usenix
.' THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Sketching Volume Capacities in
Deduplicated Storage

Danny Harnik and Moshik Hershcovitch, IBM Research; Yosef Shatsky, IBM Systems;
Amir Epstein, Citi Innovation Lab TLV; Ronen Kat, IBM Research

https://www.usenix.org/conference/fast19/presentation/harnik

This paper is included in the Proceedings of the

17th USENIX Conference on File and Storage Technologies (FAST '19).
February 25-28, 2019 « Boston, MA, USA
978-1-939133-09-0

Open access to the Proceedings of the
17th USENIX Conference on File and
Storage Technologies (FAST '19)

is sponsored by

M NetApp’

|||H|[|f

'.:IIIIIIIILJIIIH

Sketching Volume Capacities in Deduplicated Storage

Danny Harnik Moshik Hershcovitch Yosef Shatsky Amir Epstein”
IBM Research IBM Research IBM Systems Citi Innovation Lab TLV
Ronen Kat
IBM Research
Abstract understood management tasks before deduplication was in-

The adoption of deduplication in storage systems has intro-
duced significant new challenges for storage management.
Specifically, the physical capacities associated with volumes
are no longer readily available. In this work we introduce a
new approach to analyzing capacities in deduplicated stor-
age environments. We provide sketch-based estimations of
fundamental capacity measures required for managing a stor-
age system: How much physical space would be reclaimed
if a volume or group of volumes were to be removed from a
system (the reclaimable capacity) and how much of the phys-
ical space should be attributed to each of the volumes in the
system (the attributed capacity). Our methods also support
capacity queries for volume groups across multiple storage
systems, e.g., how much capacity would a volume group con-
sume after being migrated to another storage system? We
provide analytical accuracy guarantees for our estimations as
well as empirical evaluations. Our technology is integrated
into a prominent all-flash storage array and exhibits high per-
formance even for very large systems. We also demonstrate
how this method opens the door for performing placement
decisions at the data center level and obtaining insights on
deduplication in the field.

1 Introduction

The rise of all-flash storage arrays has also brought dedu-
plication technology to the forefront and many prominent
all-flash systems now support deduplication across entire sys-
tems or data pools (e.g., [2-5,7,9]). While this shift helped
reduce storage costs, it also created new storage management
challenges for storage administrators. This work focuses on
technologies and tools for managing storage capacities in
storage systems with deduplication.

Storage Management and Deduplication: Volume place-
ment and capacity management were challenging yet well

*Work was conducted while at IBM Research.

troduced. A storage volume needs to be allocated appropriate
resources and connectivity. In large data centers, spanning
multiple storage arrays, managing where to place volumes
optimally is a tricky task. It involves satisfying two main mea-
sures that characterize a volume: its capacity and workload
(IOPS/throughput). The main problem tackled in this paper
is that once deduplication is brought in to the equation, the
capacity of a volume is no longer a known quantity. Hence a
storage administrator is left without clarity about one of the
main resources that he needs to manage.

Our solution serves a number of appealing applications that
are otherwise hard to accomplish in a deduplicated setting.
In a recent paper titled “99 deduplication problems" [31],
Shilane et al. present some burning deduplication related
problems that need to be addressed. Our methods turn out to
be helpful in solving three of the five problem classes that
are discussed in this paper (it was actually 5 rather than 99
problems...). In particular, our solution is relevant to the issues
of: 1) understanding capacities, 2) storage management and
3) tenant chargeback.

Why is managing volumes with deduplication hard? Vol-
ume level capacity statistics are the primary tools for manag-
ing the system capacity. However, in a system with dedupli-
cation those statistics are no longer naturally available. There
are two different aspects that are the main reasons for this:

1. The first is that once cross-volume deduplication is en-
abled, it is no longer clear which volume owns what data.
This brings up a conceptual question of what should
actually be reported to the storage administrator? In Sec-
tion 3.2 we discuss in detail and define what capacity
can be attributed to a volume and why this information is
useful. More importantly, we point out that a critical and
well-defined question about a volume is how much space
will be freed in case this volume was removed from the
system (termed the reclaimable space of a volume in this
paper). Note that with deduplication enabled, one could
possibly remove the largest volume in the system, yet

USENIX Association

17th USENIX Conference on File and Storage Technologies 107

not free up a single byte of user data from the storage.
2. The second aspect is a pure computational challenge:
once we decide what we want to report, how can this
number be calculated in a typical architecture of a stor-
age system with deduplication. There is a fundamental
difference between capacity statistics in the presence
of deduplication and traditional capacity statistics (in
traditional statistics we also include those of storage that
supports compression only without deduplication).
Traditional statistics are all additive and can be aggre-
gated per each volume - i.e., hold a counter of how much
space was held by a volume and update this on every
write/overwrite/delete operation.' On the other hand,
in the case of storage with deduplication, the capacity
statistics of a single volume do not depend solely on
what happens in this specific volume, but rather could
be affected by any write operation to any volume in the
system (as long as they are part of the same deduplica-
tion domain). Moreover, the reclaimable statistic of a
group of volumes is not additive - i.e. the reclaimable
space of removing two different volumes does not equal
the sum of the reclaimable quantities of the two volumes
separately. As a result, the methods for calculating such
statistics are much harder than traditional stats, and near
impossible to do if considering any arbitrary combina-
tion of volumes.
That being said, it is clear that a storage array holds all
of the information required to actually compute these
numbers. It is just that the sheer amount of metadata that
needs to be analyzed to produce these statistics is too
large to actually analyze with acceptable resources (CPU
and memory).

Our Work - Sketching Capacities: We present a novel ap-
proach to produce capacity statistics in a deduplicated storage
system for any single volume or any combination of volumes.
Moreover, our approach can answer complex placement ques-
tions, e.g., not only do we answer how much space would be
reclaimed when moving an arbitrary set of volumes out of a
system, we can answer how much space this set would take
up at a different deduplicated storage system (which holds
different content than the original system).

At the core of our solution is the decision to forgo the
attempt to produce accurate statistics. Rather, we settle for
estimations of the capacity statistics as long as we can gauge
the accuracy of these estimations. We borrow techniques from
the realm of streaming algorithms in which the metadata
of each volume is sampled using a content-based sampling
technique to produce a so-called sketch (or capacity sketch) of
the volume. The key is that the sketch is much smaller than the
actual metadata, yet contains enough information to evaluate

1Tt should be noted that while this is conceptually easy, many times it
collecting these statistics requires complex engineering, especially in highly
distributed storage systems.

the volumes capacity properties in conjunction with any other
set of volume sketches. To illustrate this, consider a storage
system holding 1 PB of data. In order to manage such a huge
amount of data, a system has to hold a very large amount of
metadata which could be on the order of 10 TB (depending
on the specific design). In contrast, our sketch data for such
a system takes under 300 MB, which makes our statistics
calculations easily manageable. Part of this technology is
integrated into the IBM FlashSystem A9000/A9000R.

Main Contributions: In the paper we provide details of the
technique, its accuracy statement and a description of our
implementation. In our design, sketch data is collected by the
storage system and pulled out of the system to an adjacent
management server where it is analyzed and presented to the
administrator. Our implementation includes the following:

e Provides reclaimable capacities and attributed capacities
for any volume in the system.

e Supports queries of these capacities on any arbitrary
group of volumes within a deduplication domain (an
option that to the best of our knowledge is not available
in any system to date).

e In a multi-system environment, we answer how much
physical space such a volume/group would consume if
it were to be migrated to another deduplicated storage
system (with different content).

The implementation is optimized for high performance,
providing a real-time user-experience. After initial extraction
of the sketch and ingestion into the sketch analyzer, we can
answer queries in well under a second.

The high performance is also key for providing next level
optimization of management functions. We present an exam-
ple of a greedy solution for multi-system space reclamation
optimization. The algorithm creates a migration plan from
a full source system onto the other systems in a way that
optimizes overall capacity utilization.

2 Background and Related Work

Deduplication is a form of compression in which duplicate
chunks of data are replaced by pointers to the original repeat-
ing data chunk. This practice can greatly reduce the amount
of physical space required to store a large data repository,
depending on the amount of repetitiveness of the data chunks.
Deduplication is typically used in concert with traditional
“local" compression. Unlike deduplication, which looks for
repeating data across an entire repository of data, in com-
pression a single data chunk or block is compressed on its
own (typically using a techniques such as Zip [13,25, 35]).
To measure data reduction, we use the convention by which
the data reduction ratio is the size of the data after reduction
divided by the size of data before reduction (so 1 means no
compression and close to 0 is highly compressible). Dedu-
plication can consider fixed size data chunks or variable size

108 17th USENIX Conference on File and Storage Technologies

USENIX Association

chunks. In our work we refer to systems that use fixed size
chunks (we use chunks of size 8KB), but our techniques can
generalize nicely to variable sized chunking as well.

The common technique for performing deduplication is
via chunk fingerprinting. Namely, for each data chunk a hash
of its content is calculated, creating an identifier of the data.
If a strong cryptographic hash is used, then for all practical
purposes this hash is considered a unique identifier of the
content. Duplications are found by holding a database of
chunk fingerprints and finding repeating fingerprints across
the entire data set.

Related Work: Variations of content-based sampling have
been deployed in the context of deduplication for various
tasks. Mainly for identifying deduplication potential in data
sets that have not yet been deduplicated (e.g. [17,23,24, 34]),
for finding repetitive streams/files as part of the actual dedupli-
cation process (e.g. [10,26]) or for automatic routing of data in
a distributed setting [12, 14, 18, 19]. Accuracy guarantees for
data reduction estimations have been explored in [22-24,34].
These works focused on analyzing data that has not been
deduplicated for assessing their potential data reduction and
sizing of the storage required to store them.

In contrast, our aim is to address gaps for reporting and
management of data that has already been deduplicated,
which prior works do not address. We use similar techniques,
but the application presents different requirements and hence
we deploy slightly different practices. The idea of content
based sampling dates back to the classical algorithm of Flajo-
let and Martin [16] and was thoroughly studied in the context
of streaming algorithms for estimating the number of distinct
elements in a data stream, a problem which is similar to esti-
mating the amount of distinct data chunks in a data set. We
use a variation of a method introduced by Gibbons and Tirtha-
pura [20] and by Bar Josef et al. [11]. In the deduplication
context, a similar technique was used by Xie et al. [34] who
use filtering according to hash values. The main technical
difference between the sketch that they use and ours is that
Xie et al. always keep a bounded sample of hashes, a practice
that cannot provide adequate accuracy in our context. There
is also a significant difference in what the sketches are even-
tually used for. We also extend the methods to handle the
combination of compression with deduplication and provide
a different approach to the accuracy analysis (See Section 4).
In the storage realm, variants of sketches on the space of LBA
addresses have also been used by Wires at al. [33] to estimate
amount of exclusive blocks in a snapshot and by Waldspurger
et al. [32] for simulating cache behaviors.

There have also been studies tackling the problem of free-
ing space from a deduplicated system [30] or balancing of
content between several deduplicated systems [15,27]. These
suggest various heuristics to perform such optimizations, but
largely avoid the question of how to actually learn the inter-
play between various volumes and assume that this is a given

quantity and is computed as a preprocessing step. As such,
our work is very suitable to work together with any of these
methods.”

3 Sketches and their Use

Capacity Sketches: The main idea of capacity sketches is
to choose samples of the metadata according to the respec-
tive data content. At its core, the sampling technique is very
simple: for each data chunk, examine its fingerprint (the hash
of its content) and include it in the sketch only if it contains
k leading zeros for a parameter k (namely, the k most-bits
of the hash are all zeros). So if, for example, k = 13 and the
fingerprints are random, then on average a 2% = SIIW frac-
tion of the data chunks participate in the sketch and the rest
are ignored. We refer to 2% as the sketch factor and in our
implementation we typically set the sketch factor to be §192.
This choice was made by balancing the tradeoffs between
the required resources to handle the sketches vs. the accuracy
which they provide (See Section 4).

Denote by S a data set that corresponds to a vol-
ume/group/system, denote by Sketchs the set of hashes which
were included in the sketch of the data set and denote by
Spaces the physical space required for storing S (Spaces is
the value that we aim to estimate). Denote by Writtens the
amount of logical data written by the user (prior to compres-
sion and deduplication). For each hash & € Sketchs in the
sketch we also hold the chunk’s compression ratio — denoted
by CompRatio(h). We estimate the number of unique chunks
in § by the amount of chunks that participate in the sketch
times 2%, namely by 2% - |Sketchs|. The estimated amount of
space required for storing this data set in a clean system is:

SWS =2k. Z CompRatio(h) - ChunkSize
heSketch

In such a case the estimated data reduction ratio (combining
both deduplication and compression) is :
Spaces

ReductionRatios = ———
Writtengs

This is the basis for a sketch-based estimation of a sin-
gle set.” In the following sections we describe how to use
sketches for estimating volume level statistics in an existing
deduplicated storage system. In Section 4 we discuss the ac-
curacy of these estimations as a function of the size of the
sketch and the sketch factor.

Note that these heuristics are typically based solely on the knowledge
of the pair-wise deduplication relations between volumes but ignore the
numbers about a combination of a larger number of volumes. This is mainly
because computing such quantities is extremely taxing. Our techniques open
the door to utilizing much more information than just pair-wise information.

3Note that the same estimation method for Sﬁc\es holds for variable
sized chunking, only that then ChunkSize is also a function off the hash A.

USENIX Association

17th USENIX Conference on File and Storage Technologies 109

Using Sketches for Data Inside a Deduplicated System:
When discussing the statistics of volumes or groups with
respect to a storage system, additional challenges arise. Unlike
the stand-alone case, the statistics of a volume or group do
not depend solely on the contents (or the sketch) of this single
data set. Rather, they depend on the contents of all of the data
in the system and may change even though the volume itself
observed no changes at all. To facilitate efficient computation
of the statistics for a live existing system, we maintain at all
time a full system sketch (denoted Sketchryyr) representing
all of the data in the system. We also collect further parameters
in the sketch. Specifically, for each fingerprint & € Sketchs
the sketch holds:

e Reference count - Denoted Ref(h,S) is the number of
times the data chunk with fingerprint # was written in
the data set by the user.

e Physical count - Denoted Phys(h,S) is the number of
physical copies stored during writes to the data set S. In
contrast to reference count which refers to the virtual
space, this counter refers to how many virtual copies of
this chunk where eventually written in the physical space.
Note that there are a number of reasons for a chunk
to have more than a single physical copy in a system.
Most obvious is deduplication opportunities that were
not identified. But sometimes this is done out of choice,
e.g., as a means to limit the size of the reference counters,
or the choice to forgo a deduplication opportunity for
avoiding extensive data fragmentation.

With this additional information we can calculate the statistics
of a volume or group as part of a larger system. It should be
noted that a real deduplicated system may also hold quite a
bit of unhashed data (data written at IO’s smaller than a single
chunk size, or misaligned with the deduplication chunk align-
ment). We use various techniques to account for such data,
but this is out of the scope of this paper. We now describe the
main estimations that we calculate as well as their motivation.

3.1 Reclaimable Capacity

As mentioned in the introduction, a key product of our method
is the ability to accurately predict how much physical space
would be freed from a system if a volume or a group of vol-
umes were to be removed from it. Note that the reclaimable
capacity is an inherently non-linear quantity. For example,
if a system contains just two identical volumes, then the re-
claimable capacity of each of the volumes separately is es-
sentially 0, yet the reclaimable capacity of their combination
amounts to the system’s entire space which is very different
than the sum of their respective reclaimable numbers. As
such, some deduplicated storage vendors do not produce such
a number at all. Others (e.g. [8]) resort to reporting how much
unique data a volume holds.* This number is additive and is

4Unique data counts only data chunks that have reference count = 1.

easier to maintain, but can be very misleading when a vol-
ume holds internal deduplication, a situation that is magnified
when trying to estimate the reclaimable of a group of volumes.

Our strategy for estimating the reclaimable capacity con-
sists of “subtracting" the sketch of the data set being examined
from the full system sketch as follows:

Calculate Reclaimable
Input: Sketchs, Sketchpyrr
Reclaimable =0
for h € sketchgs do:
if (ref(h,S) ==ref(h,FULL)) then
Reclaimable += CompRatio(h) - Phys(h, FULL)
Reclaimable = Reclaimable - SketchFactor - ChunkSize

While the algorithm above gives the general idea, there
are some additional subtleties that need to be addressed. For
instance, each chunk held in the system also holds some meta-
data associated with it. While this is typically much smaller
than the data itself, it can amount to a significant portion of
the space, especially for highly compressed or deduplicated
data. So reclaimable space should account for metadata space
that is released when a chunk is removed (whether it was a
physical chunk or a reference). Another subtlety is the fact
that it is hard to gauge if a physical chunk would be released
when its physical count is two or more. Handling this requires
additional information from the system, but for the most part
tends to account for a very small portion of the physical space.

3.2 Attributed Capacity and Data Reduction
Ratios

Unlike the reclaimable statistic which is very clearly defined,
it is not straightforward to define the data reduction ratio of
a volume, or what capacity is owned by a volume. This is
because data is shared across volumes and has no clear owner.
Still, there are a number of motivating reasons to define and
support such numbers. The first reason is the possibility to
do fair chargeback of tenant capacities for service providers
(see discussion in [31], Section 6). Another reason is to allow
the storage administrator to understand the data reduction
properties of volumes — how much is a volume involved in
deduplication? how much does it gain from compression?
Such knowledge can allow better planning of storage capaci-
ties (e.g., an administrator can learn what data reduction to
expect from her Databases), and better placement decisions
(e.g., a volume that has no data reduction saving can be placed
in a system that does not support data reduction).

To that end, we define a measure that we call the attributed
capacity of a volume and a breakdown of its space savings
to deduplication and compression. Our definition follows a
fair sharing principle: Data which is shared among a number
of volumes will receive its proportionate share in attributed
capacity. For example, if a data chunk is only referenced
twice, once in each of two volumes, then the space to hold

110 17th USENIX Conference on File and Storage Technologies

USENIX Association

this chunk is split evenly in the attributed capacity of the
corresponding volumes. If it has 3 references, 2 originating
from volume A and one from volume B, then its space is split
ina % and % fashion between volumes A and B respectively.
Note that there is no single correct definition of attributed
capacity, but rather a choice of what the vendor deems as fair
sharing. Our sketches approach can accommodate more or
less any definition.”

For the breakdown to deduplication and compression we
define the following: Deduplication savings are an estimate
of what the savings would have been if compression was
not deployed. For compression we give a different estimate,
basically answering how much additional space was saved
after deduplication was performed. This does not answer the
question of how much space savings we would gain if only
compression was performed (without deduplication). In order
to answer the latter question, one needs to sample the virtual
space of data (as described in [22]), rather than sample the
fingerprint space which is what our sketch does.

The following method is used for attributed space and dedu-
plication savings:

ability to correlate hashes between volumes very quickly, and
identify correlations and anti-correlations can provide the
explanation of why certain deduplication and compression
ratios are achieved.

3.4 Cross System Capacity Estimations

In a data center environment spanning a number of storage
systems, the question of space reclamation from one system
is accompanied by the question of where to move the volume
to? The goal here is to provide insight into the overall capacity
management of the data center rather than just managing a
single system; namely, can I gain capacity by moving data
between systems? The use of sketches allows to answer the
capacity aspect of such complex “what if" questions. Specif-
ically, how much capacity would be freed when moving a
volume from system A to another system, and how much
capacity would this volume potentially consume in each of
the target migration systems. This question can be answered
given a sketch for a data set S and a full sketch of a target
system using the following method:

Calculate Attributed

Calculate Space in Target System

Input: Sketchs, Sketchryrr
Attributed =0
DedupeOnly =0

for h € sketchs do:

Attributed += —" (h:5)

e FOLFULL) -CompRatio(h) - Phys(h,FULL)
DedupeOnly += % - Phys(h,FULL)
Attributed = Attributed - SketchFactor - ChunkSize

DedupeOnly = DedupeOnly - SketchFactor - ChunkSize

Input: Sketchs, SketchrarGeT
TargetSpace =0
for h € sketchs do:
if h ¢ SketchrarceT then
TargetSpace += CompRatio(h)
TargetSpace = TargetSpace - SketchFactor - ChunkSize

3.3 Insights on the Achieved Deduplication

An additional benefit for our methodology is the ability to
collect drill down statistics regarding deduplication and com-
pression at a very low price. For example, we collect statistics
regarding the effectiveness of the deduplication in the storage
system. Another set of interesting statistics is the correlation
between deduplication and compression, this can be done at
a volume granularity, as well as at the single chunk granu-
larity (e.g. is there a correlation between the reference count
of a chunk and its compression ratio?). A summary of such
insights is sent back to us via a call-home mechanism, and
will serve as a mechanism for collecting information from the
field about the deduplication properties of real data in the field
in order to improve the deduplication process and design.

Explaining deduplication behavior: It is not uncommon
for gaps between the customer expectation of deduplication
and compression effectiveness versus the reality. In many
cases the gap arises from the data written to the system. The

5Having said that, it makes sense to use a definition that allows for correct
accumulation of attributed capacity between any set of volumes.

Data Center Space Optimizations: Such a cross system es-
timation presents a strong tool for performing optimizations
across multiple systems. Without clarity of the capacity re-
quired to store a volume on various systems, such decisions
are made in the blind. Our technique provides clarity and
allows us to explore optimizations and advanced placement,
rebalancing and space reclamation decisions. In Section 6.4
we present an example of such an optimization for data center
level space reclamation.

4 Accuracy Guarantees

A crucial property of sketches is the ability to make concrete
statements regarding its accuracy, hence allowing decision
makers to make educated decisions with confidence while
taking into account known error margins. To this end, we
provide a mathematically proven statistical accuracy theorem.
We also evaluate this guarantee empirically and see that the ac-
tual estimations indeed behave according to the mathematical
statement (see Section 6.3).

As is common in statistical statements, we have two pa-
rameters: the error (or skew) denoted by € and the confidence
denoted by 8. The formal statement says that the estimation
will be off by error greater than € with probability no larger
than §. It turns out that the key parameter relating between

USENIX Association

17th USENIX Conference on File and Storage Technologies 111

€ and 9 is the size of the physical space being estimated —
whether it is reclaimable, attributed, or the space required
for storing S in a deduplicated and compressed system. In
the following statement we simply use Spaces to denote this
size.

Theorem 1. Let S be a data set whose physical space (after
deduplication and compression) is Spaces and let Sﬁ;‘g be
a sketch-based estimation of this space using a random hash
function. Then the probability of over-estimation:

Space

Pr[Spaces > (1+€)Spaces]| < <(1+8)(1+s)

and the probability of under-estimation:

Space

Pr[Spaces < (1—¢€)Spaces| < <<1_8)(18)

The theorem follows from the classical multiplicative vari-
ant of the Chernoff Bound (e.g., in [29]). However, we needed
to reprove a more generalized form of this bound in order
to capture variations including compression ratios, variable
sized chunking, reclaimable and attributed. Note that [34] use
a different method to achieve their accuracy guarantee. Their
guarantee relies on the estimation of Bernoulli variables by
a normal distribution, which for smaller numbers may add
some noise. Our estimation avoids this and turns out to be
slightly more conservative in the guarantees it provides.

Accuracy Guarantee Behavior

0.5
0.4
0.3
0.2
0.1

0
-0.1
-0.2
-0.3
-0.4
-0.5

0 200 400 600 800 1000 1200 1400
Physical Size (GBs)

Skew range ()

Over Estimation Under Estimation

Figure 1: The behavior of the accuracy guarantee € as a func-
tion of the physical size for a fixed choice of the confidence
6= ﬁ. The smallest values in the graph are at 4 GBs.

Figure | depicts the behavior of our bound for a fixed choice
of confidence 8. Note that we need to consider a & which is
small enough to account for a large number of volumes and
sets being tested. For example, if we evaluate 750 volumes,
using & = ﬁ is not sufficient, as we expect on average 7.5
volumes to exceed the error that corresponds to 8 = ﬁ. In
our evaluations we typically use 6 = Wloo’ but this should be
adapted depending on the circumstances.

S
ee) ChunkSize-SketchFactor

___opdees
e_s > ChunkSize-SketchFactor

Using Theorem 1: The goal of the mathematical guarantee
is to produce an estimation together with a range for which
we can say with confidence that the actual value resides in.
For example, we estimate that the reclaimable of a volume
is 200GB +/- 14 GB. To this end, for a given fixed confi-
dence parameter & we create an inverse lookup table that on
input Spaces returns the corresponding €(Spaces). We can
then return a +/- value of Spaces - €(Spaces). One subtlety,
however, is that the bound above is dictated by the actual
physical space Spaces whereas we only have the estima-
tion of this value S?a;‘g. Therefore, in order to get an accu-
rate € one has to find what is the smallest Spaces such that
SWS > Spaces — Spaces - €(Spaces). Note that this is
important only for evaluating over-estimations, since it turns
out that the function Spaces - €(Spaces) is monotonically
increasing with Spaces. We also note that the difference be-
tween this method and simply returning Smg . S(Sﬁz-c?s)
is only noticeable for small volumes.

The Effect of the Sketch Factor: The sketch factor appears
in Theorem 1 as a divisor of the actual space. This means that,
for example, moving from sketch factor 2 to sketch factor
2k+1 will shift the same accuracy guarantees to volumes that
are double the size. On the other hand, the amount of sketch
data to handle will be cut in half. We arrived at our choice
of k = 8192 by taking a sketch factor that is high enough to
ensure good performance and low overheads, yet still give
acceptable accuracy guarantees.

Handling Small Volumes: The accuracy we can achieve
when estimating small volumes is limited (and more precisely,
volumes of small physical space). For example, the guarantee
for a volume of physical size SOGB is only € = 0.14. There
are a number of points to consider here:

e The virtual capacity of the volume is important in under-
standing if the estimation is worthwhile. For example,
for an estimation in the range of 2GB we can only say
with confidence that the value is in the range between
0.5GB and 4.2GB. This is not saying much if the vol-
ume’s virtual size is 4GB but contains very valuable
information if the volume’s virtual size is 100GB. In
the latter case it means that the reclaimable space of the
volume is just a small fraction of the original volume
(and is a bad candidate for space reclamation).

e Small logical volumes gain very little from sketches (ex-
cept in very extreme cases, e.g. if the volume is very
compressible). It could be argued that small volumes are
not very interesting from a capacity management per-
spective since they have very little impact. On the other
hand, grouping several small volumes together to form a
larger group is highly recommended. The sketch merge
functionally accommodates this and accuracy improves
as the size of the merged data set increases.

112 17th USENIX Conference on File and Storage Technologies

USENIX Association

5 Architecture and Implementation

We turn to describe our actual implementation and integration
of the sketch-based capacity analytics for a production storage
system. Our overall strategy is to pull the sketch data out of
the storage system onto an adjacent management server where
the sketch data is analyzed and the outcome is displayed to
the storage client (See Figure 2). The choice to do the anal-
ysis outside of the storage box has a number of reasons. For
one, this avoids using CPU and memory resources in the
storage that could otherwise be spent on serving 10 requests.
But more importantly, it is the optimal location for managing
cross system placement options (such as the ones discussed
in Section 3.4). As such, our design has two separate compo-
nents: the sketch collection embedded in the storage system
and the skefch analysis running on an external server. We
next describe our design and implementation of these two
components.

Storage Systems
Sketch Sketch Sketch
(in memory) (in memory)

(in memory)
REST API

v
= ﬁ
Sketch Analyzer,

Figure 2: The general sketches support architecture.

5.1 Sketch Collection

There are multiple approaches that can be used for sketch
collection. One can use a bump in the wire approach that
directs all sketch information as data is written to a sketch
collection mechanism. However, in such a design, support
for updating the sketch should also be added for deletion
or data overwrites which makes this harder to maintain. In
addition, in a highly distributed storage system such as ours,
it is unclear where the sketch collector should run and if it
should be likewise distributed. Another approach is to do
an offline metadata scan to extract the actual sketches. In
this approach all metadata in the system must be read, and
since the metadata is typically paged in and out of memory,
such a scan can be relatively slow and may have a negative
performance impact on the storage system by introducing
additional reads from disk. Instead, we use a third variant
which is somewhat of a medium of the two aforementioned
approaches.

Our design has the following key principles:

o All sketch data is held in memory at all times - This
allows to retrieve this data swiftly, but more crucially
avoids adding IOs to the disk backend for sketch update
and retrieval.

e Each process is in charge of the sketch data for its juris-
diction - Our storage system is highly distributed, with
hundreds of processes working in parallel to serve IOs.
Each process is in charge of serving IOs for slices of the
entire virtual space. In our design each slice has its own
sketch which is maintained by the owning process.

e The sketch portrays the state of a slice at a point in time
- The sketch data is held and managed as an integral
part of the metadata of a slice, and therefore there is no
history of writes and deletes as part of the sketch.

These principles are achieved using the following methodol-
ogy: During sketch retrieval, if the metadata of a slice happens
to be in memory, then the sketch data for this slice is extracted
directly from the slice metadata. Whenever the metadata of a
slice is paged out of memory, its sketch data is kept “alive” in
a designated memory area and retrieved from there.

For the act of sketch extraction, a central process contacts
all processes and retrieves their respective sketch data. These
are streamed out of the system to the adjacent server. Note
that the sketch data in the storage is always in distributed
form, and the aggregation of this data only takes place outside
the system once the sketch data has been extracted. It should
also be noted that as in many cases for distributed systems,
the extracted sketch does not actually reflect a single point in
time. In our case, the sketch provides a fuzzy state, e.g., when
we actually obtain the sketch for the last slice, the sketch in
the system for the early slices might have changed. This is
an inaccuracy that we are willing to tolerate since storage
systems are dynamic and we cannot expect to freeze them at
a specific state. That being said, the fact that we can serve the
sketches quickly from memory is a considerable advantage
as it can reduce the time window in which the sketches are
extracted.

Extensive performance tests were run to ensure that our
sketch collection and retrieval mechanisms do not interfere
with the performance of the storage system and the effects are
unnoticeable even at peak performance.® In order to minimize
the memory footprint, we hold the sketches in packed format
and the size of each element in the sketch is limited to 19
bytes. This includes volume information, compression ratio,
reference and physical counters and 8 Bytes for the actual
hash value, truncated down from 20 bytes of a full SHA1
hash (we take 8 bytes that do not include the leading zero
bits). We point out that while an 8 byte hash is not enough
for avoiding collisions in a deduplicated system, it is well

OThe retrieval process is throttled to ensure it does not interfere with the
systems IO chores.

USENIX Association

17th USENIX Conference on File and Storage Technologies 113

suited for achieving high accuracy estimations.” Overall this
means that for 1PB of user data the sketch data will amount
to approximately 300MB on average.

5.2 The Sketch Analyzer

The statistics provided by our sketch analysis do not reflect
a real time state of the system. Rather, they reflect a fuzzy
state of the storage over the sketch retrieval time duration.
Additionally, we can provide the resulting statistics only af-
ter the sketch has been fully transferred and processed by
the analyzer. That being said, we invest quite a bit of effort
to make our sketch analysis as fast as possible, for a couple
of reasons: 1) In order to be interactive and support online
statistics queries on arbitrary volumes groups by the storage
administrator. Our aim is to provide a real-time user expe-
rience for this, and indeed we manage to answer all queries
well within one second; and 2) Using our tools for performing
optimizations typically entails performing a very large num-
ber of queries, and therefore the fast processing of queries on
sketches allows such optimizations to be feasible.

Recall that the sketch extracted from the storage arrives as a
stream in its distributed form. It contains hardly any aggrega-
tion at all, and therefore the first phase that we need to do is to
ingest it (including sorting to volumes and aggregation). The
next phase is the actual analysis using the methods described
in Section 3.

The Ingest Phase: The first phase of the process is therefore
an ingestion phase. In a nutshell, the sketch contains a stream
of hash values along with their respective compression ratios,
a local reference count (within the slice), an indication if
this was written as a physical copy or just a reference, and
finally the name of the owning volume. For each volume we
need to collect all of its relevant hashes while merging and
aggregating multiple appearances of hashes. The same applies
toward creating the full system sketch.

In order to accommodate this, we create two types of data
structures at ingest time:

1. The full system table: An open addressing hash table
holding all of the hashes seen in the full system (includ-
ing the compression ratio, reference counts and physical
copies count). We use statistics from the system to esti-
mate the size of this table and allocate the memory for
this table accordingly.

2. Volume level structures: We hold a temporary B-Tree
for each volume in the system which aggregates the
hashes that appeared in the respective volume (along
with the reference count for each volume). At the end
of the ingest phase we replace each B-Tree with an im-
mutable sorted array, which is a more space efficient data
structure which will support faster volume merges.

7Under the randomness of SHA, a false collision of 8 bytes in the sketch
data would occur on average once on every 256PB of logical written data.

Our sketch analyzer is designed as a micro-service and uses a
REST API to receive the raw sketch data and to then answer
statistics queries.

The implementation of the REST interface is in Python, but
the core data structures are implemented in C++, using the
C-types interface. The implementation in C++ is critical for
achieving the performance that we require and for minimizing
the memory utilization of the sketch analyzer. For space and
time optimization we leveraged the following implementation
details:

Space optimization: instead of holding the full hash in the
B-Trees and volume arrays, they are held only once in the
full-system table, and in the volume level structures we only
store a pointer to the entry in the full table (the pointer takes
just 5 bytes rather than 8 bytes for the sketch hash).

Sketch distribution and concurrency: Each of our data struc-
tures is divided in to 16 partitions, each handling on average
% of the hashes in the sketch, depending on the first four bits
of the hash value. This allows for analysis concurrency as
each (hash range) partition can be independently analyzed.
Keep in mind that due to the randomness of the hash func-
tion, it is expected that each such partition will receive a fair
share of the load.® In addition, the partitioning provides easy
sparsification of the sketch. Depending on the query, a higher
sketch factor than 8192 may be sufficient for allowing faster
computations (by handling smaller sketches). Simply working
with j out of the 16 partitions can easily allow us to work
with a sketch factor of 1]—.6 -8192.

The Analysis Phase: The basic analysis phase consists of
computing the reclaimable and attributed statistics for all vol-
umes in a system. In addition, we implemented support for
running these queries on any arbitrary group of volumes and
the ability to query cross system migration costs for any group
of volumes. We emphasize that we consider this phase as the
most performance critical phase, since it should support in-
teractive administrator queries that should be satisfied online
to deliver a favorable user experience. In addition, the perfor-
mance of grouping and merging is critical for the next level
optimization algorithms as discussed in Section 3.4.

The basic functionality is straightforward and tightly fol-
lows the methods described in Section 3. For the group
queries, however, an additional step is required to generate the
sketch of a newly defined group. This process receives a list
of volumes that form the group and merges them into a single
sketch (reference counts and physical counts are summed in
the merge, whereas compression ratio is averaged). To this
end we implemented a classical heap-based k-way merge of
sorted arrays (e.g., see [21]).”

8A different approach would be to run the analysis for many vol-
umes/groups in parallel. However, the volumes can be very different in size
which could create a strong imbalance between the processes and require
more complex load sharing between the processes.

9Recall that at this point the volume sketches are held in sorted arrays.

114 17th USENIX Conference on File and Storage Technologies

USENIX Association

Test Name Data Written (TB) | Number of volumes | Ingest time (sec) | Analysis time (sec)
UBC-Dedup 63 768 22 0.21
Synthetic 1500 5 89 0.93
Customer System 1 980 3400 104 4.80
Customer System 2 505 540 65 2.70

Table 1: Performance of the ingest and analysis phase

6 Evaluation

6.1 Methods and Workloads

We used a number of methodologies to evaluate our sketches
implementation, each with its own workloads. We describe
these below:

1. Synthetic data - These are end-to-end tests performed

in our lab in which various sets of synthetic data were
written to the storage system, the sketches were extracted
by the adjacent manager server and analyzed with the
sketch analyzer. The tests evaluate both the performance
of the mechanism as well as the accuracy of the results.
The data was crafted in a way that allows us to predict
the expected outcome and evaluate it. In addition we
also ran tests that delete volumes from the system and
compare the space that was released to the reclaimable
that was predicted by the sketches.
The data was generated using the following methodol-
ogy: a number of equally sized data units were created,
each with a different chosen compression ratio and with
no deduplication. These were generated using the VD-
Bench benchmarking suite [1]. We then wrote a number
of data volumes to the storage, each consisting of a cho-
sen set of units. Deduplication was created by reusing
the same data units in different volumes, or repeating in
inside the same volume. Our tests were of various sizes,
ranging from small tests with data units of size 100GB
each, to a large scale test in which 1.5 PB of data was
written to the storage system, using data units of size
100TB each.

2. UBC data traces We leveraged the data trace called
UBC-Dedup from the SNIA’s IOTTA repository [6]
(The Input/Output Traces, Tools, and Analysis repos-
itory). This are traces that were collected for the study of
Meyer and Boloski [28], spanning 852 file systems from
Microsoft in the form of hashes of the data and some
related metadata (compression ratios are not available in
this trace). After cleaning some small file systems, we
ended up with hashes for 768 file systems representing
63 TBs of data.'’ The traces offers several chunking
options and we used the fixed 8KB chunks. We use these
file systems to simulate volumes in a storage system and
evaluate our sketch analyzer both from a performance

10The traces also contain a number of versions of each file system, but we
use only a single snapshot from each file system.

standpoint and from an accuracy standpoint. Note that
these tests are not an end-to-end evaluation as real data
was not involved. Rather, from the full hash traces we
generated a much smaller sketch and ingested it into our
sketch analyzer.

3. Production data in the field: The product implementa-
tion allows us to gain some insights via call-home data.
While this data is very succinct and contains only gen-
eral statistics, we learn from it about the performance of
the sketch analyzer and can gather some insights about
the data reduction properties of the written data.

6.2 Performance Evaluation

Ingest & Analyze Performance: We first evaluate the perfor-
mance of the ingestion and volume level statistics calculation.
These provide an idea on the time it takes to acquire sketch
statistics at a volume level on large production systems. The
timing of the ingestion phase is less critical and it is also
hampered by the fact that the sketch data is read from disk in
the manager system and passed to the sketch analyzer via a
REST API. The performance of the analysis phase is more
crucial, as it gives us an indication on our ability to process
real-time queries and answer mass queries for optimization
purposes.

In Table | we present timing results for four large scale
tests. The times are affected both by the actual sketch size as
well as by the number of volumes. In addition the hardware
available for the sketch analyzer also has an effect. We ran
the local tests on a virtual machine running on an Intel®
Xeon® Gold 6130 CPU @ 2.10GHz (cpu cores: 4) with
4x16 GB DDR3 RAM and do not know the configuration of
the external runs. But in general, the take home is that we can
easily perform a cycle of sketch statistics once in a couple of
minutes even for very large systems (small systems can run
in seconds). In our field deployment the cycle is longer since
the sketch retrieval process is throttled to reduce network
overheads.

Group Query Performance: We turn to evaluate our ability
to support online queries on reclaimable capacities of arbi-
trary groups. The latency of answering such queries for large
groups is dominated by the merge operation which creates
the sketch of the queried group (described in Section 5.2).
Figure 3 plots the performance of the merge operation and the
entire query response time (with reclaimable computation) for

USENIX Association

17th USENIX Conference on File and Storage Technologies 115

random groups from the UBC-Dedup workload, on various
group sizes. The graph depicts the average of 50 runs, with
the largest skew being under 10 ms. We are able to satisfy
such queries in less than 0.2 seconds even for a very large
group which contains half of the volumes in the system. For
a small group, e.g. of 12 volumes, the average test managed
to run in under 4 ms.

Group Query Performance

384 192 96 48 24 12 6 3
(12021 GB) (5365 GB) (2482GB) (1311GB) (708GB) (461GB) (191GB) (104 GB)

Number of Volumes (Capacity)
—o—Merge =—Merge and calculate

Figure 3: Performance of group query operations as a function
of the group size ranging from a group of half the volumes in
the system (368) through a small group of just 3 volumes.

Note that for further speedup we can run the merge op-
eration using multiple threads, where each thread runs on
separates partitions (according to hash values). For exam-
ple, we tested a merge over all the 768 volumes on a virtual
machine with four cores. The merge operation took 0.396
seconds using a single process, 0.186 seconds when using
two processes and using 4 processes brought us down to 0.121
seconds.

6.3 Accuracy Evaluation

As mentioned in Section 6.1 we evaluated the accuracy of
our work using two methods: using synthetic data and by
studying the UBC-Dedup traces. The first is by writing syn-
thetic data with expected behavior to the storage system and
evaluating the expected reclaimable and attributed numbers.
We complemented this by deleting volumes and measuring
the amount of physical space reclaimed from the system. A
crucial aspect of these tests was to evaluate the combination
of compression and deduplication, since the UBC traces do
not contain compression ratios. The synthetic tests therefore
included writing data with a variety of deduplication and com-
pression ratios. The skew observed in these test (not presented
here) was always well within the accuracy guarantee.

The second method that we used to evaluate accuracy was
using the UBC-Dedup traces. In order to evaluate the accuracy
behavior of the sketch estimation method we first computed
the exact physical capacities required to store each of the 768
volumes from the UBC-Dedup traces. This was done once by
a lengthy offline process and recorded. We then evaluated the

same physical capacities using our sketch mechanism with
sketch factor 8192. In our evaluation we compare the observed
error for each of the sketch estimations to the accuracy guar-
antee obtained in Theorem 1. For example, if the estimation is
off by a factor of —3%, and the accuracy guarantee is € = 0.05,
the relative measured skew is % = —0.6. In Figure 4 we
show a histogram detailing the number of volumes in each
range of relative measured skew of reclaimable estimations.
The behavior comes out as a very nice bell curved distribution.
Note that this behavior is not symmetric like a normal distri-
bution, but rather is shifted to the negative skew, a behavior
expected in a Binomial distribution B(n, p) in which p is very

small (g5 in our case).'!

Accuracy vs. Guarantee Histogram

140
120

100
80
60
40
p II
0
: I S T B I T B L |
9955 oSoo

Skew Relative to Accuracy Guarantee

Count

0.4 ===

0.9
0.8
0.7 1
0.6 =
0.5 ==
0.6 =
0.7 1!
0.8
0.9

More

Figure 4: The errors observed over 768 volumes relative to
the accuracy guarantee. The observed estimation skew was
always smaller than the accuracy bound. In fact, in over 95%
of the volumes the skew was less than half of the calculated
accuracy bound.

To give a further indication on the behavior of sketch esti-
mations, we picked six large volumes from the UBC-Dedup
trace and examined the sketch estimation for with a growing
sketch factor (starting with 2'3 = 8192 through 2!7). Figure 5
depicts the skew observed for each volume as the sketch fac-
tor grows. We observe that indeed the error tends to grows
significantly as the sketch becomes sparser.

6.4 Data Center Level Optimizations

As an example of the potential of our methods for cross sys-
tem optimizations, we implemented a greedy algorithm for
space reclamation in a data center consisting of a number of
deduplicated storage systems. The input to the algorithm is
the name of the source system that is filling up and a mini-
mal amount of space that needs to be reclaimed from it. The
output is a migration plan of volumes from the source system
to the other available system. The goal is to minimize the
overall space usage of the entire data center by finding data
similarities and exploiting them.

This serves as justification for our choice not to use a binomial to normal
estimation in the accuracy proof (as was done in [34]).

116 17th USENIX Conference on File and Storage Technologies

USENIX Association

Accuracy vs. Sketch Factor

Accuracy (%,

i

203 204 205 276 2M7
Sketch Factor

—%=V1 (448 GB)
V4(535 GB)

V2 (389 GB)
—=-V/5 (270GB)

V3 (402 GB)
——V6 (225GB)

Figure 5: The errors observed for six volumes (and their phys-
ical sizes) as the sketch factor grows.

In a nutshell, at each round we enumerate over all of the
volumes in the source system and evaluate what is their re-
claimable space from the source system, and how much space
they would take up in each of the other systems. At each round
we pick the single volume for which the migration would yield
the best space saving ratio'” and update the sketches of the
systems as though the migration has already happened. We
then move to the next round in which the same process is
repeated until the amount of reclaimed space from the source
system is reached. Note that if data reduction mechanisms
exist as part of the networking used for migrations (such as
compression or WAN deduplication) then these consideration
can easily be taken into account as part of the decisions in
such a greedy algorithm.

The above algorithm does not attempt to find an overall op-
timum for such a process, and would generally not work well
in situations in which the optimal solution involves moving
several highly correlated volumes together. That being said,
it exemplifies the insight and capabilities that the storage ad-
ministrator has with clarity about expected volume capacities
across multiple systems in the datacenter.

Evaluation: We evaluated the above algorithm using a simu-
lated environment of four storage systems. The UBC-Dedup
workload was partitioned among the four storage systems in
a random fashion (each system received 192 volumes). On
average, the physical space in each system amounted to 7TB.

We then ran the algorithm four times, each time with a
different system serving as the source. In each test we asked
to release at least 1TB of data from the source system. The
tests ran between 30 to 55 seconds (depending on the system)
and produced a migration plan that frees over 1TB of data
from the source while taking up significantly less physical
space in the other systems. The space savings achieved were
between 257GB to 296GB, depending on the source system.

Figure 6 plots the progression of space reclamation and the

12We slightly penalize small volumes since we have a preference to migrate
fewer volumes rather than many.

capacity consumed at the targets for one of the experiments.
We point out that as the rounds progress the ratio of space sav-
ings achieved by the migration process predictably declined.
For example, at the beginning some volumes were found for
which the space saving ratio from migration was as high as
10:1 and 3.7:1. As the algorithm progresses the extremely
beneficial volumes have already been migrated and the saving
ratio went down to around 1.15:1.

Greedy Algorithm Progression

1200

1000

800

600

Space (GB)

400

200

123456 7 8 91011121314151617 18192021 222324252627

Round Number

—e—Space Reclaimed from Source —=—Space Added to Target Systems

Figure 6: The progression of the reclaimed space from the
source and the space the suggested volumes would take up in
other systems.

6.5 Results from Early Adopters

As mentioned, our implementation is running as a beta offer-
ing for early adopters. This gives us initial statistics acquired
in the field, on real customer data. We show here a glimpse of
some insights that we have learnt (other than the performance
numbers presented in Section 6.2): We evaluated how differ-
ent the reclaimable numbers of a volume would be if they rely
solely on unique data accounting rather than on sketches. The
early numbers show that on average there is a 42% difference
between the numbers and this can be attributed to the relative
high internal volume deduplication encountered in the data
sets that have been analyzed. This result strongly motivates
the use of sketches for reclaimable capacity estimation.

Another example of insight that can be learnt is regarding
the correlation between a data chunks’ deduplicability and
compression ratio. In the data sets that were scanned by the
sketches mechanism we found no evidence of such correla-
tion. Specifically, 99.9% of the data chunks had reference
count between 1 and 4. For these four reference count values,
we observed the exact same compression ratio of the data
chunks.We are confident that as this feature is integrated and
widely adopted we would gain some important insights on
deduplication.

USENIX Association

17th USENIX Conference on File and Storage Technologies 117

7 Conclusions and Discussion

We described a novel and efficient approach to analyzing vol-
ume capacities in storage systems with deduplication. Our
mechanism provides accurate estimations for capacity mea-
sures that are not available in deduplicated storage systems
to date. We have shown the accuracy of the capacity statis-
tics computed from the sketch and demonstrated how it can
be seamlessly collected from a system. From a performance
standpoint our algorithms scale well and exhibit high per-
formance even with high capacities. The small scale of the
sketch and the ability to pull it out of the storage systems al-
lows for further analytics and automation. To date, placement
decision algorithm were mostly focused only on performance
optimization and just making sure we don’t overrun the sys-
tem overall capacity. The sketch mechanism enables a new
dimension of data center capacity optimization. This opens
the door for performing insight analytics on storage capacities
and making placement decisions at the pool or system level
as well as across multiple deduplication domains and systems.
Among the potential uses of our technology is the ability to
reduce the overall space usage in a number of circumstances:
Upon space reclamation when a system fills up (as described
in Section 6.4); as part of data rebalancing between systems
upon introducing of new systems; or by actively relocating
volumes to reside in the same deduplication domain together
with their optimal cluster of related volumes.

Acknowledgements: We are grateful to our many colleagues
at the IBM Systems Israel Development Center who con-
tributed to our efforts to bring this technology to the field.

References

[1] VDBench users guide. https://www.oracle.com/
technetwork/server-storage/vdbench-1901683.
pdf, 2012.

[2] HPE storeonce data protection backup appli-
ances. https://www.hpe.com/us/en/storage/
storeonce.html, 2018.

[3] IBM FlashSystem 9100. https://www.ibm.com/
us-en/marketplace/flashsystem-9100, 2018.

[4] IBM FlashSystem A9000.
com/il-en/marketplace/small-cloud-storage/
specifications, 2018.

[5] Pure storage: purity-reduce. https://
www.purestorage.com/products/purity/
purity-reduce.html, 2018. (Retrieved Sept.
2018).

[6] SNIA: Iotta repository home. http://iotta.snia.

org/, 2018.

https://www.ibm.

(7]

(8]

[10]

(1]

(12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

VMware vsan: Using deduplication and compression.
https://docs.vmware.com/en/VMware-vSphere/,
2018.

XIOS 6.1 data reduction (drr) reporting per a volume.
https://xtremio.me/, 2018.

XtremIO integrated data reduction. https:
//www.emc.com/collateral/solution-overview/
h12453-xtremio-integrated-data-reduction-so.

pdf, 2018. (Retrieved Sept. 2018).

ARONOVICH, L., ASHER, R., BACHMAT, E., BITNER,
H., HIRSCH, M., AND KLEIN, S. T. The design of
a similarity based deduplication system. In SYSTOR
(2009), ACM.

BAR-YOSSEF, Z., JAYRAM, T. S., KUMAR, R.,
SIVAKUMAR, D., AND TREVISAN, L. Counting dis-
tinct elements in a data stream. In Randomization and
Approximation Techniques, 6th International Workshop,
RANDOM 2002 (2002), pp. 1-10.

BHAGWAT, D., ESHGHI, K., LONG, D. D. E., AND
LILLIBRIDGE, M. Extreme binning: Scalable, parallel
deduplication for chunk-based file backup. In MAS-
COTS (2009), pp. 1-9.

DEUTSCH, P., AND GAILLY, J. L. Zlib compressed
data format specification version 3.3. Tech. Rep. RFC
1950, Network Working Group, May 1996.

DoNG, W., DouGLIs, F., LI, K., PATTERSON, R. H.,
REDDY, S., AND SHILANE, P. Tradeoffs in scalable
data routing for deduplication clusters. In FAST (2011),
pp- 15-29.

DouGLIs, F., BHARDWAJ, D., QIAN, H., AND SHI-
LANE, P. Content-aware load balancing for distributed
backup. In Proceedings of the 25th Large Installation
System Administration Conference, LISA (2011).

FLAJOLET, P., AND MARTIN, G. N. Probabilistic count-
ing algorithms for data base applications. J. Comput.
Syst. Sci. 31,2 (1985), 182-209.

FORMAN, G., ESHGHI, K., AND SUERMONDT, J. Effi-
cient detection of large-scale redundancy in enterprise
file systems. Operating Systems Review 43, 1 (2009),
84-91.

FREY, D., KERMARREC, A., AND KLOUDAS, K. Prob-
abilistic deduplication for cluster-based storage systems.
In ACM Symposium on Cloud Computing, SOCC ’12,
San Jose, CA, USA, October 14-17, 2012 (2012), p. 17.

Fu, Y., JIANG, H., AND X1AO, N. A scalable inline
cluster deduplication framework for big data protection.

118 17th USENIX Conference on File and Storage Technologies

USENIX Association

https://www.oracle.com/technetwork/server-storage/vdbench-1901683.pdf
https://www.oracle.com/technetwork/server-storage/vdbench-1901683.pdf
https://www.oracle.com/technetwork/server-storage/vdbench-1901683.pdf
https://www.hpe.com/us/en/storage/storeonce.html
https://www.hpe.com/us/en/storage/storeonce.html
https://www.ibm.com/us-en/marketplace/flashsystem-9100
https://www.ibm.com/us-en/marketplace/flashsystem-9100
https://www.ibm.com/il-en/marketplace/small-cloud-storage/specifications
https://www.ibm.com/il-en/marketplace/small-cloud-storage/specifications
https://www.ibm.com/il-en/marketplace/small-cloud-storage/specifications
https://www.purestorage.com/products/purity/purity-reduce.html
https://www.purestorage.com/products/purity/purity-reduce.html
https://www.purestorage.com/products/purity/purity-reduce.html
http://iotta.snia.org/
http://iotta.snia.org/
https://docs.vmware.com/en/VMware-vSphere/
https://xtremio.me/
https://www.emc.com/collateral/solution-overview/h12453-xtremio-integrated-data-reduction-so.pdf
https://www.emc.com/collateral/solution-overview/h12453-xtremio-integrated-data-reduction-so.pdf
https://www.emc.com/collateral/solution-overview/h12453-xtremio-integrated-data-reduction-so.pdf
https://www.emc.com/collateral/solution-overview/h12453-xtremio-integrated-data-reduction-so.pdf

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

In Middleware 2012 - ACM/IFIP/USENIX 13th Interna-
tional Middleware Conference, Montreal, QC, Canada,
December 3-7, 2012. Proceedings (2012), pp. 354-373.

GIBBONS, P. B., AND TIRTHAPURA, S. Estimating
simple functions on the union of data streams. In SPAA
(2001), pp. 281-291.

GREENE, W. k-way merging and k-ary sorts. In Pro-
ceedings of the 31-st Annual ACM Southeast Conference
(1993), pp. 127-135.

HARNIK, D., KAT, R., SOTNIKOV, D., TRAEGER, A.,
AND MARGALIT, O. To zip or not to zip: Effective
resource usage for real-time compression. In USENIX
FAST’13 (2013).

HARNIK, D., KHAITZIN, E., AND SOTNIKOV, D. Esti-
mating Unseen Deduplication—from Theory to Practice.
In 74th USENIX Conference on File and Storage Tech-
nologies (FAST 16) (2016), pp. 277-290.

HARNIK, D., MARGALIT, O., NAOR, D., SOTNIKOV,
D., AND VERNIK, G. Estimation of deduplication ratios
in large data sets. In IEEE 28th Symposium on Mass
Storage Systems and Technologies, MSST 2012 (2012),

pp. 1-11.

HUFFMAN, D. A. A method for the construction of
minimum-redundancy codes. Proceedings of the Insti-
tute of Radio Engineers 40, 9 (September 1952), 1098—
1101.

LILLIBRIDGE, M., ESHGHI, K., BHAGWAT, D., DEO-
LALIKAR, V., TREZISE, G., AND CAMBLE, P. Sparse
indexing: Large scale, inline deduplication using sam-
pling and locality. In Proceedings of the 7th USENIX
Conference on File and Storage Technologies (FAST 09)
(2009).

LU, M., CONSTANTINESCU, C., AND SARKAR, P. Con-
tent sharing graphs for deduplication-enabled storage
systems. Algorithms 5,2 (2012).

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

MEYER, D. T., AND BOLOSKY, W. J. A study of prac-
tical deduplication. In Proceedings of the 9th USENIX
Conference on File and Storage Technologies (FAST
'11) (2011), pp. 1-13.

MOTWANI, R., AND RAGHAVAN, P. Randomized Al-
gorithms. Cambridge University Press, New York, NY,
USA, 1995.

NAGESH, P. C., AND KATHPAL, A. Rangoli: Space
management in deduplication environments. In Pro-
ceedings of the 6th International Systems and Storage
Conference (2013), SYSTOR 13, pp. 14:1-14:6.
SHILANE, P., CHITLOOR, R., AND JONNALA, U. K.
99 deduplication problems. In 8th USENIX Workshop
on Hot Topics in Storage and File Systems, HotStorage
2016, Denver, CO, USA, June 20-21, 2016. (2016).

WALDSPURGER, C. A., PARK, N., GARTHWAITE, A.,
AND AHMAD, I. Efficient MRC construction with
SHARDS. In 13th USENIX Conference on File and Stor-
age Technologies (FAST 15) (Santa Clara, CA, 2015),
USENIX Association, pp. 95-110.

WIRES, J., GANESAN, P., AND WARFIELD, A.
Sketches of space: ownership accounting for shared
storage. In Proceedings of the 2017 Symposium on
Cloud Computing, SoCC 2017, Santa Clara, CA, USA,
September 24 - 27, 2017 (2017), pp. 535-547.

XIE, F., CONDICT, M., AND SHETE, S. Estimating
duplication by content-based sampling. In Proceedings
of the 2013 USENIX Conference on Annual Technical
Conference (2013), USENIX ATC’13, pp. 181-186.

Z1v, J., AND LEMPEL, A. A universal algorithm for
sequential data compression. IEEE Transactions on

Information Theory 23, 3 (1977), 337-343.

USENIX Association

17th USENIX Conference on File and Storage Technologies

119

	Introduction
	Background and Related Work
	Sketches and their Use
	Reclaimable Capacity
	Attributed Capacity and Data Reduction Ratios
	Insights on the Achieved Deduplication
	Cross System Capacity Estimations

	Accuracy Guarantees
	Architecture and Implementation
	Sketch Collection
	The Sketch Analyzer

	Evaluation
	Methods and Workloads
	Performance Evaluation
	Accuracy Evaluation
	Data Center Level Optimizations
	Results from Early Adopters

	Conclusions and Discussion

