
Sketching Reality:
Realistic Interpretation of Architectural Designs

XUEJIN CHEN

University of Science and Technology of China, and Microsoft Research Asia

SING BING KANG

Microsoft Research

YING-QING XU

Microsoft Research Asia

JULIE DORSEY

Yale University

and

HEUNG-YEUNG SHUM

Microsoft Research Asia

In this paper, we introduce “sketching reality,” the process of converting a free-hand sketch to a realistic-looking model. We
apply this concept to architectural designs. As the sketch is being drawn, our system periodically interprets its 2.5D geometry by
identifying new junctions, edges, and faces, and then analyzing the extracted topology. The user can add detailed geometry and
textures through sketches as well. This is possible using databases that match partial sketches to models of detailed geometry
and textures. The final product is a realistic texture-mapped 2.5D model of the building. We show a variety of buildings that
have been created using this system.

Categories and Subject Descriptors: J.6.0 [Computer-Aided Engineering]: Computer-aided design (CAD); I.2.10 [Artificial Intelligence]: Vision
and Scene Understanding

General Terms: Algorithms, Experimentation, Measurement

Additional Key Words and Phrases: Sketching, realistic imagery, shape

1. INTRODUCTION

Achieving realism is one of the major goals of computer graphics, and many approaches, ranging from physics-based
modeling of light and geometry to image-based rendering have been proposed. Realistic imagery has revolutionized
the design process, allowing for the presentation and exploration of unbuilt scenes.

Unfortunately, creating new content for realistic rendering remains tedious and time consuming. The problem is
exacerbated when the content is being designed. 3D modeling systems are cumbersome to use and therefore ill-suited

*This work was done when Xuejin Chen was visiting at Microsoft Research Asia.
Authors’ addresses: X. Chen, Microsoft Research Asia, 5/F, Beijing Sigma Center, No.49, Zhichun Road, Hai Dian District,Beijing China 100080;
email: xjchen@ustc.edu; S. B. Kang, Microsoft Research, One Microsoft Way Redmond, WA 98052-6399, USA; email: sbkang@microsoft.com;
Y.-Q. Xu, H.-Y. Shum, Microsoft Research Asia, 5/F, Beijing Sigma Center, No.49, Zhichun Road, Hai Dian District,Beijing China 100080; email:
{yqxu,hshum}@microsoft.com; J. Dorsey, Yale University, P.O. Box 208267, New Haven, CT 06520-8267; email: julie.dorsey@yale.edu.
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use provided that the copies are not made
or distributed for profit or commercial advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and notice is
given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior
specific permission and/or a fee.
c© 20YY ACM 0730-0301/20YY/0100-0001 $5.00

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY, Pages 1–21.

2 · Xuejin Chen et al.

Fig. 1. Sketching reality example (rotunda), from left to right: Sketch of building, extracted 2.5D version, rendered model with a new background
and rendered result with different view and lighting.

to the early stage of design (unless the design is already well-formulated). Moreover, the modeling process requires
specialized knowledge in object creation and the application of textures to surfaces.

Advances in modeling and rendering notwithstanding, designers therefore continue to favor freehand sketching for
conceptual design. Sketching appeals as an artistic medium because of its low overhead in representing, exploring,
and communicating geometric ideas. Indeed, such speculative representations are fundamentally different in spirit and
purpose from the definitive media that designers use to present designs. What is needed is a seamless way to move
from conceptual design drawings to presentation rendering; this is our focus.

In this paper, we introduce a new concept, sketching reality, to facilitate the generation of realistic imagery. The
process of sketching reality is the reverse of that of non-photorealistic rendering (NPR): Instead of mapping a real
image into a stylized version, the goal is to map an NPR drawing into a plausible realistic counterpart. This goal
is obviously a very difficult one—how does one interpret a sketch correctly? We apply this concept to architectural
design; Figure 1 shows an example of converting a sketch of a rotunda to a 2.5D texture-mapped model. (A 2.5D
model has depth computed mostly for geometric elements visible only from the original virtual view, and is thus not a
full model.)

2. RELATED WORK

The methodology we describe here builds on previous work in 3D modeling, modeling by sketching, and sketch-based
3D model retrieval. We discuss representative examples of previous work in these areas, focusing on those most rel-
vant to the work described here; comprehensive surveys are beyond the scope of this paper.

Procedural Architecture. Procedural modeling is a way to construct building models using shape grammars. Parish
and Muller [Parish and Muller 2001] generated large urban environments but each building consists of simple models
and shaders for facade detail. Wonka et al. [2003] generated geometric details on facades of individual buildings with
split grammar. As a combination of them, CGA shape grammar is presented to generate massive urban models with
geometric details at certain level [Muller et al. 2006]. While procedural methods are capable of generating a wide
variety of building types and assemblies thereof, these techniques have found little application in the architectural de-
sign process. It is far more intuitive for a designer to draw sketches than to use programming languages with specific
grammars.

Hierarchies of Geometric Primitives. A common approach for constructing 3D models is through the use of hi-
erarchies of 3D geometric primitives (e.g., Maya R© and AutoCAD R©). Users are forced to construct models in a fixed
way; more specifically, users must first decompose a model into geometric primitives and associated parameters, and,
due to dependencies among parameters, construct those primitives in a particular order.

Sketch Recognition. Approaches for 2D sketch recognition tend to operate on domain-specific inputs, e.g., cir-
cuit diagrams, flowcharts, or mechanical drawings. A particularly challenging problem is resolving ambiguities in
free-hand sketching. Techniques to address this problem include using predefined grammars within a Bayesian frame-
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

Sketching Reality · 3

work [Shilman et al. 2000], dynamically-built Bayes network with context [Alvarado and Davis 2005], and time-
sensitive evaluation of strokes [Sezgin et al. 2001].

While most sketching interfaces require the user to draw individual symbols one at a time, Gennari et al.’s sys-
tem [2005] parses hand-drawn diagrams and interpret the symbols. Their system focuses on network-like diagrams
consisting of isolated, non-overlapping symbols without any 3D geometry analysis. By comparison, our system re-
covers generic geometric entities from rough sketches and allows strokes to overlap.

Modeling by Sketching. Sketching is a simple way to generate pictures or animations; it is not surprising that
there are many systems designed based on this notion. One such example is the commercial SketchUp R© system,
which makes it fast to design 3D models by using a system of constraints to assist the placement of geometry. These
constraints are based on the three orthogonal axes and the positions, symmetries, and proportions of previously drawn
shapes.

There are many approaches for automatic interpretation of line drawings to produce 3D solid objects for CAD
systems. Varley and Martin [2000], for example, use the traditional junction and line labeling method [Grimstead and
Martin 1995] to analyze the topology of the 3D object. The topology gives rise to a system of linear equations to
reconstruct the 3D object; note that here drawn hidden lines are not required. In contrast, the method of Lipson and
Shpitalni [1996] uses hidden lines in their analysis of face-edge-vertex relationships and searches for optimal edge
circuits in a graph using the A* algorithm. The alternative is to use branch-and-bound to identify the faces [Shpitalni
and Lipson 1996]. Geometric relationships such as parallelism, perpendicularity, and symmetry are hypothesized and
subsequently used to estimate vertex depths. Unfortunately, it is not always possible to produce a globally optimal
solution.

Recently, Masry et al. [2005] proposed a sketch-based system for constructing a 3D object as it is being drawn.
This system handles straight edges and planar curves. However, it assumes orthographic projection and the existence
of three directions associated with three axes (estimated using the angle frequency). Again, the solution may not be
unique. Our system, on the other hand, handles the more general (and difficult) case of perspective projection, and
allows the user to interactively modify the sketch to produce the desired result.

There are a few sketching systems that handle perspective drawings—usually at a cost. Matsuda et al. [1997], for
example, requires the user to draw a rectangular parallelepiped as the “Basic Shape” to first enable the recovery of
perspective parameters. Our system requires only three drawn lines for the same purpose. In addition, our system
handles (symmetric) curves while theirs does not.

There are systems that use gestures (simple 2D forms) to produce 3D models. Such systems, e.g., SKETCH [Zeleznik
et al. 1996] and Sketchboard [Jatupoj 2005], constrain the designer’s sketching in exchange for computer understand-
ing. They use recognizable gestures that cause 3D editing operations or the creation of 3D primitives. The approximate
models thus generated are typically not appropriate for realistic rendering. SMARTPAPER [Shesh and Chen 2004]
uses both gestures and automatic interpretation of drawn polyhedral objects. However, orthographic projection is
assumed and hidden lines must be drawn. Furthermore, curves objects and complicated architectural structures and
textures are not supported.

One of the more influential sketch-based systems is Teddy [Igarashi et al. 1999], which largely eliminated the vo-
cabulary size and gesture recognition problems by supporting a single type of primitives. Teddy allows the user to very
easily create 3D smooth models by just drawing curves and allowing operations such as extrusion, cut, erosion, and
bending to modify the model. An extension of Teddy, SmoothSketch [Karpenko and Hughes 2006] is able to handle
non-closed curve caused by cusps or T-junctions. While they focus on free-form objects, our system interprets compli-
cated architecture scenes from perspective sketches. A “suggestive” interface for sketching 3D objects was proposed
by Igarashi and Hughes [2001]. After each stroke, the system produces options from which the user chooses. While
flexible, the frequent draw-and-select action is rather disruptive to the flow of the design.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

4 · Xuejin Chen et al.

Sketch Input

Primitive Geometry

Detailed Geometry

Maximum
Likelihood
Interpretation

Texture

Interactive Refinement

Rendering

Fig. 2. Overview of our sketching system.

Sketch-based 3D Model Retrieval. Techniques that retrieve 3D models from sketches are also relevant to our work.
Such techniques provide intuitive shortcuts to objects or classes of objects, which are useful for designing. Funkhouser
et al.’s system [2003] is a hybrid search engine for 3D models that is based on indexing of text, 2D shape, and 3D
model. To index 2D shape, their system compares the sketch drawn by the user with the boundary contours of the
3D model from 13 different orthographic view directions and computes the best match using an image matching
method [Huttenlocher et al. 1993; Barrow et al. 1977]. Note that the view-dependent internal curves are not used for
2D indexing. Spherical harmonics (quantized into a 2D rotation-invariant shape description) is used to index 3D.

Two methods for 2D drawing retrieval are proposed in [Pu and Ramani 2006]. The first uses a 2.5D spherical
harmonic representation to describe the 2D drawing, while the second uses the histogram of distance between two
randomly sampled points on the 2D drawing. Hou and Ramani [2006] proposed a classifier combination framework to
search 3D CAD components from sketches. However, their system requires sketches of boundary contours of objects
drawn from three orthographic views.

In our system, to retrieve a detailed structure, the user draws its appearance rather than its boundary contour. We
use shape information that includes texture features, relative location information, as well as architectural rules.

3. OVERVIEW

Three parts compose our system: sketch input, automatic sketch interpretation, and interactive refinement (Figure 2).
All user interaction is through a digital pen on a tablet. The user starts by drawing three lines to implicitly specify the
current camera viewing parameters c0. The first line corresponds to the horizon while the other two specify the lines
corresponding to the two other projected perpendicular directions. Note that c0 also contain information about the
three vanishing points associated with the three mutually perpendicular directions. The user also specifies (through a
menu) the type of architecture to be drawn: classical, Eastern, or modern.

As the user sketches, each drawn line is immediately vectorized. Each line drawn by user is interpreted as a dot,
circle, straight line segment, or cubic Bezier curve based on least-squared fit error.

A sketch consists of three types of objects, namely, primitive geometries, detailed geometries, and textures. A
primitive geometry can be a 2.5D or 3D basic geometric element, e.g., rectangle, cube, cylinder, or half-sphere.
A detailed geometry refers to a complex substructure that is associated with a particular type of architecture, e.g.,
windows, columns, and roof ornaments. Finally, textures are used to add realism to surfaces, and they can be specified
through sketching as well.

At any time, the user can ask the system to interpret what has been sketched so far. The system uses a maximum
likelihood formulation to interpret sketches. Depending on the object type, different features and likelihood functions
are used in the interpretation.
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

Sketching Reality · 5

The user can optionally refine the interpreted result. Our system is designed to allow the user to easily edit the local
geometries and textures. The final result can be obtained by rendering the texture-mapped model at a desired lighting
condition and (optionally) new viewpoint and background.

4. SKETCH INTERPRETATION WITH MAXIMUM LIKELIHOOD

We assume that the user inputs the sketch by line-drawing, and that each line Li consists of Ni contiguous 2D points
{pi j| j ∈ 1, ...,Ni}. Given a sketch with NS lines, denoted S = {Li|i ∈ 1, ...,NS}, a set of architecture-specific priors A,
and the camera viewing parameters c0, we would like to infer the set of objects M, which can be any combination of
primitive geometries, detailed geometries, and textures.

We use maximum a posteriori (MAP) inference to estimate M given S, A, and c0:

P(M|S,A,c0) ∝ P(S|M,A,c0)P(M|A,c0),

with P(S|M,A,c0) being the likelihood and P(M|A,c0) the prior. We assume that P(M|A,c0) is uniform, which
converts the MAP problem to that of maximum likelihood (ML). We would like to maximize the likelihood

P(S|M,A,c0). (1)

In contrast with domain-specific sketches, such as those of circuit diagrams, architectural drawings consist of ele-
ments that vary dramatically in scale (from large-scale shapes in the form of primitives to detailed structures). We use
three databases that are customized based on type: primitive geometries, detailed geometries, and textures. For each
type, we index each entity with its 2D drawing representation, as indicated in Figure 3. Each detailed geometry is
associated with specific architectural principles that define its probability of occurrence in the database.

Once the user completes drawing part of the sketch, he then specifies the type. Given this information, our system
extracts the appropriate features based on type and retrieves the best match in the database. We define a different
likelihood function P(S|M,A,c0) on different features extracted from the sketches for each type. Details of the features
and likelihood functions used for each type are described in following sections.Feature ExtrationDraw SketchesSpecify the object type

Primitive GeometryDetailed GeometryTexture
Topology FeatureShape, Location FeaturesTexture Features

Database2D Index of Topology2D Index of shape, locationArchitecture prior2D Index of shape
3D models of primitive geometry3D models of detailed geometryTexture samples

Topology MatcherShape, location MatcherTexture Matcher
ML InterpretationUser Input

Interpretation Results
Fig. 3. Use of maximum likelihood interpretation on the three types of objects (primitive geometry, detailed geometry, texture).

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

6 · Xuejin Chen et al.

infinite vanishing point

midpoint of

edge e

vp

e

finite vanishing point

midpoint of

edge e

e

a a

vp

Fig. 4. Distance function d(e, pv). For an infinite vanishing point (left), the distance is the angle between the edge and the direction of the vanishing
point. Otherwise (right), the distance is the angle between the edge and the vector joining the middle point and the vanishing point pv.

Fig. 5. Edge direction estimation. The edges are color-coded based on perpendicular direction. The dash line connect the midpoint of each edge
and its corresponding vanishing point. The classification of direction for a curve is based on the line connecting its two endpoints. Each curve has
a set of control points and control lines (purple dashed lines), which are used to compute the junctions and reconstruct the geometry.

5. INTERPRETATION OF PRIMITIVE GEOMETRIES

The overall shape of a building can generally be characterized by combining primitive geometries such as cubes,
prisms, pyramids (including curved pyramids), and spheres. The interpretation of geometry primitives from a sketch
depends heavily on the projected topology T. By topology, we mean the layout of junctions J, edges E, and faces
F, i.e., T = {J,E,F}. If we define T(S) as the topology of the sketch and T(M) the union of the topologies of the
primitive geometries M, the likelihood function (1) reduces to

Pgeo(T(S)|T(M),c0). (2)

In order to maximize this likelihood function, we have to recover T(S). This involves edge analysis with vanishing
points, junction identification, and face labelling.

5.1 Recovery of Topology

In order to recover the topology of the sketch T(S), we first progressively build a graph G(V,E) as the user sketches.
G(V,E) is a null set initially, and as the user adds a line, its vertices and edge are added to G(V,E). Note that a line
can be straight or curved: E = {ei, |i ∈ 1, ...,NE}, ei being the ith edge, and NE the number of lines. (NE ≤ NS because
we ignore sketched points here.) Each edge has the information on end points (two vertices), type (straight or curved),
and numbers that indicate how well the edge fits the three vanishing points (to be described shortly). If the edge is
curved, it has the additional information on the Bezier control points. The vertices and edges are analyzed to find the
junctions J in the sketch.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

Sketching Reality · 7

samples

XEYTLtypes

Fig. 6. Five types of junctions used in our system

Edge Analysis. We assume that our building consists of three groups of edges that are mutually perpendicular in
3D space. From the user-supplied perspective parameters c0, we obtain three vanishing points pv0, pv1, and pv2. Each
vanishing point is associated with an orthogonal direction. The edges in G(V,E) are grouped based on proximity to
these vanishing points measured by the distance function

g(e, pv) =

{
1− d(e,pv)

Ta
, if d(e, pv) < Ta

0 , otherwise
, (3)

where d(e, pv) is the distance function between edge e and the hypothesized vanishing point pv (shown in Figure 4),
and Ta is a sensitivity parameter [Rother 2000]. (For a curved edge, we use its end points to approximate its direction.)
We set Ta = 0.35 radian in our system. Figure 5 shows the result of edge direction estimation, while each color repre-
senting the most likely direction.

Junction Types. A junction is an intersection point between two or more edges. It is classified based the angle
of intersection and the number of intersecting edges. We use five junction types in our work (shown in Figure 6),
which are adequate for describing most regular buildings. The L junction is just a corner of a face. The T junction
occurs when a face is occluded by another, or when the vertex is on the edge in geometry. The Y junction represents
a common vertex where three visible faces meet, while the E junction occurs when two visible faces meet along a
common edge. More generally, the X junction is the result of several faces meeting in a common vertex. The extracted
junction labels for a part of the hall example are shown in Figure 7.

Assignment of Ordered Vertices to Faces. Once the junction types and edge directions have been analyzed, the
next step is to recover the topology of the sketch by associating an ordered list of vertices for each face. Shpitalni
and Lipson [1996] assume that the loops with shortest path in the graph G(V,E) are actual faces of the 3D objects for
wireframe drawing. They assume hidden lines are drawn by the user to make their analysis possible.

In our system, hidden lines are not necessary. As such, it is possible that a partially occluded face in the sketch
does not correspond with the loop with shortest path in the graph. To remove inconsistent faces, we use the following
property: Since all the edges of a face are planar, all the vanishing points associated with the groups of parallel edges
of a face must be collinear under perspective projection. We use the vanishing point collinearity property to cull
impractical faces and determine the existence of occluded T junctions.

The vertex assignment step propagates from a single arbitrary vertex to faces (that contain that vertex) to other
vertices (that are part of these faces), and so on. When we examine a face F having vertex V to determine its bounding
edge, the candidate edges are those connected to vertex V . We use a greedy algorithm to choose the edge that has the
largest probability to be on the face and continue the propagation. Meanwhile, we get some new candidate faces at
this vertex V formed by the other edges connecting to it. The algorithm is subject to the condition that the edges of the
same face cannot correspond to three orthogonal directions.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

8 · Xuejin Chen et al.

E

E

E

EE

T TX X X
XX

L

L

L

L

L

Y

Y YY

Y

Fig. 7. Junction labels. Only a fraction of the labels are shown for clarity.

V0

V2

V3

V1

V4

V5

V6

V7

V8V9

V10

V0

V2

V3

V1

V4

V5

V6

V7

V8V9

V10

F0

F2

F1

F4

(a) (b) (c)

(d) (e) (f)

V0

V2

V3

V1

V4

V5

V6

V7

V8V9

V10

V0

V2

V3

V1

V4

V5

V6

V7

V8V9

V10

V0

V2

V3

V1

V4

V5

V6

V7

V8V9

V10

V0

V2

V3

V1

V4

V5

V6

V7

V8V9

V10

F0

F2

F1

F0

F2

F1 F0

F2

F1 F0

F2

F1

Fig. 8. Example of vertex assignment to faces.

Suppose the current face has k ordered edges e0, ...,ek−1, and ek is the candidate edge. Suppose also the face is
bounded by edges associated with two vanishing points pva and pvb. We define the likelihood of F to be a valid face
as

P(F valid|e0, ...,ek, pva, pvb) = P(pva)P(pvb)
k+1

√
k

∏
i=0

P(ei, pva, pvb).

The term P(pv) describes the likelihood that the vanishing point pv is consistent with F , i.e., P(pv) = maxi g(ei, pv),
with g() defined in (3). The term P(ei, pva, pvb) is a measure of the likelihood that the edge ei corresponds to a
vanishing point of F , and is defined as P(ei, pva, pvb) = larger(g(ei, pva),g(ei, pvb)), with larger() returning the larger
of the two input parameters.

Given pv0, pv1, and pv2, we choose the pair of vanishing points that maximizes P(F valid|e0, ...,ek, pva, pvb) as the
vanishing points of face F . If this maximum value is small, the face is considered invalid; in this case, propagation is
terminated at the current vertex. Otherwise, the face is a valid face and each edge of this face ei is corresponding to
the vanishing point pva if g(ei, pva) > g(ei, pvb) or pvb otherwise.

We use Figure 8 to illustrate the process of vertex-to-face assignment:

(1) We first start from an arbitrary vertex, in this case, a Y junction V 0 (Figure 8(a)).
(2) Next, we hypothesize faces according to the junction type and the edges connecting to it. Since the starting

vertex correspond to a Y junction, we have three new candidate faces (with vertices initially assigned): F0 :
V 1−V 0−V 3, F1 : V 4−V 0−V 1, and F2 : V 4−V 0−V 3 (Figure 8(b)).

(3) We traverse along the edges of each candidate face to get a closed face.
- F0: Starting from V 3, there are two candidate edges: V 3−V 2 and V 3−V 6. We choose V 3−V 2 because it

closes the loop for F0 and the edges are consistent with the face. The closed face is thus V 1−V 0−V 3−V 2−
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

Sketching Reality · 9

Non-Occluded
T-junctions

Occluded
T-junctions

Fig. 9. Different types of T junctions in the sketch. The red vertices are T-Junctions. For the occluded faces caused by T junctions, we complete
them according to symmetry or parallelism constraint, shown as dashed lines.

V 1 (Figure 8(c)).

- F1: Starting from V 1, we proceed toward V 7 and V 8. However, the propagation ends because V 8−V 9 is not
consistent with the face (Figure 8(d)). As a result, we instead propagate from the other end V 4, then to V 5.
Since V 4−V 5 is an occluded edge (V 5 being a T junction), the propagation again terminates. We end up with
an incomplete face V 5−V 4−V 0−V 1−V 7−V 8 (Figure 8(e)).

- F2: By straightforward traversal, we get the vertices of closed face F2: V 4−V 0−V 3−V 6−V 4.

(4) We then proceed to another candidate face created at the other vertices, and repeat steps 2-4 until all the vertices
and edges are traversed (Figure 8(f)).

During the propagation of the faces, the special T junctions sometimes cause the termination of the propagation
and result in incomplete (i.e., partially occluded) faces. We complete the partially occluded faces using symmetry or
parallelism constraints (Figure 9). We extend the edge at the T junction to the vertex that produces a symmetric shape
with respect to the visible part.

After accounting for partially occluded faces, we look for the best interpretation of the sketches in the database ac-
cording to the likelihood function defined in (2). We then reconstruct the 2.5D geometry associated with the geometry
primitives.

5.2 Geometry Reconstruction

The 2.5D geometry can be recovered from a single view given the camera parameters and symmetry constraints.
This is accomplished by constructing a system of linear equations that satisfy the projection, edge-vanishing point
correspondence, and structural constraints. Each constraint is weighted based on its perceived reliability. This system
of equations is solved using the conventional weighted least squares technique, and produces the 3D locations of all
vertices (including those of curved objects).

Note that only the end points (vertices) of curved objects are computed using this single-step procedure. Since
curved objects are cubic Bezier curves, we will need to compute their 3D control point locations. This is accomplished
using an iterative technique that relies on the projection and symmetry constraints.

5.2.1 Reconstruction of Planar Objects. As mentioned earlier, there are three groups of the linear equations or
constraints in our system, namely projection, edge-vanishing point correspondence, and structural constraints.

Projection Equations. The camera parameters c0 are used to produce two linear constraints for each vertex. Given
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

10 · Xuejin Chen et al.

vertex v(x,y,z) with its projection (u,v), we have




u = x
z ∗ f

v = y
z ∗ f

⇒




x∗ f −u∗ z = 0

y∗ f − v∗ z = 0
.

f is the focal length, i.e., the distance from the eye to sketch plane. Note that this form of linearization is theoretically
non-optimal, since we are essentially weighting each pair of constraints by the (unknown) depth z. The linearization
is done more for convenience and speed, since it allows us to extract the 3D coordinates in a single step. Moreover,
the optimality of solution is not critical, since we are dealing with sketches (which provide only approximate shape
in the first place). We need only to extract a plausible shape. We “normalize” the implicit weights using the weight
wpro j = 1/ f .

Edge-Vanishing Point Correspondence. In Section 5.1, we described how each edge is assigned a direction (and
hence a vanishing point). This assignment can be cast as a constraint:

v1−v2 = Ω(p1, p2, pv)
v1z|p1− p2|
f |pv− p2| (x,y, f)T,

where v1 and v2 are the 3D endpoints of the edge, and p1 and p2 are the respective corresponding 2D points. pv is the
vanishing point associated with the edge direction. v1z is the z-component of v1, and Ω(p1, p2, pv) returns 1 if p1 is
between p2 and pv, or −1 otherwise. The weight for this constraint is the distance measure of the edge to the assigned
vanishing point, i.e., wvp = g(e, pv).

Structural Constraints. We also impose the structural constraints of symmetry, parallelism, and perpendicularity
on the vertices as

equality : va−vb = vc−vd
parallelism : va−vb ‖ v

perpendicularity : (va−vb) ·v = 0
.

Note that these structural constraints are applied through geometric primitives (each having its own predefined con-
straints on the vertices and edges). Given the recovered topology (Section 5.1), we find the most likely geometric
primitive in our database. We then apply the appropriate structural constraints to the vertices and edges to recover
their 3D values. In order to satisfy the constraints, we assign a very large weight on them; in our implementation, this
weight is wcon = 1000.

Since the vertex coordinates are relative, we set one vertex as the reference. We randomly select a vertex vre f :
xre f = ure f , yre f = vre f , and zre f = f . Given all the visible vertices v0, ...,vn−1, with v0 ≡ vre f , we have 3n unknowns,
that is, x = (x0,y0,z0, ...,xn−1,yn−1,zn−1)T .

Using the projection, edge-vanishing point correspondence, and structural constraints described above, we arrive at
a system of weighted linear equations A x = B, which we can easily solve to produce the 3D vertex coordinates. An
example of reconstructed geometry is shown in Figure 10.

5.2.2 Reconstruction of Curved Objects. While planar surfaces are prevalent in architecture, curved surfaces are
not unusual. Shape reconstruction of curved surfaces from a single view requires assumptions or constraints, such
as orthographic projection [Prasad et al. 2006] or reflecting symmetry [Hong et al. 2004]. We assume symmetry for
curved surfaces to enable a unique solution to be found. In addition, we require interactive rates of reconstruction,
which most previous techniques are unable to satisfy.

We accomplish our goal of shape recovery at interactive rates by approximating the geometry of curved edges with a
small number of cubic Bezier curves. There are symmetric curves with rotation or reflection symmetry that have same
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

Sketching Reality · 11

Fig. 10. Reconstructed geometry model from free-hand drawn sketch of rotunda.

(1) Regularly sample N points along γk(s),k = 0, ...,K−1:
For i = 0 : N−1
- Sample 2D points pk

i on the curves γk, k = 0, ...,K−1; corresponding 3D points are vk
i ,k = 0, ...,K−1.

- Build a system of linear equations using projection, edge-vanishing point correspondence, and symmetric equations considering vk
i ,k =

0, ...,K−1 are all related by rigid transformations to the 3D end points.
- Solve to recover vk

i ,k = 0, ...,K−1.
(2) Fit cubic Bezier curve to reconstructed points for each curve (outputs are control points):

For k = 0 : K−1
- CubicBezierFitting(vk

0,v
k
1, ...,v

k
N−1)⇒ (v′kctr0

,v′kctr1
,v′kctr2

,v′kctr3
). v′kctr0

and v′kctr3
are the two endpoints of the 3D curve Γk.

(3) Optimize parameterized curves defined by common set of control points specified by t: vk
ctr1

(t),vk
ctr2

(t), k = 0, ...,K−1.
The optimal parameters are:
t∗ = argmin∑K−1

k=0 ∑2
i=1 ‖vk

ctri
(t)−v′kctri

‖2 subject to At t≥Bt .

Fig. 11. Algorithm for reconstructing K symmetric curves. In our implementation, N = 50.

0r

1r
2r

vap vbp

Fig. 12. Sample a group of symmetric points on symmetric curves according to vanishing points.

parameters in each type of primitive geometry. This symmetric constraint, together with the projection constraint,
allows a unique solution to be extracted.

Let the 2D curved lines which are the projection of the 3D symmetric curves be denoted γ0(s), γ1(s),...,γK−1(s),
s ∈ [0,1]. We wish to reconstruct their 3D curve counterparts Γ0(t), Γ1(t),...,ΓK−1(t). t is the vector of parameters
of the cubic Bezier curves that are common across these 3D curves (modulo rigid transformation). The process of
estimating these 3D curves is decomposed into three steps for speed considerations: (1) sampling points on the curve
and estimating their 3D positions, (2) fitting cubic Bezier curves on the reconstructed 3D points, and (3) optimizing a
common set of parameters for all these curves. These steps are detailed in Figure 11.

We use Figure 12 to illustrate Step 1 on three curves γ0, γ1, and γ2. We know that all 3D lines that pass through
corresponding points on two 3D symmetric curves must be parallel. The projections of these lines must then intersect
at a vanishing point; the red dashed lines are two such lines, with the vanishing point being pva. First, we regularly
sample one of the 2D curves (say γ0): p0

i = γ0(i
N−1), i = 0, ...,N−1. Given the vanishing point pva, we can find the

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

12 · Xuejin Chen et al.

Fig. 13. Result of reconstructing the symmetrically curved surfaces. The sketch is the set of solid dark lines while the recovered curved surfaces are
color-coded.

corresponding points on γ1, and subsequently, those on γ2, this time using vanishing point pvb. The two blue dashed
lines show how two corresponding points in γ2 are computed given two points in γ1 and vanishing point pvb.

The least-squares minimization in Step 3 is subject to a collection of inequality constraints on the control point
parameterization. These constraints are specified as Att ≥Bt ; the inequality is necessary to enforce the ordering of
the control points. We use the Gradient Projection Method to solve the non-linear optimization problem with linear
constraints in Step 3. The reconstructed result for the two symmetric surfaces is shown in Figure 13.

6. INTERPRETATION OF DETAILED GEOMETRIES

While the overall shape of the building provides a good picture of the design, the details are typically required to
make the design look compelling. Our system allows the user to add detailed geometries such as windows, columns,
and entablatures. At first glance, this seems impossible to implement. For example, the complicated geometry of the
capital of a column seems difficult to reconstruct from a coarse sketch.

Interestingly, however, architects do not usually draw fine delicate strokes to indicate detailed structures, but rather
apply a series of well-established architectural conventions for drawing. We consulted an architect and relevant lit-
erature to construct priors in the form of databases that reflect the various rules for different architectural styles. For
example, the layout of classical columns and entablature structure is well-defined. One rule specifies that the entabla-
ture must be resting on top of the columns. Another requires the entablature to consist of three parts called the cornice,
frieze, and architrave, each with specific shapes. In the sketch of the rotunda shown in Figure 1(a), the strokes for the
entablatures and steps are very similar in that they both have repeated curve lines. They are differentiated by relative
location on the building.

The likelihood function defined in (1) can thus be customized for detailed geometries as follows:

Pdetail(S|M,A,c0)→ P(Fshape,L,style, |M,A,c0) ∝ P(Fshape|FM
shape)P(L,style, |M,A). (4)

Fshape and FM
shape describe the shape features of the strokes drawn by user and the 2D index of the detailed geometry

in the database, respectively. The features include the the density of the strokes, the aspect ratio of the stroke area,
and the statistic texture features. L is the vector of stroke locations on the building, such as on the top of roof, along
an edge, at bottom of an object, etc. The best interpretation M for the drawn sketch also relies on the prior A with
particular architecture style style.

6.1 Shape Features

Prior 3D model retrieval approaches typically rely on contour matching. In our case, however, the user generally
does not draw the boundary contour to represent a detailed geometry (the exceptions being windows and doors).
To represent repetitive detailed geometry, such as tiles on a roof, the user needs only to draw a few representative
texture-like strokes on the roof surface.

In our system, we use shape similarity to extract the right detailed geometry from a sketch. Our shape similarity
measure includes some form of texture similarity. Assume that the user drew Ns strokes S = {s0,s1, ...,sNs} to represent
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

Sketching Reality · 13

the detailed geometry. Our measure of texture similarity consists of metrics associated with three types of histograms,
namely, the shape histogram, orientation histogram, and length histogram.

Shape Histogram. This histogram specifies the normalized frequency of occurrance of types of stroke shapes for
the drawn sketch. It is defined as hs = {n̂i|i = dot,circle,straight line,curve}, where n̂i = ni/NS, with ni being the
number of strokes associated with the ith shape type. Two shape histograms hs1, hs2 are similar if their Euclidean
distance is small:

ds(hs1,hs2) = |hs1−hs2|.

Orientation Histogram. The orientation histogram is widely used in hand gesture recognition [Lee and Chung 1999].
For both straight lines and curves, we just use the line between the two endpoints to calculate the orientation. Their ori-
entation angles are estimated and accumulated in the appropriate histogram bins (the orientation angle ∈ [0,π) is quan-
tized into no bins). We then normalize the frequency as was done for the shape histogram: ho = {m̂i|i = 0, ...,(no−1)},
with m̂i = mi/NS and mi being the number of the lines whose orientation angle ∈ [iπ/no,(i+1)π/no).

Because there is ambiguity in the reference angle, rotationally shifted versions of the histogram are equivalent.
Hence, to compute the similarity between two histograms ho1 and ho2, we first compute the Euclidean distances
between ho1 and no shifted versions of ho2, and take the minimum distance.

d′o(ho1,ho2) = |ho1−ho2(s′)|,where
s′ = argmins=0...(no−1) |ho1−ho2(s)|,

with ho2(s) being ho2 rotationally shifted by an angle equivalent to s bins (i.e., sπ/no). The normalized shift of the
histogram is ŝmin = min(s′,no− s′)/no.

We penalize the shift of the histogram to distinguish the sketches that has small shifting histogram distance. The
modified distance of the orientation histogram is defined as

do(ho1,ho2) = d′o(ho1,ho2)+λ ŝmin.

λ is a factor that penalizes histogram shifting. In our implementation, no = 10 and λ = 0.05.

Length Histogram. The length histogram is used to characterize the distribution of stroke sizes. Given the bounding
box of the drawn sketch with its width w and height h, we use Lnor = max(w,h) as the normalizing factor for each
stroke. The width of the histogram bin is set to Lnor/nl . (Note that the number of bins is nl +1; the last bin is used to
accumulate stroke lengths ≥ Lnor.) We define the length histogram as hl = {l̂i|i = 0, . . . ,nl}. l̂i = li/NS, i = 0,1, . . . ,nl ,
where li(i < nl) is the number of the strokes with lengths ∈ [i/Lnor,(i+1)/Lnor) and lnl is the number of strokes with
lengths ≥ Lnor. In our implementation, nl = 10. Two length histograms hl1 and hl2 are similar if their Euclidean
distance is small:

dl(hl1,hl2) = |hl1−hl2|.
We define the texture distance between two sketches T1 and T2 to be a weighted average of the distance in the shape,

orientation, and length histogram:

dall(T1,T2) = wsds(hs1,hs2)+wodo(ho1,ho2)+wldl(hl1,hl2). (5)

ws, wo, and wl are the weights used to indicate the amount of influence for the different histogram measures. Because
the scale of the sketch can vary significantly (which results in widely varying length histogram distances), we assign
a smaller weight to the length histogram to reduce its influence. In our implementation for detailed geometry, ws =
wo = 10,wl = 1. Note that because the orientation histogram and length histogram are quantized, we pre-process them
with a simple kernel smoother with filter weights (0.1,0.8,0.1) to reduce the quantization effect.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

14 · Xuejin Chen et al.

Recall that the bounding box of the sketch is of width w and height h; let the total length of all the strokes be Lsum.
The density of the strokes ∆s = Lsum/(w ∗ h) and the aspect ratio as = w/h. We define the shape similarity between
the strokes drawn by user and the index drawing of the detailed geometry as

P(Fshape|FM
shape) = P(∆s)P(as)P(Ts|Tm) = exp

(
− (∆s−µm

d)2

2σm
d

2

)
exp

(
− (as−µm

a)2

2σm
a

2

)
1

1+dall(Ts,Tm)
.

The parameters µm
d ,σm

d , µm
a ,σm

a are determined according to different detailed geometry entity M. P(Ts|Tm) describes
the similarity between the texture features of the sketch Ts and the indexed drawing of the detailed geometry model
Tm.

6.2 Location Feature

The user adds detailed geometry (e.g., roof tiles) on top of a primitive geometry (e.g., planar or curved surface) by
sketching within the primitive geometry. An example is shown in Figure 14(b); here, the roof tiles (in black) were
drawn within a curved surface (in red). The location of the drawn detailed geometry relative to the primitive geometry
is used as a hint to interpret the sketch of detailed geometry.

Given Ns strokes, the location feature L = {l0, l1, ..., lNs} encodes these relative spatial relationships. We de-
fine 11 types of spatial relationships as shown in Figure 14(a). The first four (“AT VERTEX”, “ALONG EDGE”,
“ON EDGE”, and “CONNECT EDGE”) describe the placement of a stroke (associated with the detailed geometry)
relative to a vertex or edge in the sketched primitive geometry. A stroke is labeled “AT VERTEX” if the entire stroke is
near a vertex (green dashed circle). A stroke is labeled as “ALONG EDGE” if its two endpoints are near two vertices
of an edge e and the stroke is near the edge throughout. A stroke is classified as “ON EDGE” if the entire length of
the stroke is close to a point on an edge. A stroke is labeled “CONNECT EDGE” if its two endpoints are near two
different edges.

The other seven spatial types (with the suffix “ SURFACE”) characterize spatial relationships between the stroke
and a face of the primitive geometry. (The face was recovered using the technique described in Section 5.) The location
of the stroke is classified based on where it is on the plane, as shown in the bottom row of Figure 14(a). The stroke is
labeled “ON SURFACE” if it spans across the 2D region of the face.

Figure 14(b) shows examples of the location relationships between the strokes representing detailed geometries and
the interpreted primitive geometries. (Note that only a few representative strokes are labeled for clarity.)

After determining the relationship between each stroke and the reconstructed overall shape of the building, we
combine the location feature vector L with the architectural prior to produce the probability P(L,style, |M,A). The
prior A defines the occurrence of the detailed geometries based on location in different architecture styles. Combining
P(L,style, |M,A) with the shape similarity P(Fshape|FM

shape) as formula (4), we finally get the best matched detailed
geometry entity with the largest likelihood Pdetail(S|M,A,c0). Example entries in the database of detailed geometries
(that associates 2D sketch drawings with 3D models) are shown in Figure 15.

The user can then either choose to use the most likely component or select from the small set of candidates. Once
the component has been selected, it is then automatically scaled, rotated, and moved to the target location.

Our system allows the user to easily edit the design. We provide common editing functions such as modifying the
geometry, adding, deleting, moving, copying, and pasting components. Furthermore, spatially regular components
can also be aligned and made uniform in a single step, which is convenient for refining groups of windows. Figure 16
shows the intermediate steps of creating the rotunda example: from the primitive geometries to detailed geometries.

7. INTERPRETATION OF TEXTURES

Once we have interpreted the geometry of the sketch, the user has the option of assigning textures to surfaces as a
finishing touch. In keeping with the spirit of sketch-based input, the user can assign a texture to a surface by directly
drawing a likeness of that texture.
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

Sketching Reality · 15

AT_VERTEX ALONG_EDGE ON_EDGE ON_SURFACECONNECT_EDGE

V_LEFT_SURFACE V_MIDDLE_SURFACE V_RIGHT_SURFACE H_TOP_SURFACE H_MIDDLE_SURFACE H_BOTTOM_SURFACE

AT_VERTEX

ALONG_EDGE

ON_EDGE V_MIDDLE_SURFACE

ON_SURFACE

ON_EDGE V_MIDDLE_SURFACE

H_BOTTOM_SURFACE
&

(a) (b)

Fig. 14. Use of location as a feature. (a) 11 different types of relationships between a stroke and primitive geometries. The red lines are part
of the overall shape of primitive geometries while the black strokes are the current stroke representing part of the detailed geometry. The green
dashed lines are used to measure the spatial relationships. (b) An example of the location relationships between the strokes (black) and the primitive
geometries (red). See text for details.

Index
drawing

3D
model

Index
drawing

3D
model

Fig. 15. Examples of 2D index drawings and associated 3D models of detailed geometries in our database.

This feature is made possible using a texture database that associates actual textures to drawn versions. When the
user draws a sketch of the texture, our system computes its similarity with those in the database and retrieves the
actual texture associated with the best match. Since architects use regular sketches to represent textures, we use the
statistic shape features as used in the interpretation of detailed geometry. For texture, the likelihood (1) reduces to the
combined histogram distance between the texture strokes drawn by user and the indexing shortcuts in the database:

P(hs,ho,hl ,style|M,A)) ∝
P(Tm|style,A)
1+dall(Ts,Tm)

∝
1

1+dall(Ts,Tm)
, (6)

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

16 · Xuejin Chen et al.

Fig. 16. Progression of sketching and interpreting the rotunda example (left to right, top to bottom).

sketch index texture candidates

Fig. 17. Examples of indexed sketches of textures to actual textures in the texture database.

with dall(Ts,Tm) defined in equation (5). Generally, there are no significant architectural rules that link texture to style.
To simplify our analysis, we set P(Tm|style,A) to be uniform, i.e., we rely entirely on the recognition of the sketched
texture. In interpreting regular textures, the shape histogram has largest effect on the decision of texture types while
the length histogram has smallest effect. In our implementation, ws = 100,wo = 10,wl = 1.

Our system compares the coarse sketches drawn by the user with the 2D index drawings of the textures and re-
covers the actual texture (or small set of candidates) that maximizes the likelihood (6). Example results are shown in
Figure 17. The user can then either use the most likely candidate or select from the small set of texture candidates.
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

Sketching Reality · 17

(a) (b) (a) (b)

Fig. 18. Example failure cases. (a) Failure for texture, (b) failure for detailed geometry. Each pair has similar stroke type, orientation histogram,
and length histogram. However, the spatial distributions of the strokes are different, which results in our failure to tell them apart.

Design Time (mins.) Nstrokes Ncomponents

Rotunda 20 571 116
House 5 160 39

Eastern-style pavilion 7 251 2347
Tall building 10 615 642

Table I. Statistics for the sketches. Notice the large number of geometry components produced for the Eastern-style pavilion, even though the
number of user strokes is modest. This is because there are many tiles on the roof, and each tile is considered a component.

By using information on the stroke type, orientation, and length, our system can distinguish many different types of
uniform textures. However, our system fails to distinguish textures with non-uniformly distributed strokes as shown
in Figure 18(a). This is because our system currently does not gather and use local spatial information. Figure 18(b)
shows a similar problem, this time for interpreting detailed geometry. Here, the user has to manually select the correct
one from the candidates. The use of local spatial information for retrieval is a topic for future work.

8. RESULTS

All the results were generated on 3.2GHz Pentium 4 PC with 1GB of RAM and a GeForce 6800 XT 128MB graphics
card. The sketches were made on a WACOM tablet. Our detailed geometry database consists of 20 categories of
detailed geometries, with category consisting of two specific shapes. There are 15 categories of textures in our texture
database, with 10 real textures per category on average. (The relatively large number of categories of textures makes
it difficult to specify texture just by name, such as “brick” or “stone.”)

Our system allows the user to easily and quickly design by sketching. Our system is geared to those who have a
background in architecture. We first asked a licensed architect with 8 years of practical experience in architecture to
use our system; he was able to create complicated buildings in minutes, after being trained for an hour. The results for
the rotunda are shown in Figure 1. This example shows how a relatively simple sketch in (a) can be easily converted to
a much more appealing rendering shown in (c). Three additional examples are shown in Figure 19 (house), Figure 20
(tall building), and Figure 21 (Eastern-style pavilion). In each figure, we show the progression of sketch interpretation
and the realistic rendered results. Table I shows how much time it took to produce the examples. Despite the wide
range of complexity, all the examples were created through sketching in 20 minutes or less. Table I also lists the
number of strokes and geometry components that were generated.

Our system also allows a typical user to create buildings easily by sketching. A modest range from quite coarse to
more carefully-drawn sketches can be interpreted in a geometrically-consistent manner. While the architect’s drawings
are cleaner than typical ones (Figure 1), we also show two coarser hand-drawn sketches of the overall shape of the
rotunda example, one (Figure 22) less-carefully drawn than the other (Figure 23).

As mentioned in Section 5.2, we assign different weights to different types of equations. If the user wishes to
emphasize the structure constraint, he may increase the constraint weight wcon, while reducing the projection weight
wpro j. Alternatively, he may increase the projection weight wpro j to force the reconstructed geometry to be closer to the
drawn coarse sketch. Here we show three different results reconstructed with different projection weights, to illustrate

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

18 · Xuejin Chen et al.

(a) Draw a primitive geometry (b) Add primitive geometries (c) Add a primitive geometry (d) Modify the geometry

(e) Add roof (f) Add windows and door (g) Add other windows (h) Draw textures

(i) Closeup view (j) Realistic rendering (k) Composed with still image.

Fig. 19. House example. (a-h) Progression of sketch interpretation. The red dash lines represent the amount of perspectiveness. (i) A closeup view.
Notice the deviation of the coarse sketch from the geometrically consistent result. (j,k) Final rendering results with different texture, lighting, and
background.

the tolerance of our system to input sketches with varying degrees of imperfection. A larger projection weight results
in smaller deviation of the geometry from the sketch, while a smaller projection weight leads to a result that better
satisfies the structural constraints.

As further demonstration that the user is not required to draw very carefully for our system to work, compare the
group of drawn parallel edges and the estimated vanishing point for the sketch in Figure 23. Figure 24(a) shows the
estimated parallel lines from its computed vanishing point. Figure 24(a) shows what happens when pairs of edges are
independently used to estimate the parallel lines. This bolsters our claim that our system is robust enough to handle
some amount of looseness in the sketch.

9. CONCLUDING REMARKS

In this paper, we propose the concept of sketching reality, which is the process of mapping a sketch to realistic imagery.
We demonstrated this concept by developing a system that takes as input a sketch of an architectural design to produce
a realistic 2.5D interpretation. Our system allows the user to sketch primitive and detailed geometries as well as
textures (all from a single view), and provides a number of editing operations. We are not aware of any system with
similar features.

We do not claim that all the features in our system are new; indeed, many of them are inspired by previous work.
Rather, we customized all these features to allow them to function together in a single system for the purposes of
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

Sketching Reality · 19

demonstrating the new concept and illustrating its power.
As a prototype system, it has limitations. Since we use architectural-specific knowledge to guide the sketch in-

terpretation, our system is geared more for users with an architectural background. A casual user would need to be
familiar with basic architectural principles to effectively use our system.

A topic for future work relates to curved objects. Currently, symmetry is necessary for our system to reconstruct the
curved surface from single view. It would be interesting allow other types of 3D curves or multi-view inputs. Also,
our system cannot handle disconnected objects, as this generates relative depth ambiguity. This is an open problem in
single-view reconstruction, and unless size priors are given, the user will be required to provide the depth relationship.

While more work is required to ensure that our system is tolerant of large errors and supports a wider range of
architectural styles, the set of features presented in this paper is a starting point to illustrate the novel concept of
sketching reality. Given the modest set of features, we are already able to produce good results for a variety of
different architectural styles. We also plan to expand our system to allow sketch-based designs of other objects, such
as cars and furniture.

ACKNOWLEDGMENTS

We would like to thank the reviewers for their valuable feedback and Crystal Digital Technology Co., Ltd. for provid-
ing the 3D models of detailed geometries used in our database. We also highly appreciate Lihan Yu’s help in designing
the buildings used in this paper.

REFERENCES

ALVARADO, C. AND DAVIS, R. 2005. Dynamically constructed bayes nets for multi-domain sketch understanding. In Proc. of Int’l Joint Conf.
on Artificial Intelligence. San Francisco, California, 1407–1412.

BARROW, H. G., TENENBAUM, J., BOLLES, R., AND WOLF, H. 1977. Parametric correspondence and chamfer matching: Two new techniques
for image matching. In Proceedings of the International Joint Conference on Artificial Intelligence. 659–663.

FUNKHOUSER, T., MIN, P., KAZHDAN, M., CHEN, J., HALDERMAN, A., DOBKIN, D., AND JACOBS, D. 2003. A search engine for 3D models.
ACM Trans. Graph. 22, 1, 83–105.

(a) (b) (c) (d) (e) (f)

(g) (h) (i)

Fig. 20. Tall building. (a-f) Progression of sketch interpretation, (g) a closeup view that shows the deviation of the coarse sketch from the interpreted
geometry, (h,i) rendering results with different texture, lighting, and background.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

20 · Xuejin Chen et al.

(a) (b) (c) (d) (e) (f)

(g) (h) (i)

Fig. 21. Pavilion example. (a,b) Overall shape being created, (c-f) detailed geometries being progressively added, (g) a closeup view to show the
deviation of the coarse sketch from the interpreted geometry, (h,i) final rendering results with different texture, lighting, and background.

Fig. 22. Input sketch (less carefully drawn). From left to right: Input, result with small projection weight wpro j = 0.1/ f , result with medium
projection weight wpro j = 1/ f , result with high projection weight wpro j = 5/ f .

Fig. 23. Input sketch (more carefully drawn). From left to right: Input, result with small projection weight wpro j = 0.1/ f , result with medium
projection weight wpro j = 1/ f , result with high projection weight wpro j = 5/ f .

(a) (b)

Fig. 24. Comparison between the individually drawn parallel lines and the estimated vanishing point. (a) Corrected parallel lines (in green) as a
result of estimating the vanishing point. (b) Result of computing the vanishing point independently for each pair of the parallel lines. The lines in
(b) do not intersect at a unique location, illustrating that the sketch is indeed only coarsely drawn.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

Sketching Reality · 21

GENNARI, L., KARA, L. B., STAHOVICH, T. F., AND SHIMADA, K. 2005. Combining geometry and domain knowledge to interpret hand-drawn
diagrams. Computers and Graphics, 547–562.

GRIMSTEAD, I. J. AND MARTIN, R. R. 1995. Creating solid models from single 2D sketches. In Proc. of Symp. on Solid Modelling and
Applications. 323–337.

HONG, W., MA, Y., AND YU, Y. 2004. Reconstruction of 3D symmetric curves from perspective images without discrete features. In European
Conference on Computer Vision. Vol. 3. 533–545.

HOU, S. AND RAMANI, K. 2006. Sketch-based 3D engineering part class browsing and retrieval. In EuroGraphics Workshop on Sketch-Based
Interfaces and Modeling. 131–138.

HUTTENLOCHER, D. P., KLANDERMAN, G. A., AND RUCKLIDGE, W. J. 1993. Comparing images using the Hausdorff distance. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 15, 9 (September), 850–863.

IGARASHI, T. AND HUGHES, J. F. 2001. A suggestive interface for 3D drawing. In 14th Annual Symposium on User Interface Software and
Technology, ACM UIST’01. 11–14.

IGARASHI, T., MATSUOKA, S., AND TANAKA, H. 1999. Teddy: A sketching interface for 3D freeform design. In Proc. of ACM SIGGRAPH.
409–416.

JATUPOJ, P. 2005. Sketchboard: The simple 3D modeling from architectural sketch recognition. In Computer Aided Architectural Design in Asia.
KARPENKO, O. A. AND HUGHES, J. F. 2006. Smoothsketch: 3D free-form shapes from complex sketches. Proc. of ACM SIGGRAPH and ACM

Trans. on Graphics 25, 3, 589–598.
LEE, H.-J. AND CHUNG, J.-H. 1999. Hand gesture recognition using orientation histogram. In Proc. of IEEE Region 10 Conf. Vol. 2. 1355–1358.
LIPSON, H. AND SHPITALNI, M. 1996. Optimization-based reconstruction of a 3D object from a single freehand line drawing. Journal of

Computer Aided Design 28, 8, 651–663.
MASRY, M., KANG, D., AND LIPSON, H. 2005. A freehand sketching interface for progressive construction of 3D objects. Journal of Computer

and Graphics, Special Issue on Pen-Based User Interfaces 29, 4, 563–575.
MATSUDA, K., SUGISHITA, S., XU, Z., KONDO, K., SATO, H., AND SHIMADA, S. 1997. Freehand sketch system for 3D geometric modeling.

In SMA ’97: Proceedings of the 1997 International Conference on Shape Modeling and Applications (SMA ’97). IEEE Computer Society,
Washington, DC, USA, 55–63.

MULLER, P., WONKA, P., HAEGLER, S., ULMER, A., AND GOOL, L. V. 2006. Procedural modeling of buildings. Proc. of ACM SIGGRAPH
and ACM Trans. on Graphics 25, 3, 614–623.

PARISH, Y. I. H. AND MULLER, P. 2001. Procedural modeling of cities. In Proc. of ACM SIGGRAPH. 301–308.
PRASAD, M., ZISSERMAN, A., AND FITZGIBBON, A. 2006. Single view reconstruction of curved surfaces. In Proc. of the IEEE Conference on

Computer Vision and Pattern Recognition. Vol. 2. 1345–1354.
PU, J. AND RAMANI, K. 2006. On visual similarity based 2D drawing retrieval. Computer-Aided Design 38, 3, 249–259.
ROTHER, C. 2000. A new approach for vanishing point detection in architecture environment. In Proc. of British Machine Vision Conf. 382–391.
SEZGIN, T. M., STAHOVICH, T., AND DAVIS, R. 2001. Sketch based interfaces: Early processing for sketch understanding. In Proc. of Workshop

on Perceptive User Interface.
SHESH, A. AND CHEN, B. 2004. SMARTPAPER–An interactive and easy-to-use sketching system. In Proc. of Eurographics.
SHILMAN, M., PASULA, H., RUSSELL, S., AND NEWTON, R. 2000. Statistical visual language models for ink parsing. In AAAI Spring Symp. on

Sketching Understanding. 126–132.
SHPITALNI, M. AND LIPSON, H. 1996. Identification of faces in a 2D line drawing projection of a wireframe object. IEEE Transactions on

Pattern Analysis and Machine Intelligence 18, 10, 1000–1012.
VARLEY, P. A. AND MARTIN, R. R. 2000. A system for constructing boundary representation solid models from a two-dimensional sketch. In

Proc. of Geometric Modeling and Processing. 13–30.
WONKA, P., WIMMER, M., SILLION, F., AND RIBARSKY, W. 2003. Instant architecture. Proc. of ACM SIGGRAPH and ACM Trans. on

Graphics 22, 3, 669–677.
ZELEZNIK, R. C., HERNDON, K. P., AND HUGHES, J. F. 1996. SKETCH: An interface for sketching 3D scenes. In Proc. of ACM SIGGRAPH.

163–170.

...

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

