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Preface 
 
The dynamics of transition from laminar to turbulent flow remains to this 
day a major challenge in theoretical and applied mechanics. A series of 
IUTAM symposia held over the last twenty five years at well-known 
Centres of research in the subject - Novosibirsk, Stuttgart, Toulouse, 
Sendai and Sedona (Arizona) - has proved to be a great catalyst which has 
given a boost to research and our understanding of the field.  At this point 
of time, the field is changing significantly with several emerging 
directions.  
 
The sixth IUTAM meeting in the series, which was held at the Jawaharlal 
Nehru Centre for Advanced Scientific Research, Bangalore, India, focused 
on the progress after the fifth meeting held at Sedona in 1999.  The sym-
posium, which adhered to the IUTAM format of a single session, included 
seven invited lectures, fifty oral presentations and eight posters. 
 
During the course of the symposium, the following became evident. The 
area of laminar-turbulent transition has progressed considerably since 
1999. Better theoretical tools, for handling nonlinearities as well as 
transient behaviour are now available.  This is accompanied by an enor-
mous increase in the level of sophistication of both experiments and direct 
numerical simulations. The result has been that our understanding of the 
early stages of the transition process is now on much firmer footing and we 
are now able to study many aspects of the later stages of the transition 
process. Consequently, considerable light was thrown during the 
symposium on, e.g., the role of streamwise streaks, flow separation, 
complex geometry, turbulent spots etc. We are also now capable of better 
approaches to flow control.  The immediate future is likely to see impor-
tant advances in this area and it is hoped that the symposium has added 
momentum to this effort.   
 
I am most grateful to the scientific committee for their very active role and 
detailed advice at every stage.  Professor R Narasimha has been involved 
in each single aspect of the symposium, I am indebted to him for his 
constant support and guidance. The constant contribution of the organising 
committee is highly appreciated.  It was our good fortune that Anjana 
Krishnaswamy joined us, she has looked after every detail of both the 
symposium and of this proceedings in the most professional and 



xii

symposium possible.  Special thanks to Major Tony Mitchell of 
AFOSR/AOARD for his encouragement and support. Sincere thanks to the 
IUTAM.  The Pratt and Whitney – A United Technologies Company, Dr. 
Jayant Sabnis, Dr. Kirit Patel and Dr. TK Vashist have been a constant and 
important source of support and encouragement. This conference would 
not have been a success without their active participation. 
 
The facilities and logistics support provided by Jawaharlal Nehru Centre 
for Advanced Scientific Research is gratefully acknowledged, special 
thanks to Mr. Jayachandra and his team. Most important, we thank all the 
authors, session chairmen and all the participants, whose active 
involvement and contributions defined the conference. Finally, I 
acknowledge Kluwer-Springer for printing the proceedings. 
 
Countries represented and number of participants 
 

The meeting attracted 113 participants from 15 countries: 
Brazil (1)  Canada (1)          China (2)  
France (5)  Germany (9)          India (49)  
Israel (2)   Japan (12)          Malaysia (1)  
Russia (4)   Spain (1)          Sweden (6)  
Switzerland (3)  The Netherlands (1)         United Kingdom (11) 
USA (5) 

meticulous way.  I am very touched by the selfless labour put in by the 
support group, and their high standards, special mention must be made of 
Faraz Mehdi. All the sponsors are gratefully acknowledged for making the 
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LAMINAR SEPARATION BUBBLES 

M. Gaster 
Queen Mary University of London 

Abstract: The phenomenon of leading edge stall is associated with the “bursting” of 

leading edge separation bubbles from a short form, where the length is roughly 

100 momentum thicknesses, to a long form that maybe 1000 or more 

momentum thicknesses long. The paper reports experiments and theoretical 

discussions of work carried out by the author 50 years ago during his PhD 

study on bubbles. Detailed measurements of the flow within bubbles are 

shown together with the oscillogram traces of the velocity fluctuations present.  

A linear model of the stability of separated shear layers was developed that 

suggested that the disturbances were spatially evolving waves described by 

modes with complex wavenumbers and not the temporal modes usually used 

in stability studies.  It was noted that some modes appeared to have a very 

small group velocity.  Although at the time the full implications of this were 

not properly understood, the conjecture was put forward that a true instability 

(or absolute instability as it is now called) could therefore exist.  A change in 

the sign of the group velocity could dramatically change the transition process 

and thus explain the bursting phenomenon.

1. INTRODUCTION  

Aerofoils designed for extensive regions of laminar flow tend to have 

small leading edge radii.  Such aerofoils have a very abrupt stall 

characteristic known as “nose stall”. 

This behaviour is illustrated on figure 1(a) – (c).  The potential flow 

contains a sharp suction peak on the upper surface close to the nose. At high 

Reynolds numbers, the flow follows the contour closely and separates close 

to trailing edge.  However, if the pressure distributions are examined 

carefully with very closely spaced pressure tapping around the nose, it is 

apparent that there is a very small separation bubble present that is 

characterised by a plateau in the distribution.  Oil flow can also show that 

there is narrow region along the upper surface close to the leading edge 
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where something is happening to the skin friction.  On a wind tunnel model 

this zone maybe only 2 or 3 millimetres long. The turbulent boundary layer 

that forms downstream of the separated region maybe slightly thicker that 

that of a boundary layer that has become turbulent via a normal transition 

process, but this has only a slight influence on the trailing edge separation on 

the upper surface. Progressive reduction of flow speed will make the bubble 

longer, but at some stage, the bubble may “Burst” and the separated layer 

will cover a large portion of the upper surface.  The change in flow regime 

from a “short” bubble to a “long” bubble results in “nose stall”. 

Inviscid flow

-Cp

High Reynolds number Low Reynolds number

Figure 1. Nose Stall 

Apart from some early reference to this behaviour it was not considered 

to be important until the early 1950’s.  Owen & Klanfer1 noted that the short 

bubble occurred when the Reynolds number of the separating boundary layer 

was above about 400 (based on the displacement thickness), while the long 

bubble occurred below this value. This criterion implied that busting was 

controlled by the stability of the separated shear layer in some way. A 

number of other papers showed that this simple bursting criterion was not 

always applicable. Professor Piercy suggested the topic to McGregor
2
 in 

1951 for his PhD research and he was followed by me3 and then by several 

other students.  This paper focuses on my efforts during the period 1954 and 

1957.

McGregor investigated leading edge bubbles on a Piercy aerofoil, 

successfully making some pressure distributions as well as hot-wire 

measurements.  The bubble region was quite small and he therefore built a 

blunt nosed model to provide a physically larger bubble suitable for detailed 

probe measurements.  These were certainly the first measurements of the 

structure of the short bubble.  He did not provide any mechanism for 

bursting other that a suggestion that the overall energy balance within the 

recirculation zone could only be maintained by a large expansion of the 

bubble.  My own efforts were directed to the study of bubbles on swept 

wings.  Large swept models require shaped end walls to generate reasonably 

“infinite” swept pressure fields.  An easier way of generating appropriate 

pressure distributions was to use a plate and auxiliary aerofoil mounted close 

to the surface.  The aerofoil vortex together with the image will create a field 
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that decays like the inverse square of the distance and this reduces much of 

the end effects.  The other advantage of this arrangement is that 

measurements can be made over a flat surface to a large physical scale for a 

range of different pressure distributions.  In fact, although a swept version of 

this set-up was produced, I only had time to work with the two-dimensional 

model shown on figure 2. In order to increase the lift of the aerofoil jet 

blowing was incorporated.

Aerofoil~Plate setup

Jet blowing aerofoil

Figure 2. Windtunnel Setup 

2. EXPERIMENTS 

2.1 Mean Quantities 

Various pressure distributions were created on the plate and the resulting 

separated flows explored. An example is shown on figure 3 where the 

pressure distributions are shown for two speeds that result in a short and a 

long bubble. The short bubble exhibits a flat plateau, while the lower 

Reynolds number long bubble shows a slight rise before transition causes the 

pressure to recover.  This pattern is quite characteristic of a long bubble. An 

approximation to the inviscid pressure distribution was obtained by 
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measuring the pressure distribution when separation has been inhibited by 

tripping the boundary layer. 

Figure 3. Pressure Distributors 

A constant current hot-wire anemometer was used to explore the flow 

within the bubble.  The wire cannot distinguish between forward or reverse 

flow, and it also gives incorrect mean estimates in regions of high 

turbulence.  A set of velocity profiles for the two pressures distributions 

shown above are plotted on figure 4. The profiles for the long bubble are 

drawn with 4 times the scale thus indicating a much thicker separation 

bubble.  This is more clearly indicted in the next figure showing contours of 

the mean hot-wire readings.  Both pictures show an initial triangular region 

where the velocity, although reversed, is almost stagnant.  The laminar shear 

layer above this region spreads very little before reaching a maximum 

height.  At this point considerable turbulence activity occurs and the shear 

layer spreads out rapidly as the flow reattaches to the surface. The contour 

patterns in the two cases are not that dissimilar from one another for the 

forward part of the long and short bubbles.  However, the turbulent 

reattachment zones are different with the long bubble zone taking a much 

larger portion of the bubble.
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Figure 4. Velocity Profile 

Figure 5. Contours of Hot-wire Signal 

The structures of short bubbles prior to bursting as speed was reduced 

were studied for a range of pressure distributions.  It was quite clear that the 

critical Reynolds number for bursting was highly dependent on the height of 
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the bubble amongst other parameters.  Larger pressure gradients caused the 

bubble height to be greater and this appeared to be associated with an 

increase in critical Reynolds number for bursting.  The height of the 

separated shear layer is related to the collapse in the pressure distribution 

arising from the displacement shape of the bubble.  A suitable parameter 

defining this is given in terms of the pressure gradient that would have 

existed if there were no displacement effect.  This pressure gradient scaled 

with the square of the momentum thickness and the viscosity is plotted 

against separation thickness Reynolds number at bursting on figure 6.  Points 

from other experiments are also incorporated on the figure and show good 

consistency.

Conditions at bursting

Figure 6. Bursting Criteria 

2.2  Unsteady Measurements 

The signal from the hot-wire bridge, suitably amplified, provided 

information on the transition process taking place in the bubble.  It was 

hoped that a careful examination of the transition processes taking place in 

the two types of bubble would give some clue as the reason for the 

phenomenon of bursting. It was noticed that short bubbles were susceptible 

to external excitation by sound.  Even quite a weak tone of the correct 

frequency could excite a periodic response of the hot-wire in the separated 

shear layer of a short bubble. The process was so powerful that it seemed 

sensible to use a loud-speaker mounted on the roof of the contraction to try 

to excite regular waves that could then be mapped as they progressed 
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downstream.  It was at that time known that periodic travelling waves could 

be generated in boundary layers.  The paper of Schubauer and Skramstad
4
,

that had been published a few years before this work was carried out, 

showed that the basic instability ideas of Schlichting
5
 and Tollmien

6
 were 

substantially correct in explaining the mechanics of transition to turbulence.  

It seemed likely that the acoustically generated waves were of the same type 

and it was expected that a proper exploration of these waves in the two types 

of bubble would explain bursting. Initial measurements were made in a short 

bubble.  In order to obtain the phase and amplitude of the excited wave with 

respect to signal feeding the speaker a rather complex sequence of operations 

had to be performed that involved determining the mean square of the sum 

and difference of the hot-wire and the loud-speaker signals.  This was then 

repeated using a 90-degree phase shifted speaker signal.  The squaring 

operation was carried out with a vacuum thermo-junction tube.  A boundary 

layer traverse with the phase and amplitude is shown on figure 7.  This 

would have taken a whole day to obtain.  The phase plot is much more 

complex than that arising in an attached layer.  Note that the outer solution 

shows an exponential decay for the amplitude that can be used to obtain the 

real part of the wavenumber, while the phase behaviour provides an estimate 

of the imaginary part, or spatial amplification. 

Amplitude and phase profile

Figure 7. Amplitude and Phase of Excited Wave 
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The whole region of a bubble was charted in this way and this is 

displayed on figure 8. 

Phase and amplitude of excited waves

Figure 8. Contours of Excited Wave 

Attempts to repeat these measurements on a long bubble failed because it 

turned out to be impossible to generate regular periodic waves in this type of 

flow. As this was near the end of my 3 year support it was too late to spend 

time in further investigation.  I treated this inability to follow through my 

measurements to the long bubble as a failure.  Hot-wire traces taken in the 

long bubble are shown on figure 9 without excitation and on figure 10 with 

periodic and pulsed excitation. 

Hot-wire signals from a long bubble

Figure 9. Hot-wire Signals in a long Bubble 
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Signals from a long bubble

with continuous or pulsed excitation

Figure 10. Long Bubble Response to Periodic and Pulsed Excitation 

3. STABILITY THEORY 

 Since experiments has shown that the separated shear layer supported 

unstable travelling waves it seemed sensible to address the problem of the 

stability of typical velocity profiles arising in a bubble.  In the region of the 

flow where the instability waves amplified, the profiles consisted of shear 

layer some distance from the wall with no flow in the dead-air zone between 

the layer and the wall.  Although Schlichting had calculated the temporal 

stability of Blasius flow, it was a daunting task to apply his approach to the 

separated profiles.  A simpler approach was used on a profile modelled by 

three straight lines.  Treating the solution in the three sectors as inviscid it 

was not difficult to produce a characteristic function defining the 

eigenmodes. In the model viscosity was included in the wall solution and 

curvature in the central region where there was a critical layer. Although 

temporal modes could easily be extracted from the characteristic function, 

the spatial problem was much harder to resolve.  At the time it was necessary 

to split the equation into real and imaginary components and to find crossing 

points of characteristics. It was clear that the waves grew exponentially with 

distance travelled and not with respect to time. This was also true of the 

waves observed by Schubauer.  In cases where the amplification factors are 
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weak it was shown that the two types of mode were related through the 

group velocity.  This is of course a physically reasonably way of looking at 

spatial growth.  However, when the imaginary components are as large it is 

essential to solve for real frequencies and complex wavenumbers in order to 

describe the appropriate solutions to the physical situation.  At the time this 

was not an accepted procedure!  The eigenvalues did not seem sensitive to 

Reynolds number and it was unclear how the Reynolds number could have 

any influence on the stability and thus be linked to bursting.  Figure 11 

shows the real eigenvalues for a profile close to that of figure 7 together with 

experimental measurements.  The imaginary components also agreed 

roughly with the predictions. 

Figure 11. Comparison of Theoretical and Experimental Eigenvalues 

4. DISCUSSION  

Measurements of the flow patterns within bubbles provide some 

indication of the structure.  At separation the shear layer detaches from the 

surface.  At some distance downstream the instability of the shear layer 
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