Sixth IUTAM Symposium on Laminar-Turbulent Transition

FLUID MECHANICS AND ITS APPLICATIONS Volume 78

Series Editor: R. MOREAU

MADYLAM Ecole Nationale Supérieure d'Hydraulique de Grenoble Boîte Postale 95 38402 Saint Martin d'Hères Cedex, France

Aims and Scope of the Series

The purpose of this series is to focus on subjects in which fluid mechanics plays a fundamental role.

As well as the more traditional applications of aeronautics, hydraulics, heat and mass transfer etc., books will be published dealing with topics which are currently in a state of rapid development, such as turbulence, suspensions and multiphase fluids, super and hypersonic flows and numerical modelling techniques.

It is a widely held view that it is the interdisciplinary subjects that will receive intense scientific attention, bringing them to the forefront of technological advancement. Fluids have the ability to transport matter and its properties as well as transmit force, therefore fluid mechanics is a subject that is particulary open to cross fertilisation with other sciences and disciplines of engineering. The subject of fluid mechanics will be highly relevant in domains such as chemical, metallurgical, biological and ecological engineering. This series is particularly open to such new multidisciplinary domains.

The median level of presentation is the first year graduate student. Some texts are monographs defining the current state of a field; others are accessible to final year undergraduates; but essentially the emphasis is on readability and clarity.

For a list of related mechanics titles, see final pages.

Sixth IUTAM Symposium on Laminar-Turbulent Transition

Proceedings of the Sixth IUTAM Symposium on Laminar-Turbulent Transition, Bangalore, India, 2004

Edited by

RAMA GOVINDARAJAN Jawaharlal Nehru Centre for Advanced Scientific Research, Engineering Mechanics Unit, Bangalore, India

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN-10 1-4020-3459-8 (HB) ISBN-13 978-1-4020-3459-6 (HB) ISBN-10 1-4020-4159-4 (e-book) ISBN-13 978-1-4020-4159-4 (e-book)

Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

www.springer.com

Printed on acid-free paper

All Rights Reserved © 2006 Springer No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Printed in the Netherlands.

Contents

INVITED LECTURES

Laminar separation bubbles1 M. Gaster
Transient growth with application to bypass transition
The role of external disturbances in laminar-turbulent transition
Modeling the effects of two-dimensional steps on boundary-layer transition
Recent observations of the transition to turbulence in a pipe45 Tom Mullin, J. Peixinho
Localised instability in unsteady separation bubbles
Interaction of separation and transition in boundary layers: Direct Numerical Simulations71 Herman F. Fasel, Dieter Postl
INSTABILITY I

Chairman: R. Narasimha

On fundamental instability mechanisms of nominally 2-D separation bubbles	89
M. Simens, L. González, V. Theofilis, R. Gómez-Blanco	

INSTABILITY II

Chairman: Wolfgang Rodi

The pecularities of development of forerunners on longitudinal structures
fronts in the boundary layer of a straight wing103
V.N. Gorev, M.M. Katasonov, V.V. Kozlov

Observation of nonlinear travelling waves in turbulent pipe flow......109 B. Hof, Casimir W.H.van Doorne, J. Westerweel, Frans T.M. Nieuwstadt

INSTABILITY III Chairman: Leonhard Kleiser

A strange instability with growth normal to a boundary layer115 J. J. Healey
Numerical studies of streak instability in boundary layers
A possible linear instability mechanism in small-scale pipe flows

INSTABILITY IV

Chairman: Christopher Davies

Effect of free-stream turbulence on a compressible laminar boundary layer
Effect of viscosity stratification on secondary and nonmodal instabilities145 A. Sameen
Spectral element stability analysis of vortical flows

INSTABILITY V

Chairman: Jonathan Healey

Experimental study of resonant interactions of instability waves in an airfoil boundary layer	9
Klebanoff modes in swept boundary layers	7
Effects of compressibility and nose radius on instabilities near the attachment line of swept wings	73

INSTABILITY VI

Chairman: Tom Mullin

Two-dimensional local instability: complete eigenvalue spectrum	.181
Jean-Christophe Robinet, Chloé Pfauwadel	
Instability of flow past a cascade of circular cylinders	.189
Jitesh S.B. Gajjar	

vi

A wave driver theory for vortical waves propagating across junctions between rigid and compliant walls
P.K. Sen, P.W. Carpenter, S. Hegde, C. Davies
FLOW CONTROL I Chairman: Daniel Arnal
Optimal suction design for hybrid laminar flow control201 Jan O. Pralits, Ardeshir Hanifi
Transition control in a flat-plate boundary layer
Linear feedback control of transition in shear flows
Effects of ambient viscosity on the entrainment and dynamics of a buoyant jet219 Manikandan Mathur, K.R. Sreenivas
FLOW CONTROL II Chairman: Vassilios Theofilis
Disturbance development in boundary layers over compliant surfaces
Suppression of wall turbulence based on stability and turbulence analysis using a compliant surface
Roughness induced transient growth: nonlinear effects
Feedback control in spatially growing boundary layers

FLOW CONTROL III Chairman: Nobutake Itoh

Effect of elastic supports on the critical value of Reynolds number past a cylinder249 Sanjay Mittal, Saurav Singh
Improvement of lift-to-drag ratio of the aero-train
In-flight and wind tunnel measurements of natural and of controlled instabilities on a laminar flow airfoil

TRANSITION I

Chairman: Yu Fukunishi

Chairman: Yu Fukunishi
Inherent mechanism of breakdown in laminar-turbulent transition
Experimental and numerical analysis of unsteady boundary layer transition using continuous wavelet transform
Nonlinear nonlocal analysis of crossflow-dominated transition scenarios using DNS-like resolution
TRANSITION II Chairman: PK Sen
The effect of length scale of free stream turbulence on boundary layer transition
Unsteady disturbance generation and amplification in the boundary-layer flow behind a medium-sized roughness element
TRANSITION III Chairman: V Kozlov
Experimental study of the stabilization of Tollmien-Schlichting waves by finite amplitude streaks
Development of streamwise streaks in a quasi-laminar boundary layer downstream of localized suction
TRANSITION IV Chairman: Ulrich Rist
The transition to turbulence of the torsional couette flow
Nonlinear wavepackets in boundary layers
Applicability of LES models for prediction of transitional flow structures 323

viii

TRANSITION V Chairman: Yasuaki Kohama

Turbulent spots in a compressible boundary-layer flow L. Krishnan, N.D. Sandham	.329
Active boundary layer tripping using oscillatory vorticity generator Tal Yehoshua, Avi Seifert	.335
Resonant mode interaction in a canonical separated flow Rajat Mittal, Rupesh B. Kotapati	341
Stability and transition in the flow of polymer solutions Paresh Chokshi, V. Kumaran	.349

COMPRESSIBLE FLOW

Chairman: Zhou Heng

Experimental study of turbulence beginning and transition control in a	
supersonic boundary layer on a swept wing	
N.V. Semionov, A.D. Kosinov, V.Ya. Levchenko	

Transition investigation on hypersonic flat-plate boundary layer flows
with chemical and thermal non-equilibrium
Christian Stemmer

CROSS FLOW

Chairman: Ardeshir Hanifi

Characteristics of unsteady disturbances due to streamline-curvature	
instability in a three-dimensional boundary layer	9
Shohei Takagi, Naoko Tokugawa, Nobutake Itoh	

SEPARATED FLOW

Chairman: PR Viswanath

DNS of separation-induced transition influenced by free-stream fluctuations
The effect of sweep on laminar separation bubbles

On the bursting criterion for laminar separation bubbles401 S.S. Diwan, S.J. Chetan, O.N. Ramesh
POSTER SESSION Chairman: Ishikawa
Non-linear interaction of Goertler vortices and Tollmien Schlichting waves
Experiments on streamwise vortices in a swept wing boundary layer and their secondary instability
Breakdown of a streak via development of varicose secondary mode on the straight wing with pressure gradient
Linear optimal control of transition in plane channel flows using different objective functions
Estimator-based control of transition in plane channel flows using various covariance matrices
Control of turbulent boundary layers by uniform wall suction and blowing
Stability of compliant pipe flow to axisymmetric and non-axisymmetric disturbances443 P.K. Sen, Munendra Kumar, A.K. Raghava
Large Eddy simulation of rotating channel flow by using a new dynamic one-equation subgrid scale model

х

Preface

The dynamics of transition from laminar to turbulent flow remains to this day a major challenge in theoretical and applied mechanics. A series of IUTAM symposia held over the last twenty five years at well-known Centres of research in the subject - Novosibirsk, Stuttgart, Toulouse, Sendai and Sedona (Arizona) - has proved to be a great catalyst which has given a boost to research and our understanding of the field. At this point of time, the field is changing significantly with several emerging directions.

The sixth IUTAM meeting in the series, which was held at the Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India, focused on the progress after the fifth meeting held at Sedona in 1999. The symposium, which adhered to the IUTAM format of a single session, included seven invited lectures, fifty oral presentations and eight posters.

During the course of the symposium, the following became evident. The area of laminar-turbulent transition has progressed considerably since 1999. Better theoretical tools, for handling nonlinearities as well as transient behaviour are now available. This is accompanied by an enormous increase in the level of sophistication of both experiments and direct numerical simulations. The result has been that our understanding of the early stages of the transition process is now on much firmer footing and we are now able to study many aspects of the later stages of the transition process. Consequently, considerable light was thrown during the symposium on, e.g., the role of streamwise streaks, flow separation, complex geometry, turbulent spots etc. We are also now capable of better approaches to flow control. The immediate future is likely to see important advances in this area and it is hoped that the symposium has added momentum to this effort.

I am most grateful to the scientific committee for their very active role and detailed advice at every stage. Professor R Narasimha has been involved in each single aspect of the symposium, I am indebted to him for his constant support and guidance. The constant contribution of the organising committee is highly appreciated. It was our good fortune that Anjana Krishnaswamy joined us, she has looked after every detail of both the symposium and of this proceedings in the most professional and meticulous way. I am very touched by the selfless labour put in by the support group, and their high standards, special mention must be made of Faraz Mehdi. All the sponsors are gratefully acknowledged for making the symposium possible. Special thanks to Major Tony Mitchell of AFOSR/AOARD for his encouragement and support. Sincere thanks to the IUTAM. The Pratt and Whitney – A United Technologies Company, Dr. Jayant Sabnis, Dr. Kirit Patel and Dr. TK Vashist have been a constant and important source of support and encouragement. This conference would not have been a success without their active participation.

The facilities and logistics support provided by Jawaharlal Nehru Centre for Advanced Scientific Research is gratefully acknowledged, special thanks to Mr. Jayachandra and his team. Most important, we thank all the authors, session chairmen and all the participants, whose active involvement and contributions defined the conference. Finally, I acknowledge Kluwer-Springer for printing the proceedings.

Countries represented and number of participants

The meeting attracted 113 participants from 15 countries:

The Netherlands (1)

Canada (1)

Japan (12)

Spain (1)

Germany (9)

Brazil (1) France (5) Israel (2) Russia (4) Switzerland (3) USA (5) China (2) India (49) Malaysia (1) Sweden (6) United Kingdom (11)

xii

IUTAM Symposium on Laminar-Turbulent Transition, December 13-17, 2004, Bangalore, INDIA

Scientific Committee

Prof. Rama Govindarajan (Chair)

Engineering Mechanics Unit Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, India.

Prof. Roddam Narasimha (IUTAM Representative)

Engineering Mechanics Unit Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, India.

Prof. Daniel Arnal

ONERA -Toulouse Research Centre BP 4025 -31055 Toulouse, France.

Prof. Mike Gaster

Queen Mary, University of London United Kingdom.

Prof. Leonhard Kleiser

ETH, Zurich Institut fur Fluid Dynamik Switzerland.

Prof. Yasuaki P. Kohama

Tohoku University, Aramaki aza Aoba Sendai, Japan.

Prof. William Saric Mechanical and Aerospace Engineering University of Arizona, U.S.A.

Prof. Heng Zhou

Department of Mechanics, University of Tianjin Tianjin, China.

Local Organizing Committee

Prof. Rama Govindarajan (Chair)

Engineering Mechanics Unit Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, India.

Prof. Roddam Narasimha (IUTAM Representative)

Engineering Mechanics Unit Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, India.

Dr. Kishore Kumar Gas Turbine Research Establishment Bangalore, India

Dr. Sanjay Mittal Indian Institute of Technolgy Kanpur, India

Dr. O. N. Ramesh Indian Institute of Science Bangalore, India

Prof. P. K. Sen Indian Institute of Technolgy Delhi, India

Dr. K. P. Singh Aeronautical Development Agency Bangalore, India

Dr. P. R. Viswanath National Aerospace Laboratories Bangalore, India

xvi

Support Personnel

Anjana (also involved in editorial help)	Punit
Faraz Mehdi	Sachin Belavadi
Ganesh	Sameen
Kaushik Srinivasan	Saritha Azad
Kirti	Shreyas
Manikandan Mathur	Srevatsan
Mukund	Vijay Kumar
Om Prakash	Vinod
Pinaki	

Symposium Sponsors

We wish to thank the following for their contribution to the success of this conference:

- International Union of Theoretical and Applied Mechanics (IUTAM)
- Pratt & Whitney, A United Technologies Company, UTC Shared Business Services, Windsor, CT USA
- Air Force Office of Scientific Research, Asian Office of Aerospace Research and Development, Tokyo, Japan

[**Disclaimer:** AFOSR/AOARD support is not intended to express or imply endorsement by the U.S. Federal Government.]

- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- Council of Scientific and Industrial Research, Human Resource Development Group, New Delhi, India
- Kluwer-Springer Academic Publishers, Netherlands.
- Defence Research & Development Organisation, Government of India
- Indian National Science Academy, New Delhi, India
- Department of Science and Technology, Ministry of Science & Technology, Government of India
- Hitech Engineering Equipments, Bangalore, India
- Real Time Tech Solutions, Private Limited, Bangalore, India

xvii

IUTAM Symposium on Laminar-Turbulent Transition Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, India, December 13-17 2004

List of Participants

Name	Email	Affiliation
SK Anjana	anjana@jncasr.ac.in	Jawaharlal Nehru Centre, Bangalore, India
Jaywant Arakeri	jaywant@mecheng.iisc.ernet.in	Indian Institute of Science, Bangalore, India
Daniel Arnal	Daniel.Arnal@onecert.fr	ONERA, Toulouse, France
Masahito Asai	masai@cc.tmit.ac.jp	Tokyo Metropolitan Inst. of Tech., Japan
Sarita Azad	sarita_azad@yahoo.com	Jawaharlal Nehru Centre, Bangalore/Delhi Coll.of Eng., India
Pinaki Bhattacharya	pinakib@jncasr.ac.in	Jawaharlal Nehru Centre, Bangalore, India
Luca Brandt	luca@mech.kth.se	KTH Mechanics, Stockholm, Sweden
Michael Broadhurst	Michael.broadhurst@imperial.ac.uk	Imperial College, London, UK
Peter W Carpenter	pwcx@eng.warwick.ac.uk	Univ. of Warwick, UK
Gregoire Casalis	casalis@onecert.fr	ONERA, Toulouse, France
Mattias Chevalier	mattias.chevalier@foi.se	FOI, Sweden
Vijaykumar Chikkadi	vijay@jncasr.ac.in	Jawaharlal Nehru Centre, Bangalore, India
Paresh Chokshi	paresh_chox@yahoo.com	Indian Institute of Science, Bangalore, India
Meelan Choudhari	m.m.choudhari@larc.nasa.gov	NASA Langley Res. Centre, Hampton, USA
Jeffrey D Crouch	jeffrey.d.crouch@boeing.com	Boeing Comm. Airplane Co. Seattle, USA
Shyama Prasad Das	spdas@mecheng.iisc.ernet.in	Indian Institute of Science, Bangalore, India
Christopher Davies	daviesC9@cf.ac.uk	Cardiff Univ., Wales, UK
MD Deshpande	mdd@ctfd.cmmacs.ernet.in	National Aerospace Labs., Bangalore, India
J Dey	jd@aero.iisc.ernet.in	Indian Institute of Science, Bangalore, India
PK Dutta	pkd@ctfd.cmmacs.ernet.in	National Aerospace Labs., Bangalore, India
Lt. Col. T Erstfeld	Thomas.Erstfeld@aoard.af.mil	AOARD, AFOSR, Tokyo, Japan
Hermann Fasel	faselh@u.arizona.edu	Univ. of Arizona, Tucson, USA
Jens H Fransson	jensf@mech.kth.se	KTH Mechanics, Stockholm, Sweden
Yu Fukunishi	fushi@fluid.mech.tohoku.ac.jp	Tohoku Univ., Sendai, Japan
Jitesh Gajjar	gajjar@maths.man.ac.uk	Univ. of Manchester, UK
Mike Gaster	m.gaster@qmul.ac.uk	Queen Mary, Univ. of London, UK
J Paul Gostelow	jpg7@leicester.ac.uk	Univ. of Leicester, UK
Raghuram Goverdhan	raghu@mecheng.iisc.ernet.in	Indian Institute of Science, Bangalore, India

Rama Govindarajan	rama@jncasr.ac.in	Jawaharlal Nehru Centre, Bangalore, India
Ganesh Gurumurthy	ganesh@jncasr.ac.in	Indian Inst. of Technology, Chennai, India
Ardeshir Hanifi	ardeshir.hanifi@foi.se	Swedish Defence Res. Agency, FOI, Stockholm, Sweden
Jonathan Healey	j.j.healey@maths.keele.ac.uk	Keele Univ., Keele, UK
Sriram Hegde	hegde@am.iitd.ernet.in	Indian Inst. of Technology, Delhi, India
Stefan Hein	stefan.hein@dlr.de	DLR, Gottingen, Germany
Dan Henningson	henning@mech.kth.se	KTH Mechanics, Stockholm, Sweden
Tilmann Hetsch	hetsch@iag.uni-stuttgart.de	Univ. Stuttgart, Germany
Jerome Hoepffner	jerome@mech.kth.se	KTH Mechanics, Stockholm, Sweden
Bjorn Hof	b.hof@wbmt.tudelft.nl	TU-Delft, The Netherlands
Naoko Ishikawa	tokugawa.naoko@jaxa.jp	Japan Aero. Exploration Agency, Japan
Nobutake Itoh	itohnobu@home.email.ne.jp	Japan Aero. Exploration Agency, Japan
Seiichiro Izawa	seiizawa@yahoo.co.jp	Tohoku Univ., Sendai, Japan
Pranav R Joshi	jpranavr@mecheng.iisc.ernet.in	Indian Institute of Science, Bangalore, India
Toshiaki Kenchi	t04h410@amail.shinshu-u.ac.jp	Shinshu Univ., Nagano, Japan
Leonhard Kleiser	kleiser@ifd.mavt.ethz.ch	Inst. of Fluid Dynamics, ETH, Zurich, Switzerland
Yasuaki Kohama	kohama@ltwt.ifs.tohoku.ac.jp	Tohoku Univ., Sendai, Japan
Vladimir Kosorygin	kosor@itam.nsc.ru	Inst. of Theoretical and Applied Mech., Novosibirsk, Russia
Victor Kozlov	kozlov@itam.nsc.ru	Inst. of Theoretical and Applied Mech., Novosibirsk, Russia
LN Krishnan	krishnan@soton.ac.uk	Univ. of Southampton, UK
V Krishnan	krishnan@aimst.edu.my	Asian Inst. of Med., Sci. and Tech., Malaysia
Kishore Kumar	kishorkumars@mail.gtre.org	Gas Turbine Res. Establishment, Bangalore, India
V Kumaran	kumaran@chemeng.iisc.ernet.in	Indian Institute of Science, Bangalore, India
Patrice Le Gal	partice.legal@irphe.univ-mrs.fr	IRPHE-CNRS, Marseille, France
Jisheng Luo	jishengl@public.tpt.tj.cn	Tianjin Univ., China
Sekhar Majumdar	sekhar@ctfd.cmmacs.ernet.in	National Aerospace Labs., Bangalore, India
M Malik	malik@aero.iisc.ernet.in	Indian Institute of Science, Bangalore, India
AC Mandal	alakesh@aero.iisc.ernet.in	Indian Institute of Science, Bangalore, India
Masaharu Matsubara	mmatsu@shinshu-u.ac.jp	Shinshu Univ., Nagano, Japan
Manikandan Mathur	manikandan@jncasr.ac.in	Jawaharlal Nehru Centre, Bangalore, India
Bijoy Mazumder	bsm46@yahoo.com	Indian Statistical Institute, Kolkata, India

Marcello A Medeiros	marcello@sc.usp.br	Universidade de Sao Paulo, Brazil	
Rajat Mittal	mittal@gwu.edu	,	
	inittai@gwu.edu	The George Washington University, Washington DC, USA	
Sanjay Mittal	smittal@iitk.ac.in	Indian Inst. of Technology, Kanpur, India	
Albert Mosyak	mealbmo@techunix.technion.ac.il	Technion University, Haifa, Israel	
VY Mudkavi	vym@ctfd.cmmacs.ernet.in	National Aerospace Labs., Bangalore, India	
R Mukund	mukund@ead.cmmacs.ernet.in	National Aerospace Labs., Bangalore, India	
Thomas Mullin	tom.mullin@man.ac.uk	Univ. of Manchester, UK	
Srevatsan Muralidharan	srevatsan@jncasr.ac.in	Indian Institute of Technology, Chennai, India	
Amador Muriel	Amador.Muriel@cern.ch	ICSC World Laboratory, Geneve, Switzerland	
S.V. Ramana Murthy		Gas Turbine Res. Establishment, Bangalore, India	
Roddam Narasimha	roddam@jncasr.ac.in	Jawaharlal Nehru Centre, Bangalore, India	
Lian L Ng	lian.l.ng@pss.Boeing.com	Boeing Comm. Airplane Co. Seattle, USA	
Manmohan Pandey	manmohan@iitg.ernet.in	Indian Inst. of Technology, Guwahati, India	
Kirit Patel	Kirit.Patel@pwc.ca	Pratt & Whitney Corp. Canada	
Inken Peltzer	inken.peltzer@tu-berlin.de	TU-Berlin, Germany	
Ajay Pratap		Gas Turbine Res. Establishment, Bangalore, India	
Baburaj Puthenveettil	apbabu@mecheng.ernet.in	Indian Institute of Science, Bangalore, India	
Rajesh K	rajesh21stcentury@yahoo.com	Indian Inst. of Technology, Guwahati, India	
ON Ramesh	onr@aero.iisc.ernet.in	Indian Institute of Science, Bangalore, India	
Pierre Ricco	pierre.ricco@imperial.ac.uk	Imperial College, London, UK	
Ulrich Rist	rist@iag.uni-stuttgart.de	Univ. Stuttgart, Germany	
Jean-Christophe Robinet	robinet@paris.ensam.fr	SINUMEF Laboratory, Paris, France	
Wolfgang Rodi	rodi@uka.de	University of Karlsruhe, Germany	
Kirti Chandra Sahu	kirti@jncasr.ac.in	Jawaharlal Nehru Centre, Bangalore, India	
A Sameen	sameen@jncasr.ac.in	Indian Institute of Science, Bangalore, India	
Dieter Sartorius	dieter.sartorius@iag.uni-stuttgart.de	Universitat Stuttgart, Germany	
Philipp Schlatter	schlatter@ifd.mavt.ethz.ch	Inst. of Fluid Dynamics, ETH Zurich, Switzerland	
Nikolai Semionov	semion@itam.nsc.ru	Inst. of Theoretical and Applied Mech., Novosibirsk, Russia	
P. K. Sen	pksen@am.iitd.ernet.in	Indian Institute of Technology, Delhi, India	
Rajeswari Seshadri	oviaraji@yahoo.com	Bangalore, India	

Joern Sesterhenn	jls@flm.mw.tum.de	TU Munchen, Germany	
Shreyas	shreyas@jncasr.ac.in	Jawaharlal Nehru Centre, Bangalore, India	
K.P. Singh	kps2121@yahoo.com	Aero. Development Agency, Bangalore, India	
Om Prakash Singh	ops@mecheng.iisc.ernet.in	Indian Institute of Science, Bangalore, India	
K. R. Sreenivas	krs.jncasr.ac.in	Jawaharlal Nehru Centre, Bangalore, India	
Kaushik Srinivasan	kaushik@jncasr.ac.in	Jawaharlal Nehru Centre, Bangalore, India	
Usha Srinivasan	usha@mecheng.iisc.ernet.in	Indian Institute of Science, Bangalore, India	
Christian Stemmer	christian.stemmer@ism.mw.tu- dresden.de	TU Dresden, Germany	
Gilles Studer	gilles.studer@onecert.fr	ONERA Toulouse, France	
Shohei Takagi	pantaka@nal.go.jp	Japan Aero. Exploration Agency, Japan	
Vassilios Theofilis	vassilis@torroja.dmt.upm.es	Universidad Politecnica de Madrid, Spain	
Anurag Thripathi	anurag.tripathi@tatasteel.com	Tata Steel, Jamshedpur, India	
Punit Tiwari	punit@jncasr.ac.in	Jawaharlal Nehru Centre, Bangalore, India	
Maxim Ustinov	ustinov@stb.aerocenter.msk.su	Central Aero-Hydrodynamic Inst. (TsAGI), Russia	
TK Vashist	tkvashist@yahoo.com	Infotech Enterprises, Bangalore, India	
V Vasanta Ram	vvr@lstm.ruhr-uni-bochum.de	Ruhr Univ., Bochum, Germany	
Mukund Vasudevan	mukund@jncasr.ac.in	Jawaharlal Nehru Centre, Bangalore, India	
N Vinod	nvinod@jncasr.ac.in	Jawaharlal Nehru Centre, Bangalore, India	
P. R. Vishwanath	vish@ead.cmmacs.ernet.in	National Aerospace Labs., Bangalore, India	
Ao-Kui Xiong	xiong@fluid.mech.tohoku.ac.jp	Tohoku Univ., Sendai, Japan	
Xuesong Wu	x.wu@ic.ac.uk	Imperial College, London, UK	
Shuya Yoshioka	shuya@pixy.ifs.tohoku.ac.jp	Tohoku Univ., Sendai, Japan	
Tal Yehoshua	taly@eng.tau.ac.il	Tel Aviv Univ. Israel	
Heng Zhou	hzhoul@tju.edu.cn	Tianjin Univ., China	

xxii

LAMINAR SEPARATION BUBBLES

M. Gaster

Queen Mary University of London

Abstract: The phenomenon of leading edge stall is associated with the "bursting" of leading edge separation bubbles from a short form, where the length is roughly 100 momentum thicknesses, to a long form that maybe 1000 or more momentum thicknesses long. The paper reports experiments and theoretical discussions of work carried out by the author 50 years ago during his PhD study on bubbles. Detailed measurements of the flow within bubbles are shown together with the oscillogram traces of the velocity fluctuations present. A linear model of the stability of separated shear layers was developed that suggested that the disturbances were spatially evolving waves described by modes with complex wavenumbers and not the temporal modes usually used in stability studies. It was noted that some modes appeared to have a very small group velocity. Although at the time the full implications of this were not properly understood, the conjecture was put forward that a true instability (or absolute instability as it is now called) could therefore exist. A change in the sign of the group velocity could dramatically change the transition process and thus explain the bursting phenomenon.

1. INTRODUCTION

Aerofoils designed for extensive regions of laminar flow tend to have small leading edge radii. Such aerofoils have a very abrupt stall characteristic known as "nose stall".

This behaviour is illustrated on figure 1(a) - (c). The potential flow contains a sharp suction peak on the upper surface close to the nose. At high Reynolds numbers, the flow follows the contour closely and separates close to trailing edge. However, if the pressure distributions are examined carefully with very closely spaced pressure tapping around the nose, it is apparent that there is a very small separation bubble present that is characterised by a plateau in the distribution. Oil flow can also show that there is narrow region along the upper surface close to the leading edge

¹

R. Govindarajan (ed.), Sixth IUTAM Symposium on Laminar-Turbulent Transition, 1–13.

^{© 2006} Springer. Printed in the Netherlands.

where something is happening to the skin friction. On a wind tunnel model this zone maybe only 2 or 3 millimetres long. The turbulent boundary layer that forms downstream of the separated region maybe slightly thicker that that of a boundary layer that has become turbulent via a normal transition process, but this has only a slight influence on the trailing edge separation on the upper surface. Progressive reduction of flow speed will make the bubble longer, but at some stage, the bubble may "Burst" and the separated layer will cover a large portion of the upper surface. The change in flow regime from a "short" bubble to a "long" bubble results in "nose stall".

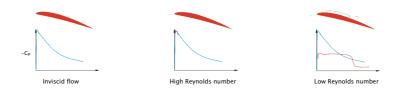


Figure 1. Nose Stall

Apart from some early reference to this behaviour it was not considered to be important until the early 1950's. Owen & Klanfer¹ noted that the short bubble occurred when the Reynolds number of the separating boundary layer was above about 400 (based on the displacement thickness), while the long bubble occurred below this value. This criterion implied that busting was controlled by the stability of the separated shear layer in some way. A number of other papers showed that this simple bursting criterion was not always applicable. Professor Piercy suggested the topic to McGregor² in 1951 for his PhD research and he was followed by me³ and then by several other students. This paper focuses on my efforts during the period 1954 and 1957.

McGregor investigated leading edge bubbles on a Piercy aerofoil, successfully making some pressure distributions as well as hot-wire measurements. The bubble region was quite small and he therefore built a blunt nosed model to provide a physically larger bubble suitable for detailed probe measurements. These were certainly the first measurements of the structure of the short bubble. He did not provide any mechanism for bursting other that a suggestion that the overall energy balance within the recirculation zone could only be maintained by a large expansion of the bubble. My own efforts were directed to the study of bubbles on swept wings. Large swept models require shaped end walls to generate reasonably "infinite" swept pressure fields. An easier way of generating appropriate pressure distributions was to use a plate and auxiliary aerofoil mounted close to the surface. The aerofoil vortex together with the image will create a field

Laminar separation bubbles

that decays like the inverse square of the distance and this reduces much of the end effects. The other advantage of this arrangement is that measurements can be made over a flat surface to a large physical scale for a range of different pressure distributions. In fact, although a swept version of this set-up was produced, I only had time to work with the two-dimensional model shown on figure 2. In order to increase the lift of the aerofoil jet blowing was incorporated.

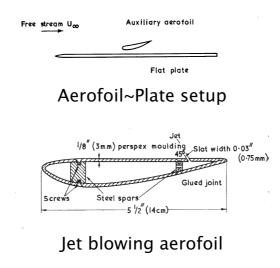


Figure 2. Windtunnel Setup

2. **EXPERIMENTS**

2.1 Mean Quantities

Various pressure distributions were created on the plate and the resulting separated flows explored. An example is shown on figure 3 where the pressure distributions are shown for two speeds that result in a short and a long bubble. The short bubble exhibits a flat plateau, while the lower Reynolds number long bubble shows a slight rise before transition causes the pressure to recover. This pattern is quite characteristic of a long bubble. An approximation to the inviscid pressure distribution was obtained by measuring the pressure distribution when separation has been inhibited by tripping the boundary layer.

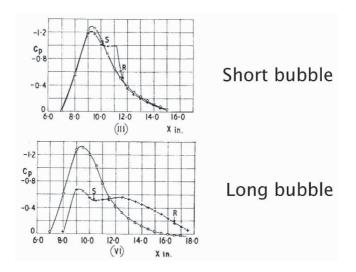


Figure 3. Pressure Distributors

A constant current hot-wire anemometer was used to explore the flow within the bubble. The wire cannot distinguish between forward or reverse flow, and it also gives incorrect mean estimates in regions of high turbulence. A set of velocity profiles for the two pressures distributions shown above are plotted on figure 4. The profiles for the long bubble are drawn with 4 times the scale thus indicating a much thicker separation bubble. This is more clearly indicted in the next figure showing contours of the mean hot-wire readings. Both pictures show an initial triangular region where the velocity, although reversed, is almost stagnant. The laminar shear layer above this region spreads very little before reaching a maximum height. At this point considerable turbulence activity occurs and the shear layer spreads out rapidly as the flow reattaches to the surface. The contour patterns in the two cases are not that dissimilar from one another for the forward part of the long and short bubbles. However, the turbulent reattachment zones are different with the long bubble zone taking a much larger portion of the bubble.

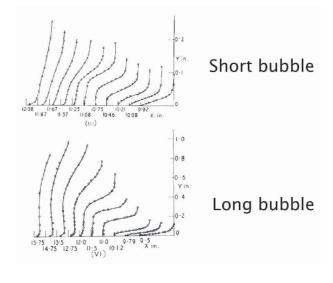


Figure 4. Velocity Profile

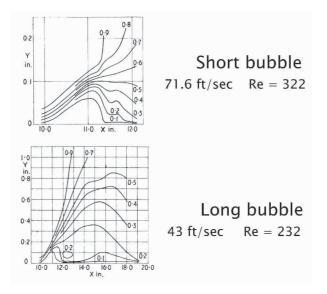
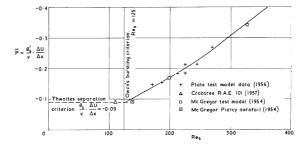
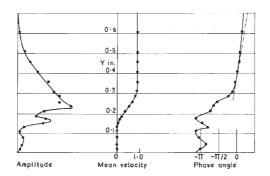



Figure 5. Contours of Hot-wire Signal

The structures of short bubbles prior to bursting as speed was reduced were studied for a range of pressure distributions. It was quite clear that the critical Reynolds number for bursting was highly dependent on the height of the bubble amongst other parameters. Larger pressure gradients caused the bubble height to be greater and this appeared to be associated with an increase in critical Reynolds number for bursting. The height of the separated shear layer is related to the collapse in the pressure distribution arising from the displacement shape of the bubble. A suitable parameter defining this is given in terms of the pressure gradient that would have existed if there were no displacement effect. This pressure gradient scaled with the square of the momentum thickness and the viscosity is plotted against separation thickness Reynolds number at bursting on figure 6. Points from other experiments are also incorporated on the figure and show good consistency.

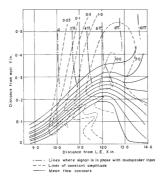
Conditions at bursting


Figure 6. Bursting Criteria

2.2 Unsteady Measurements

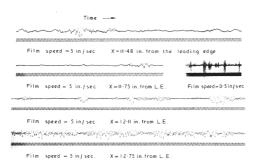
The signal from the hot-wire bridge, suitably amplified, provided information on the transition process taking place in the bubble. It was hoped that a careful examination of the transition processes taking place in the two types of bubble would give some clue as the reason for the phenomenon of bursting. It was noticed that short bubbles were susceptible to external excitation by sound. Even quite a weak tone of the correct frequency could excite a periodic response of the hot-wire in the separated shear layer of a short bubble. The process was so powerful that it seemed sensible to use a loud-speaker mounted on the roof of the contraction to try to excite regular waves that could then be mapped as they progressed

Laminar separation bubbles


downstream. It was at that time known that periodic travelling waves could be generated in boundary layers. The paper of Schubauer and Skramstad⁴, that had been published a few years before this work was carried out, showed that the basic instability ideas of Schlichting⁵ and Tollmien⁶ were substantially correct in explaining the mechanics of transition to turbulence. It seemed likely that the acoustically generated waves were of the same type and it was expected that a proper exploration of these waves in the two types of bubble would explain bursting. Initial measurements were made in a short bubble. In order to obtain the phase and amplitude of the excited wave with respect to signal feeding the speaker a rather complex sequence of operations had to be performed that involved determining the mean square of the sum and difference of the hot-wire and the loud-speaker signals. This was then repeated using a 90-degree phase shifted speaker signal. The squaring operation was carried out with a vacuum thermo-junction tube. A boundary layer traverse with the phase and amplitude is shown on figure 7. This would have taken a whole day to obtain. The phase plot is much more complex than that arising in an attached layer. Note that the outer solution shows an exponential decay for the amplitude that can be used to obtain the real part of the wavenumber, while the phase behaviour provides an estimate of the imaginary part, or spatial amplification.

Amplitude and phase profile

Figure 7. Amplitude and Phase of Excited Wave


The whole region of a bubble was charted in this way and this is displayed on figure 8.

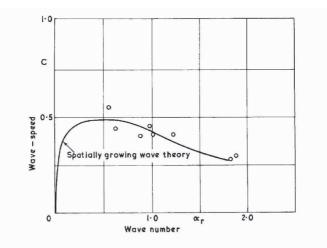
Phase and amplitude of excited waves

Figure 8. Contours of Excited Wave

Attempts to repeat these measurements on a long bubble failed because it turned out to be impossible to generate regular periodic waves in this type of flow. As this was near the end of my 3 year support it was too late to spend time in further investigation. I treated this inability to follow through my measurements to the long bubble as a failure. Hot-wire traces taken in the long bubble are shown on figure 9 without excitation and on figure 10 with periodic and pulsed excitation.

Hot-wire signals from a long bubble

Figure 9. Hot-wire Signals in a long Bubble


(a) Loudspeaker fed with a steady 140 cycles /sec input Time →
(b) Loudspeaker fed with pulses of the 140 cycle signal. Film speed 5 in/sec

Signals from a long bubble with continuous or pulsed excitation

Figure 10. Long Bubble Response to Periodic and Pulsed Excitation

3. STABILITY THEORY

Since experiments has shown that the separated shear layer supported unstable travelling waves it seemed sensible to address the problem of the stability of typical velocity profiles arising in a bubble. In the region of the flow where the instability waves amplified, the profiles consisted of shear layer some distance from the wall with no flow in the dead-air zone between the layer and the wall. Although Schlichting had calculated the temporal stability of Blasius flow, it was a daunting task to apply his approach to the separated profiles. A simpler approach was used on a profile modelled by three straight lines. Treating the solution in the three sectors as inviscid it was not difficult to produce a characteristic function defining the eigenmodes. In the model viscosity was included in the wall solution and curvature in the central region where there was a critical layer. Although temporal modes could easily be extracted from the characteristic function, the spatial problem was much harder to resolve. At the time it was necessary to split the equation into real and imaginary components and to find crossing points of characteristics. It was clear that the waves grew exponentially with distance travelled and not with respect to time. This was also true of the waves observed by Schubauer. In cases where the amplification factors are weak it was shown that the two types of mode were related through the group velocity. This is of course a physically reasonably way of looking at spatial growth. However, when the imaginary components are as large it is essential to solve for real frequencies and complex wavenumbers in order to describe the appropriate solutions to the physical situation. At the time this was not an accepted procedure! The eigenvalues did not seem sensitive to Reynolds number and it was unclear how the Reynolds number could have any influence on the stability and thus be linked to bursting. Figure 11 shows the real eigenvalues for a profile close to that of figure 7 together with experimental measurements. The imaginary components also agreed roughly with the predictions.

Measured and theoretical dispersion

Figure 11. Comparison of Theoretical and Experimental Eigenvalues

4. **DISCUSSION**

Measurements of the flow patterns within bubbles provide some indication of the structure. At separation the shear layer detaches from the surface. At some distance downstream the instability of the shear layer