	Ĺ	5.00	_	5.00	U	5.00	ł
CALCIUM	160000.	U		U	5.00	U	5.00	ł
CHROMIUM	10.0	U	1400.	H	57000.		1400	100
COFALT	50.0	U	10.0	U	10.0	U	10.0	1
COFFER	25.0	U	50.0	U	50.0	U	50.0	l
IRON	2200.	U	25.0	U	34.0		25.0	ι
1 LEAD	3.00	M	39.0	M	65.0	M	100	ι
MAGNESIUM	38000.	H	5.00	U ·	3.00	H	6٠٥٥	
MANGANESE	4600.		290	M	11000.		47000.	
THERCURY			10.0	н	15.0	U	15.0	ι
NICKEL	0.2		0.6		0.2	U	0.2	
FOTASSIUM	40.0	υ	40.0	U	40.0	U	40.0	ι
SELENIUM	7100.		5000.	U	600	M	1700.	7
LVER	5.00	U	5.00	υ	5.00	U	5.00	_
IUM	10.0	U	10.0	U	10.0	IJ	10.0	Ĺ
	90000.		5000.	U	9700.		62000.	_
HALLIUM	10.0	U	10.0	. U	10.0	U	10.0	L
TIN	N/A	I	N/A	I	N/A	I	N/A	_
VANAPIUM	50.0	U	50.0	υ	50.0	U	50.0	U
ZINC	97.0	U	74.0		120	Ü	170	บ
CYANIDE	N/A	I	N/A	I	N/A	Ţ	N/A	U

ANALYSIS TYPE: TOTAL METALS (CONTRACTOR)

TITLE: GRIMES PROPERTY

LAR: CHEMTECH

CAMPLE PREP:____ ANALYST/ENTRY: E30

MATRIX: SEDIMENT

METHOD: 900,1H(7)

REVIEWER: HISTA

UNITS: MG/KG CASE: 6370

DATE: 09/25/86

COMFOUR	AE J9C0	10	AEJ9CO	101	AEJ9C01	1 1	AEJ90011
ALUMINUM	12000.		13000.		5000.		10000.
YMOMITHA	13.0	М	34.0	U	35.0	U	32.0
ARSENIC	19.0	J	20.0	Ĵ	8.70	Ĵ	15.0
BARIUM	500		250	_	120		710
PERYLLIUM	2.90	U	2.80	U	3.00	U	3.20
CADHIUN	31.0	Ĵ	30.0	Ĵ	3.50	J	190
CALCIUM	24000.	_	23000.	.	120000.		B1000.
CHROMIUM -	44.0	J	38.0	J	35.0	J	100
COBALT	5.50	Ä	5.60	н	6.10	н	7.60
COFFER	60.0		55.0	• • •	100	••	180
1.F:ON	29000.		27000.		14000.		36000.
LEAD	160		140		440		520
MAGNESIUM	3500.		3600.		5700.		5900.
HANGANESE	400	J	390	J	220	J	3900.
MERCURY	0.11	Ū	0.11	Ū	0.12	Ju	0.19
NICKEL	24.0		24.0		42.0	٠,	100
FOTASSIUM	820	н	840	М	630	н	1100.
SELENIUM	1.60	H	2.90	Ĵ	3.00	Ü	6.60
TILVER	5.70	U	5.60	Ū	5.90	Ü	6.40
ICTUM	700	H	700	н	7600.	U	990
HALLIUM	5.70	Ú	5,60	Ü	5.90	U	6.40
TIN	N/A	I	N/A	I	N/A	I	N/A
VANADIUM	32.0	-	32.0	•	13.0	H.	
FINC	5900.		5600.		20000.	1.1	25.0
CYANIDE	N/A	I	N/A	I	N/A	. 1	20000. N/A

Case No.: 6370

Laboratory: Chemtech

Contract No.: SOW 785

Method No.: 9001M07

SMO No.: MGB520-MGB536

EPA No.: AEJ9C

Site: Grimes Property

Matrix: Water and Soil

We have reviewed the above case. The following are our findings:

- 1. The data were received on time. Analysis was requested for the contract inorganic total metals fraction only.
- 2. Al was reported in the water and soil matrix calibration and preparation blanks. Al, Ca, Fe, Mg, Mn, Hg and Zn were reported in the water matrix field blank, sample AEJ9C013F/MGB533. The sample data were qualified by the blank rules. There was no soil matrix field blank associated with this data.
- 3. The water MES recoveries for As and Se exceeded control limits. Soil MES recoveries for Sb, As, Cd, Cr, Mn and Se also exceeded control limits. The sample data were qualified by the MES recovery rules.
- 4. A water audit was introduced as sample AEJ9C9UUP/MGB536. All metals were correctly identified in the audit. There was no soil matrix audit sample associated with this data.

ANALYSIS TYPE: VOLATILE ANALYSES

TITLE: GRIMES

LAB: RMA

SAMPLE FREF:____ ANALYST/ENTRY: E71

MATRIX: WATER
METHOD: 9302MOTO
REVIEWER: 2622

UNITS: UG/L

CASE: 6370

DATE: 10/08/86

	AEJ9C002 AEJ9		AEJ9C0	020	2D AEJ9003		AEJ9005	
COMFOUND			,					
CHLOROMETHANE	10.0	U	10.0	U	10.0	U	10.0	U
EROMOMETHANE .	10.0	บ	10.0	ΰ	10.0	ü	10.0	ΰ
VINYL CHLORIDE	10.0	Ū	10.0	Ū	10.0	ü	10.0	13
CHLORDETHANE	10.0	Ū	10.0	Ü	10.0	บ	10.0	Ü
METHYLENE CHLORIDE	5.00	Ū	5.00	Ū	5.00	Ü	5.00	Ù
ACETONE	10.0	Ü	10.0	Ü	10.0	Ü	10.0	į
CARBON DISULFIDE	5.00	U	5.00	U	5.00	υ	5.00	0
1,1 DICHLOROETHENE	5.00	U	5.00	Ū	5.00	Ū	5.00	ij
1.1 DICHLOROETHANE	5.00	U	5.00	U	5.00	U	5.00	Ú
TRANS-1,2,-DICHLOROETHENE	5.00	U	5.00	U	5.00	Ü	5.00	Į1
CHLORDFORK	5.00	υ	5.00	υ	5.00	υ	5.00	ij
1,2,DICHLOROETHANE	5.00	U	5.00	U	5.00	U	5.00	U
2-RUTANONE		I	•	I		I		1
1,1,1 TRICHLOROETHANE	5.00	υ	5.00	U	5.00	U	5.00	U
CARBON TETRACHLORIDE	5.00	U	5.00	U	5.00	U	5.00	U
UINYL ACETATE	10.0	U	10.0	ប	10.0	U	10.0	U
FROMODICHLOROMETHANE	5.00	U	5.00	U	5.00	U	5.00	IJ
1,1,2,2,-TETRACHLOROETHANE	5.00	U	5.00	U	5.00	υ	5.00	U
1.2-DICHLOROFROFANE	5.00	U	5.00	U	5.00	U	5.00	IJ
YS-1,3-DICHLORDFRDFENE	5.00	υ	5.00	ប	5.00	U	5.00	<u>U</u>
_HLOROETHENE	5.00	LI	5.00	U ·	5.00	U	5.00	i, i
DIBROMOCHLOROMETHANE	5.00	U	5.00	U	5.00	U	5.00	U
1,1,2-TRICHLORGETHANE	5.00	U	5.00	U	5.00	U	5.00	IJ
BENZENE .	5.00	U	5.00	U	5.00	U	5.00	U
CIS-1,3-DICHLOROFROFENE	5.00	υ	5.00	υ	5.00	υ	5.00	υ
2-CHLOROETHYL VINYL ETHER		I		I		I		I
.BROMOFORM	5.00	U	5.00	U	5.00	U	5.00	IJ
D-HEXANONE	10.0	Ü	10.0	U	10.0	U	10.0	U
4-METHYL-2-FENTANONE	10.0	U	10.0	υ	10.0	υ	10.0	υ
TETRACHLORGETHENE	5.00	U T	5.00	U	5.00	U	5.00	U
TOLUENE	5.00	U	5.00	U	5.00	U	5.00	U
CHLOROBENZENE	5.00	IJ	5.00	U	5.00	Ü	5.00	li
ETHYL BENZENE	5.00	U	5.00	U	5.00	IJ	5.00	(.)
STYRENE	5.00	U	5.00	į (t	5.00	Ü	5.00	1:
TOTAL XYLENES	5.00	Į.j	5.00	ً زا	5.00	$f_{1,2}$	5.00	::

ANALYSIS TYPE: UDLATILE ANALYSES

TITLE: GRIMES

LAB: RMA

FIMPLE PREP: ____ ANALYST/ENTRY: E68

MATRIX: SEDIMENT

METHOD: 9302MODY 4

UNITS: UG/KG

CASE: 6370

DATE: 10/07/86

COMPOUND	AEJ9C0	04	AEJ9C006		AEJ9CO	80	AEJ9C009	
CHLOROMETHANE	13.0	Ü	12.0	U	16.0		17.0	11
BROHOMETHANE	13.0	U	12.0	U	16.0	·U	13.0 13.0	U
VINYL CHLORIDE	13.0	Ü	12.0	U	16.0	υ	13.0	ນ
CHLOROETHANE	13.0	Ü	12.0	Ü	16.0	Ü	13.0	U U
METHYLENE CHLORIDE	6.60	U	6.00	Ü	7.80	U	6.40	U
ACETONE	13.0	Ü	30.0	ំប៉	50.0	บ	13.0	U
CARBON DISULFIDE	6.60	Ü	6.00	U	7.80	U	6.40	U
1-1 DICHLOROETHENE	6.60	Ü	6.00	Ü	7.80	U	6.40	Ü
1.1 DICHLOROETHANE	6.60	บ	6.00	บ	7.80	Ü	6.40	Ų
TRANS-1,2,-DICHLOROETHENE	6.60	Ü	6.00	Ü	7.80	U	6.40	į.
CHLOROFORM	6.60	Ü	6.00	U	7.80	U	6.40	Į.
1,2,DICHLORDETHANE	6.60	Ü	6.00	U	7.80	U	6.40	Ü
2-RUTANDNE		Ī	3.10	H	14.0	М	0.40	U
1,1,1 TRICHLORDETHANE	6.60	U	6.00	Ü	7.80	U	6.40	U
CARBON TETRACHLORIDE	6.60	Ü	6.00	Ü	7.80	u	6.40	U
VINYL ACETATE	13.0	Ü	12.0	Ü	16.0	U	13.0	į:
PROMODICHLOROMETHANE	6.60	ΰ	6.00	ΰ	7.80	Ü	6.40	Li Li
1,1,2,2,-TETRACHLORDETHANE	6.60	บ	6.00	Ü	7.80	Ü	6.40	IJ
2-DICHLOROFROFANE	6.60	Ü	5.00	Ü	7.80	Ü	6.40	iji
NS-1+3-DICHLOROFROFENE	5.50	Ü	6.00	บ	7.80	บ	6.40	ij
.CHLOROETHENE	6.60	U	5.00	Ū	7.80	Ū	6.40	Ü
DIBROMOCHLOROMETHANE	6.60	U	6.00	Ū	7.80	Ü	6.40	ξ:
1,1,2-TRICHLOROETHANE	6.60	Ū	6.00	Ū	7.80	Ü	6.40	Ĺi
BENZENE	6.60	Ū	6.00	์ บ	7.80	Ü	6.40	Ū
CIS-1,3-DICHLOROFROFENE	6.60	Ū	6.00	Ū	7.80	υ	6.40	Ü
2-CHLOROETHYL VINYL ETHER		I		Ī		I		٠.
FROMOFORM	6.60	U	6.00	υ	7.80	υĪ	6.40	Į1
2-HEXANONE	13.0	Ū	12.0	Ū	16.0	U	13.0	Ü
4-METHYL-2-FENTANONE	13.0	Ū	12.0	ū	16.0	Ü	13.0	Ü
TETRACHLOROETHENE	6.60	Ū	6.00	Ü	7.80	Ü.	6.40	IJ
TOLUENE	6.60	Ū	6.00	Ü	1600.	U .	6.40	Ü
CHLOROBENZENE	6.60	Ū	6.00	Ū	7.80	U	6.40	Ü
ETHYL BENZENE	6.50	Ū	6.00	Ū	7.80	Ų	6.40	Ü
STYRENE	6.60	υ	6.00	บ	7.80	Ū	6.40	.13
TOTAL XYLENES	6.60	U	8.00	U	7.80	Ū	6.40	11

ANALYSIS TYPE: UDLATILE ANALYSES

TITLE: GRIMES

LAB: RHA

SOMPLE PREP: ____ ANALYST/ENTRY: E71

MATRIX: WATER

HETHOD: 9302HO METHODEREVIEWER:

UNITS: UG/L CASE: 6370

DATE: 10/08/85

•								
	AEJ9CO	AEJ90007 AEJ90013F		13F	AEJ9C0	1 4	AEJ900	15
COMFOUND								
CHLOROMETHANE	10.0	U	10.0	U	10.0	U	10.0	11
BROMOMETHANE	10.0	U	10.0	υ	10.0	Ū	10.0	į.
VINYL CHLORIDE	10.0	U	10.0	บ	10.0	Ü	10.0	11
CHLOROETHANE	10.0	u.	10.0	U.	10.0	Ü	10.0	Ų
HETHYLENE CHLORIDE	5.00	U	10.0		5.00	U	5.40	{!
ACETONE	10.0	U	10.0	U	10.0	IJ	34.0	; •
CARBON DISULFIDE	5.00	U	5.00	U	5.00	U	5.00	1
1,1 DICHLOROETHENE	5.00	U	5.00	υ	5.00	υ	5.00	<u>:</u> 1
1.1 DICHLOROETHANE	5.00	U	5.00	U	5.00	U	5.00	Į)
TRANS-1,2,-DICHLOROETHENE	5.00	U	5.00	U	5.00	U	5.00	1 :
CHLOROFORM	5.00	U.	5.00	U	5.00	U	5.00	- (I
1,2,DICHLOROETHANE	5.00	U	5.00	Ü	5.00	U	5.00	Ü
2-BUTANONE	•	I		I		Ī	80.0	_1
1,1,1 TRICHLOROETHANE	5.00	U	5.00	U	5.00	U	5.00	Ę
CARBON TETRACHLORIDE	5.00	U	5.00	Ū	5.00	Ū	5.00	Ü
VINYL ACETATE	10.0	U	10.0	Ū	10.0	Ū	10.0	Ē
BROMODICHLOROMETHANE	5.00	U	5.00	Ū	5.00	Ū	5.00	į,
1,1,2,2,-TETRACHLORDETHANE	5.00	U	5.00	Ū	5.00	Ū.	5.00	į.
1 3-DICHLOROFROFANE	5.00	U	5.00	Ū	5.00	IJ	5.00	i j
NS-1,3-DICHLOROFROFENE	5.00	U	5.00	Ū	5.00	Ū	5.00	į,
. CHLOROETHENE	5.00	U	5.00	Ū	5.00	Ū	5.00	Ĺ:
DIBROMOCHLOROMETHANE	51.00	U	5.00	U	5.00	Ū	5.00	į:
1,1,2-TRICHLOROETHANE	5.00	U	5.00	U	5.00	Ū	5.00	ij
BENZENE	5.00	U	5.00	U	5.00	U	5.00	1.1
CIS-1,3-DICHLOROFROFENE	5.00	U	5.00	U	5.00	U	5.00	U
2-CHLOROETHYL VINYL ETHER		I		I		I		:
PROMOFORM	5.00	U	5.00	U	5.00	U	5.00	11
2-HEXANDNE	10.0	U	10.0	υ	10.0	υ	10.0	ני
4-METHYL-2-FENTANONE	10.0	U	10.0	υ	10.0	. Ü	10.0	į.
TETRACHLOROETHENE	5.00	U	5.00	Ū	5.00	Ū	5.00	Ų
TOLUENE	5.00	U	2.60	H	5.00	Ū	5.00	Ū
CHLOROBENZENE	5.00	U	5.00	Ü	5.00	Ü	5.00	Ų
ETHYL BENZENE	5.00	U	5.00	Ū	5.00	ับ	5.00	Ü
STYRENE	5.00	U	5.00	Ū	5.00	Ü	5.00	Ü
TOTAL XYLENES	5.00	U	5.00	Ū	5.00	บั	5,00	!!
							- /	

ANALYSIS TYPE: VOLATILE ANALYSES

TITLE: GRIMES LAR: RMA

SAMPLE PREP: ____ ANALYST/ENTRY: E68

MATRIX: SEDIMENT

METHOD: 9302HO

UNITS: UG/KG CASE: 6370

DATE: 10/07/86

COMF: OUNTI	AEJ9C010		AEJ9C0	AEJ9C010D		AEJ9C011		AEJ9C012	
Confount									
CHLOROMETHANE	11.0	U	11.0	U	12.0	U .	13.0	Ļ	
EROMOMETHANE	11.0	Ü	11.0	Ü	12.0	Ü	13.0	ij	
VINYL CHLORIDE	11.0	Ū.	11.0	Ü	12.0	Ü	13.0	Ü	
CHLORDETHANE	11.0	Ü	11.0	Ü	12.0	Ü	13.0	ű.	
METHYLENE CHLORIDE	13.0	บ	5.70	Ū	5.80	Ü	6.40	Ü	
ACETONE	11.0	ū	12.0	Ü -	53.0	Ü	13.0	:!	
CAREON DISULFIDE	5.70	Ū	5.70	Ū	5.80	U	6.40	Į į	
1,1 DICHLOROETHENE	5.70	Ū	5.70	Ū	5.80	Ü	6.40	11	
1,1 DICHLOROETHANE	5.70	υ´	5.70	Ū	5.80	Ü	6.40	1.1	
TRANS-1,2,-DICHLOROETHENE	5.70	U	5.70	Ü	5.80	Ū	6.40	£i.	
CHLOROFORH	5.70	U	5.70	υ	5.80	Ū	6.40	Ĺ!	
1,2,DICHLOROETHANE	5.70	·U	5.70	U	5.80	U	6.40	11	
2-BUTANONE		I		I.		I		;	
1,1,1 TRICHLOROETHANE	5.70	บ	5.70	U	5.80	· U	6.40	1,1	
CARBON TETRACHLORIDE	5.70	U	5.70	υ	5.80	U	6.40	: 1	
UINYL ACETATE	11.0	U	11.0	U	12.0	U	13.0	Ĺ	
BROMODICHLOROMETHANE	5.70	U	5.70	U	5.80	Ū	6.40	[]	
1,1,2,2,-TETRACHLOROETHANE	5.70	บ	5.70	ប	5.80	U	6.40	IJ	
1.2-DICHLORDFROFANE	5.70	U	5.70	บ	5.80	U	6.40	U	
NS-1,3-DICHLOROFROFENE	5.70	· U	5.70	U	5.80	U	6.40		
HLOROETHENE	5.70	U	5.70	U	70.0		6.40	Į:	
D. DROMOCHLOROMETHANE	5.70	U	5.70	U	5.80	U	6.40	Ų;	
1,1,2-TRICHLOROETHANE	5.70	U	5.70	ប	5.80	U	6.40	· 4.6	
BENZENE .	5.70	U	5:70	U	9.00		€.40	U	
CIS-1,3-DICHLOROPROPENE	5.70	U	5.70	U	5.80	U	6.40	U	
2-CHLOROETHYL VINYL ETHER		I		1		I	·	1	
PROMOFORM	5.70	U	5.70	U	5.80	U	6.40	U	
2-HEXANDNE	11.0	บ	11.0	U	12.0	υ	13.0	IJ	
4-METHYL-2-PENTANONE	11.0	U	11.0	U	12.0	U	13.0	U	
TETRACHLOROETHENE	5.70	U	5.70	U	5.80	U	6.40	ប	
TOLUENE	5.70	U.	5.70	U	93.0		6.40	U	
CHLOROBENZENE	5.70	U	5.70	ប	5.80	υ	6.40	\mathbf{U}^{\perp}	
ETHYL BENZENE	5.70	U	5.70	U	59.0		6.40	U	
STYRENE	5.70	U ·	5.70	υ	16.0		6.40	U	
TOTAL XYLENES	5.70	U	5.70	U.	91.0		6.40	U	

ANALYSIS TYPE: SEMIVOLATILES (FAGE 1)

E: GRIMES

. RHA

SAMPLE PREFILLLE ANALYST/ENTRY: E72

MATRIX: WATER

METHOD: 9302HO DY REVIEWER: REAL DELF

UNITS: UG/L CASE: 6370

DATE: 10/08/86

COMFOUND	AEJ9C0	AEJ9C002 AEJ9C002D AEJ9C003		03	AEJ90005			
					•		•	
FHENOL	40.0	υ	20.0	U	20.0	u	20.0	U
#IS(2-CHLOROETHYL) ETHER	40.0	U	20.0	U	20.0	U	20.0	Į:
2-CHLOROFHENOL	40.0	U	20.0	U	20.0	U	20.0	Ü
1.3 DICHLOROBENZENE	40.0	ប	20.0	U	20.0	U	20.0	<u>į</u> 1
1,4 DICHLOROBENZENE	40.0	U	20.0	U	20.0	U	20.0	Łi
FENZYL ALCOHOL	40.0	U	20.0	υ	20.0	ป	20.0	! •
1,2 DICHLOROEENZENE	40.0	u	20.0	U	20.0	IJ	20.0	. (1
2-METHYLFHENOL	40.0	U	20.0	U	20.0	U	20.0	ť
BIS(2-CHLOROISOFROFYL)ETHER	40.0	U	20.0	U	20.0	Ū	20.0	U
4-METHYLFHENOL	40.0	U	20.0	U	20.0	บ	20.0	£!
N-NITROSO-DIFROFYLAMINE	40.0	U	20.0	U	20.0	U	25.0	U
HEXACHLOROETHANE	40.0	U	20.0	U	20.0	U	20.0	- L!
NITROBENZENE	40.0	U	20.0	U	20.0	U	20.0	U
150FHORONE	40.0	IJ	20.0	U	20.0	U	20.0	f1
2-NITROPHENOL	40.0	u	20.0	U	20.0	U	20.0	IJ
~ 4-DIHETHYLFHENOL	40.0	U	20.0	U	20.0	U	20.0	Į.
TOIC ACID	200	U	100	ប	100	U	100	-Ç:
. (2-CHLOROETHOXY) METHANE	40.0	U	20.0	U	20.0	IJ	20.0	1.1
2,4 DICHLOROPHENOL	40.0	U	20.0	U	20.0	U	20.0	f'.
1,2,4-TRICHLOROBENZENE	40.0	u	20.0	U	20.0	Ų	20.0	U
NAFHTHALENE	40.0	U	20.0	U	20.0	U	20.0	U
4-CHLOROANILINE	40.0	U	20.0	U	20.0	U	20.0	U
HEXACHLOROBUTADIENE	40.0	U	20.0	U	20.0	U	20.0	1.1
4-CHLORO-3-METHYLFHENOL	40.0	U	20.0	U	20.0	U	20.0	U
2-METHYLNAFHTHALENE	40.0	U	20.0	U	20.0	U	20.0	IJ
HEXACHLOROCYCLOFENTADIENE	40.0	U	20.0	U	20.0	U	20.0	U
2,4,6-TRICHLOROPHENOL	40.0	U	20.0	U	20.0	U	20.0	U
2,4,5-TRICHLOROFHENOL	200	U	100	U	100	U	100	IJ
2-CHLORONAPHTHALENE	40.0	U	20.0	U	20.0	U	20.0	U
2-NITROANILINE	200	U	100	U	100	U	100	U
DIHETHYLFHTHALATE	40.0	U	20.0	U	20.0	IJ	20.0	Ų.
ACENAFHTHYLENE	40.0	U	20.0	U	20.0	U	20.0	11
3-HITROANILINE	200	Į i	100	U	100	£1	1.00	-
ACENAPHTHENE	40.0	U	20.0	IJ	20.0	Ũ	10.0	:
2+4-DINITROFHENOL	200	U	100	บ	100	U	100	.2
4-NITROFHENOL	200	U	100	υ	100	υ	100	13
DIBENZOFURAN	40.0	U	20.0	U.	20.0	U	20.0	11
2,4-DINITROTOLUENE	40.0	υ	30.0	υ	20.0	υ	20.0	{ ;

ANALYSIS TYPE: SEMINOLATILES (PAGE 2)

E: GRIMES

RMA

SAMPLE PREP: ____ ANALYST/ENTRY: E73

MATRIX: WATER

METHOD: 9302M01

REVIEWER: ALL_

UNITS: UG/L CASE: 6370

DATE: 10/08/86

COMFOUND	AEJ9C	AEJ9C002 AEJ9C002D		AEJ9C003		AEJ90005		
2,6-DINITROTOLUENE	40.0	υ	20.0	บ	20.0	ŧı	20.0	U
DIETHYLFHTHALATE	40.0	U	20.0	Ū	20.0	Ū	20.0	Ü
4-CHLOROFHENYL FHENYL ETHER	40.0	LI.	20.0	บ	20.0	Ü	20.0	Ü
FLUDRENE	40.0	ξI	20.0	U	20.0	Ū	20.0	Ĺ
4-NITEDANILINE	200	U	100	U	100	Ü	100	Ù
4.6-DINITRO-2-METHYLPHENOL	200	U	100	U	100	Ū	100	. Ü
N-NITROSODIFHENYLAMINE	40.0	U	20.0	U	20.0	Ü	20.0	. 1
4-BROMOFHENYL PHENYL ETHER	40.0	U	20.0	Ū	20.0	Ü	20.0	ù
HEXACHLOROBENZENE	40.0	υ	20.0	Ü	20.0	Ū	20.0	Ų:
FENTACHLOROFHENOL	200	· U	100	U	100	Ū	100	Ü
PHENANTHRENE	40.0	U	20.0	Ū	20.0	บ	20.0	ť:
ANTHRACENE	40.0	u	20.0	Ū	20.0	ū	20.0	Ü
DI-N-BUTYLPHTHALATE	40.0	U	20.0	Ū	20.0	Ū	20.0	Ü
FLUDRANTHENE	40.0	U	20.0	U	20.0	Ū	20.0	ě
FYRENE	40.0	U	20.0	υ	20.0	Ü	20.0	·Ū
PHTYL BENZYL PHTHALATE	40.0	U	20.0	U	20.0	U	20.0	į:
' DICHLOROFENZIDINE	80.0	U	40.0	. บ	40.0	U	40.0	Ų
ZO(A)ANTHRACENE	40.0	· U	20.0	υ	20.0	U	- 20.0	1:
BIS(2-ETHYLHEXYL) PHTHALATE	40.0	ប	20.0	U	20.0	U	20.0	U
CHRYSENE	40.0	U	20.0	U	20.0	U	20.0	Į.
I/I-N-OCTYL FHTHALATE	40.0	U	20.0	U	20.0	υ	20.0	U
BENZO(B)FLUORANTHENE	40.0	U	20.0	U	20.0	U	20.0	U
BENZO(K)FLUDRANTHENE	40.0	U	20.0	U	20.0	υ	20.0	U
BENZO(A) FYRENE	40.0	U	20.0	U	20.0	U	20.0	ţ١
INDENO(1,2,3-CD)FYRENE	40.0	U	20.0	U	20.0	Ü	20.0	. (1
DIBENZO(A,H)ANTHRACENE	40.0	U	20.0	U	20.0	U	20.0	IJ
PENZO(G,H,I)FERYLENE	40.0	U	20.0	U	20.0	U	20.0	Ü

ANALYSIS TYPE: SEMIVOLATILES (FAGE 1)

.E: GRIMES

MATRIX: SEDIMENT

UNITS: UG/KG CASE: 6370

: RHA

METHOD: 9302HQ4 SAMPLE PREF: ____ ANALYST/ENTRY: E69 REVIEWER: ACAL

DATE: 10/07/85

COMPOUND	AEJ9C004 AEJ9C006		AEJ9C00B		AEJ9C009			
		:			٠			•
FHENOL	430	U	400	U	510	U	420	IJ
BIS(2-CHLOROETHYL) ETHER	430	U	400	U	510	U	420	Ĺį
2-CHLOROFHENOL	430	U	400	U	510	U	420	U
1.3 DICHLOROBENZENE	430	U	400	U	510	U	420	U
1/4 DICHLOROBENZENE	430	U	400	U	510	U	420	U
RENZYL ALCOHOL	430	U	400	U	510	U	420	U
1,2 DICHLOROBENZENE	430	U	400	U	510	U	420	IJ
2-METHYLFHENOL	430	U	400	IJ	510	U	420	U
BIS(2-CHLOROISOFROFYL)ETHER	430	U	400	U	510	· U	420	U
4-METHYLFHENOL	430	U	400	U	220	H	420	Ų
N-NITROSO-DIFROFYLAMINE	430	U	400	IJ	510	U	420	ſ,
HEXACHLOROETHANE	430	U	400	ប	510	U	420	U
NITROBENZENE	430	U	400	U	510	U	420	Ľ
ISOFHORONE	430	U	400	U	510	U	420	ſ:
2-NITROPHENOL	430	U	400	U	510	U	420	ŕ.
1 4-DIMETHYLPHENOL	430	U	400	U	510	. U	420	!!
ZOIC ACII	2100.	U	1900.	U	2500.	บ	2000.	(:
(2-CHLOROETHOXY) METHANE	430	U	400	U	510	U	420	£!
2,4 PICHLOROFHENOL	430	U	400	U	510	U	420	U
1,2,4-TRICHLOROBENZENE	430	U	400	U	510	U	420	U
NAFHTHALENE	430	U	400	υ	510	U	420	U
4-CHLORDANILINE	430	U	4.00	U	510	U	420	U
HEXACHLOFORUTADIENE	430	U	400	U	510	U	420	U
4-CHLORD-3-METHYLFHENOL	430	U	400	U	510	U	420	Ľ
2-HETHYLNAFHTHALENE	430	U	400	U.	510	U	420	U
HEXACHLOROCYCLOPENTADIENE	430	U	400	บ	510	U	420	U
2,4,6-TRICHLOROFHENOL	430	U	400	ប	510	U	420	U
2,4,5-TRICHLOROPHENOL	2100.	ั	1900.	ป	2500.	U	2000.	บ
2-CHLORDNAFHTHALENE	430	υ	400	U	510	ป	420	U
2-NITROANILINE	2100.	U	1900.	U	2500.	ប	2000.	U
I:IHETHYLF:HTHALATE	430	υ	400	U	510	บ	420	! ∤
ACENAPHTHYLENE	430	U	400	U	510	U	420	IJ
3-HITROAHILINE	2100.	IJ	1900.	U	2500.	υ	12000.	1:
ACENAPHTHENE	430	U	400	υ	510	υ	,420	ŧ•
2,4-DINITROPHENOL	2100.	U	1900.	υ	2500.	U	2000.	! }
4-HITROPHENOL	2100.	υ	1900.	υ	2500.	υ	2000.	11
DIBENZOFURAN	430	U	400	บ	510	ប	420	į į
2,4-DINITROTOLUENE	430	U	400	U	510	ប	420	U

ANALYSIS TYPE: SEMIVOLATILES (PAGE 2)

T: GRIMES RHA

SAMPLE PREF:____ ANALYST/ENTRY: E70

MATRIX: SEDIMENT

METHOD: 9302M01

UNITS: UG/KG

CASE: 6370

DATE: 10/07/86

	AEJ9C004		AEJ9C0	AEJ9C006 AEJ9		800	AEJ9C(09
COMPOUND			•				•	
2,6-DINITROTOLUENE	430	U	400	U	510	U	. 420	U
DIETHYLPHTHALATE .	430	U	400	Ū	510	Ū	420	Ĺi
4-CHLOROPHENYL PHENYL ETHER	430	υ	400	Ū	510	Ū	420	Ęi
FLUDRENE	430	U	400	U	510	Ū	420	ū
4-NITROANILINE	2100.	U	1900.	U	2500.	U	2000.	Ū
4,6-DINITRO-2-METHYLFHENOL	2100.	υ	1900.	U	2500.	U	2000.	Ū
N-NITROSODIFHENYLAMINE	430	U	400	U	510	U	420	IJ
4-BROMOFHENYL PHENYL ETHER	430	u	400	U	510	U	420	U
HEXACHLOROBENZENE	430	U	400	U	510	U	420	Ü
FENTACHLOROFHENOL	2100.	U	1900.	U ·	2500.	U	2000.	U
FHENANTHRENE	430	U	400	. U	510	U	420	U.
ANTHRACENE	430	U	400	υ	510	υ	420	ij
DI-N-RUTYLPHTHALATE	430	U	400	υ	510	U	420	U
FLUORANTHENE	430	U	400	U	510	U	420	را
FYRENE	430	U	400	บ	510	U	78.0	h
FUTYL BENZYL FHTHALATE	430	U	400	U	510	U	420	Ų
DICHLOROBENZIDINE	033	U	790	u	1000.	U	640	Ú
1 LO(A)ANTHRACENE	430	U	100	U	510	υ	420	Ü
FIS(2-ETHYLHEXYL)FHTHALATE	430	U	78.0	н	470	H	120	۲
CHRYSENE	430	U	400	ប	510	U	420	U
DI-N-OCTYL FHTHALATE	430	U	400	บ	76.0	н	320	M
PENZO(B)FLUORANTHENE	430	U	400	U	510	U	420	Ų
PENZO(K)FLUDRANTHENE	430	υ	400	U	510	U	4.20	Į,i
BENZO(A) PYRENE	430	U	400	U	510	U	420	U
INDENO(1,2,3-CD)FYRENE	430	υ	400	ีย	510	U.	420	U
DIBENZO(A,H)ANTHRACENE	430	ប	400	U	510	Ū	420	U
BENZO(G,H,I)FERYLENE	430	U	400	U	510	U	75.0	M

ANALYSIS TYPE: SEMIVOLATILES (PAGE 1)

TITLE: GRIMES

LAR: RMA

SAMPLE PREP:____ ANALYST/ENTRY: E72

MATRIX: WATER METHOD: 9302MO1 UNITS: UG/L CASE: 6370

DATE: 10/08/8

COMFOUND	AEJ9CO	07	AEJ9C0	13F	AEJ9C0	1 4	AEJ9C01
FHENOL	20.0	U	20.0	บ	20.0	U	20.0
RIS(2-CHLOROETHYL) ETHER	20.0	U	20.0	IJ	20.0	U	20.0
2-CHLOROFHENOL	20.0	U	20.0	U	20.0	U	20.0
1,3 DICHLORORENZENE	20.0	U	20.0	Ü	20.0	U	20.0
1,4 DICHLOROBENZENE	20.0	U	20.0	U	20.0	U	20.0
PENZYL ALCOHOL	20.0	U	20.0	Ü	20.0	U	20.0
1,2 DICHLOROBENZENE	20.0	Ú	20.0	U	20.0	U	20.0
2-METHYLFHENOL	20.0	U	20.0	U	20.0	U	20.0
BIS(2-CHLOROISOFROFYL)ETHER	20.0	υ	20.0	U	20.0	υ	20.0
4-METHYLFHENOL	20.0	U	20.0	U	20.0	U	20.0
N-NITROSO-DIFROFYLAMINE	20.0	U	20.0	U	20.0	U	20.0
HEXACHLOROETHANE	20.0	U	20.0	· U	20.0	U	20.0
NITROBENZENE	20.0	U	20.0	U	20.0	U	20.0
ISOFHORONE	20.0	U	20.0	U	20.0	U	20.0
2-NITROFHENOL	20.0	U	20.0	U	20.0	U	20.0
2.4-DIMETHYLFHENOL	20.0	U	20.0	U	20.0	U	20.0
RENZOIC ACID	4.40	H	1.00	U	100	U	100
BIS(2-CHLORDETHOX7) METHANE	20.0	U	20.0	U	20.0	U	20.0
2,4 DICHLOROFHENOL	20.0	U	20.0	U	20.0	U	20.0
,2,4-TRICHLOROBENZENE	20.0	U	20.0	U	20.0	U	20.0
AF HTHALENE	20.0	U	20.0	υ	20.0	U	20.0
4-CHLORDANILINE	20.0	U	20.0	Ú	20.0	U	20.0
HEXACHLOROBUTADIENE	20.0	U	20.0	· U	20.0	Ū	20.0
4-CHLORO-3-HETHYLFHENOL	20.0	U	20.0	U	20.0	U	20.0
2-METHYLNAPHTHALENE	20.0	U	20.0	U	20.0	U	20.0
HEXACHLOROCYCLOPENTADIENE	20.0	U	20.0	U	20.0	U	20.0
2,4,6-TRICHLOROFHENOL	20.0	U	20.0	U	20.0	U	20.0
2,4,5-TRICHLOROPHENOL	100	υ	100	U	100	U	100
2-CHLORONAPHTHALENE	20.0	U	20.0	U	20.0	ប	20.0
2-NITROANILINE	100	U	100	U	100	U	100
DIMETHYLEHTHALATE	20.0	U	20.0	υ	20.0	υ	20.0
ACENAPHTHYLENE	20.0	U	20.0	ប	20.0	ប	20.0
3-NITROANILINE	100	U	100	บ	100	U	100
ACENAFHTHENE	20.0	υ	20.0	· U	20.0	Ü	20.0
2,4-PINITROPHENOL	100	U	100	U	100	U	100
4-NITROPHENOL	100	Ū.	100	Ū	100	Ü	100
DIBENZOFURAN	20.0	Ū	20.0	Ū	20.0	ũ	20.0
2,4-DINITROTOLUENE	20.0	U	20.0	U	20.0	Ü	20.0

ANALYSIS TYPE: SEMIVOLATILES (PAGE 2)

TITLE: GRIMES

FAMFLE FREF: ____ ANALYST/ENTRY: E73 REVIEWER: ARAT

MATRIX: WATER

UNITS: UG/L CASE: 6370

DATE: 10/08/8/

COMFOUND	AEJ9C0	07	AEJ9C0	13F	AEJ9C0	14	AEJ90(115
2,6-DINITROTOLUENE	20.0	υ	20.0	U	20.0	Ų	20.0	
DIETHYLPHTHALATE	20.0	U	20.0	U	20.0	U	20.0	
4-CHLOROPHENYL PHENYL ETHER	•	U	20.0	U	20.0	ប	20.0	
FLUORENE	20.0	บ	20.0	U	20.0	U	20.0	
4-NITROANILINE	100	U	100	U	100	U	100	
4,6-DINITRO-2-METHYLFHENOL	100	U	100	U	100	บ	100	
N-NITROSODIFHENYLAMINE	20.0	υ	20.0	ប	20.0	U	20.0	
4-BROMOFHENYL FHENYL ETHER	20.0	U	20.0	U	20.0	U	20.0	
HEXACHLOROBENZENE	20.0	U	20.0	U	20.0	U	20.0	
FENTACHLOROFHENOL	100	U	100	U	100	U	100	
FHENANTHRENE	20.0	U	20.0	U	20.0	U	20.0	
ANTHRACENE	20.0	U	20.0	U	20.0	U	20.0	
D:I-N-BUTYLF:HTHALATE	20.0	U	20.0	ń	20.0	U	20.0	
FLUORANTHENE	20.0	U	20.0	Ú	20.0	υ	20.0	
FYRENE	20.0	U -	20.0	U	20.0	บ	20.0	
BUTYL BENZYL PHTHALATE	20.0	U	20.0	U	20.0	U	20.0	
3,3' DICHLOROBENZIDINE	40.0	U.	40.0	U	40.0	U	40.0	
BENZO(A)ANTHRACENE	20.0	U	20.0	U	20.0	U	20.0	
♥IS(2-ETHYLHEXYL)FHTHALATE	20.0	U	2,90	М	20.0	U	20.0	
RYSENE	20.0	U	20.0	. U	20.0	Ū	20.0	:
N-DCTYL FHTHALATE	20.0	U	20.0	U	20.0	U	20.0	1
BENZO(B)FLUORANTHENE	20.0	U	20.0	U ·	20.0	Ū	20.0	ļ.
BENZO(K)FLUORANTHENE	20.0	U	20.0	Ū	20.0	Ü	20.0	1
BENZO(A)FYRENE	20.0	U	20.0	Ū	20.0	Ū	20.0	1
INDEND(1,2,3-CD)FYRENE	20.0	Ū	20.0	Ū	20.0	Ū	20.0	1
DIBENZO(A,H)ANTHRACENE	20.0	Ū	20.0	ū	20.0	Ü	20.0	į
BENZO(G:H:I)FERYLENE	20.0	IJ	20.0	Ū	20.0	Ü	20.0	ŧ
				-		_		•

ANALYSIS TYPE: SEMIVOLATILES (FAGE 1)

TITLE: GRIMES

LAE: RMA

SAMPLE PREF:____ ANALYST/ENTRY: E69

MATRIX: SEDIMENT

METHOD: 9302M01

REVIEWER: 661 DIET

UNITS: UG/KG CASE: 6370

DATE: 10/07/86

COMFOUND	AEJ9	C010	AE J90	010D	AEJ9C	011	AEJ9C	012
FHENOL	370	U	370	U	15000.	· U	2100.	U
BIS(2-CHLOROETHYL) ETHER	370	Ü	370	Ü	15000.	Ü	2100.	ני
2-CHLOROPHENOL	370	บ	370	บ	15000.	Ü	2100.	Li
1,3 DICHLOROFENZENE	370	Ū	370	. U	15000.	บ	2100.	บ
1,4 DICHLOROBENZENE	370	U	370	Ū	15000.	Ü	2100.	ບ
BENZYL ALCOHOL	370	· U	370	Ū	15000.	Ū	2100.	į.
1,2 DICHLOROBENZENE	370	ប	370	บ	15000.	Ü	2100.	į.
2-METHYLPHENOL	370	Ū	370	Ū	15000.	Ü	2100.	Ù
FIS(2-CHLOROISOFROFYL)ETHER	370	U	370	Ú	15000.	Ū	2100.	Ü
4-METHYLFHENOL	370	Ü	370	Ū	15000.	Ü	2100.	Ęi
N-NITROSO-DIFROFYLAMINE	370	U	370	บ	15000.	บ	2100.	Ù
HEXACHLORDETHANE	370	υ	370	Ū	15000.	Ü	2100.	Ü
NITROBENZENE	370	ΰ	370	Ū	15000.	บ	2100.	Ü
I SOF HORONE	370	U	370	Ü	15000.	Ū	2100.	Ü
2-NITROFHENOL	370	U	370	Ū	15000.	Ū	2100.	Ū
2:4-DIMETHYLFHENOL	370	· U	370	Ū	15000.	Ū	2100.	Ū
BENZOIC ACID	1800.	υ	1800.	U	74000.	Ū	10000.	Ū
BIS(2-CHLOROETHOXY) METHANE	370	u	370	U	15000.	ເມື	2100.	Į.
2+4 DICHLOROPHENOL	370	U	370	IJ	15000.	U	2100.	. [1
,4-TRICHLOROBENZENE	370	U	370	· U	15000.	บ	2100.	U
ITHALENE	370	U	370	U	2800.	M	2100.	£1
A-CHLDROANILINE	370	U	370	U	15000.	U	2100.	* ()
HEXACHLOROBUTADIENE	370	U	370	U	15000.	U	2100.	U
4-CHLORD-3-METHYLPHENDL	370	U	370	.U	15000.	· U	2100.	U
2-METHYLNAPHTHALENE	370	U	370	U	5100.	H	2100.	IJ
HEXACHLOROCYCLOFENTADIENE	370	. U	370	U	15000.	υ	2100.	U
2,4,6-TRICHLOROPHENDL	370	U	370	บ	15000.	υ	2100.	υ
2,4,5-TRICHLOROFHENOL	1800.	Ü	1800.	U	74000.	U	10000.	U
2-CHLORONAPHTHALENE	370	U	370	U	15000.	U	2100.	U
2-NITROANILINE	1800.	U	1800.	υ	74000.	U	10000.	· U
DIMETHYLEHTHALATE	370	U	370	U	15000.	U	2100.	U
ACENAPHTHYLENE	370	U	370	U	15000.	U	2100.	U
3-NITROANILINE	1800.	U	1800.	U	74000.	U	10000.	U
ACENAFHTHENE	370	U	370	· U	15000.	บ	2100.	U
2,4-DINITROPHENOL	1800.	U	1800.	U	74000.	U	10000.	U
4-NITROPHENOL	1800.	U	1800.	· U	74000.	U	10000.	ļ
TITENZOFURAN	370	U	370	· U	15000.	U	2100.	£!
2,4-DINITROTOLUENE	370	U	370	U	15000.	U	2100.	U

ANALYSIS TYPE: SEMIVOLATILES (FAGE 2)

TITLE: GRIMES

LAB: RMA

SAMELE PREF:____ ANALYST/ENTRY: E70

MATRIX: SEDIMENT

METHOD: 9302MODELT

UNITS: UG/KG CASE: 6370

DATE: 10/07/86

COMPOUND	AEJ9C	10	AEJ9C0	10D	AEJ9CO	11	AEJ9C	012
COMPOUND								
2,6-DINITROTOLUENE	370	U	370	U	15000.	. บ	2100.	บ
THETHYLPHTHALATE	370	Ū	370	Ū	15000.	Ü	2100.	Ü
4-CHLOROFHENYL FHENYL ETHER	370	U	370	Ū	15000.	Ū	2100.	į,
FLUDRENE	370	U	370	Ü	15000.	Ū	2100.	Ū
4-NITROANILINE	1800.	U	1800.	U	74000.	Ū	10000.	Ū
4,6-DINITRO-2-METHYLFHENOL	1800.	U	1800.	U	74000.	U	10000.	Ü
N-NITROSODIFHENYLAMINE	370	U	370	บ	15000.	U	2100.	Į.
4-BROMOFHENYL FHENYL ETHER	370	U	370	ប	15000.	υ	2100.	U
HEXACHLOROBENZENE	370	U	370	IJ	15000.	U	2100.	U
FENTACHLOROPHENOL	1800.	U	1800.	U	74000.	U	10000.	U
FHENANTHRENE	48.0	H	45.0	н	2600.	н	230	М
ANTHRACENE	370	U	370	U	15000.	U	2100.	U
II-N-BUTYLFHTHALATE	370	U	370	U	15000.	บ	2100.	U
FLUDRANTHENE	370	บ	370	U	1700.	Ä	2100.	Ū
FYRENE	44.0	М	370	U	4000.	М	2100.	Ü
BUTYL BENZYL FHTHALATE	370	U	370	U	15000.	U	2100.	Ü
3,3' DICHLOROBENZIDINE	750	U	750	U	30000.	Ū	4200.	Ü
BENZO(A)ANTHRACENE	370	U	370	U	15000.	Ū	2100.	Ü
PTS(2-ETHYLHEXYL)PHTHALATE	190	н	93.0	H	15000.	U	6200.	
'SENE	52.0	M	44.0	. н	15000.	υ	2100.	U
. N-DCTYL FHTHALATE	180	М	82.0	н	15000.	U	7300:	
BENZO(B)FLUORANTHENE	370	U	370	U	15000.	L1	2100.	U
BENZO(K)FLUDRANTHENE	370	U	370	U	15000.	U	2100.	U
FENZO(A)FYRENE	370	υ	370	U	15000.	U	2100.	· U
INDENO(1,2,3-CD)FYRENE	370	U	370	U	15000.	υ	2100.	U
DIBENZO(A,H)ANTHRACENE	370	U	370	Ū	15000.	Ū	2100.	Ü
BENZO(G,H,I)FERYLENE	370	U	370	U	15000.	Ũ	2100.	Ū

TITLE: GRIMES

LAB: RMA

ANALYST/ENTRY: LT

MATRIX: WATER

METHOD: 9302M01

UNITS: UG/L CASE: 6370

DATE: 10-8-86

TENTATIVELY IDENTIFIED COMFOUNDS

SAMPLE NO.	COMPOUND NAME**	FRACTION	EST.	CONC.*
AEJ90002	NOTHING SIGNIFICANT FOUND	VOA		
AEJ90002	CYCLOHEXANONE	ENA	18	J
AEJ90002	HEXANEDIDIC ACID	ENA	19	J
AEJ9C002D	NOTHING SIGNIFICANT FOUND	VDA		
AEJ9C002D	HEXAMETHYL-CYCLOTRISILOXANE	ENA	9.8	J
AEJ9C002D	METHYL-CYCLOFENTANOL	EINA	9.4	J
AEJ90003	NOTHING SIGNIFICANT FOUND	AOA		
AEJ90003	CYCLOHEXANONE	ENA	10	J
AEJ90005	NOTHING SIGNIFICANT FOUND	YOA		
AEJ90005	HEXANEDIDIC ACID	BNA	19	J
AEJ90005	CYCLOHEXANDNE	BNA	12	J
AEJ9C007	NOTHING SIGNIFICANT FOUND	VOA		
AEJ90007	METHYL-CYCLOPENTANOL	BNA	14	. J
AEJ9C007	CYCLOHEXANDNE	BNA	9	J
AEJ90013F	NOTHING SIGNIFICANT FOUND	VDA		
AEJ9C013F	METHYL-CYCLOFENTANOL	BNA	14	J
AEJ90013F	CYCLDHEXANDNE	BNA	11	J
AEJ9C014	NOTHING SIGNIFICANT FOUND	VOA		
AEJ9C015	METHYLESTER, BUTANDIC ACID	VDA	3.8	J
AEJ90015	CYCLOHEXANDNE	ENA	13	J
AEJ9C015	METHYL RENZENE	ENA	15	J
AEJ90002	UNKNOMN	BNA	19	J
AEJ9C002D	UNKNOWN	BNA	9.8	J
AEJ90002D	NUKNOMU	BNA	9.4	J
AEJ9D003	UNKNOWN	. ENA	11	J
AEJ90003	UNKNOWN	ENA	7.2	J
AEJ90005	4 UNKNOWNS	BNA	8.2-28	J
AEJ9C007	UNKNOWN	ENA	46	J
AEJ90014	UNKNOWN	BNA	13	J
AEJ9C015	2 UNKNOWNS	VDA	3.0,3.B	J
AEJ90015	UNKNOWN	BNA	21	J

^{*}This is a crude estimation based on response relative to an internal standard. An authentic standard has not been run.

^{**}The compounds were identified using a library search routine. Authentic standards have not been analyzed to verify compound mass spectra and retention times.

TITLE: GRIMES LAB: RMA

ANALYST/ENTRY: LT

MATRIX: SEDIMENT METHOD: 9302M01

REVIEWER: GCS. (

UNITS: UG/KG CASE: 6370 DATE: 10-7-86

TENTATIVELY IDENTIFIED COMPOUNDS

SAMPLE ND.	COMPOUND NAME**	FRACTION	EST.	CONC.*
AEJ9004	NOTHING SIGNIFICANT FOUND	VOA		
AEJ9C004	HEXADECANDIC ACID	BNA	240	J
AEĴ9D004	MDLECULAR SULFUR	BNA	77 00	J
AEJ9C004	CHOLESTANOL	BNA	240	J
AEJ90004	TRITERFENE	BNA	1300	J _.
AEJ9C006	NOTHING SIGNIFICANT FOUND	VDA		
AEJ90006	MOLECULAR SULFUR	EINA	2900	J
AEJ9C006	HEXADECANDIC ACID	ENA	330	J
AEJ9C006	STIGMASTENDNE	BNA	740	J
AEJ9COOB	NOTHING SIGNIFICANT FOUND	VDA		
AEJ9C00B	TETRADECANDIC ACID	BNA	300	J
AEJ9COOB	FENTADECANDIC ACID	BNA	510	J
AEJ9COOB	HEXADECANDIC ACID	ENA	1200	J J J
AEJ9C008	MOLECULAR SULFUR	BNA	8 800	J
AEJ9COOB	DCTADECANDIC ACID	BNA	540	J
AEJ9C009	NOTHING SIGNIFICANT FOUND	VOA	•	
AEJ9C009	HEXADECANDIC ACID	BNA	500	J
AEJ9COO9	OCTADECANDIC ACID	BNA	.540	J
AEJ9C009	C-4 SUBSTITUTED PHENANTHRENE	BNA	320	J J J
AEJ9C009	SUBSTITUTED FYRRIDINE	BNA	500	
AEJ9C009	STIGMASTENONE	BNA	B70	J
AEJ9C010	NOTHING SIGNIFICANT FOUND	VOA		
AEJ9C010	TRITERPENE	BNA	2100	J
AEJ9C004	17 UNKNOWNS	BNA	210-2500	J
AEJ9C006	4 UNENOWNS	ENA	160-3900	J
AEJ9COOB	16 UNENDWNS	BNA	220-2300	J
AEJ90009	16 UNKNOWNS	BNA	170-1800	J
AEJ9C010	19 UNKNOWNS	BNA	170-1200	J

^{*}This is a crude estimation based on response relative to an internal standard. An authentic standard has not been run.

^{**}The compounds were identified using a library search routine. Authentic standards have not been analyzed to verify compound mass spectra and retention times.

TITLE: GRIMES LAB: RMA ANALYST/ENTRY: LT MATRIX: SEDIMENT METHOD: 9302M01 REVIEWER: GCS

UNITS: UG/KG CASE: 6370 DATE: 10-7-86

TENTATIVELY IDENTIFIED COMPOUNDS

SAMPLE NO.	COMPOUND NAME**		FRACTIO	V EST.	CONC.*
AEJ9C010D	NOTHING SIGNIFICANT F	בסטאם	VOA	•	
AEJ9C010D	METHYL BENZENE		BNA	310	J
AEJ9C010D	DIMETHYL BENZENE	•	BNA	160	J
AEJ9C010D	TRITERPENE		BNA	295 0	J
AEJ9C011	FENTANE		VDA	8.4	J
AEJ90011	HEXANE		VDA	4.0	J
AEJ9C011	FROFYL-BENZENE		VOA	20	J
AEJ9C012	NOTHING SIGNIFICANT F	FOUND	VOA		•
AEJ9C010D	11 UNENDWNS		EINA	220-1000	J
AEJ9C011	2 UNKNOWNS		VOA	6.1,7.6	J
AEJ9C011	23 UNKNOWNS		BNA	17000-100000	00 J
AEJ90012	6 UNKNOWNS		BNA	1700-360000	J

^{*}This is a crude estimation based on response relative to an internal standard. An authentic standard has not been run.

^{**}The compounds were identified using a library search routine. Authentic standards have not been analyzed to verify compound mass spectra and retention times.

Case No.: 6370

Laboratory: RMA

Contract No.: 68-01-7016

Method No.: 9302M01

SMO No.: GA929,931,933-938

EPA No.: AEJ9C

Site: Grimes

Matrix: Soil

We have reviewed the above case. The following are our findings:

- 1. Analysis was requested on the base-neutral/acid fraction of eight soil samples.
- 2. Some detection limits are higher than the CRDL because the final extracts were diluted to avoid precipitation.
- 3. Methylene Chloride and Acetone were found in the method blanks. The blank rules were used to qualify the associated data.
- 4. Several compounds were outside of data review control limits in the initial and continuing calibrations. The calibration rules were used to qualify the associated data.
- 5. There were no field blanks nor performance evaluation samples associated with this sample set.

Case No.: 6370

Laboratory: RMA

Contract No.: 68-01-7016

Method No.: 9302M01

SMO No.: GA926-8,930,932,940-42

EPA No.: AEJ9C

Site: Grimes

Matrix: Water

We have reviewed the above case. The following are our findings:

- 1. This portion of the case consisted of nine water samples for base-neutrals and acids.
- 2. Methylene Chloride, Acetone, Toluene, 4-Methyl-2-Pentanol, 2-Hexanol and bis(2-Ethylhexyl)Phthalate were found in the method and field blanks. The blank rules were applied to the associated data.
- 3. Several compounds were outside of data review control limits in the initial and continuing calibrations. The calibration rules were used to qualify the associated data.
- 4. A field blank was included in this sample set as sample AEJ9C013F/GA939.
- 5. A performance evaluation sample was included in this set as AEJ9C900P/GA942. All compounds were found.

APPENDIX C Sample Field Sheets

FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY, REGION VII ENVIRONMENTAL SERVICES DIV. 25 FUNSTON RD. KANSAS CITY, KS 66115

: Site Name: Grime : Location: Keok			Site Number: 9C Site Code: AEJ	
•	ber: AEJ9CO/		S#5 Leader: Hudson	·
: SOIL, DUST, R: : Sample Split (c:			DTHER:	
: Sample Container	: Tag Color	: Preservati	ve : Analysis Reque	sted
: 1 LITER CUBI : 80oz. BOTTLE : VOA SET : : Depth: : Samplers:	PURPLE PURPLE LIME Pari #: Hudson		: A/E/N : VDA : : : : : : : : : : : : : : : : : : :	
: Site Description: : Uf		t we	//	: : : : : :

APPENDIX D

Grimes Property Well Log Information

Grimes Well Information

Driller:

Hopson Drilling Company Route #1, Box 288 Hamilton, Illinois 62341 (217) 847-3846

Well Log:

300 ft. Drilling 0-41 Yellow clay 41-78 Sand Blue clay 78-92 92-110 Sand Blue clay 110-117 117-120 Rock 120-131 Rock, clay, shale 131-298 Limestone 298-300 Shale

1.5 GPM on bottom 117' 6" steel casing 40' 4.5" PVC, top at 100 ft. 5" hole from 140' to 300'

APPENDIX E

Analytical Results Previous Well Sampling

Sust.	No:	201
- 0)(.	MU.	

CORY LABORATORIES, INC. 823 5th St. MENOMINEE, MICH.

P.O. No:	
----------	--

SAMPLE ANALYSIS SUMMARY

SAMPLE DESCRIPTION:

201-4-1009: #1 Grimes Taken 10-9-80 201-5-1009: #2 Gorham Taken 10-9-80 201-6-1009: #3 Bill Kite Taken 10-9-80

TEST RUN	4-1009	5-1009	6-1009	
Arsenic, mg/l	20.005	< 0.005	<0.005	
Barium, mg/l	<0.5	< 0.5	<0.5	
Total Chrome, mg/l	<0.025	<0.025	<0.025	
Lead, mg/l	< 0.020	0.039	<0.020	
Mercury, mg/l	<0.0005	<0.0005	<0.0005	
Selenium, mg/l	<0.025	<0.025	<0.025	
Silver, mg/l	< 0.030	<0.030	<0.030	
Cadmium, mg/l	<0.020	<0.020	(0.020	
Nitrate Nitrogen, mg/l	0.02	20	0.07	
Kjeldahl Nitrogen, mg/l	0.24	1.6	6.3	
Total Organic Carbon, mg/l	5	15	36	
Phenol, mg/l	0.011	0.023	0.012	
			,	

COMMENTS:

Sample Received: 10-23-80

DATE: 180 18 1980

APPENDIX F Addresses of Property Owners