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ABSTRACT 

 

The classical theory of piezoelectricity defines linear size-independent electromechanical 

response in non-centrosymmetric dielectrics that involves coupling between the electric field and 

the mechanical strains.  However, with the continuing push to develop novel micro- and nano-

scale materials, structures and devices, there is a need to refine and explore size-dependent 

electro-mechanical coupling phenomena, which have been observed in experiments on 

centrosymmetric dielectrics.  Here a finite element variational formulation is developed based 

upon a recent consistent size-dependent theory that incorporates the interactions between the 

electric field and the mechanical mean curvatures in dielectrics, including those with 

centrosymmetric structure.  The underlying formulation is theoretically consistent in several 

important aspects.  In particular, the electric field equations are consistent with Maxwell’s 

equations, while the mechanical field equations are based upon the recent consistent couple 

stress theory, involving skew-symmetric mean curvature and couple stress tensors.  This, in turn, 

permits the development of a fully-consistent finite element method for the solution of size-

dependent piezoelectric boundary value problems.  In this paper, an overview of size-dependent 

piezoelectricity is first provided, followed by the development of the variational formulation and 

finite element representation specialized for the planar response of centrosymmetric cubic and 

isotropic materials.  The new formulation is then applied to several illustrative examples to bring 

out important characteristics predicted by this consistent size-dependent piezoelectric theory. 
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1. Introduction 

 

Over the last half-century, piezoelectric phenomena have had a profound impact on the 

development of many technologies.  More recently, however, there is a push to develop 

technology on increasingly minute length scales, where it has been discovered that classical 

piezoelectric theory is not sufficient for describing all of the observed linear electromechanical 

coupling behavior.  For modeling of small-scale electromechanical phenomena, a size-dependent 

piezoelectric theory, in some forms known as flexoelectricity, is necessary.  These proposed 

theories are higher order continuum theories that include coupling between a higher order 

measure of deformation, such as strain-gradient or curvature, and the electric polarization field.  

Interestingly, it is shown both experimentally and theoretically that these size-dependent 

piezoelectric effects can occur in classically non-piezoelectric materials and, in particular, 

centrosymmetric cubic and isotropic materials. 

 

Classical piezoelectricity describes the linear electromechanical coupling between strain or stress 

and the polarization within an anisotropic dielectric body.  The groundbreaking experimental 

work of the Curie brothers established the foundation for piezoelectricity (Curie and Curie, 

1880), which was subsequently placed on a firm theoretical base by Voigt (1910).  The well-

known monograph by Cady (1964) provides a comprehensive review of developments through 

the middle of the twentieth century.  Since then countless technologies have taken advantage of 

piezoelectric phenomenon, from high-tech instrumentation to everyday commercial products.  

 

The idea of size-dependent piezoelectric effects was first discussed in Kogan (1964), Meyer 

(1969) and Tagantsev (1986) and was eventually coined “flexoelectric” effects.  More recently 

size-dependent piezoelectric effects and electromechanical coupling effects in centrosymmetric 

bodies have been studied by numerous researchers (e.g., Mishima et al., 1997; Shvartsman et al., 

2002; Buhlmann et al., 2002; Cross, 2006; Maranganti et al., 2006; Harden et al., 2006; Zhu et 

al., 2006; Sharma et al., 2007; Majdoub et al., 2008; Maranganti and Sharma, 2009; Resta, 2010; 

Baskaran et al., 2011; Catalan et al., 2011).  With the increasing development of micro- and 

nano-scale technology, there is a need to model this size-dependent piezoelectric behavior, which 

can have useful effects for small characteristic geometries and cannot be captured using classical 

piezoelectric theory. This size-dependent behavior can be incorporated by considering that 

besides strain, the polarization in a dielectric body may be coupled to higher order measures of 

deformation as well.  It is logical when formulating a size-dependent piezoelectric theory to 

consider a size-dependent elasticity theory and then introduce electromechanical coupling via 

thermodynamic considerations.  Wang et al. (2004) consider the gradient of rotation as the higher 

order measure of deformation, which then is coupled to the polarization.  Others have considered 

strain gradients and various forms of curvature to be coupled to the electric polarization 

(Tagantsev, 1986; Sharma et al., 2007; Eliseev et al. (2009).  The previous theories suffer either 

from various incompatibility with the underlying Maxwell equations of electromagnetics 
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(Hadjesfandiari, 2014) or with inherent indeterminacies due to the dependence on original 

couple-stress elasticity theories, as first developed by Toupin (1962), Mindlin and Tiersten 

(1962) and Koiter (1964). 

 

Recently, the consistent couple-stress theory was developed, which remedied the issues that prior 

size-dependent elasticity theories had (Hadjesfandiari and Dargush, 2011, 2013).  In this new 

theory, the mean curvature tensor is shown to be the correct higher order measure of 

deformation, while the skew-symmetric nature of the couple-stress tensor is revealed, making the 

theory fully determinate.  More recently, in Hadjesfandiari (2013), a new consistent size-

dependent piezoelectric theory is advanced by using the discoveries in Hadjesfandiari and 

Dargush (2011, 2013) regarding size-dependent elasticity.  This new theory has coupling 

between the skew-symmetric mean curvature tensor and the polarization field, which allows for 

piezoelectric behavior even in centrosymmetric materials.  Couple-stress effects are also 

inherently present in this theory (Hadjesfandiari, 2013). 

 

In order for technology to take full advantage of piezoelectric phenomena, numerical methods 

for accurate modeling must be developed.  Similar to most continuum theories, the only available 

analytical solutions for piezoelectric problems are based on very simple geometry and boundary 

conditions.  To date, many finite element based formulations have been developed for modeling 

classical piezoelectricity.  Benjeddou (2000) gives an excellent review of the advances in finite 

element approaches to modeling piezoelectric structural elements.  Other notable works on finite 

element formulations for classical piezoelectricity include those of Allik and Hughes (1970) for 

applications to vibration, Hwang et al. (1993) for modeling of sensors and actuators, and 

Gaudenzi and Bathe (1995) for general continua analysis. 

 

Despite the many efforts to advance numerical methods used to model and simulate classical 

piezoelectricity, very little work has been done in developing numerical methods to model size-

dependent piezoelectric effects.  Consequently, in this paper, we develop a mixed finite element 

(FE) formulation that can be applied to solve planar size-dependent piezoelectric problems.  

Because much work has already been done to develop finite element formulations for classical 

piezoelectric effects that can only exist in non-centrosymmetric anisotropic materials, we instead 

restrict ourselves to centrosymmetric materials.  Most interestingly, higher order size-dependent 

piezoelectric effects can still be present for such materials, which in turn suggest many potential 

new applications at the micro- and nano-scale.   

 

The formulation presented here is based on the consistent size-dependent piezoelectric theory of 

Hadjesfandiari (2013), while the finite element formulation can be considered an extension of the 

consistent couple-stress variational finite element approach developed by the present authors 

(Darrall et al., 2014).  This new size-dependent piezoelectric FE formulation is based on the 

variational problem that is derived from considering the stationarity of a total electromechanical 
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enthalpy functional.  The electric field is coupled to the mean curvature within the 

electromechanical enthalpy, which allows for size-dependent piezoelectric effects.   By 

considering the rotation to be an additional field variable and then enforcing rotation-

displacement compatibility via Lagrange multipliers, the coupled size-dependent piezoelectricity 

problem is reduced to a 𝐶0 variational problem.  This type of formulation is made more 

attractive by the fact that these Lagrange multipliers are shown in Darrall et al. (2014) to be 

equal to the skew-symmetric portion of the stress tensor, which otherwise would be difficult to 

obtain in an efficient and accurate manner. 

 

Throughout this paper, standard tensor index notation will be used where subscripts 𝑖, 𝑗, 𝑘, and 𝑙 

will range from 1 to 3 representing Cartesian coordinates 𝑥, 𝑦, and 𝑧.   Repeating of indices 

implies summing over all values for that index.  Additionally, εijk is the Levi-Civita alternating 

symbol and δij is the Kronecker delta.  In Section 3, vector notation is used for convenience, 

where bold face characters will be used to represent vectors and matrices. 

 

The remainder of the paper is organized as follows.  Section 2 provides an overview of size-

dependent piezoelectric theory for centrosymmetric materials and introduces the mixed 

variational principle upon which the finite element formulation is based.  In Section 3, the 

corresponding finite element formulation is developed in detail.  Then, in Section 4, we employ 

this new FE formulation to analyze four problems.  First, the formulation is validated by 

comparing to the analytical solution of a long cylinder in a uniform electric field.  The second 

problem analyzed is a cantilever subject to constant transverse electric field, which has 

significance to sensors and actuators.  Results are compared to the beam model developed in Li 

et al. (2014).  This same problem setting is then carried out for a cantilever consisting of Barium 

Titanate in the following subsection.  These three problems all involve the converse size-

dependent piezoelectric effect, in which an electric field induces a mechanical response.  The 

final problem illustrates the direct size-dependent piezoelectric effect in isotropic media, having 

an electric field induced by an applied mechanical load.  Finally, a number of conclusions are 

presented in Section 5. 

 

 

2. Linear size-dependent piezoelectricity in a centrosymmetric material 

 

In this section, a brief overview of the important concepts and relations of consistent size-

dependent piezoelectricity theory is provided, based entirely on the work of Hadjesfandiari 

(2013).  Particular attention is given to relations pertinent to the development of the finite 

element formulation presented in the next section.  For a more detailed discussion on consistent 

size-dependent piezoelectricity, the reader is referred to Hadjesfandiari (2013). 
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At its simplest, linear size-dependent piezoelectricity can be described as the linear 

thermodynamic coupling between size-dependent elasticity and the electric polarization of a 

material.  The theory presented here is based on the consistent skew-symmetric couple-stress 

theory (Hadjesfandiari and Dargush, 2011, 2013), which sets it apart from other size-dependent 

piezoelectricity and flexoelectricity theories.   Furthermore, unlike the commonly accepted 

flexoelectric theory, the present formulation is consistent with Maxwell’s equations of 

electromagnetism, which would seem to be a most important requirement.  Details on the 

comparison can be found in Hadjesfandiari (2014).  Because the present work is on size-

dependent piezoelectricity as defined by Hadjesfandiari (2013), primary focus will be given to 

the extension of skew-symmetric couple-stress theory and not the fundamentals of the purely 

mechanical theory.  For a detailed description of skew-symmetric couple-stress theory, the reader 

is referred to Hadjesfandiari and Dargush (2011, 2013). 

 

From couple-stress theory, a general three dimensional body under quasistatic conditions is 

governed throughout its volume 𝑉 by the following equilibrium equations coming from linear 

and angular momentum balance, respectively, 

 

𝜎𝑗𝑖,𝑗 + 𝐹̅𝑖 = 0      (1) 

𝜇𝑗𝑖,𝑗 + 𝜀𝑖𝑗𝑘𝜎𝑗𝑘 = 0     (2) 

 

where 𝜎𝑗𝑖 and 𝜇𝑗𝑖 are the force-stresses and couple-stresses, respectively, while 𝐹̅𝑖 represents 

applied body force densities.  The consideration of body couples is shown to be redundant in 

Hadjesfandiari and Dargush (2011).  

 

In addition, the body is subject to boundary conditions on the surface 𝑆.  Let us assume that the 

natural boundary conditions take the form 

𝑡𝑖 = 𝑡𝑖̅   on  𝑆𝑡      (3a) 

𝑚𝑖 = 𝑚̅𝑖   on  𝑆𝑚     (3b) 

 

while the essential boundary conditions can be written 

𝑢𝑖 = 𝑢̅𝑖   on  𝑆𝑢     (4a) 

𝜔𝑖 = 𝜔̅𝑖   on  𝑆𝜔     (4b) 

 

Here 𝑡𝑖  and 𝑚𝑖 represent the force-tractions and moment-tractions, respectively, while 𝑢𝑖 and 𝜔𝑖 

are the displacements and rotations, respectively, and the overbars denote the specified values.  

For a well-defined boundary value problem, we should have 𝑆𝑡 ⋃𝑆𝑢 = 𝑆, 𝑆𝑡 ⋂𝑆𝑢 = ∅ and 

𝑆𝑚 ⋃𝑆𝜔 = 𝑆, 𝑆𝑚 ⋂𝑆𝜔 = ∅.  Clearly, more complicated boundary conditions could be specified, 

but the simplest forms defined in (3) and (4) suffice for the present work. 
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In general, the relations between force-stress and force-traction, and couple-stress and moment-

traction can be written 

𝑡𝑖 = 𝜎𝑗𝑖𝑛𝑗       (5a) 

𝑚𝑖 = 𝜇𝑗𝑖𝑛𝑗       (5b) 

 

where 𝑛𝑖 represents the outward unit normal vector to the surface 𝑆.   

 

Taking the gradient of the displacement field and splitting it into its symmetric and skew-

symmetric parts 

𝑢(𝑖,𝑗) = 𝑒𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)     (6a) 

𝑢[𝑖,𝑗] = 𝜔𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 − 𝑢𝑗,𝑖)     (6b) 

 

where the parentheses around the indices denote the symmetric part of the tensor and the square 

brackets represent the skew-symmetric part of the tensor.  Here 𝑒𝑖𝑗 is the linear strain tensor and 

𝜔𝑖𝑗 is the rotation tensor.  Because 𝜔𝑖𝑗 is a skew-symmetric tensor with three independent 

values, it can be represented by a pseudo-vector.  According to the right hand convention, the 

rotation vector is defined as follows 

𝜔𝑖 =
1

2
𝜀𝑖𝑗𝑘𝜔𝑘𝑗 

(7) 

 

Then, the relationship between displacement and rotation can be expressed as 

𝜔𝑖 =
1

2
𝜀𝑖𝑗𝑘𝑢𝑘,𝑗                                                                   (8) 

 

By taking the gradient of the rotation field and only considering the skew-symmetric 

contribution, we are left with the mean curvature tensor 

𝜅𝑖𝑗 = 𝜔[𝑖,𝑗] =
1

2
(𝜔𝑖,𝑗 − 𝜔𝑗.𝑖) 

(9) 

 

Because the mean curvature tensor is skew-symmetric, it also can be represented in vector form 

through the following relation 

 

𝜅𝑖 =
1

2
𝜀𝑖𝑗𝑘𝜅𝑘𝑗 

(10) 

 

However, in Darrall et al. (2014), we have shown that the more convenient curvature vector is 

instead the engineering mean curvature vector defined as 

 

𝑘𝑖 = −2𝜅𝑖 = 𝜀𝑖𝑗𝑘𝜅𝑗𝑘 (11) 
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Here we have that the “concave upwards” curvature of orthogonal planes is positive and we do 

not need to include a factor of one-half.  The components of 𝑘𝑖 are then consistent with the usual 

mathematical definition of mean curvatures of the three orthogonal planes oriented with the 

global axes at a point.  Furthermore, use of 𝑘𝑖, as opposed to the mean curvature 𝜅𝑖, alleviates the 

need to introduce factors of minus two into the energy conjugacy relations. 

 

In Hadjesfandiari and Dargush (2011, 2013), the skew-symmetric nature of the couple-stress 

tensor is shown through different but equally valid arguments.  Because the couple-stress tensor 

is skew-symmetric, it also may be represented by a corresponding vector, 𝜇𝑖, where 

 

𝜇𝑖 = 
1

2
𝜀𝑖𝑗𝑘𝜇𝑘𝑗                                                                    (12) 

 

For a consistent size-dependent elasticity theory, it is shown that mean curvature is the correct 

energy conjugate quantity to the couple-stress tensor.  Alternatively, the engineering curvature 

vector is the correct energy conjugate quantity to the couple-stress vector. 

 

The couple-stress is related to the skew-symmetric portion of the stress tensor by 

𝜎[𝑗𝑖] = −𝜇[𝑖,𝑗] = −
1

2
(𝜇𝑖,𝑗 − 𝜇𝑗,𝑖)    (13) 

 

Naturally, this skew-symmetric portion can be represented as a pseudo vector 𝑠𝑖 as well, such 

that 

 

𝑠𝑖 =
1

2
𝜀𝑖𝑗𝑘𝜎[𝑘𝑗]      (14) 

and 

𝜀𝑖𝑗𝑘𝑠𝑘 = 𝜎[𝑗𝑖]      (15) 

 

For a quasistatic electric field, 𝐸𝑖, we know that the curl vanishes.  Because of this, we can relate 

the electric field to the gradient of a scalar electric potential 𝜑, such that (Griffiths, 1989) 

𝐸𝑖 = −𝜑,𝑖                                                                   (16) 

 

In a piezoelectric material, an internal polarization field can be induced by deformation and the 

electric field.  It is often convenient, however, to consider the electric displacement field, which 

is related to the electric field and polarization by 

𝐷𝑖 = 𝜀𝑜𝐸𝑖 + 𝑃𝑖                                                               (17) 

 

where 𝐷𝑖 is the electric displacement vector and 𝑃𝑖 is the polarization.  For linear dielectric 

materials, the polarization can be related to the electric field in a linear fashion, and hence so can 

the electric displacement. 
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The normal component of the electric displacement, 𝒹, on the surface is related to 𝐷𝑖 by 

𝒹 = 𝐷𝑖𝑛𝑖                                                                   (18) 

 

The governing differential equation for the electric displacement in a dielectric body is the Gauss 

law in differential form, given by 

𝐷𝑖,𝑖 = 𝜌̅𝐸                                                                    (19) 

where 𝜌̅𝐸 is an applied body charge density.  Note that this is a scalar quantity and the subscript 

is merely meant to distinguish the body charge density from the mass density. 

 

At the interface between two different materials, the normal electric displacement is related to 

the free surface charge, 𝑞𝑠, by 

𝑞𝑠 = ⌊𝒹⌋                                                                    (20) 

where ⌊∙⌋ denotes the jump across the interface.  It is common in other works to specify free 

surface charge for the natural boundary conditions related to the electric displacement.  

However, this is only valid when the external electric displacement is negligible.  More 

generally, the natural boundary conditions can be specified in terms of 𝒹, which is what will be 

used here.  Then, for natural and essential boundary conditions, respectively, we have the 

following: 

𝒹 = 𝒹̅   on   𝑆𝒹     (21) 

and 

𝜑 = 𝜑̅    on   𝑆𝜑     (22) 

 

For a well-defined boundary value problem, we should have 𝑆𝒹 ⋃𝑆𝜑 = 𝑆, and 𝑆𝒹 ⋂𝑆𝜑 = ∅. 

 

From Hadjesfandiari (2013), the electromechanical enthalpy density, 𝐻, of a linear, 

centrosymmetric material can be expressed as 

𝐻 =
1

2
𝑒𝑖𝑗𝑐𝑖𝑗𝑘𝑙𝑒𝑘𝑙 +

1

2
𝑘𝑖𝑏𝑖𝑗𝑘𝑗 −

1

2
𝐸𝑖𝜀𝑖𝑗𝐸𝑗 − 𝐸𝑖𝛾𝑖𝑗𝑘𝑗                                  (23) 

 

where  𝑐𝑖𝑗𝑘𝑙 is the standard 4
th

 order constitutive tensor used for classical linear elasticity 

theories.  In the isotropic case, the response depends on two elastic coefficients, for example, the 

Lamé constants 𝜆 and 𝐺.  For cubic materials with centrosymmetry, there are three independent 

elastic coefficients 1111c , 1122c  and 1212c , which in Voigt notation are written instead as 11c , 12c  

and 44c , respectively.  More detail can be found in Hadjesfandiari (2014).  

 

In addition, 𝑏𝑖𝑗 is the 2
nd

 order linear couple-stress-curvature constitutive tensor, 𝜀𝑖𝑗 is the total 

electric permittivity tensor and 𝛾𝑖𝑗 is the coupling tensor for the electric field and curvature.  The 

presence of this coupling term in the electric enthalpy is what allows for piezoelectric effects 

within a centrosymmetric body.  For isotropic and centrosymmetric cubic materials, this 
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piezoelectric-curvature coupling tensor can be written in terms of a single piezoelectric-curvature 

parameter,  𝑓, as 

𝛾𝑖𝑗 =  2 𝑓 𝛿𝑖𝑗                                                               (24) 

The piezoelectric-curvature parameter used in this paper is related to the parameter, 𝑓, defined in 

Hadjesfandiari (2013), such that 

 𝑓 = −𝑓                                                                  (25) 

This sign change of  𝑓 relative to 𝑓 is a consequence of the choice of curvature vector that is 

used in the present paper.  By using this definition of the piezoelectric-curvature parameter, we 

have that for materials with positive  𝑓, an electric field directed in the positive direction will 

induce positive (“concave upwards”) curvature deformation and vice versa.  The electric 

enthalpy density of course remains unchanged by this choice of parameter.   

   

The total electric permittivity tensor is 

𝜀𝑖𝑗 = 𝜀𝑟𝜀0𝛿𝑖𝑗                                                              (26) 

 

while the couple-stress constitutive tensor for centrosymmetric cubic and isotropic materials is 

𝑏𝑖𝑗 = 4𝜂𝛿𝑖𝑗                                                               (27) 

where 𝜀0 is the electric permittivity in a vacuum, 𝜀𝑟 is the relative electric permittivity, and 𝜂 is 

the couple-stress parameter.   

 

Interestingly, the ratio of the couple-stress parameter to the shear modulus results in a 

characteristic material length, 𝑙, where we have 

 
𝜂

𝐺
= 𝑙2                                                                       (28a) 

 

for the isotropic case (Hadjesfandiari and Dargush, 2011), while 

 
𝜂

𝑐44
= 𝑙2                                                                       (28b) 

 

in cubic crystals with centrosymmetry.  It is expected that couple-stress effects, and by extension 

size-dependent piezoelectric effects, are only relevant for length scales comparable to 𝑙. 

 

More generally, 𝐻 could also include coupling between strain and curvature, and of course strain 

and electric field, such as for classical piezoelectricity, however these coupled effects do not 

exist in the centrosymmetric dielectric materials we are considering here.  Also, it is equally 

valid to write 𝐻 in terms of the mean curvature tensor; however from now on in this paper we 

will use the engineering mean curvature vector for simplicity. 
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The electromechanical enthalpy density is related to the positive definite internal energy density, 

𝑈, by 

𝐻 = 𝑈 − 𝐸𝑖𝐷𝑖                                                                  (29) 

 

Hadjesfandiari (2013) derives the constitutive equations for the symmetric stress, electric 

displacement, and couple-stress from 𝐻 as follows: 

 

𝜎(𝑗𝑖) =
𝜕𝐻

𝜕𝑒𝑖𝑗
= 𝑐𝑖𝑗𝑘𝑙𝑒𝑘𝑙                                                             (30a) 

 

𝜇𝑖 =
𝜕𝐻

𝜕𝑘𝑖
= 𝑏𝑖𝑗𝑘𝑗 − 𝛾𝑗𝑖𝐸𝑗                                                         (31a) 

 

𝐷𝑖 = −
𝜕𝐻

𝜕𝐸𝑖
= 𝜀𝑖𝑗𝐸𝑗 + 𝛾𝑖𝑗𝑘𝑗                                                        (32a) 

 

For an isotropic material, these reduce to (Hadjesfandiari, 2013) 

 

𝜎(𝑗𝑖) = 𝜆𝑒𝑘𝑘𝛿𝑖𝑗 + 2𝐺𝑒𝑖𝑗                                                          (30b) 

 

𝜇𝑖 = 4𝐺𝑙2𝑘𝑖 − 2𝑓𝐸𝑖                                                             (31b) 

 

𝐷𝑖 = 𝜀𝐸𝑖 + 2𝑓𝑘𝑖                                                                 (32b) 

 

while for centrosymmetric cubic material, the corresponding relations are given in 

Hadjesfandiari (2014). 

 

The total electromechanical enthalpy of the system 𝛱𝐻 is defined in Hadjesfandiari (2013) as 

 

𝛱𝐻 = ∫ 𝐻
𝑉

𝑑𝑉 + 𝒲                                                              (33) 

 

where 𝒲 is the total potential from applied forces, moments, and normal electric displacement 

given by 

 

𝒲 = −∫ 𝑢𝑖𝐹𝑖̅ 𝑑𝑉
𝑉

+ ∫ 𝜑𝜌̅𝐸  𝑑𝑉
𝑉

− ∫ 𝑢𝑖𝑡𝑖̅ 𝑑𝑆
𝑆𝑡

− ∫ 𝜔𝑖𝑚̅𝑖𝑆𝑚
𝑑𝑆 − ∫ 𝜑𝒹̅

𝑆𝒹
𝑑𝑆              (34) 

Therefore, for the total electromechanical enthalpy 𝛱𝐻, we have 

 

𝛱𝐻 =
1

2
∫𝑒𝑖𝑗𝑐𝑖𝑗𝑙𝑚𝑒𝑙𝑚 𝑑𝑉
𝑉

+
1

2
∫𝑘𝑖𝑏𝑖𝑗𝑘𝑗  𝑑𝑉
𝑉

−
1

2
∫𝐸𝑖𝜀𝑖𝑗𝐸𝑗  𝑑𝑉
𝑉

− ∫𝐸𝑖𝛾𝑖𝑗𝑘𝑗  𝑑𝑉
𝑉

− ∫𝑢𝑖𝐹̅𝑖 𝑑𝑉
𝑉

+ ∫𝜑𝜌̅𝐸  𝑑𝑉
𝑉

− ∫ 𝑢𝑖𝑡𝑖̅ 𝑑𝑆
𝑆𝑡

− ∫ 𝜔𝑖𝑚̅𝑖
𝑆𝑚

 𝑑𝑆 − ∫ 𝜑𝒹̅
𝑆𝒹

𝑑𝑆   

 

(35) 
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By substituting the kinematic relations, this total electromechanical enthalpy can of course be 

written as a function of only displacement and electric potential  

 

𝛱𝐻 ≡ 𝛱𝐻(𝑒(𝑢), 𝑘(𝑢), 𝑢, 𝐸(𝜑) )                                            (36) 

 

Now this functional may be extremized by taking the first variation and setting it equal to zero.  

This however leads to a formulation that requires 𝐶1 continuity of the displacement field.  

 

A better approach, as shown for the purely mechanical problem in Darrall et al. (2014), is to 

consider independent displacements and rotations and then enforce the rotation-displacement 

compatibility constraint of (8) by including Lagrange multipliers into the enthalpy functional 

prior to extremizing.  Thus, we define a new functional 

 

𝛱𝐻
∗ ≡ 𝛱𝐻

∗ ( 𝑒(𝑢), 𝑘(𝜔), 𝑢, 𝜔, 𝐸(𝜑), 𝜆)          (37)                                                  

where 

𝛱𝐻
∗ = 𝛱𝐻 + ∫ 𝜆𝑘(𝜀𝑘𝑗𝑖𝑢𝑖,𝑗 − 2𝜔𝑘)𝑑𝑉 

𝑉
         (38) 

 

It is shown in Darrall et al. (2014) by extremizing the functional for the mechanical problem that 

these Lagrange multipliers turn out to be equal to the skew-symmetric stress vector, 𝑠𝑖.  This is 

an extremely convenient property of the variational formulation, because otherwise the skew-

symmetric part of the stress tensor would be difficult to obtain.  The same feature carries over to 

the couple stress piezoelectric variational principle presented here. 

 

We then have the following 𝐶0 variational problem 

 

𝛿𝛱𝐻
∗ =   

𝜕𝛱𝐻
∗

𝜕𝑢𝑖
𝛿𝑢𝑖 +

𝜕𝛱𝐻
∗

𝜕𝜔𝑖
𝛿𝜔𝑖 +

𝜕𝛱𝐻
∗

𝜕𝜑
𝛿𝜑 +

𝜕𝛱𝐻
∗

𝜕𝑠𝑖
𝛿𝑠𝑖 = 0                              (39) 

where 

𝛱𝐻
∗ = 𝛱𝐻

∗ (𝑒(𝑢), 𝑘(𝜔), 𝑢, 𝜔, 𝐸(𝜑), 𝑠) = 𝛱𝐻 + ∫ 𝑠𝑘(𝜀𝑖𝑗𝑘𝑢𝑗,𝑖 − 2𝜔𝑘) 𝑑𝑉
𝑉

               (40)              

 

In Darrall et al. (2014), it is shown by deriving the corresponding Euler-Lagrange equations that 

the solutions to the variational problem of (39) satisfy linear and angular momentum balances, 

rotation-displacement compatibility, and force and moment traction boundary conditions.  

Following the same derivations as in Darrall et al. (2014), it is a simple task to show that 

evaluating the third term of (39) will also produce Euler-Lagrange equations corresponding to 

Gauss’ law in differential form, (19), and the natural boundary conditions corresponding to (21). 

 

Before developing the corresponding finite element formulation in the next section, we should 

emphasize the differences first developed in Hadjesfandiari (2014) between the present size-

dependent piezoelectric theory and the prevailing flexoelectric version.  In particular, the present 
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theory is consistent with Maxwell’s equations of electromagnetism and the self-consistent theory 

of couple stresses, while the latter satisfies neither of these essential conditions.  Furthermore, 

the present theory predicts that only two additional parameters, 𝑙 and 𝑓, appear for isotropic or 

centrosymmetric cubic materials, rather than three as required for the predominant flexoelectric 

theory.  In this regard, we point to the difficulties expressed by Zubko et al. (2007) in estimating 

these three material parameters for cubic SrTiO3 single crystals.  Several statements in Zubko et 

al., (2007) suggest that perhaps the three flexoelectric material parameters are not independent.  

Two recent reviews on flexoelectricity express further concerns relating to the prevailing theory 

(Zubko et al., 2013; Yudin and Tagantsev, 2013).  Thus, further physical and computational 

experiments are needed to clarify the underlying theory.  The finite element formulation to be 

developed in the following section can be quite useful for those investigations. 

   

 

3. Couple-stress piezoelectric finite element formulation 

 

As with most continuum theories, the analytical solutions that are available are limited to very 

simple geometry and boundary conditions.  Clearly numerical formulations must be developed in 

order to analyze real world problems that arise in the design process of modern technologies 

looking to take advantage of size-dependent piezoelectric effects.   In this section a finite element 

formulation is developed for linear, centrosymmetric cubic and isotropic, piezoelectric solids 

based on the size-dependent theory of Hadjesfandiari (2013, 2014). 

 

Voigt notation is used in this section for the purpose of simplifying calculations and 

programming. This means that the strain, 𝒆, is represented by a vector rather than a second order 

tensor, and the constitutive tensor, 𝒄, is expressed as a two-dimensional matrix rather than a 

fourth order tensor.  For the two-dimensional, plane-strain, linear problems that we will explore 

here, we then have the following representations: 

 

𝒆 =  [

𝑒𝑥𝑥

𝑒𝑦𝑦

𝛾𝑥𝑦

] =  

[
 
 
 
 

 

𝜕𝑢𝑥

𝜕𝑥
𝜕𝑢𝑦

𝜕𝑦

𝜕𝑢𝑥

𝜕𝑦
+

𝜕𝑢𝑦

𝜕𝑥

 

]
 
 
 
 

     (41) 

 

𝒄 = [
𝑐11 𝑐12 0
𝑐12 𝑐11 0
0 0 𝑐44

]          (42a) 

 

which specializes as follows for the isotropic case 
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𝒄 =
𝐸(1−𝜈) 

(1+𝜈)(1−2𝜈)

[
 
 
 
 1

𝜈

1−𝜈
0

𝜈

1−𝜈
1 0

0 0
1−2𝜈

2(1−𝜈)]
 
 
 
 

         (42b) 

 

Here 𝑢𝑥 is the component of displacement in the 𝑥-direction and 𝑢𝑦 is the component of the 

displacement in the 𝑦-direction.  Additionally, 𝐸 is the Young’s modulus, and 𝜈 is the Poisson’s 

ratio.  For plane-stress problems, only the matrix 𝒄 will need to change (Bathe, 1996). 

 

For planar problems, the engineering mean curvature vector can be written in terms of the one 

out of plane component of rotation, 𝜔, explicitly as  

 

𝒌 =  [
𝑘𝑥

𝑘𝑦
] =  [ 

−
𝜕𝜔

𝜕𝑦
 

𝜕𝜔

𝜕𝑥

 ]                                 (43) 

 

The couple-stress constitutive matrix for linear centrosymmetric cubic and isotropic materials is 

 

𝒃 = 4𝜂 [
1 0
0 1

]                                                            (44) 

 

while the corresponding piezoelectric-curvature coupling tensor, 𝜸, becomes 

 

𝜸 = 2 𝑓  [
1 0
0 1

]                                                           (45) 

 

From (16), we can express the electric field in terms of the electric potential as 

 

𝑬 =  [
𝐸𝑥

𝐸𝑦
] =  [ 

−
𝜕𝜑

𝜕𝑥

−
𝜕𝜑

𝜕𝑦

 ]                                                        (46) 

 

We now consider the variational principle posed in the previous section.  In vector notation, we 

have 

𝛿𝛱𝐻
∗ = 0 =   

𝜕𝛱𝐻
∗

𝜕𝒖
𝛿𝒖 +

𝜕𝛱𝐻
∗

𝜕𝝎
𝛿𝝎 +

𝜕𝛱𝐻
∗

𝜕𝜑
𝛿𝜑 +

𝜕𝛱𝐻
∗

𝜕𝒔
𝛿𝒔                           (47) 

where 
 

𝛱𝐻
∗ =

1

2
∫𝒆𝑇𝒄𝒆 𝑑𝑉
𝑉

+
1

2
∫𝒌𝑇𝒃𝒌 𝑑𝑉 +
𝑉

∫(𝑐𝑢𝑟𝑙 𝒖 − 2𝝎)𝑇 𝒔 𝑑𝑉 
𝑉

−
1

2
∫𝑬𝑇𝜺𝑬 𝑑𝑉
𝑉

− ∫𝑬𝑇𝜸𝒌 𝑑𝑉
𝑉

− ∫𝒖𝑇𝑭̅ 𝑑𝑉
𝑉

+ ∫𝜑𝜌̅𝐸  𝑑𝑉
𝑉

− ∫ 𝒖𝑇 𝒕̅ 𝑑𝑆
𝑆𝑡

− ∫ 𝝎𝑇𝒎̅
𝑆𝑚

 𝑑𝑆 − ∫ 𝜑𝒹̅
𝑆𝒹

𝑑𝑆   

 

 

(48) 
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Next, we consider discretizing the domain into finite elements.  Figure 1 shows the 8-node 

isoparametric quadrilateral master element used in the present formulation.  This element has 

natural coordinates represented by 𝑟 and 𝑠, with values for each element ranging from -1 to +1 in 

either direction.  In the global coordinate system, here represented in two dimensions by normal 

Cartesian coordinates 𝑥 and 𝑦, our element can take on any arbitrary shape, limited only by the 

need to maintain a well-defined Jacobian (Bathe, 1996; Zienkiewicz and Taylor, 2000). 

 
Fig. 1. General planar body and sample 8-node master element 

 

Standard serendipity quadratic shape functions 𝑵 (Zienkiewicz and Taylor, 2000; Bathe, 1996) 

are used in this formulation, where 

 

𝑵𝑇 = 

[
 
 
 
 
 
 
 
 
 
 
 
 

 

1

4
(1 − 𝑟)(1 − 𝑠) −

1

4
(1 − 𝑠2)(1 − 𝑟) −

1

4
(1 − 𝑟2)(1 − 𝑠)

1

4
(1 + 𝑟)(1 − 𝑠) −

1

4
(1 − 𝑟2)(1 − 𝑠) −

1

4
(1 − 𝑠2)(1 + 𝑟)

1

4
(1 + 𝑟)(1 + 𝑠) −

1

4
(1 − 𝑟2)(1 + 𝑠) −

1

4
(1 − 𝑠2)(1 + 𝑟)

1

4
(1 − 𝑟)(1 + 𝑠) −

1

4
(1 − 𝑟2)(1 + 𝑠) −

1

4
(1 − 𝑠2)(1 − 𝑟)

1

2
(1 − 𝑠)(1 − 𝑟2)

1

2
(1 + 𝑟)(1 − 𝑠2)

1

2
(1 + 𝑠)(1 − 𝑟2)

1

2
(1 − 𝑟)(1 − 𝑠2) ]

 
 
 
 
 
 
 
 
 
 
 
 
 

  (49) 

 

These same shape functions, 𝑵, are used to interpolate both the geometric coordinates of the 

element as well as the displacement, rotation, and electric potential within an element.  This 

means that we can represent the geometry of an arbitrary shaped element in terms of the element 

natural coordinates 𝑟 and 𝑠 via the following relations  
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𝑥 ≅ 𝑵𝒙̂            (50a) 

 

𝑦 ≅ 𝑵𝒚̂            (50b) 
 

where 𝒙̂ and 𝒚̂ are the global coordinate values of nodes 1 through 8 for any particular element.  

In general the hat notation is used to represent vectors containing quantities at nodes 1 through 8.  

Then, for our discretized approximation for displacement, rotation, and electric potential within 

an element, we have 

𝑢𝑥 ≅ 𝑵𝒖̂𝒙              (51a) 

   𝑢𝑦 ≅ 𝑵𝒖̂𝒚                                                                (51b) 

𝜔 ≅ 𝑵𝝎̂                                                                   (52) 

𝜑 ≅ 𝑵𝝋̂                                                                    (53) 

 

For the displacements, rotations, and electric potential on the boundaries 𝑆𝑡, 𝑆𝑚, and 𝑆𝒹 we will 

need to use surface interpolation functions, such that 

𝑢𝑥𝑆𝑡
≅ 𝑵𝑆𝒖̂𝒙         (54) 

𝑢𝑦𝑆𝑡
≅ 𝑵𝑆𝒖̂𝒚                                                                 (55) 

𝜔𝑆𝑚
≅ 𝑵𝑺𝝎̂                                                                  (56) 

𝜑𝑆𝒹
≅ 𝑵𝑺𝝋̂                                                                  (57) 

For a 2-d body these surface shape functions can be expressed in terms of one natural coordinate, 

𝑟, as follows 

𝑵𝑺
𝑇 = [

1

2
(1 − 𝑟) −

1

2
(1 − 𝑟2)

1

2
(1 + 𝑟) −

1

2
(1 − 𝑟2)

1 − 𝑟2

]          (58) 

 

The strains, curvatures, and electric field in (48) can now be replaced with approximate discrete 

representations in terms of displacements, rotations, and electric potential, respectively.  To do 

this we must introduce new matrices, the strain-displacement matrix, 𝑩𝒆, such that 

𝒆 ≅ 𝑩𝒆𝒖̂                                                                       (59) 

where 𝒖̂ is a concatenated vector with 16 values that contains both the horizontal and vertical 

components of displacements in the following form 

𝒖̂𝑇 = [𝒖̂𝒙, 𝒖̂𝒚] = [ 𝑢̂𝑥1 𝑢̂𝑦1 … 𝑢̂𝑥8 𝑢̂𝑦8 ]                                 (60) 

Also we have the curvature-rotation matrix, 𝑩𝒌, such that 

𝒌 ≅ 𝑩𝒌𝝎̂                                                                    (61) 

and the curl-displacement matrix, 𝑩𝒄𝒖𝒓𝒍, such that 

∇ × 𝒖 ≅ 𝑩𝒄𝒖𝒓𝒍𝒖̂                                                             (62) 

and finally the electric field-potential matrix, 𝑩𝑬, such that 

𝑬 ≅ 𝑩𝑬𝝋̂                                                                    (63) 

 

For the planar problems in this paper we can write out these 𝑩 matrices explicitly as follows: 
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𝑩𝒆 = 

[
 
 
 
  

𝜕𝑁1

𝜕𝑥
0

0
𝜕𝑁1

𝜕𝑦

𝜕𝑁1

𝜕𝑦

𝜕𝑁1

𝜕𝑥

     …     

𝜕𝑁8

𝜕𝑥
0

0
𝜕𝑁8

𝜕𝑦

𝜕𝑁8

𝜕𝑦

𝜕𝑁8

𝜕𝑥

 

]
 
 
 
 

                                               (64) 

 

𝑩𝒌 = [
−

𝜕𝑁1

𝜕𝑦

𝜕𝑁1

𝜕𝑥

    …    
−

𝜕𝑁8

𝜕𝑦

𝜕𝑁8

𝜕𝑥

 ]                 (65) 

 

𝑩𝒄𝒖𝒓𝒍 = [−
𝜕𝑁1

𝜕𝑦

𝜕𝑁1

𝜕𝑥
… −

𝜕𝑁8

𝜕𝑦

𝜕𝑁8

𝜕𝑥
 ]                                   (66) 

 

𝑩𝑬 =  [
 −

𝜕𝑁1

𝜕𝑥
−

𝜕𝑁2

𝜕𝑥

−
𝜕𝑁1

𝜕𝑦
−

𝜕𝑁2

𝜕𝑦

    …    
 −

𝜕𝑁7

𝜕𝑥
−

𝜕𝑁8

𝜕𝑥

−
𝜕𝑁7

𝜕𝑦
−

𝜕𝑁8

𝜕𝑦

 ]                                      (67) 

 

Here 𝑩𝒆 will be a matrix of size [3 × 16], 𝑩𝒌 will be a matrix of size [2 × 8],  𝑩𝒄𝒖𝒓𝒍 will be a 

matrix of size [1 × 16], and 𝑩𝑬 will be a matrix of size [2 × 8].  For all cases, the 𝑩 matrices 

above are functions of the first derivatives of the shape functions with respect to global Cartesian 

coordinates, 𝑥 and 𝑦.  

 

Finally, we must also consider the discrete approximation of the skew-symmetric stress pseudo 

vector.  For 2-d problems this vector actually simplifies to one component in the out of plane 

direction.  Further simplifying matters, we need only 𝐶−1 
continuity in this formulation and 

therefore consider 𝒔 to be constant throughout each element. 

 

Now, upon substitution of the discrete representations of our variables into (48), and then taking 

the first variation with respect to the discrete variables, we are left with the following for each 

element 

 

𝛿𝛱𝐻
∗ = 0 = (𝛿𝒖̂)𝑇  [∫(𝑩𝑇𝒄𝑩) 𝒖̂ 𝐽𝑑𝑑𝑉

𝑉

+ ∫𝑩𝒄𝒖𝒓𝒍
𝑇 𝒔 𝐽𝑑

𝑉

𝑑𝑉 − ∫𝑵𝑇𝑭̅ 𝐽𝑑𝑑𝑉
𝑉

− ∫ 𝑵𝑆
𝑇 𝒕̅ 𝐽𝑑𝑆 𝑑𝑆

𝑆𝑡

]

+  (𝛿𝝎̂)𝑇 [∫(𝑩𝒌
𝑇𝒃𝑩𝒌) 𝝎̂ 𝐽𝑑𝑑𝑉

𝑉

− ∫(𝑩𝒌
𝑇𝜸𝑩𝑬) 𝝋̂ 𝐽𝑑𝑑𝑉

𝑉

+ ∫ −2𝑵𝑇𝒔 𝐽𝑑𝑑𝑉 
𝑉

–∫ 𝑵𝑆
𝑇 𝒎̅

𝑆𝑚

 𝐽𝑑𝑆 𝑑𝑆]  + (𝛿𝒔) [∫ (𝑩𝒄𝒖𝒓𝒍𝒖̂ −  2𝑵𝝎̂) 𝐽𝑑𝑑𝑉 
𝑉

]

+ (𝛿𝝋̂)𝑇 [−∫(𝑩𝑬
𝑇𝜺𝑩𝑬) 𝝋̂ 𝐽𝑑𝑑𝑉

𝑉

− ∫(𝑩𝑬
𝑇𝜸𝑩𝒌) 𝝎̂ 𝐽𝑑𝑑𝑉 

𝑉

+ ∫𝑵𝑇𝜌̅𝐸  𝑑𝑉
𝑉

− ∫ 𝑵𝑆
𝑇

𝑆𝜎

𝒹̅ 𝑑𝑆  ] 

 

 

 

 

 

(68) 

where  𝐽𝑑 and 𝐽𝑑𝑆 represent the determinants of the Jacobian of the volume and the surface of an 

element, respectively.  For the integration over the 8-noded isoparametric size-dependent 
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piezoelectric elements presented here, standard 3 × 3 point Gauss quadrature is used (Bathe, 

1996; Zienkiewicz and Taylor, 2000). 

 

Due to the fact that the variational factors, 𝛿𝒖̂, 𝛿𝝎̂, 𝛿𝝋̂, and 𝛿𝒔 have arbitrary value, the four 

terms in square brackets above all must be identically zero for this equation to be valid.  This 

provides us with four coupled sets of linear algebraic equations for each element.  These are our 

final finite element equations for a single element in matrix form.   

 

We now have a set of linear algebraic equations for each element.  Here we choose to organize 

these element equations into the form shown in Fig. 2. 

 

 
Fig. 2. Structure of resulting element equations before assembly 

 

Corresponding to (68), the stiffness terms on the left hand side are calculated explicitly as 

follows: 

 

𝑲𝒖 = ∫ (𝑩𝑇𝑪𝑩) 𝐽𝑑𝑑𝑉
𝑉

                                                        (69a) 

𝑲𝝎 = ∫ (𝑩𝒌
𝑇𝒃𝑩𝒌) 𝐽𝑑𝑑𝑉

𝑉
                                                       (69b) 

𝑲𝒄𝒖𝒓𝒍,𝒔 = ∫ (𝑩𝒄𝒖𝒓𝒍) 𝐽𝑑𝑑𝑉 
𝑉

                                                    (69c) 

𝑲𝝎,𝒔 = −∫ (2𝑵) 𝐽𝑑𝑑𝑉 
𝑉

                                                      (69d) 

𝑲𝝎,𝝋 = −∫ (𝑩𝑬
𝑇𝜸𝑩𝒌) 𝐽𝑑𝑑𝑉 

𝑽
                                                   (69e) 

𝑲𝝋 = −∫ (𝑩𝑬
𝑇𝜺𝑩𝑬) 𝐽𝑑𝑑𝑉 

𝑉
                                                    (69f) 

 

Meanwhile, for the right hand side, we have 
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𝒇̂𝒙 = ∫ 𝑵𝑇𝐹̅𝑥 𝐽𝑑𝑑𝑉
𝑉

+ ∫ 𝑵𝑆
𝑇 𝑡𝑥̅ 𝐽𝑑𝑆 𝑑𝑆

𝑆𝑡
                  (70a) 

𝒇̂𝒚 = ∫ 𝑵𝑇𝐹̅𝑦  𝐽𝑑𝑑𝑉
𝑉

+ ∫ 𝑵𝑆
𝑇 𝑡𝑦̅ 𝐽𝑑𝑆 𝑑𝑆

𝑆𝑡
                  (70b) 

𝒎̂ =  ∫ 𝑵𝑆
𝑇 𝑚̅

𝑆𝑚
 𝐽𝑑𝑆 𝑑𝑆            (70c) 

𝒒̂ = −∫ 𝑵𝑇𝜌̅𝐸  𝐽𝑑𝑑𝑉
𝑉

+ ∫ 𝑵𝑆
𝑇

𝑆𝒹
𝒹̅ 𝐽𝑑𝑆𝑑𝑆                                      (70d) 

 

where the subscripts 𝑥 and 𝑦 above indicate the components of force in that respective direction.  

All terms that appear in the right hand side are of course known quantities, as indicated by the 

overbars in (70a-d). 

 

After evaluating the stiffness matrix and forcing vector on the element level, we then follow 

standard finite element procedures (Bathe, 1996; Zienkiewicz and Taylor, 2000) to assemble and 

solve the global set of linear algebraic equations 

 

𝑲𝒖 = 𝒇       (71) 

 

where now 𝒖 includes all nodal values for displacement, rotation, and electric potential, along 

with the element-based skew-symmetric stress.   

 

Before considering the solution to several boundary value problems, two additional points should 

be made.  The first relates to the introduction of the skew-symmetric stress Lagrange multipliers 

to enforce the displacement-rotation constraint.  Notice that the corresponding diagonal block of 

the stiffness matrix displayed in Fig. 2 becomes zero and, as a consequence, the overall system 

matrix in (71) is indefinite.  Consequently, sophisticated direct solvers appropriate for sparse, 

symmetric, indefinite matrices are needed to maintain accuracy of the solution.  In the present 

work, the MATLAB (2014) implementation of the unsymmetric multifrontal sparse LU 

factorization package UMFPACK is used with a symmetric pivoting strategy (Davis and Duff, 

1997; Davis, 2004). 

 

The second point relates to Dirichlet boundary conditions that must be enforced on surfaces with 

fixed non-zero displacement, rotation, and/or electric potential.  There are many ways to do this.  

One simple approach is to replace the corresponding right hand side component with the 

specified boundary value and then multiply both the corresponding diagonal and right hand side 

components by a sufficiently large penalty parameter.  However, due to the sensitive nature of 

the indefinite system equations associated with the present formulation, we prefer to avoid 

penalty parameters.  Instead, we modify the right hand side by subtracting the product of the 

columns corresponding to the specified nodal degrees of freedom and the enforced boundary 

value.  Then, the corresponding rows and columns can be zeroed, while the diagonal value is set 

to unity and the corresponding right hand side entry is equated to the desired value of 

displacement, rotation, or electric potential. 
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4. Boundary value problems 

 

4.1 Long isotropic cylinder with constant applied electric field on the surface 

 

For this problem we consider a long, isotropic, circular cylinder with radius 𝑎.  The surface of 

the cylinder is exposed to an applied constant electric field of magnitude 𝐸0 directed in the 

positive 𝑥-direction.  This serves as a direct Dirichlet boundary condition on the electric 

potential.  Clearly from (16) the boundary condition for electric potential will be  

𝜑 = −𝐸0𝑎 cos 𝜃                                                              (72) 

on surface 𝑟 = 𝑎. 

 

The other boundary conditions for this problem are zero force- and moment-tractions on the 

surface, along with constrained displacement and rotation of the center point.  The problem 

geometry may also be simplified by enforcing certain symmetry boundary conditions along the 

horizontal and vertical axes.  Specifically, the boundary conditions for the vertical axis are zero 

electric potential, zero vertical displacement, zero horizontal force-traction, and zero moment-

traction.  The boundary conditions for the horizontal axis are zero normal electric displacement, 

zero vertical displacement, zero horizontal force-traction, and zero moment-traction.  By 

enforcing these boundary conditions only the first quadrant of the cylinder geometry needs to be 

considered. 

 

For material properties in dimensionless form we consider 𝐸 = 5/2, 𝜈 = 1/4, and 𝜀 = 1.  The 

magnitude of the applied electric field is considered unity for all simulations here.  An 

unstructured mesh with 126 elements is used. 

 

The problem has an analytical solution derived in Hadjesfandiari (2013) that will be used to 

validate the numerical solutions here.  Displacement results are presented in Table 1, where 𝑈0 is 

the horizontal displacement at the point on the surface at 𝜃 = 0, and 𝑈90 is the horizontal 

displacement at the point on the surface at 𝜃 = 𝜋/2. From Table 1, we see that the numerical 

solutions are in excellent agreement with the analytical solution. 
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Fig. 3. Long cylinder with constrained potential on surface 

 

Table 1. Results for long cylinder with constant applied electric field on surface 

 

𝑓 𝜂 

Analytical 

(Hadjesfandiari, 2013) 
FE (126 elements) 

 Relative Error: 
𝑈𝐹𝐸 − 𝑈𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐

𝑈𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐
  

𝑈90 𝑈0 𝑈90 𝑈0 𝑈90 𝑈0 

0 0.1 0 0 0 0 0 0 

0.01 0.1 0.0156683 0.0016525 0.0156677 0.0016488 -3.63E-05 -2.21E-03 

0.1 0.1 0.1566826 0.0165248 0.1566769 0.0164883 -3.63E-05 -2.21E-03 

1 0.1 1.5668259 0.1652484 1.5667691 0.1648831 -3.63E-05 -2.21E-03 

0.1 0.01 0.2647973 0.0099273 0.2642131 0.0096449 -2.21E-03 -2.84E-02 

0.1 1 0.0311736 0.0042998 0.0311788 0.0042982 1.68E-04 -3.74E-04 

 

4.2  Long isotropic cantilever in constant vertical electric field (normalized parameters) 

 

Here we consider a long, isotropic cantilever with a constant electric potential applied to the top 

and bottom surfaces.  The upper surface can be considered grounded with 𝜑 = 0 and the bottom 

surface is held at a value of 𝜑 = ℎ.  Note that again we are considering all quantities to be 

dimensionless here.  These conditions on the potential will produce a unit uniform constant 

electric field in the positive 𝑦- direction, which in turn induces curvature in the beam.  This 

problem is useful for exploring both the direct connection between electric field and curvature 

present in consistent couple stress piezoelectricity, and the size-dependency of the 

electromechanical phenomena.  This problem also has significance to the development of small 

,, ,E f    

cosoE a     
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scale sensors and actuators.  From the above problem definition, the vertical electric field can be 

calculated by 

 

𝐸𝑦 ≅
𝜑𝑏𝑜𝑡𝑡𝑜𝑚−𝜑𝑡𝑜𝑝

ℎ
=

∆𝜑

ℎ
= 1                                                        (73) 

 

The material parameters in non-dimensional form for this beam are as follows: 𝐸 = 2, 𝑙 = 1, 

 𝑓 = 1, 𝜀 = 1 and 𝜈 = 0.  Aside from the electric potential boundary condition specified on the 

top and bottom surface, the following boundary conditions are enforced; there is no applied 

force- or moment-tractions, the left and right hand sides are considered to be electrically 

insulated such that 𝒹 = 0, and finally the vertical displacements, horizontal displacements, and 

the rotations on the surface with 𝑥 = 0 are constrained to be zero.   

 

The mesh used here consists of rectangular elements arranged such that there are 20𝑁 elements 

lengthwise and 2𝑁 elements transversely.  The finest mesh had 𝑁 = 8 and therefore consisted of 

2,560 elements.  Figure 5 shows excellent convergence of the vertical end displacement, 𝑈𝑦, 

with uniform mesh refinement for the case with ℎ/𝑙 = 1.  For the numerical experiments with 

results presented in Figs. 6 and 7, the characteristic geometry, ℎ, was varied in order to show the 

size-dependency of the theory. 

 

For a long slender beam, such as the one examined here, we expect the assumptions of an Euler-

Bernoulli beam model to hold true.  Recently, an Euler-Bernoulli beam model based on the 

consistent size-dependent piezoelectric theory presented in Hadjesfandiari (2013) was derived in 

Li et al. (2014).   From this paper the vertical displacements of the beam should be: 

 

𝑢𝑦(𝑥) ≈
𝑏𝑓∆𝜑

𝐸𝐼
2

+ 2𝐺𝑙2𝐴
𝑥2 

 

(74) 

 

where 𝑏 is the beam depth, 𝐼 is the area moment of inertia, and 𝐴 is the cross sectional area.  This 

solution corresponds to constant curvature in the y-direction.  The induced curvature however is 

clearly size-dependent.  For small scales (ℎ 𝑙⁄ < 1) we expect the term involving the couple-

stress parameter to limit the induced curvature such that: 

𝑘𝑦 ≈
𝑏𝑓∆𝜑

2𝐺𝑙2𝐴
=

𝑓𝐸𝑦

2𝐺𝑙2
 

 

(75) 

 

For larger scales (ℎ 𝑙⁄ ≫ 1), we expect the classical bending stiffness term to limit the induced 

curvature such that: 

𝑘𝑦 ≈
𝑏𝑓∆𝜑

𝐸𝐼/2
=

24𝑓𝐸𝑦

𝐸ℎ2
 

 

(76) 
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The results using the FE formulation developed here show that indeed the solution to this 

problem is a field with constant 𝑘𝑦, with the exception of minor edge effects at the right 

boundary.  The solutions are in excellent agreement with equations (74) through (76).  From Fig. 

6, we see that for very small characteristic geometry (ℎ/𝑙 < 1) we have for the induced 

curvature, 𝑘𝑦 = 𝑓 𝐸𝑦/2𝐺𝑙2.  For increasing characteristic geometry starting from ℎ/𝑙 ≈ 10, we 

note that 𝑘𝑦 decreases proportional to 1/ℎ2, as expected from (76).  This size-dependent 

behavior leads to some maximum end displacement that is possible for this size-dependent 

piezoelectric problem.  This is very interesting because it means that even for very large 

geometries we will still have some displacement that is not dependent on the cantilever 

geometry.  In other words even for large scales the size-dependent piezoelectric effect is non-

zero.  However, as one can see from Fig. 7, the ratio of the vertical end displacement at point 𝐴 

to the cantilever geometry, 𝑈𝑦/𝐿, is decreasing proportional to 1/ℎ.  Then, for larger length 

scales, we can conclude that the deformation due to the size-dependent piezoelectric effect, 

although equal to some nonzero value, will become negligible and perhaps even impossible to 

detect.  Also from Fig. 7, we see that the size-dependent piezoelectric effects relative to size of 

the cantilever are greatest for ℎ/𝑙 ≈ 5.  We should note that generally results will deviate from 

(74) for real materials due to non-zero Poisson’s ratio.  The formulation developed here is 

capable of accurately modeling this effect too.   

 

 
 

Fig. 4. Schematic of size-dependent piezoelectric cantilever  
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Fig. 5. Convergence of end displacement with mesh refinement 

 
Fig. 6. Nondimensionalized curvature with scaling of cantilever geometry  
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Fig. 7. Ratio of end displacement to length with scaling of cantilever geometry 

 

 

Finally, we should note that Figs. 6 and 7 include results for ℎ/𝑙 < 1.  With limited experimental 

data available at this time to estimate the couple-stress parameter size-dependent 𝑙, it is not 

certain that continuum mechanics theories are applicable for length scales in that range.  In any 

case, we believe that it is appropriate to explore the interesting phenomena that size-dependent 

piezoelectric theory predicts on these minute length scales. 

 

4.3 Long cantilever in constant vertical electric field (Barium Titanate ceramic) 

 

In this section, we analyze a cantilever with the same geometry and boundary conditions as 

described in the previous section.  However, now we consider the material to be Barium Titanate 

ceramic (BaTiO3) at room temperature, which in single crystal form has cubic centrosymmetric 

structure.  The same mesh from the previous section was used.  The beam has characteristic 

dimension of ℎ = 1𝜇𝑚 and correspondingly, 𝐿 = 20 𝜇𝑚.  The piezoelectric-curvature parameter 

was approximated based on experiments by Ma and Cross (2006).  The other material properties 

used here were tabulated in Jaffe et al. (1971) and originally measured by Bechmann (1956).  As 

noted above, in single crystal form, this material is centrosymmetric cubic.  Based on the 
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measured elastic properties, however, it is clear that the material is not far from being isotropic.  

As such, for BaTiO3 ceramic, we approximate isotropic elastic coefficients by making the 

assumption that 𝐺 = 𝑐44, 𝜈 = 0.325 and then use Hooke’s law for isotropic material to calculate 

an effective Young’s modulus.  All material properties used here are tabulated in Table 2. 

 

The cantilever was subject to a uniform vertical electric field of 𝐸𝑦 = 1 𝑉/𝜇𝑚. The vertical end 

displacement, 𝑈𝑦, was plotted against ℎ/𝑙 in Figure 8.  Clearly for BaTiO3 the size-dependent 

piezoelectric effect is not negligible, as an electric field of 1𝑉/𝜇𝑚 causes a vertical end 

displacement of 𝑈𝑦 ≈ 0.4 𝜇𝑚 (for ℎ/𝑙 > 10). 

 

Table 2: Approximate BaTiO3 material properties used in simulation 

Piezoelectric-curvature parameter,  𝑓 (𝜇𝐶/𝜇𝑚) ~10 × 10−6 

Young’s Modulus,  𝐸 (𝑁/𝜇𝑚2) 113.7 × 10−3 

Shear Modulus,  𝐺 (𝑁/𝜇𝑚2) 42.9 × 10−3 

Permittivity,  𝜀 (𝜇𝐶2/𝑁𝜇𝑚2) 1.239 × 10−8 

 

 
Fig. 8: Vertical end displacement with varying values of 𝑙 
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4.4 Long isotropic cantilever plate with transverse end-loading 

 

This final problem analyzes the induced electric field in an isotropic cantilever subject to end 

loading under plane-strain conditions.  The loading considered here is a transverse shear traction 

loading with a parabolic distribution.  Figure 9 shows a schematic of the problem.  The plate has 

thickness 2𝑎, where 𝑎 = 0.5 here, and length 𝐿 = 20.  For all simulations, we consider the 

following dimensionless material properties; Young’s modulus, 𝐸 = 5/2, Poisson ratio, 𝜈 = 1/

4, and electric permittivity, 𝜀 = 1. 

 

For boundary conditions we consider zero displacement on the left surface as well as zero 

electric potential at the origin.  All surfaces are considered to be electrically insulated, such that 

𝒹 = 0, and also free of moment-tractions.  The top and bottom surfaces are tractionless.  Finally, 

the right surface of the plate has an applied shear traction with a parabolic profile, such that  

𝑡𝑦 = 𝑡0(1 − 𝑦2 𝑎2⁄ ). 

 

Figure 10 shows a fill plot of the induced scalar electric potential field.  The corresponding field 

is symmetric and has a maximum value on the top surface near the fixed surface at 𝑥 = 0 and a 

minimum value on the bottom surface at that same end.  Clearly a quantity of interest is the 

difference between the maximum and minimum value of electric potential.  Figure 11 shows a 

convergence study of the maximum electric potential difference.  A coarse mesh with ten 

rectangular elements was the original mesh.  This coarse mesh was systematically refined by 

dividing each element into four equal sized rectangular elements.  For the purpose of uniformity 

no localized mesh refinement was considered.  Table 3 provides values of the maximum electric 

potential difference and the maximum end vertical displacement, 𝑈𝑦, for various values of the 

couple-stress and curvature-piezoelectric parameters for this example of the direct size-

dependent piezoelectric effect in an isotropic material. 

 

 

 
Fig. 9. Schematic of long cantilever plate  
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Fig. 10. Plot of electric potential field resulting from transverse loading (𝜂 = 1, 𝑓 = 1) 

 

Fig. 11. Convergence of (𝜑𝑚𝑎𝑥 − 𝜑𝑚𝑖𝑛) with uniform mesh refinement (𝜂 = 1, 𝑓 = 1) 

 

 

Table 3. Results for long cantilever plate with transverse end loading, 2560 elements 

𝑓 𝜂 𝜑𝑚𝑎𝑥  −  𝜑𝑚𝑖𝑛 𝑈𝑦  × 10−3 

0.01 0.1 0.9395 7.2061 
0.1 0.1 8.8229 6.8181 
1 0.1 12.4577 1.6352 
1 0.01 13.0643 2.0725 
1 1 1.3632 1.6344 
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5. Conclusions 

 

The size-dependent piezoelectricity developed in Hadjesfandiari (2013) provides a theory, which 

couples the electric field and mean curvatures in a manner that is consistent with Maxwell’s 

equations of electromagnetism and skew-symmetric couple stress size-dependent mechanics.  

Based on this piezoelectric theory, and the mixed variational principle for size-dependent 

elasticity presented in Darrall et al. (2014), we have developed a mixed finite element 

formulation for planar couple stress piezoelectric problems in centrosymmetric cubic and 

isotropic media.  This formulation uses Lagrange multipliers to explicitly enforce rotation-

displacement compatibility, which reduces the variational problem from having a 𝐶1 to a 𝐶0 

continuity requirement.  The Lagrange multipliers conveniently are equal to the skew-symmetric 

portion of the force-stress tensor.  However, the resulting system matrix becomes indefinite and 

care is needed to maintain accuracy in the solver. 

 

The results from the cylinder problem illustrate the convergence characteristics of this 

formulation compared with an analytical solution for the converse size-dependent piezoelectric 

effect.  Meanwhile, the problem of a cantilever in a uniform transverse electric field showed 

several interesting results of size-dependent piezoelectricity.  For example, it was shown that 

indeed size-dependent piezoelectric effects are most significant for characteristic geometry on 

the order of the couple-stress length parameter, 𝑙.  Also, it was found that at large scales, the 

size-dependent piezoelectric effects become negligible when compared to the characteristic 

geometric scale, but do not vanish completely.  It was shown that the size-dependent 

piezoelectric effect is indeed significant for perovskite ceramics, such as Barium Titanate.  The 

final problem illustrates the direct effect, in which an applied load induces an electric field. 

 

Judging from the great impact that classical piezoelectricity has had on technology in the last 

fifty years, and the fact that new technology now is being developed on micro- and nano-length 

scales, it should be expected that modeling of piezoelectric phenomena at small scales will 

become increasingly important.  Here we have restricted ourselves to consider only 

centrosymmetric cubic and isotropic materials, where although classical piezoelectric effects are 

not present, generally size-dependent piezoelectric effects can occur.  Furthermore, while our 

present finite element formulation is for planar problems, the extensions to axisymmetric and 

general 3-d problems certainly are of interest.  This is especially true in the latter case to enable 

the comparison with careful physical experiments on cubic single crystals to examine the theory.  

Thus, the current size-dependent piezoelectric finite element formulation and its extensions can 

be expected to provide an excellent tool for doing such analyses and potentially to influence 

future material, structure and device design over a broad range of applications. 
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