
SKILL Language User Guide

Product Version 06.70
January 2007

 1990-2007 Cadence Design Systems, Inc. All rights reserved.
Printed in the United States of America.

Cadence Design Systems, Inc., 555 River Oaks Parkway, San Jose, CA 95134, USA

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. (Cadence) contained in
this document are attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s
trademarks, contact the corporate legal department at the address shown above or call 1-800-862-4522.

All other trademarks are the property of their respective holders.

Restricted Print Permission: This publication is protected by copyright and any unauthorized use of this
publication may violate copyright, trademark, and other laws. Except as specified in this permission
statement, this publication may not be copied, reproduced, modified, published, uploaded, posted,
transmitted, or distributed in any way, without prior written permission from Cadence. This statement grants
you permission to print one (1) hard copy of this publication subject to the following conditions:

1. The publication may be used solely for personal, informational, and noncommercial purposes;
2. The publication may not be modified in any way;
3. Any copy of the publication or portion thereof must include all original copyright, trademark, and other

proprietary notices and this permission statement; and
4. Cadence reserves the right to revoke this authorization at any time, and any such use shall be

discontinued immediately upon written notice from Cadence.

Disclaimer: Information in this publication is subject to change without notice and does not represent a
commitment on the part of Cadence. The information contained herein is the proprietary and confidential
information of Cadence or its licensors, and is supplied subject to, and may be used only by Cadence’s
customer in accordance with, a written agreement between Cadence and its customer. Except as may be
explicitly set forth in such agreement, Cadence does not make, and expressly disclaims, any
representations or warranties as to the completeness, accuracy or usefulness of the information contained
in this document. Cadence does not warrant that use of such information will not infringe any third party
rights, nor does Cadence assume any liability for damages or costs of any kind that may result from use of
such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in FAR52.227-14 and DFAR252.227-7013 et seq. or its successor.

SKILL Language User Guide

Contents
Preface . 19

About the SKILL Language . 20
Quick Look at All the Chapters . 21
What’s New . 23
SKILL Development Helpful Hints . 23
SKILL API Documentation . 24
Document Conventions . 24

Syntax Conventions . 24
Data Types . 25

1
Getting Started . 27

SKILL’s Relationship to Lisp . 28
Programming Notation . 28
Data Manipulation . 28
Characters . 29

Cadence SKILL Language at a Glance . 29
Terms and Definitions . 30
Invoking a SKILL Function . 31
Return Value of a Function . 32
Simplest SKILL Data . 32
Calling a Function . 32
Operators Are SKILL Functions . 33
Using Variables . 33
Alternative Ways to Invoke a Function . 34
Solving Some Common Problems . 34

SKILL Lists . 35
Building Lists . 36
Accessing Lists . 38
Modifying Lists . 39

File Input/Output . 40
January 2007 3 Product Version 06.70

SKILL Language User Guide
Displaying Data . 41
Writing Data to a File . 42
Reading Data from a File . 43

Flow of Control . 45
Relational Operators . 45
Logical Operators . 46
The if Function . 47
The when and unless Functions . 48
The case Function . 48
The for Function . 49
The foreach Function . 50

Developing a SKILL Function . 51
Grouping SKILL Statements . 51
Declaring a SKILL Function . 52
Defining Function Parameters . 52
Selecting Prefixes for Your Functions . 52
Maintaining SKILL Source Code . 53
Loading Your SKILL Source Code . 53
Redefining a SKILL Function . 54

2
Language Characteristics . 57

Naming Conventions . 58
Names of Functions . 58
Cadence-Private Functions . 59
Names of Variables . 59

Function Calls . 61
SKILL Syntax . 61

Special Characters . 61
Comments . 63
White Space . 63
White Space Characters . 64
Parentheses . 64
Super Right Bracket . 65
Backquote, Comma, and Comma-At . 65
January 2007 4 Product Version 06.70

SKILL Language User Guide
Line Continuation . 66
Length of Input Lists . 66

Data Characteristics . 66
Data Types . 67
Numbers . 68
Strings . 70
Atoms . 71
Escape Sequences . 71
Symbols . 72
Characters . 72

3
Creating Functions in SKILL . 75

Terms and Definitions . 76
Kinds of Functions . 77
Syntax Functions for Defining Functions . 77

procedure . 77
lambda . 78
nprocedure . 78
defmacro . 78
mprocedures . 79
Summary of Syntax Functions . 79

Defining Parameters . 80
@rest Option . 80
@optional Option . 81
@key Option . 81
Combining Arguments . 82

Type Checking . 82
Local Variables . 83

Defining Local Variables Using the let Function . 83
Defining Local Variables Using the prog Function . 84
Initializing Local Variables to Non-nil Values . 84

Global Variables . 84
Testing Global Variables . 85
Avoiding Name Clashes . 85
January 2007 5 Product Version 06.70

SKILL Language User Guide
Naming Scheme . 86
Reducing the Number of Global Variables . 86

Redefining Existing Functions . 86
Physical Limits for Functions . 87

4
Data Structures . 89

Access Operators . 90
Symbols . 90

Creating Symbols . 91
The Print Name of a Symbol . 91
The Value of a Symbol . 92
The Function Binding of a Symbol . 93
The Property List of a Symbol . 93
Important Symbol Property List Considerations . 95

Disembodied Property Lists . 95
Important Considerations . 97
Additional Property List Functions . 97

Strings . 99
Concatenating Strings . 99
Comparing Strings . 100
Getting Character Information in Strings . 101
Indexing with Character Pointers . 101
Creating Substrings . 102
Converting Case . 103
Pattern Matching of Regular Expressions . 103
Pattern Matching Functions . 105

Defstructs . 107
Behavior Is Similar to Disembodied Property Lists . 108
Additional Defstruct Functions . 108
Accessing Named Slots in SKILL Structures . 109
Extended defstruct Example . 110

Arrays . 111
Allocating an Array of a Given Size . 112
Accessing Arrays . 112
January 2007 6 Product Version 06.70

SKILL Language User Guide
Association Tables . 113
Initializing Tables . 113
Manipulating Table Data . 114
Association Table Functions . 114
Traversing Association Tables . 116
Implementing Sparse Arrays . 116

Association Lists . 117
User-Defined Types . 117

5
Arithmetic and Logical Expressions . 119

Creating Arithmetic and Logical Expressions . 120
Role of Parentheses . 121
Quoting to Prevent Evaluation . 121
Arithmetic and Logical Operators . 121
Predefined Arithmetic Functions . 125
Bitwise Logical Operators . 126
Bit Field Operators . 126
Mixed-Mode Arithmetic . 128
Function Overloading . 131
Integer-Only Arithmetic . 131
True (non-nil) and False (nil) Conditions . 132
Controlling the Order of Evaluation . 132
Testing Arithmetic Conditions . 133

Differences Between SKILL and C Syntax . 133
SKILL Predicates . 134

The atom Function . 134
The boundp Function . 134
Using Predicates Efficiently . 135
The eq Function . 135
The equal Function . 135
The neq Function . 136
The nequal Function . 136
The member and memq Functions . 136
The tailp Function . 137
January 2007 7 Product Version 06.70

SKILL Language User Guide
Type Predicates . 137

6
Control Structures . 139

Control Functions . 140
Conditional Functions . 140
Iteration Functions . 141

Selection Functions . 142
Declaring Local Variables with prog . 143

The prog Function . 144
The return Function . 144

Grouping Functions . 145
Using prog, return, and let . 145
Using the progn Function . 147
Using the prog1 and prog2 Functions . 147

7
I/O and File Handling. 149

File System Interface . 150
Files . 150
Directories . 150
Directory Paths . 150
The SKILL Path . 151
Working with the SKILL Path . 152
Working with the Installation Path . 153
Checking File Status . 154
Working with Directories . 156

Ports . 159
Predefined Ports . 160
Opening and Closing Ports . 160

Output . 162
Unformatted Output . 162
Formatted Output . 163
Pretty Printing . 165

Input . 166
January 2007 8 Product Version 06.70

SKILL Language User Guide
Reading and Evaluating SKILL Formats . 167
Reading but Not Evaluating SKILL Formats . 169
Reading Application-Specific Formats . 170
Reading Application-Specific Formats from Strings . 171

System-Related Functions . 172
Executing UNIX Commands . 172
System Environment . 172

8
Advanced List Operations . 175

Conceptual Background . 176
How Lists Are Stored in Virtual Memory . 176
Destructive versus Non-Destructive Operations . 178

Summary of List Operations . 178
Altering List Cells . 179

The rplaca Function . 179
The rplacd Function . 180

Accessing Lists . 180
Selecting an Indexed Element from a List (nthelem) . 180
Applying cdr to a List a Given Number of Times (nthcdr) . 180
Getting the Last List Cell in a List (last) . 181

Building Lists Efficiently . 181
Adding Elements to the Front of a List (cons, xcons) . 181
Building a List with a Given Element (ncons) . 182
Adding Elements to the End of a List (tconc) . 182
Appending Lists . 183

Reorganizing a List . 184
Reversing a List . 184
Sorting Lists . 184

Searching Lists . 185
The member Function . 185
The memq Function . 186
The exists Function . 186

Copying Lists . 186
The copy Function . 186
January 2007 9 Product Version 06.70

SKILL Language User Guide
Copying a List Hierarchically . 187
Filtering Lists . 187
Removing Elements from a List . 188

Non-Destructive Operations . 188
Destructive Operations . 189

Substituting Elements . 189
Transforming Elements of a Filtered List . 190
Validating Lists . 190

The forall Function . 191
The exists Function . 191

Using Mapping Functions to Traverse Lists . 191
Using lambda with the map* Functions . 191
Using the map* Functions with the foreach Function . 192
The mapc Function . 192
The map Function . 193
The mapcar Function . 194
The maplist Function . 194
The mapcan Function . 195
Summarizing the List Traversal Operations . 196

List Traversal Case Studies . 197
Handling a List of Strings . 197
Making Every List Element into a Sublist . 198
Using mapcan for List Flattening . 198
Flattening a List with Many Levels . 199
Manipulating an Association List . 199
Using the exists Function to Avoid Explicit List Traversal . 200
Commenting List Traversal Code . 202

9
Advanced Topics. 203

Cadence SKILL Language Architecture and Implementation . 204
Evaluation . 205

Evaluating an Expression (eval) . 205
Getting the Value of a Symbol (symeval) . 205
Applying a Function to an Argument List (apply) . 206
January 2007 10 Product Version 06.70

SKILL Language User Guide
Function Objects . 207
Retrieving the Function Object for a Symbol (getd) . 207
Assigning a New Function Binding (putd) . 208
Declaring a Function Object (lambda) . 208
Evaluating a Function Object . 209
Efficiently Storing Programs as Data . 209

Macros . 210
Benefits of Macros . 210
Macro Expansion . 210
Redefining Macros . 211
defmacro . 211
mprocedure . 211
Using the Backquote (`) Operator with defmacro . 211
Using an @rest Argument with defmacro . 212
Using @key Arguments with defmacro . 213

Variables . 214
Lexical Scoping . 214
Dynamic Scoping . 214
Dynamic Globals . 214

Error Handling . 215
The errset Function . 215
Using err and errset Together . 216
The error Function . 217
The warn Function . 217
The getWarn Function . 217

Top Levels . 218
Memory Management (Garbage Collection) . 219

How to Work with Garbage Collection . 219
Printing Summary Statistics . 220
Allocating Space Manually . 221

Exiting SKILL . 221

10
Delivering Products. 223

Contexts . 224
January 2007 11 Product Version 06.70

SKILL Language User Guide
Deciding When to Use Contexts . 225
Creating Contexts . 226
Creating Utility Functions . 228
Building the Contexts . 230
Initializing Contexts . 230
Loading Contexts . 231
Customizing External Contexts . 233
Potential Problems . 233
Context Building Functions . 235

Autoloading Your Functions . 237
Encrypting and Compressing Files . 238
Protecting Functions and Variables . 238

Explicitly Protecting Functions . 238
Protecting Variables . 239
Global Function Protection . 240

11
Writing Style . 241

Code Layout . 242
Comments and Documentation . 242
Function Calls and Brackets . 244
Commas . 246

Using Globals . 246
Coding Style Mistakes . 248

Inefficient Use of Conditionals . 248
Misusing prog and Conditionals . 249

Red Flags . 250
Any Use of eval or evalstring . 250
Excessive Use of reverse and append . 251
Excessive Use of gensym and concat . 251
Overuse of the Functions Combining car and cdr . 251
Use of eval Inside Macros . 251
Misuse of prog and return in SKILL++ mode . 251
January 2007 12 Product Version 06.70

SKILL Language User Guide
12
Optimizing SKILL . 253

Optimizing Techniques . 255
Macros . 255
Caching . 255
Mapping and Qualifying . 256
Write Protection . 256
Minimizing Memory . 257

General Optimizing Tips . 258
Element Comparison . 258
List Accessing . 261
List Building . 261
List Searching . 264
List Sorting . 264
Element Removal and Replacing . 264
Alternatives to Lists . 265

Miscellaneous Comparative Timings . 265
Element Comparison . 265
List Building . 266
Mapping Functions . 267
Data Structures . 268

13
About SKILL++ and SKILL . 271

Background Information about SKILL and Scheme . 272
Relating SKILL++ to IEEE and CFI Standard Scheme . 273

Syntax Differences . 273
Semantic Differences . 274
Syntax Options . 275
Compliance Disclaimer . 275
References . 276

Extension Language Environment . 276
Contrasting Variable Scoping . 277

SKILL++ Uses Lexical Scoping . 278
January 2007 13 Product Version 06.70

SKILL Language User Guide
SKILL Uses Dynamic Scoping . 278
Lexical versus Dynamic Scoping . 278
Example 1: Sometimes the Scoping Rules Agree . 279
Example 2: When Dynamic and Lexical Scoping Disagree 279
Example 3: Calling Sequence Effects on Memory Location 280

Contrasting Symbol Usage . 280
How SKILL Uses Symbols . 280
How SKILL++ Uses Symbols . 281

Contrasting the Use of Functions as Data . 282
Assigning a Function Object to a Variable . 282
Passing a Function as an Argument . 282

SKILL++ Closures . 283
Relationship to Free Variables . 283
How SKILL++ Closures Behave . 284

SKILL++ Environments . 286
The Active Environment . 286
The Top-Level Environment . 287
Creating Environments . 287
Functions and Environments . 289
Persistent Environments . 290

14
Using SKILL++ . 293

Declaring Local Variables in SKILL++ . 293
Using let . 294
Using letseq . 295
Using letrec . 296
Using procedure to Declare Local Functions . 297

Sequencing and Iteration . 298
Using begin . 298
Using do . 299
Using a Named let . 302

Software Engineering with SKILL++ . 304
SKILL++ Packages . 304

The Stack Package . 305
January 2007 14 Product Version 06.70

SKILL Language User Guide
Retrofitting a SKILL API as a SKILL++ Package . 306
SKILL++ Modules . 307
Stack Module Example . 307
The Container Module . 309

15
Using SKILL and SKILL++ Together . 313

Selecting an Interactive Language . 315
Starting an Interactive Loop (toplevel) . 315
Exiting the Interactive Loop (resume) . 315

Partitioning Your Source Code . 316
Cross-Calling Guidelines . 316

Avoid Calling SKILL Functions That Call eval, symeval, or evalstring 316
Avoid Calling nlambda Functions . 317
Use the set Function with Care . 318

Redefining Functions . 318
Sharing Global Variables . 318

Using importSkillVar . 319
How importSkillVar Works . 319
Evaluating an Expression with SKILL Semantics . 320

Debugging SKILL++ Applications . 320
Retrieving a Function Object (funobj) . 320
Examining the Source Code for a Function Object . 321
Pretty-Printing Package Functions . 321
Inspecting Environments . 322
Retrieving the Active Environment . 322
Testing Variables in an Environment (boundp) . 323
Using the -> Operator with Environments . 323
Using the ->?? Operator with Environments . 323
Evaluating an Expression in an Environment (eval) . 323
Retrieving an Environment (envobj) . 323
Examining Closures . 324
General SKILL Debugger Commands . 324
January 2007 15 Product Version 06.70

SKILL Language User Guide
16
SKILL++ Object System . 327

Basic Concepts . 328
Classes and Instances . 328
Generic Functions and Methods . 328
Subclasses and Superclasses . 329
Defining a Class (defclass) . 329
Instantiating a Class (makeInstance) . 331
Reading and Writing Instance Slots . 331
Defining a Generic Function (defgeneric) . 332
Defining a Method (defmethod) . 332

Class Hierarchy . 334
Browsing the Class Hierarchy . 335

Getting the Class Object from the Class Name . 336
Getting the Class Name from the Class Object . 336
Getting the Class of an Instance . 336
Getting the Superclasses of an Instance . 336
Checking if an Object Is an Instance of a Class . 337
Checking if One Class Is a Subclass of Another . 337

Advanced Concepts . 338
Method Argument Restrictions . 338
Applying a Generic Function . 339
Incremental Development . 340
Methods versus Slots . 341
Sharing Private Functions and Data Between Methods . 341

17
Programming Examples . 343

List Manipulation . 344
Symbol Manipulation . 344
Sorting a List of Points . 345
Computing the Center of a Bounding Box . 346
Computing the Area of a Bounding Box . 347
Computing a Bounding Box Centered at a Point . 347
January 2007 16 Product Version 06.70

SKILL Language User Guide
Computing the Union of Several Bounding Boxes . 348
Computing the Intersection of Bounding Boxes . 348
Prime Factorizations . 349

Evaluating a Prime Factorization . 349
Computing the Prime Factorization . 351
Multiplying Two Prime Factorizations . 352
Using Prime Factorizations to Compute the GCD . 353

Fibonacci Function . 354
Factorial Function . 354
Exponential Function . 355
Counting Values in a List . 355
Counting Characters in a String . 357
Regular Expression Pattern Matching . 357
Geometric Constructions . 358

Application Domain . 358
Implementation . 359
Classes . 360
Generic Functions . 361
Describing the Methods by Class . 362
Source Code . 363
Extending the Implementation . 371

Index. 373
January 2007 17 Product Version 06.70

SKILL Language User Guide
January 2007 18 Product Version 06.70

SKILL Language User Guide
Preface

The SKILL Language User Guide introduces the SKILL language to new users and

■ Introduces advanced topics

■ Encourages sound SKILL programming methods

■ Introduces the Cadence® SKILL++ Language, the second-generation extension
language for CAD software from Cadence

This manual is intended for the following users:

■ People learning to program

■ Software users who want to know some of the basics of SKILL

■ Programmers beginning to program in SKILL

■ CAD developers (internal users and customers) who have experience programming in
SKILL

■ CAD integrators

You can find companion information in the SKILL Language Functions Reference.

See also:

■ About the SKILL Language on page 20

■ Quick Look at All the Chapters on page 21

■ What’s New on page 23

■ SKILL Development Helpful Hints on page 23

■ SKILL API Documentation on page 24

■ Document Conventions on page 24
January 2007 19 Product Version 06.70

SKILL Language User Guide
Preface
About the SKILL Language

The SKILL programming language lets you customize and extend your design environment.
SKILL provides a safe, high-level programming environment that automatically handles many
traditional system programming operations, such as memory management. SKILL programs
can be immediately executed in the Cadence environment.

SKILL is ideal for rapid prototyping. You can incrementally validate the steps of your algorithm
before incorporating them in a larger program.

Storage management errors are persistently the most common reason cited for schedule
delays in traditional software development. SKILL’s automatic storage management relieves
your program of the burden of explicit storage management. You gain control of your software
development schedule.

SKILL also controls notoriously error-prone system programming tasks like list management
and complex exception handling, allowing you to focus on the relevant details of your
algorithm or user interface design. Your programs will be more maintainable because they will
be more concise.

The Cadence environment allows SKILL program development such as user interface
customization. The SKILL Development Environment contains powerful tracing, debugging,
and profiling tools for more ambitious projects.

SKILL leverages your investment in Cadence technology because you can combine existing
functionality and add new capabilities.

SKILL allows you to access and control all the components of your tool environment: the User
Interface Management System, the Design Database, and the commands of any integrated
design tool. You can even loosely couple proprietary design tools as separate processes with
SKILL’s interprocess communication facilities.
January 2007 20 Product Version 06.70

SKILL Language User Guide
Preface
Quick Look at All the Chapters

Chapter 1, “Getting Started,” introduces you to the SKILL programming language. This
chapter shows you how to enter simple SKILL expressions and understand the system
output. It introduces the list, a data structure that is central to SKILL. It presents basic file
input/output functions and shows several ways to control program flow. It introduces the basic
steps to creating your own SKILL procedures.

Chapter 2, “Language Characteristics,” explains the basic structure and syntax of the SKILL
language. It presents details of data structures introduced in chapter one, uniting basic data
information in one place.

Chapter 3, “Creating Functions in SKILL,” fills you in on more of the details about constructs
for defining a function, identifying data types for function arguments, defining parameters, and
defining local and global variables.

Chapter 4, “Data Structures,” presents an in-depth view of data structures, such as symbols,
property lists, defstructs, arrays, strings, and association tables. It describes what they are
and how to use them.

Chapter 5, “Arithmetic and Logical Expressions,” presents operators and predefined SKILL
arithmetic and logical functions. It shows you how to create expressions using the operators.
It explains how SKILL performs a sequence of function evaluations and deals with function
overloading.

Chapter 6, “Control Structures,” introduces more branching, iteration, and selection functions.
It demonstrates how to declare local variables using prog. It details how to group statements
where only a single statement would otherwise be allowed.

Chapter 7, “I/O and File Handling,” describes the SKILL file system interface. It presents
functions that interact with ports, create formatted or unformatted output, scan input strings
or characters, and manage files and directories.

Chapter 8, “Advanced List Operations,” presents an in-depth view of lists, including a
conceptual overview. It discusses more advanced SKILL list functions and how to use them.
As you become more familiar with SKILL, you will probably be using and building lists more
frequently.

Chapter 9, “Advanced Topics,” contains concepts of interest to advanced users. It discusses
SKILL architecture and implementation, evaluation, function objects, the lambda function
designator, differences in C and SKILL macros, error handling, talking to the SKILL top level,
and memory management (garbage collection). It also describes dynamic and lexical
scoping.
January 2007 21 Product Version 06.70

SKILL Language User Guide
Preface
Chapter 10, “Delivering Products,” describes contexts, which are binary representations of
the internal state of the interpreter. This chapter provides information the developer needs to
decide when it is better to use contexts as opposed to straight or encrypted SKILL code.

Chapter 11, “Writing Style,” shows ways to make your SKILL programs understandable,
reusable, extensible, efficient, and easy to maintain.

Chapter 12, “Optimizing SKILL,” shows you what to do if code is not running as fast as it
should. It presents the when, what, and how of optimizing code. It helps you focus your efforts
to improve your code.

Chapter 13, “About SKILL++ and SKILL,” introduces the Cadence-supplied Scheme called
SKILL++, which is the second generation extension language for the CAD tools from
Cadence.

Chapter 14, “Using SKILL++,” focuses in detail on the key areas in which SKILL++ semantics
differ from SKILL semantics.

Chapter 15, “Using SKILL and SKILL++ Together,” discusses the pragmatics of developing
SKILL++ programs. It identifies several more factors to consider in creating applications
which involve tightly integrated SKILL and SKILL++ components, such as, selecting a
language, partitioning an application, cross calling between SKILL and SKILL++, and
debugging a SKILL++ program.

Chapter 16, “SKILL++ Object System,” describes a system that allows for object-oriented
interfaces based on classes and generic functions composed of methods specialized on
those classes. A class can inherit attributes and functionality from another class known as its
superclass. SKILL++ class hierarchies result from this single inheritance relationship.

Chapter 17, “Programming Examples,” presents a variety of samples of SKILL code.
January 2007 22 Product Version 06.70

SKILL Language User Guide
Preface
What’s New

The following changes have been made for this release:

■ “Naming Conventions” on page 58, which describes Cadence naming conventions for
functions, variables, and their arguments, has been updated.

■ The table of scaling factors that can be added on at the end of a decimal number in
“Scaling Factors” on page 69 has been updated.

SKILL Development Helpful Hints

Here are some helpful hints:

■ You can click Help in the SKILL Development Toolbox to access SKILL Development
Help for information about utilities available in the toolbox. The Walkthrough can guide
you through the tasks you perform when you develop SKILL programs using the SKILL
Development Toolbox. You can also find information about SKILL lint messages, and
message groups.

■ You can use the SKILL Finder to access syntax and abstracts for SKILL language
functions and application procedural interfaces (APIs).

■ You can copy examples from windows and paste the code directly into the Command
Interprete Window (CIW) or use the code in nongraphics SKILL mode. To select text

❑ Use Control+drag to select a text segment of any size.

❑ Use Control+double-click to select a word.

❑ Use Control+triple-click to select an entire section.

For more information about Cadence SKILL language and other related products, see

■ SKILL Development Help

■ SKILL Development Functions Reference

■ SKILL Language Functions Reference

■ Interprocess Communication SKILL Functions Reference

■ SKILL++ Object System Functions Reference

Note: The Cadence Installation Guide tells you how to install the product.
January 2007 23 Product Version 06.70

SKILL Language User Guide
Preface
SKILL API Documentation

Cadence tools have their own application procedural interface functions. You can access the
SKILL function references in the CDSDoc library by selecting Docs by Product and opening
the SKILL folder. The set of books you will find there include the following:

■ Cadence Design Framework II SKILL Functions Reference contains APIs for the
graphics editor, database access, design management, technology file administration,
online environment, design flow, user entry, display lists, component description format,
and graph browser.

■ Cadence User Interface SKILL Functions Reference contains APIs for
management of windows and forms.

Document Conventions

The conventions used in this document are explained in the following sections. These include
the subsections used in the definition of each function and the font and style of the syntax
conventions.

Syntax Conventions

This section describes the typographic and syntax conventions used in this manual.

text Indicates text you must type exactly as it is presented.

z_argument Indicates text that you must replace with an appropriate
argument. The prefix (in this case, z_) indicates the data type
the argument can accept. Do not type the data type or
underscore.

[] Denotes optional arguments. When used with vertical bars, they
enclose a list of choices from which you can choose one.

{ } Used with vertical bars and encloses a list of choices from which
you must choose one.

| Separates a choice of options; separates the possible values
that can be returned by a Cadence® SKILL language function.

… Indicates that you can repeat the previous argument.
January 2007 24 Product Version 06.70

SKILL Language User Guide
Preface
=> Precedes the values returned by a Cadence SKILL language
function.

text Indicates names of manuals, menu commands, form buttons,
and form fields.

Important

The language requires many characters not included in the preceding list. You must
type these characters exactly as they are shown in the syntax.

Data Types

The Cadence SKILL language supports several data types to identify the type of value you
can assign to an argument. Data types are identified by a single letter followed by an
underscore; for example, t is the data type in t_viewNames. Data types and the
underscore are used as identifiers only: they are not to be typed.

The table below lists all data types supported by SKILL.

Data Types by Type

Prefix Internal Name Data Type

a array array

b ddUserType Boolean

C opfcontext OPF context

d dbobject Cadence database object (CDBA)

e envobj environment

f flonum floating-point number

F opffile OPF file ID

g general any data type

G gdmSpecIlUserType gdm spec

h hdbobject hierarchical database configuration object

l list linked list

m nmpIlUserType nmpIl user type

M cdsEvalObject —
January 2007 25 Product Version 06.70

SKILL Language User Guide
Preface
n number integer or floating-point number

o userType user-defined type (other)

p port I/O port

q gdmspecListIlUserType gdm spec list

r defstruct defstruct

R rodObj relative object design (ROD) object

s symbol symbol

S stringSymbol symbol or character string

t string character string (text)

u function function object, either the name of a function (symbol) or
a lambda function body (list)

U funobj function object

v hdbpath —

w wtype window type

x integer integer number

y binary binary function

& pointer pointer type

Data Types by Type, continued

Prefix Internal Name Data Type
January 2007 26 Product Version 06.70

SKILL Language User Guide
1
Getting Started

Cadence® SKILL is a high-level, interactive programming language based on the popular
artificial intelligence language, Lisp. Because SKILL supports a more conventional C-like
syntax, novice users can learn to use it quickly, and expert programmers can access the full
power of the Lisp language. SKILL is as easy to use as a calculator as well as being a
powerful programming language whose applications are virtually unlimited.

SKILL brings you a functional interface to the underlying subsystems. SKILL lets you quickly
and easily customize existing CAD applications and helps you develop new applications.
SKILL has functions to access each Cadence tool using an application programming
interface.

This document describes functions that are common to all of the Cadence tools used in either
a graphic or nongraphic environment. Once you master these basic functions, you need to
learn only a few new functions to access any tool in the Cadence environment.

■ SKILL’s Relationship to Lisp on page 28

■ Cadence SKILL Language at a Glance on page 29

■ SKILL Lists on page 35

■ File Input/Output on page 40

■ Flow of Control on page 45

■ Developing a SKILL Function on page 51
January 2007 27 Product Version 06.70

SKILL Language User Guide
Getting Started
SKILL’s Relationship to Lisp

Note: If you are new either to SKILL or to programming in general, start with “Cadence SKILL
Language at a Glance” on page 29.

Programming Notation

In SKILL, function calls can be written in either of the following notations:

■ Algebraic notation used by most programming languages: func(arg1 arg2 …)

■ Prefix notation used by the Lisp programming language: (func arg1 arg2 …)

For comparison, here is a SKILL program written first in algebraic notation, then the same
program, also implemented in SKILL, using a Lisp style of programming.

procedure(fibonacci(n)
if((n == 1 || n == 2) then

1
else fibonacci(n-1) + fibonacci(n-2)
)

)

Here is the same program implemented in SKILL using a Lisp style of programming.

(defun fibonacci (n)
(cond

((or (equal n 1) (equal n 2)) 1)
(t (plus (fibonacci (difference n 1))

(fibonacci (difference n 2))))
)

)

Data Manipulation

Because programs in SKILL are represented as lists, just as they are in Lisp, they can be
manipulated like data. You can dynamically create, modify, or selectively evaluate function
definitions and expressions. This ability to manipulate data is one of the primary reasons why
Lisp is the language of choice for artificial intelligence applications. Because it takes full
advantage of the “program is data” concept of Lisp, SKILL can be used to write flexible and
powerful applications.

Many SKILL list manipulation functions are available. These functions operate, in most cases,
similar to functions of the same name in Lisp, and the Franz Lisp dialect in particular.

SKILL supports a special notation for list construction from templates. This notation is
borrowed from Common Lisp and allows selective evaluation within a quoted form. Selective
January 2007 28 Product Version 06.70

SKILL Language User Guide
Getting Started
evaluation eliminates the long sequences of calls to list and append. See Backquote,
Comma, and Comma-At on page 65.

Characters

Unlike many other programming languages, including Common Lisp, SKILL does not have a
separate character data type. Characters are instead represented by single character
symbols. The character “A,” for example, is the symbol “A.” Unprintable characters can be
referred to using the escape sequences.

Cadence SKILL Language at a Glance

This section presents a quick look at various aspects of the SKILL programming language.
These same subjects are discussed in greater detail in succeeding chapters.

This section introduces new terms and takes a general look at the Cadence Framework
environment. It explores SKILL data, function calls, variables and operators, then tells you
how to solve some common problems. Although each application defines the details of its
SKILL interface to that application, this document most often refers to the Cadence Design
Framework II environment when giving examples.

SKILL is the command language of the Cadence environment. Whenever you use forms,
menus, and bindkeys, the Cadence software triggers SKILL functions to complete your task.
For example, in most cases SKILL functions can

■ Open a design window

■ Zoom in by a factor of 2

■ Place an instance or a rectangle in a design

Other SKILL functions compute or retrieve data from the Cadence Framework environment
or from designs. For example, SKILL functions can retrieve the bounding box of the current
window or retrieve a list of all the shapes on a layer.

You can enter SKILL functions directly on a command line to bypass the graphic user
interface.
January 2007 29 Product Version 06.70

SKILL Language User Guide
Getting Started
Terms and Definitions

output The destination of SKILL output can be an xterm screen, a
design window, a file, or in many cases, the Command
Interpreter Window (CIW).

CIW Command Interpreter Window: The start-up working window for
many Cadence applications, which contains an input line, an
output area, a menu banner with commands to launch various
tools, and prompts for general information. The output area of
the CIW is the destination of many of the examples used in this
manual.

SKILL interpreter The SKILL interpreter executes SKILL programs within the
Cadence environment. The interpreter translates a SKILL
program’s text source code into internal data structures, which it
actively consults during the execution of the program.

compiler A compiler translates source code into a target representation,
which might be machine instructions or an intermediate
instruction set.

evaluation The process whereby the SKILL interpreter determines the value
of a SKILL expression.

SKILL expression An invocation of a SKILL function, often by means of an operator
supplying required parameters.

SKILL function A named, parameterizable body of one or more SKILL
expressions. You can invoke any SKILL function from the
command input line available in the application by using its name
and providing appropriate parameters.

SKILL procedure This term is used interchangeably with SKILL function.
January 2007 30 Product Version 06.70

SKILL Language User Guide
Getting Started
Invoking a SKILL Function

There are many ways to submit a SKILL function to the SKILL interpreter for evaluation. In
many applications, whenever you use forms, menus, and bindkeys, the Cadence software
triggers corresponding SKILL functions to complete your task. Normally, you do not need to
be aware of SKILL functions or any syntax issues.

Bindkeys A bindkey associates a SKILL function with a keyboard event.
When you cause the keyboard event, the Cadence software
sends the SKILL function to the SKILL interpreter for evaluation.

Forms Some functions require you to provide data by filling out fields in
a pop-up form.

Menus When you choose an item in a menu, the system sends an
associated SKILL function to the SKILL interpreter for evaluation.

CIW You can directly enter a SKILL function into the CIW for
immediate evaluation.

SKILL Process You can launch a separate UNIX process that can submit SKILL
functions directly to the SKILL interpreter.

You can submit a collection of SKILL functions for evaluation by loading a SKILL source code
file.

SKILL Interpreter

MenusFormsBindkeys

CIW SKILL ProcessSKILL Function
January 2007 31 Product Version 06.70

SKILL Language User Guide
Getting Started
Return Value of a Function

All SKILL functions compute a data value known as the return value of the function. You can

■ Assign the return value to a SKILL variable

■ Pass the return value to another SKILL function

Any type of data can be a return value. SKILL supports many data types, including integers,
text strings, and lists.

Simplest SKILL Data

The simplest SKILL expression is a data item. SKILL data is case sensitive. You can enter
data in many familiar ways, including the following.

Calling a Function

Function names are case sensitive. To call a function, state its name and arguments in a pair
of parentheses.

strcat("Mary" " had" " a" " little" " lamb")
=> "Mary had a little lamb"

■ No spaces are allowed between the function name and the left parenthesis.

■ Several function calls can be on a single line. Use spaces to separate them.

■ You can span multiple lines in the command line or a source code file.

strcat(
"Mary" " had" " a"
" little" " lamb")

=> "Mary had a little lamb"

■ When you enter several function calls on a single line, the system only displays the return
result from the final function call.

Sample SKILL Data Items

Data Type Syntax Example

integer 5

floating point 5.3

text string "Mary had a little lamb"
January 2007 32 Product Version 06.70

SKILL Language User Guide
Getting Started
Operators Are SKILL Functions

SKILL provides many operators. Each operator corresponds to a SKILL function. Here are
some examples of useful operators:

The following example shows several function calls using operators on a single line. The calls
are separated by spaces. The system displays the return result from the final function call.

x = 5 y = 6 x+y
=> 11

Using Variables

You do not need to declare variables in SKILL. SKILL creates a variable the first time it
encounters the variable in a session. Variable names can contain

■ Alphanumeric characters

■ Underscores (_)

■ Question marks

The first character of a variable cannot be a digit. Use the assignment operator to store a
value in a variable. You enter the variable name to retrieve its value. The type SKILL function
returns the data type of the variable’s current value.

lineCount = 4 => 4
lineCount => 4
type(lineCount) => fixnum

Sample SKILL Operators

Operators in Descending Precedence Underlying Function Operation

** expt arithmetic

*
/

times
quotient

arithmetic

+
–

plus
difference

arithmetic

++s, s++ preincrement,
postincrement

arithmetic

==
!=

equal
nequal

tests for equality
tests for inequality

= setq assignment
January 2007 33 Product Version 06.70

SKILL Language User Guide
Getting Started
lineCount = "abc" => "abc"
lineCount => "abc"
type(lineCount) => string

Alternative Ways to Invoke a Function

In addition to calling a function by stating its name and arguments in a pair of parentheses,
as shown below, you can use two other syntax forms to invoke SKILL functions.

strcat("Mary" " had" " a" " little" " lamb")

■ You can place the left parenthesis to the left of the function name (Lisp syntax).

(strcat "Mary" " had" " a" " little" " lamb")
=> "Mary had a little lamb"

■ You can omit the outermost levels of parenthesis if the SKILL function is the first element
at your SKILL prompt, that is, at the top level.

strcat "Mary" " had" " a" " little" " lamb"
=> "Mary had a little lamb"

You can use all three syntax forms together. In programming, it is best to be consistent.
Cadence recommends the first style noted above.

Solving Some Common Problems

Here are three of the most common SKILL problems.

System Doesn’t Respond

If you type in a SKILL function and press Return but nothing happens, you most likely have
one of these problems.

■ Unbalanced parentheses

■ Unbalanced string quotes

■ The wrong log file filter set

You might have entered more left parentheses than right parentheses. The following steps
trigger a system response in most cases.

1. Type a closing right bracket (]) character. This character closes all outstanding right
parentheses.

2. If you still don’t get a response, type a double quote (") character followed by a right
bracket (]) character.
January 2007 34 Product Version 06.70

SKILL Language User Guide
Getting Started
In most cases, the system then responds.

Inappropriate Space Characters

Do not put any space between the function name and the left parenthesis. Notice that the
following error messages do not identify the extra space as the cause of the problem.

■ Trying to use the strcat function to concatenate several strings.

strcat ("Mary" " had" " a" " little" " lamb")
Message: *Error* eval: not a function - "Mary"

■ Trying to make an assignment to a variable.

greeting = strcat ("happy" " birthday")
Message: *Error* eval: unbound variable - strcat

Data Type Mismatches

An error occurs when you pass inappropriate data to a SKILL function. The error message
includes a type template that indicates the expected type of the offending argument.

strcat("Mary had a" 5)
Message: *Error* strcat: argument #2 should be either
a string or a symbol (type template = "S") - 5

Here are the characters used in type templates for some common data types.

For a complete list of data types supported by SKILL, see Data Types on page 67.

SKILL Lists

A SKILL list is an ordered collection of SKILL data objects. The list data structure is central
to SKILL and is used in many ways.

Some Common Data Types

Data Type Character in Type Template

integer number x

floating point number f

symbol or character string S

character string (text) t

any data type (general) g
January 2007 35 Product Version 06.70

SKILL Language User Guide
Getting Started
The elements of a list can be of any data type, including variables and other lists. A list can
contain any number of objects (or be empty). The empty list can be represented either by
empty parentheses “()” or the special atom nil. The list must be enclosed in parentheses.
Lists can contain other lists to form arbitrarily complex data structures. Here are some
examples:

SKILL displays a list with parentheses surrounding the members of the list. The following
example stores a list in the variable shapeTypeList, then retrieves the variable’s value.

shapeTypeList = '("rect" "polygon" "rect" "line")
shapeTypeList => ("rect" "polygon" "rect" "line")

SKILL provides an extensive set of functions for creating and manipulating lists. Many SKILL
functions return lists. SKILL can use multiple lines to display lists. SKILL stores the
appropriate integer value in the _itemsperline global variable.

Building Lists

There are several main ways to build a list.

■ Specify all the elements of the list literally with the single quote (') operator.

■ Specify all the elements as evaluated arguments to the list function.

■ Add an element to an existing list with the cons function.

■ Merge two lists with the append function.

Both the cons and append functions allocate a new list and return it to you. You should
store the return result in a variable. Otherwise, you cannot refer to the list later.

The following functions allow you to construct new lists and work with existing lists in different
ways.

Sample Lists

List Explanation

(1 2 3) A list containing the integer constants 1, 2, and 3

(1) A list containing the single element 1

() An empty list (same as the special atom nil)

(1 (2 3) 4) A list containing another list as its second element
January 2007 36 Product Version 06.70

SKILL Language User Guide
Getting Started
Making a list from given elements

The single quote (') operator builds a list using the arguments exactly as they are presented.
The values of a and b are irrelevant. The list function fetches the values of variables for
inclusion in a list.

'(1 2 3) => (1 2 3)
a = 1 => 1
b = 2 => 2
list(a b 3) => (1 2 3)

Adding an element to the front of a list (cons)

You should store the return result from cons in a variable. Otherwise, you cannot refer to the
list later. Commonly, you store the result back into the variable containing the target list.

result = '(2 3) => (2 3)
result = cons(1 result) => (1 2 3)

Merging two lists (append)

You should store the return result from append in a variable. Otherwise, you cannot refer to
the list later.

oneList = '(4 5 6) => (4 5 6)
aList = '(1 2 3) => (1 2 3)
bList = append(oneList aList) => (4 5 6 1 2 3)

Common Questions and Answers

People often feel that nil, and the cons and append functions are difficult to understand.
Let’s look at some typical questions.

Typical Questions

Question Answer

What’s the difference between
nil and '(nil)?

nil is a list containing nothing. Its length is 0.
'(nil) builds a list containing a single element. The
length is 1.

How can I add an element to the
end of a list?

Use the list function to build a list containing the
individual elements.
Use the append function to merge it to the first list.
More efficient ways to add an element to the end of a
list are discussed in a later chapter.
January 2007 37 Product Version 06.70

SKILL Language User Guide
Getting Started
Accessing Lists

Lists are stored internally as a series of branching decision points. Think of the left branch as
pointing to the first element and the right branch as pointing to the rest of the list (further
branch decision points). The car function follows the left branch and the cdr function follows
the right branch.

Retrieving the first element of a list (car)

car returns the first element of a list. car was a machine language instruction on the first
machine to run Lisp. car stands for contents of the address register.

numbers = '(1 2 3) => (1 2 3)
car(numbers) => 1

Retrieving the tail of the list (cdr)

cdr returns a list minus the first element. cdr was a machine language instruction on the
first machine to run Lisp. cdr stands for contents of the decrement register.

numbers = '(1 2 3) => (1 2 3)
cdr(numbers) => (2 3)

Retrieving an element given an index (nth)

nth assumes a zero-based index. nth(0 numbers) is the same as
car(numbers).

Can I reverse the order of the
arguments to the cons function?
Will the results be the same?

You might think that simply reversing the elements to
the cons function will put the element on the end of the
list. However, this is not the case.

What’s the difference between
cons and append?

The cons function requires only that its second
argument be a list. The length of the resulting list is
one more than the length of the original list.
The append function requires that both its arguments
be lists. The length of the resulting list is the sum of the
lengths of the two argument lists.

append is slower than cons for large lists.

Typical Questions

Question Answer
January 2007 38 Product Version 06.70

SKILL Language User Guide
Getting Started
numbers = '(1 2 3) => (1 2 3)
nth(1 numbers) => 2

Determining if a data object is in a list (member)

The member function cannot search all levels in a hierarchical list. It only looks at the top-level
elements. Internally the member function follows right branches until it locates a branch point
whose left branch dead ends in the element.

numbers = '(1 2 3) => (1 2 3)
member(4 numbers) => nil
member(2 numbers) => (2 3)

Counting the elements in a list (length)

length determines the length of a list, array, or association table.

numbers = '(1 2 3) => (1 2 3)
length(numbers) => 3

Modifying Lists

The following functions operate on variables without changing their value or creating new
variables.

Coordinates

An xy coordinate is represented by a two-element list. The colon (:) binary operator builds a
coordinate from an x value and a y value.

xValue = 300
yValue = 400
aCoordinate = xValue:yValue => (300 400)

The functions xCoord and yCoord access the x coordinate and the y coordinate.

xCoord(aCoordinate) => 300
yCoord(aCoordinate) => 400

■ You can use the single quote (') operator or list function to build a coordinate list.

■ You can use the car function to access the x coordinate and car(cdr (…)) to access
the y coordinate.
January 2007 39 Product Version 06.70

SKILL Language User Guide
Getting Started
Bounding Boxes

A bounding box is represented by a list of the lower-left and upper-right coordinates. Use the
list function to build a bounding box that contains

■ Coordinates specified with the binary operator (:).

bBox = list(300:400 500:450)

■ Coordinates specified by variables.

lowerLeft = 300:400
upperRight = 500:450
bBox = list(lowerLeft upperRight)

You can use the single quote (') operator to build the bounding box if the coordinates are
specified by literal lists.

bBox = '((300 400) (500 450))

Bounding boxes provide a good example of working with the car and cdr functions. Use any
combination of four a’s (each a executes another car) or d’s (each d executes another
cdr).

File Input/Output

This section introduces how to

■ Display values using default formats and application-specific formats

Using car and cdr with Bounding Boxes

Functions Meaning Example Expression

car car(…) lower left corner ll = car(bBox)

cadr car(cdr(…)) upper right corner ur = cadr(bBox)

caar car(car(…)) x-coord of
lower left corner

llx = caar(bBox)

cadar car(cdr(car(…))) y-coord of
lower left corner

lly = cadar(bBox)

caadr car(car(cdr(…))) x-coord of
upper right corner

urx = caadr(bBox)

cadadr car(cdr(car(cdr(…] y-coord of
upper right corner

ury = cadadr(bBox)
January 2007 40 Product Version 06.70

SKILL Language User Guide
Getting Started
■ Write UNIX text files

■ Read UNIX text files

Displaying Data

Display data using

■ The print and println functions

■ The printf function

The print and println Functions

The SKILL interpreter has a default display format for each kind of data. The print and
println functions use this format to display data.

The print and println functions display a single data value. println is the same as
print followed by a newline character.

for(i 1 3 print("hello")) ;Prints hello three times.
"hello""hello""hello"

for(i 1 3 println("hello")) ;Prints hello three times.
"hello"
"hello"
"hello"

The printf Function

The printf function writes formatted output. This example displays a line in a report.

printf(
"\n%-15s %-15s %-10d %-10d %-10d %-10d"
layerName purpose

Sample Display Formats

Data Type Example of the Default Format

integer 5

floating point 1.3

text string "Mary learned SKILL"

variable bBox

list (1 2 3)
January 2007 41 Product Version 06.70

SKILL Language User Guide
Getting Started
rectCount labelCount lineCount miscCount
)

The first argument is a conversion control string containing directives.

%[-][width][.precision]conversion_code
[-] = left justify
[width] = minimum number of character positions
[.precision] = number of characters to be printed
conversion_code

d - decimal(integer)
f - floating point
s - string or symbol
c - character
n - numeric
L - list (Ignores width and precision fields.)
P - point list (Ignores width and precision fields.)
B - Bounding box list (Ignores width and precision.)

The %L directive specifies the default format. This directive is a convenient way to intersperse
application-specific formats with default formats. The printf function returns t. For more
information on directives, see Formatted Output on page 163.

aList = '(1 2 3)
printf("\nThis is a list: %L" aList) => t
This is a list: (1 2 3)
aList = nil
printf("\nThis is a list: %L" aList) => t
This is a list: nil

If the conversion control directive is inappropriate for the data item, printf displays an error.

printf("%d %d" 5 nil)
Message: *Error* fprintf/sprintf:

format spec. incompatible with data - nil

Writing Data to a File

To write text data to a file

1. Use the outfile function to obtain an output port on a file.

2. Use an optional output port parameter to the print and println functions
and/or use a required port parameter to the fprintf function.

3. Close the output port with the close function.

Both print and println accept an optional second argument, which should be an output
port associated with the target file. Use the outfile function to obtain an output port for a
file. Once you are finished writing data to the file, use the close function to release the port.
The following code

myPort = outfile("/tmp/myFile")
for(i 1 3
January 2007 42 Product Version 06.70

SKILL Language User Guide
Getting Started
println(list("Number:" i) myPort)
)

close(myPort)

writes this data to the file /tmp/myFile.

("Number:" 1)
("Number:" 2)
("Number:" 3)

Notice how SKILL displays a port:

myPort = outfile("/tmp/myFile")
port:"/tmp/myFile"

Use a full path with the outfile function. Keep in mind that outfile returns nil if you
don’t have write access to the file or if it can’t be created in the directory specified in the path.
The print and println functions display an error if the port argument is nil. Notice that
the type template uses a p character to indicate a port is expected.

println("Hello" nil)
Message: *Error* println: argument #2 should be an I/O port

(type template = "gp") - nil

Unlike the print and println functions, the printf function does not accept an optional
port argument. Use the fprintf function to write formatted data to a file. Its first argument
should be an output port associated with the file. The following code

myPort = outfile("/tmp/myFile")
for(i 1 3

fprintf(myPort "Number: %d\n" i)
)

close(myPort)

writes this data to the file /tmp/myFile.

Number: 1
Number: 2
Number: 3

Reading Data from a File

To read a text file

1. Use the infile function to obtain an input port.

2. Use the gets function to read the file a line at a time and/or
use the fscanf function to convert text fields upon input.

3. Close the input port with the close function.
January 2007 43 Product Version 06.70

SKILL Language User Guide
Getting Started
Use the infile function to obtain an input port on a file. The gets function reads the next
line from the file. This example prints every line in the
~/.cshrc file.

inPort = infile("~/.cshrc")
when(inPort

while(gets(nextLine inPort)
println(nextLine)

)
close(inPort)

)

The fscanf function reads data from a file according to format directives. This example
prints every word in ~/.cshrc.

inPort = infile("~/.cshrc")
when(inPort

while(fscanf(inPort "%s" word)
println(word)

)
close(inPort)

)

The gets function reads the next line from the file. The arguments of gets are the variable
that will receive the next line and the input port. gets returns the text string or nil when the
end of file is reached.

The fscanf function reads data from a file according to conversion control directives. The
arguments of fscanf are

■ Input port

■ Conversion control string

■ Variable(s) that will receive the matching data values

fscanf returns the number of data items matched.Format directives commonly found
include the following.

Some Common Format Directives

Format Specification Data Type Scans Input Port

%d integer for next integer

%f floating point for next floating point

%s text string for next text string

%e floating point for next floating point

%g floating point for next floating point
January 2007 44 Product Version 06.70

SKILL Language User Guide
Getting Started
For common output format specifications, see Formatted Output on page 163.

Flow of Control

This section introduces you to

■ Relational Operators: <, <=, >, >=, ==, !=

■ Logical Operators: !, &&, ||

■ Branching: if, when, unless

■ Multi-way Branching: case

■ Iteration: for, foreach

Iteration refers to repeatedly executing a collection of SKILL expressions by changing -
usually incrementing or decrementing - the value of one or more loop variables.

Relational Operators

Use the following operators to compare data values. SKILL generates an error if the data
types are inappropriate. These operators all return t or nil.

Sample Relational Operators

Operator Arguments Function Example Return Value

< numeric lessp 3 < 5
3 < 2

t
nil

<= numeric leqp 3 <= 4 t

> numeric greaterp 5 > 3 t

>= numeric geqp 4 >=3 t

== numeric
string
list

equal 3.0 == 3
"abc" == "ABc"

t

nil

!= numeric
string
list

nequal
"abc" != "ABc" t
January 2007 45 Product Version 06.70

SKILL Language User Guide
Getting Started
It is helpful to know the function name because error messages mention the function
(greaterp below) instead of the operator (>).

1 > "abc"
Message: *Error* greaterp: can’t handle (1 > "abc")

Logical Operators

SKILL considers nil as FALSE and any other value as TRUE. The and (&&) and or (||)
operators only evaluate their second argument if they need to determine the return result.

The && and || operators return the value last computed. Consequently, both && and ||
operators can be used to avoid cumbersome if or when expressions.

Using &&

When SKILL creates a variable, it gives the variable a value of unbound to indicate that the
variable has not been initialized yet. Use the boundp function to determine whether a variable
is bound. The boundp function

■ Returns t if the variable is bound to a value.

■ Returns nil if it is not bound to a value.

Suppose you want to return the value of a variable trMessages. If trMessages is
unbound, retrieving the value causes an error. Instead, use the expression

boundp('trMessages) && trMessages

Sample Logical Operators

Operator Arguments Function Example Return Value

&& general and 3 && 5
5 && 3
t && nil
nil && t

5
3
nil
nil

|| general or 3 || 5
5 || 3
t || nil
nil || t

3
5
t
t

January 2007 46 Product Version 06.70

SKILL Language User Guide
Getting Started
Using ||

Suppose you have a default name, such as noName. Suppose you have a variable, such as
userName. To use the default name if userName is nil, use the following expression

userName || "noName"

The if Function

Use the if function to selectively evaluate two groups of one or more expressions. The
condition in an if expression evaluates to nil or non-nil. The return value of the if
expression is the value last computed.

if(shapeType == "rect"
then

println("Shape is a rectangle")
++rectCount

else
println("Shape is not a rectangle")
++miscCount

)

SKILL does most of its error checking during execution. Error messages involving if
expressions can be obscure. Be sure to

■ Be aware of the placement of the parentheses: if(… then … else …).

■ Avoid white space immediately after the if keyword.

■ Use then and else when appropriate to your logic.

Consider the error message when you accidentally put white space after the if keyword.

shapeType = "rect"
if (shapeType == "rect"

then
println("Shape is a rectangle")
++rectCount

else
println("Shape is not a rectangle")
++miscCount

)

Message: *Error* if: too few arguments (at least 2 expected, 1 given)…

Consider the error message when you accidentally drop the then keyword, but include an
else keyword, and the condition returns nil.

shapeType = "label"
if(shapeType == "rect"

println("Shape is a rectangle")
++rectCount

else
println("Shape is not a rectangle")
January 2007 47 Product Version 06.70

SKILL Language User Guide
Getting Started
++miscCount
)

Message: *Error* if: too many arguments …

The when and unless Functions

Use the when function whenever you have only then expressions.

when(shapeType == "rect"
println("Shape is a rectangle")
++rectCount

) ; when

when(shapeType == "ellipse"
println("Shape is an ellipse")
++ellipseCount
) ; when

Use the unless function to avoid negating a condition. Some users find this less confusing.

unless(shapeType == "rect" || shapeType == "line"
println("Shape is miscellaneous")
++miscCount
) ; unless

The when and unless functions both return the last value evaluated within their body or
nil.

The case Function

The case function offers branching based on a numeric or string value.

case(shapeType
("rect"

++rectCount
println("Shape is a rectangle")
)

("line"
++lineCount
println("Shape is a line")
)

("label"
++labelCount
println("Shape is a label")
)

(t
++miscCount
println("Shape is miscellaneous")
)

) ; case

The optional value t acts as a catch-all and should be handled last. The case function
returns the value of the last expression evaluated. In this example:
January 2007 48 Product Version 06.70

SKILL Language User Guide
Getting Started
■ The value of the variable shapeType is compared against the values rect, line, and
label. If SKILL finds a match, the several expressions in that arm are evaluated.

■ If no match is found, the final arm is evaluated.

■ When an arm’s target value is actually a list, SKILL searches the list for the candidate
value. If SKILL finds the candidate value, all the expressions in the arm are evaluated.

case(shapeType
("rect"

++rectCount
println("Shape is a rectangle")
)

(("label" "line")
++labelOrLineCount
println("Shape is a line or a label")
)

(t
++miscCount
println("Shape is miscellaneous")
)

) ; case

The for Function

The index in a for expression is saved before the for loop and is restored to its saved value
after the for loop is exited. SKILL does most of its error checking during execution. Error
messages involving for expressions can be obscure. Be sure to

■ Be aware of the placement of the parentheses: for(…).

■ Avoid white space immediately after the for keyword.

The example below adds the integers from one to five to an intermediate sum. i is a variable
used as a counter for the loop and as the value to add to sum. Counting begins with one and
ends with the completion of the fifth loop. i increases by one for each iteration through the
loop.

sum = 0
for(i 1 5

sum = sum + i
println(sum)
)

=> t

SKILL prints the value of sum with a carriage return for each pass through the loop:

1
3
6
10
15
January 2007 49 Product Version 06.70

SKILL Language User Guide
Getting Started
The for function always returns t.

The foreach Function

The foreach function is very useful for performing operations on each element in a list. Use
the foreach function to evaluate one or more expressions for each element of a list of
values.

rectCount = lineCount = polygonCount = 0
shapeTypeList = '("rect" "polygon" "rect" "line")
foreach(shapeType shapeTypeList

case(shapeType
("rect" ++rectCount)
("line" ++lineCount)
("polygon" ++polygonCount)
(t ++miscCount)
) ;case

) ; foreach
=> ("rect" "polygon" "rect" "line")

When evaluating a foreach expression, SKILL determines the list of values and repeatedly
assigns successive elements to the index variable, evaluating each expression in the
foreach body. The foreach expression returns the list of values over which it iterates.

In the example:

■ The variable shapeType is the index variable. Before entering the foreach loop, SKILL
saves the current value of shapeType. SKILL restores the saved value after completing
the foreach loop.

■ The variable shapeTypeList contains the list of values. SKILL successively assigns
the values in shapeTypeList to shapeType, evaluating the body of the foreach loop
once for each separate value.

■ The body of the foreach loop is a single case expression.

■ The return value of the foreach loop is the list contained in variable shapeTypeList.

If you have executed the example above, you can examine the effect of the iterations by typing
the name of the counter:

rectCount => 2
lineCount => 1
polygonCount => 1
January 2007 50 Product Version 06.70

SKILL Language User Guide
Getting Started
Developing a SKILL Function

Developing a SKILL function includes the following tasks.

■ Grouping several SKILL statements into a single SKILL statement

■ Declaring a SKILL function with the procedure function

■ Defining function parameters

■ Maintaining your source code

■ Loading your SKILL source code

■ Redefining a SKILL function

Grouping SKILL Statements

Sometimes it is convenient to group several SKILL statements into a single SKILL statement.
Use braces { and } to group a collection of SKILL statements into a single SKILL statement.
The return value of the single statement is the return value of the last SKILL statement in the
group. You can assign this return value to a variable.

This example computes the pixel height of bBox and assigns it to the bBoxHeight variable:

bBoxHeight = {
bBox = list(100:150 250:400)
ll = car(bBox)
ur = cadr(bBox)
lly = yCoord(ll)
ury = yCoord(ur)
ury - lly }

■ The ll and ur variables hold the lower-left and upper-right coordinates of the bounding
box.

■ The xCoord and yCoord functions return the x and y coordinate of a point.

■ The ury - lly expression computes the height. This last statement in the group
determines the return value of the group.

■ The return value is assigned to the bBoxHeight variable.

You can declare the variables ll, ur, ury, and lly to be local variables. Use the prog or
let functions to define a collection of local variables for a group of several statements.
However, defining local variables is not recommended for novices.
January 2007 51 Product Version 06.70

SKILL Language User Guide
Getting Started
Declaring a SKILL Function

To refer to the group of statements by name, use the procedure declaration to associate a
name with the group. The group of statements and the name make up a SKILL function.

■ The name is known as the function name.

■ The group of statements is the function body.

■ To execute the group of statements, mention the function name followed immediately by
().

The ComputeBBoxHeight function example below computes the pixel height of bBox.

procedure(ComputeBBoxHeight()
bBox = list(100:150 250:400)
ll = car(bBox)
ur = cadr(bBox)
lly = yCoord(ll)
ury = yCoord(ur)
ury - lly
) ; procedure

bBoxHeight = ComputeBBoxHeight()

Defining Function Parameters

To make your function more versatile, you can identify certain variables in the function body
as formal parameters.

When you invoke your function, you supply a parameter value for each formal parameter.

In the following example, the bBox is the parameter.

procedure(ComputeBBoxHeight(bBox)
ll = car(bBox)
ur = cadr(bBox)
lly = yCoord(ll)
ury = yCoord(ur)
ury - lly
) ; procedure

To execute your function, you must provide a value for the parameter.

bBox = list(100:150 250:400)
bBoxHeight = ComputeBBoxHeight(bBox)

Selecting Prefixes for Your Functions

With only a few exceptions, the SKILL functions in this manual do not use a prefix identifier.
Many examples in this manual use a “tr” prefix to indicate they are created for training
January 2007 52 Product Version 06.70

SKILL Language User Guide
Getting Started
purposes. If you look in other SKILL manuals, you will notice that functions for tools are
usually grouped with identifiable, unique prefixes.

For example, functions used for technology file administration are all prefixed with “tc”. These
prefixes vary across Cadence tools, but all use lowercase letters. It is recommended that you
establish a unique prefix using uppercase letters for your own functions.

Maintaining SKILL Source Code

The Cadence environment makes it easy to invoke an editor of your choice. Set the SKILL
variable editor to a UNIX command line able to launch your editor.

editor = "xterm -e vi"

The ed function invokes an editor of your choice. If you optionally use the edl function, the
system loads your file when you quit the editor.

ed("myFile.il")

Alternatively, you can use an editor independent of the Cadence environment.

Loading Your SKILL Source Code

The load function

■ Evaluates each expression in a source code file]

■ Is typically used to define a collection of functions

■ Returns t if all expressions evaluate without errors

■ Aborts if there are any errors, any expression following the offending expression is not
evaluated

Giving a Relative Path

When you pass a relative path to the load function, the system resolves it in terms of a list
of directories called the SKILL path. You usually establish the SKILL path in your initialization
file by using the setSkillPath or getSkillPath functions.

■ The setSkillPath function sets the path to a list of directories.

■ The getSkillPath function returns a list of directories in search order.
January 2007 53 Product Version 06.70

SKILL Language User Guide
Getting Started
Entering a Function

Sometimes you need to define a function without saving the source code file. Using the
mouse in your editor, select and paste the function into the command input line.

Setting the SKILL Path

Use the setSkillPath function in conjunction with the prependInstallPath and
getSkillPath functions to set the SKILL path.

trSamplesPath = list(
prependInstallPath("etc/context")
prependInstallPath("local")
prependInstallPath("samples/local")
)

Use the prependInstallPath function to make a path relative to the installation directory.
The function prepends your_install_dir /tools/dfII to the path. Assuming your
installation path is /cds/9401 trSamplesPath is now:

("/cds/9401/tools.sun4/dfII/etc/context"
"/cds/9401/tools.sun4/dfII/local"
"/cds/9401/tools.sun4/dfII/samples/local")

Assuming your SKILL path is ("." "~"), you can set a new SKILL path using setSkillPath.

setSkillPath(append(trSamplesPath getSkillPath()))

The return value of setSkillPath indicates a path that could not be located, not the actual
SKILL path.

("/cds/9401/tools.sun4/dfII/samples/local")

The actual SKILL path is

("/cds/9401/tools.sun4/dfII/etc/context"
"/cds/9401/tools.sun4/dfII/local"
"/cds/9401/tools.sun4/dfII/samples/local" "." "~")

For more information on the SKILL path, see Directory Paths on page 150.

Redefining a SKILL Function

Users should be safeguarded against inadvertently redefining functions. Yet, while
developing SKILL code, you often need to redefine functions.

The SKILL interpreter has an internal switch called writeProtect to prevent the virtual
memory definition of a function from being altered during a session.
January 2007 54 Product Version 06.70

SKILL Language User Guide
Getting Started
By default writeProtect is set to nil. SKILL functions defined while writeProtect is t
cannot be redefined during the same session. Typically, you set the writeProtect switch
in your initialization file.

sstatus(writeProtect t) ;sets it to t
sstatus(writeProtect nil) ;sets it to nil

This example tries to redefine trReciprocal to prevent division by 0.

sstatus(writeProtect t) => t
procedure(trReciprocal(x) 1.0 / x) => trReciprocal
procedure(trReciprocal(x) when(x != 0.0 1.0 / x))
Error def: function name is write protected

and cannot be redefined - trReciprocal
January 2007 55 Product Version 06.70

SKILL Language User Guide
Getting Started
January 2007 56 Product Version 06.70

SKILL Language User Guide
2
Language Characteristics

This chapter explains the basic structure and syntax of the Cadence® SKILL language. The
best way to learn SKILL, of course, is by using it to accomplish a real task. Before you begin
using SKILL, you should study this chapter.

Programming experience is helpful for those who want to program extensively in SKILL.
References to the C programming language in this text make it easier for C programmers to
learn SKILL. This text does not require you to be an experienced programmer.

Experienced C programmers must remember that SKILL is not C even though the syntax
appears familiar.

For more information, see the following topics:

■ Naming Conventions on page 58

■ Function Calls on page 61

■ SKILL Syntax on page 61

■ Data Characteristics on page 66
January 2007 57 Product Version 06.70

SKILL Language User Guide
Language Characteristics
Naming Conventions

This section describes Cadence naming conventions for functions, variables, and their
arguments.

Caution

To avoid conflict with Cadence-supplied functions and variables,
customers should begin their function and variable names with
uppercase letters.

Names of Functions

If you look in SKILL API reference manuals, you will notice that functions for tools are usually
grouped with identifiable, unique prefixes. These prefixes vary across Cadence tools, but all
use lowercase letters.

The recommended naming scheme is to

■ Use casing to separate code that is developed within Cadence from that developed
outside.

■ Use a group prefix to separate code developed within Cadence.

Cadence internal developers should name functions with

■ An optional initial underscore (_) to indicate private functions. Cadence customers
should not use private functions. See Cadence-Private Functions on page 59.

■ Up to three lowercase characters (occasionally more for clarity) that signify the code
package.

■ An optional further lowercase character as shown in the table below.

Name Type Character Meaning

Bit Field Constant b Bit-field constant

Constants c Enumerated constant

Errors e Name of a structure describing an
error
January 2007 58 Product Version 06.70

SKILL Language User Guide
Language Characteristics
■ The name itself starting with an uppercase character.

Cadence-Private Functions

Caution

Functions beginning with an underscore are considered Cadence-
private, internal functions and are not supported.

Cadence-private functions are undocumented, unsupported functions that are used internally
by Cadence engineering. These Cadence-private functions are subject to change at any time,
without notice, because they are not intended for public use.

Names of Variables

Caution

Cadence customers can avoid naming conflicts with Cadence-supplied
variables by beginning the first letter of their variable names with
uppercase letters.

You should not set the following Cadence internal variables without a full understanding of
potential consequences.

Internal Functions i An internal function, these functions
should not be called directly by
application programs

Functions f Occasionally used as a function
indicator.

Macros m Rarely used macro indicator.

Global Variables v Public global variable

Variable Meaning

stdin Standard input port.

stdout Standard output port.

Name Type Character Meaning
January 2007 59 Product Version 06.70

SKILL Language User Guide
Language Characteristics
You might see internal variable names when you are using the debugging tools, especially if
you are dumping the stack.

piport Standard input port from which user input is read.

poport Standard output port, which is the default for print statements.

ptport Standard output port for tracing results.

errport Standard output port for error messages.

printlength Controls the number of elements in a list that are printed.

printlevel Controls the depth of elements in a list which are printed.

tracelength Controls the number of elements in a list that are printed.

tracelevel Controls the depth of elements in a list that are printed during
tracing.

pprintresult Controls the pretty printing of the results of values returned by
the top level.

editor Controls the default text editor.

gcdisable Toggles enabling of garbage collection. Use cautiously. Internal
variable used in memory management for debugging purposes
only.

_gcprint Toggles the printing of garbage collection messages. Internal
variable used in memory management for debugging purposes
only.

echoInput Controls the echoing of expressions or all contents of files being
loaded (via load()/loadi()), for example sstatus(echoInput
t)

Variable Meaning
January 2007 60 Product Version 06.70

SKILL Language User Guide
Language Characteristics
Function Calls

SKILL is a functional programming language, which means that computation is both
expressed and performed as a series of function calls.

■ Every operator in SKILL corresponds to a predefined function. The operator “+,” for
example, corresponds to the function plus.

■ You can add two numbers together either by calling the function, for example, plus(x
y), or by using the infix expression x+y.

In SKILL, even control statements are implemented by calls to special functions; the special
functions then evaluate their arguments in a specific order.

Function calls can be written in either of the following notations.

■ Algebraic notation used by most programming languages, that is, func(arg1 arg2
…).

■ Prefix notation used by the Lisp programming language, that is; (func arg1 arg2
…).

Remember that there must be no white space between the function name and the left
parenthesis in the algebraic notation.

The functional programming concepts implemented in SKILL are reflected in the basic syntax
of the language. SKILL programs are written as sequences of nested function calls. To utilize
SKILL fully, you must first have a good grasp of the underlying concepts of functional
programming.

SKILL Syntax

This section describes SKILL syntax, which includes the use of special characters,
comments, spaces, parentheses, and other notation.

Special Characters

Certain characters are special in SKILL. These include the infix operators such as less
than (<), colon (:), and assignment (=). The table below lists these special characters and
their meaning in SKILL.
January 2007 61 Product Version 06.70

SKILL Language User Guide
Language Characteristics
Note: All non-alphanumeric characters (other than ‘_’ and ‘?’) must be preceded (“escaped”)
by a backslash (‘\’) when you use them in the name of a symbol.

Special Characters in SKILL

Character Name Meaning

\ backslash Escape for special characters

() parentheses Grouping of list elements, function calls

[] brackets Array index, super right bracket

{ } braces Grouping of expressions using progn

' single quote Quoting the expression to prevent its evaluation

” double quote String delimiter

 , comma Optional delimiter between list elements; also used within
the scope of a backquoted expression to force the
evaluation of the expression

; semicolon Line-style comment character

: colon Bit field delimiter, range operator

. period getq operator

+, –, *, / arithmetic For arithmetic operators; the /* and */ combinations are also
used as comment delimiters

!,^,&,| logical For logical operators

<,>,= relational For relational and assignment operators;
< and > are also used in the specification of bit fields

pound sign Signals special parsing if it appears in the first column

@ “at” sign If first character, implies reserved word; also used with
comma to force evaluation and list splicing in the context of
a backquoted expression

? question mark If first character, implies keyword parameter

‘ backquote Quoting the expression prevents its evaluation, with support
for the comma (,) and comma-at (,@) operators to allow
evaluation within backquoted forms

% percent sign Used as a scaling character for numbers

$ – Reserved for future use
January 2007 62 Product Version 06.70

SKILL Language User Guide
Language Characteristics
Comments

SKILL permits two different styles of comments. One style is block-oriented, where comments
are delimited by /* and */. For example:

/* This is a block of (C style) comments
comment line 2
comment line 3 etc.
*/

The other style is line-oriented where the semicolon (;) indicates that the rest of the input line
is a comment. For example:

x = 1 ; comment following a statement
; comment line 1
; comment line 2 and so forth

For simplicity, line-oriented comments are recommended. Block-oriented comments cannot
be nested because the first */ encountered terminates the whole comment.

White Space

White space sometimes takes on semantic significance and a few syntactic restrictions must
therefore be observed. See Solving Some Common Problems on page 34.

Write function calls so the name of a function is immediately followed by a left parenthesis;
no white space is allowed between the function name and the parenthesis. For example:

f(a b c) and g() are legal function calls, but
f (a b c) and g () are illegal.

The unary minus operator must immediately precede the expression it applies to. No white
space is allowed between the operator and its operand. For example:

-1, -a, and -(a*b) are legal constructs, but
- 1, - a, and - (a*b) are illegal.

The binary minus (subtract) operator should either be surrounded by white space on both
sides or there should be no white space on either side. To avoid ambiguity, one or the other
method should be used consistently. For example:

a - b and a-b are legal constructs for binary minus, but a -b is illegal.
January 2007 63 Product Version 06.70

SKILL Language User Guide
Language Characteristics
White Space Characters

The white space characters in SKILL are generally the same as the C standard white space
characters: \t \f \r \n \v. Respectively, they are space, tab, form feed, carriage return, new line,
and vertical tab.

The default break characters used by the SKILL language function parseString(), when the
optional second argument is not specified, are the white space characters: /t /f /r /n /v.

Parentheses

There is a subtle point about SKILL syntax that C programmers, in particular, must be very
careful to note.

Parentheses in C

In C, the relational expression given to a conditional statement such as if, while, and
switchmust be enclosed by an outer set of parentheses for purely syntactical reasons, even
if that expression consists of only a single Boolean variable. In C, an if statement might look
like:

if (done) i=0; else i=1;

Parentheses in SKILL

In SKILL, however, parentheses are used for calling functions, delimiting multiple
expressions, and controlling the order of evaluation. You can write function calls in prefix
notation

(fn2 arg1 arg2) or (fn0)

as well as in the more conventional algebraic form:

fn2(arg1 arg2) or fn0()

The use of syntactically redundant parentheses causes variables, constants, or expressions
to be interpreted as the names of functions that need to be further evaluated. Therefore,

■ Never enclose a constant or a variable in parentheses by itself. For example, (1), (x).

■ For arithmetic expressions involving infix operators, you can use as many
parentheses as necessary to force a particular order of evaluation, but never put a pair
of parentheses immediately outside another pair of parentheses, for example, ((a +
b)); the expression delimited by the inner pair of parentheses would be interpreted as
the name of a function.
January 2007 64 Product Version 06.70

SKILL Language User Guide
Language Characteristics
For example, because if evaluates its first argument as a logical expression, a variable
containing the logical condition to be tested should be written without any surrounding
parentheses; the variable by itself is the logical expression. This is written in SKILL as:

if(done then i = 0 else i = 1)

Super Right Bracket

When you are entering deeply nested expressions, it often becomes tedious to match up
each left parenthesis with a right parenthesis at the end of the expression. The right bracket
] can be used as a super right parenthesis to close off all open parentheses that are still
pending. It is a convenient shorthand notation for interactive input, but it is not recommended
for use in programs. For example:

f1(f2(f3(f4(x))))

can also be written as

f1(f2(f3(f4(x]

Backquote, Comma, and Comma-At

SKILL supports a special notation for list construction from templates. This notation allows
selective evaluation within a quoted form. This selective evaluation eliminates long
sequences of calls to list and append.

In absence of commas and the comma-at (,@) construction, backquote functions in exactly
the same way as single quote. However, if a comma appears inside a backquoted form, the
expression that immediately follows the comma is evaluated, and the result of evaluation
replaces the original form.

Commas are still acceptable as argument list separators in all contexts except within the
scope of a backquote. This means that the backquote comma syntax does not have any
implications for SKILL code created before the backquote comma facility was implemented.
For example:

y = 1
'(x y z) => (x y z)
'(x ,y z) => (x 1 z)

The comma-at construction causes evaluation just as the comma does, but the results of
evaluation must be a list, and the elements of the list, rather than the list itself, replace the
original form. For example:

x = 1
y = '(a b c)
'(,x ,y z) => (1 (a b c) z)
'(,x ,@y z) => (1 a b c z)
January 2007 65 Product Version 06.70

SKILL Language User Guide
Language Characteristics
Here’s an example of a simple macro implemented with backquote:

defmacro(myWhen (@rest body)
••••••'if(,car(body) progn(,@cdr(body))))

The expression

a = 2
b = 7
myWhen(eq(a b) printf("The same\n") list(a b))

expands to

if(eq(a b) progn(printf("The same\n") list(a b)))

Line Continuation

SKILL places no restrictions on how many characters can be placed on an input line, even
though SKILL does impose an 8191 character limit on the strings being input. The parser
reads as many lines as needed from the input until it has read in a complete form (that is,
expression). If there are parentheses that have not yet been closed or binary infix
operators whose right sides have not yet been given, the parser treats carriage returns (that
is, newlines) just like spaces.

Because SKILL reads its input on a form-by-form basis, it is rarely necessary to “continue” an
input line. There might be times, however, when you want to break up a long line for aesthetic
reasons. In that case, you can tell the parser to ignore a carriage return in the input line simply
by preceding it immediately with a backslash (\).

string = "This is \
a test."
=> "This is a test."

Length of Input Lists

The SKILL parser imposes a limit of 6000 on the number of elements that can be in a list
being read in. Internally and on output, there is no limit to how many elements a list can
contain.

Data Characteristics

This section describes the following basic data characteristics:

■ Data Types

■ Numbers
January 2007 66 Product Version 06.70

SKILL Language User Guide
Language Characteristics
■ Strings

■ Atoms

■ Escape Sequences

■ Symbols

■ Characters

These other SKILL data characteristics are discussed in the chapters indicated:

■ Lists - see “Advanced List Operations” on page 175

■ Property Lists, Defstructs, and Arrays - see “Data Structures” on page 89

■ Type Predicates - see “Arithmetic and Logical Expressions” on page 119

Data Types

SKILL supports several data types, including integer and floating-point numbers, character
strings, arrays, and a highly flexible linked list structure for representing aggregates of data.

For symbolic computation, SKILL has data types for dealing with symbols and functions.

For input/output, SKILL has a data type for representing I/O ports. The table below lists all
the data types supported by SKILL with their internal names and single-character mnemonic
abbreviations.

Data Types Supported by SKILL

Data Type Internal Name Single Character
Mnemonic

array array a

Cadence database object dbobject d

floating-point number flonum f

any data type general g

linked list list l

integer or floating point number n

user-defined type o

I/O port port p
January 2007 67 Product Version 06.70

SKILL Language User Guide
Language Characteristics
Numbers

SKILL supports the following numeric data types:

■ Integers

■ Floating-point

■ Scaling factors

Integers

Unless they are preceded by one of the prefixes listed in the table below, integers are
interpreted as decimal numbers. Binary numbers are prefixed with “0b,” octal numbers with
a leading “0,” and hexadecimal numbers with “0x.” Integers (fixnum’s) in SKILL are stored
internally as 32-bit wide numbers.

defstruct r

relative object design (ROD) object rodObj R

symbol symbol s

symbol or character string S

character string (text) string t

function object u

window type w

integer number fixnum x

binary function binary y

Prefixes for Binary/Octal/Hexadecimal Integers

Radix Prefix Examples [value in decimal]

binary 0b or 0B 0b0011 [3]
0b0010 [2]

Data Types Supported by SKILL

Data Type Internal Name Single Character
Mnemonic
January 2007 68 Product Version 06.70

SKILL Language User Guide
Language Characteristics
Floating-Point Numbers

You use the same syntax for floating-point numbers in SKILL as you do in most programming
languages. You can have an integer followed by a decimal point, a fraction, and an optionally
signed exponent preceded by “e” or “E”. Either the integer or the fraction must be present to
avoid ambiguity. The following examples illustrate correct syntax:

10.0, 10., 0.5, .5, 1e10, 1e–10, 1.1e10

Scaling Factors

SKILL provides a set of scaling factors that can be added on at the end of a decimal number
(integer or floating point) to achieve the desired scaling.

■ Scaling factors must appear immediately after the numbers they affect; spaces are not
allowed between a number and its scaling factor.

■ Only the first nonnumeric character that appears after a number is significant; other
characters following the scaling factor are ignored.

■ If the number being scaled is an integer, SKILL tries to keep it an integer; the scaling
factor must be representable as an integer (that is, the scaling factor is an integral
multiplier and the result does not exceed the maximum value that can be represented as
an integer). Otherwise a floating-point number is returned. The scaling factors are listed
in the following table.

octal 0 077 [63]
011 [9]

hexadecimal 0x or 0X 0x3f [63]
0xff [255]

Scaling Factors

Character Name Multiplier Examples

Y Yotta 1024 10Y [10e+25]

Z Zetta 1021 10Z [10e+22]

E Exa 1018 10E [10e+19]

P Peta 1015 10P [10e+16]

Prefixes for Binary/Octal/Hexadecimal Integers

Radix Prefix Examples [value in decimal]
January 2007 69 Product Version 06.70

SKILL Language User Guide
Language Characteristics
Strings

Strings are sequences of characters, for example, “abc” or “123.” A string is marked off by
double quotes, just as in the C language; the empty string is represented as “ ’’. The SKILL
parser limits the length of input strings to a maximum of 8191 characters. There is, however,
no limit to the length of strings created during program execution. Strings of >8191 characters
can be created by applications and used in SKILL if they are not given as arguments to SKILL
string manipulation functions.

You specify

■ Printable characters (except a double quote) as part of a string without preceding them
with the backslash (\) escape character

■ Unprintable characters and the double quote itself by preceding them with the backslash
(\) escape character as in the C language

T Tera 1012 10T [10e+13]

G Giga 109 10G [10,000,000,000]

M Mega 106 10M [10,000,000]

k or K kilo 103 10k [10,000]

% percent 10-2 5% [0.05]

m milli 10-3 5m [5.0e-3]

u micro 10-6 1.2u [1.2e-6]

n nano 10-9 1.2n [1.2e-9]

p pico 10-12 1.2p [1.2e-12]

f femto 10-15 1.2f [1.2e-15]

a atto 10-18 1.2a [1.2e-18]

z zepto 10-21 1.2z [1.2e-21]

y yocto 10-24 1.2y [1.2e-24]

Scaling Factors

Character Name Multiplier Examples
January 2007 70 Product Version 06.70

SKILL Language User Guide
Language Characteristics
Atoms

An atom is any data object that is not an aggregate of other data objects. In other words, atom
is a generic term covering data objects of all scalar data types. Built into SKILL are several
special atoms that are fundamental to the language.

nil The nil atom represents both a false logical condition and an
empty list.

t The symbol t represents a true logical condition.

Both nil and t always evaluate to themselves and must never be used as the name of a
variable.

unbound To make sure you do not use the value of an uninitialized
variable, SKILL sets the value of all symbols and array elements
initially to unbound so that such an error can be detected.

Escape Sequences

The table below lists all the escape sequences supported by SKILL. Any unprintable
character can be represented by listing its ASCII code in two or three octal digits after the
backslash. For example, BELL can be represented as \007 and Control-c can be represented
as \003.

Escape Sequences

Character Escape Sequence

new-line (line feed) \n

horizontal tab \t

vertical tab \v

backspace \b

carriage return \r

form feed \f

backslash \\

double quote \”

ASCII code ddd (octal) \ddd
January 2007 71 Product Version 06.70

SKILL Language User Guide
Language Characteristics
Symbols

Symbols in SKILL correspond to variables in C. In SKILL, we often use the terms “symbol”
and “variable” interchangeably even though symbols in SKILL are used for other things as
well. Each symbol has the following components:

■ Print name, which is limited to 255 characters

■ Value, which is unbound if a value has not been assigned

■ Function binding

■ Property list (The Property List of a Symbol on page 93.)

Symbol names can contain alphanumeric characters (a-z, A-Z, 0-9), the underscore (_)
character, and the question mark (?). If the first character of a symbol is a digit, it must be
preceded by the backslash character. Other printable characters can be used in symbol
names by preceding each special character with a backslash (\). The following examples

Var0
Var_Name
*name\+

are all legal names for symbols. The internal name for the last symbol is *name+.

You can assign values to variables using the equals sign (=) assignment operator. You do not
need to declare a variable before assigning a value to it, but you cannot use an unassigned
variable, that is, an unbound variable. Variables are untyped, which means that the same
variable name can store any data type.

It is not advisable to give symbols both a value and a function binding, such as

myTest = 3 ;assigns the value of 3 to myTest.
procedure(myTest(x y) x+y) ;declares the function myTest.

Characters

SKILL represents characters by symbols instead of using a separate data type. For example,
the function getc returns the symbol representing a character. To verify this, read the
characters one by one in the string “abc”.

myPort = instring("abc")=> port:"*string*"
char = getc(myPort) => a ;;; the first character
type(char) => symbol ;;; is represented by the symbol a.
getc(myPort) => b ;;; the next character
getc(myPort) => c ;;; the next character
getc(myPort) => nil ;;; end of string
close(myPort)
January 2007 72 Product Version 06.70

SKILL Language User Guide
Language Characteristics
■ Use the %c format with the printf function to print a single character. For example:

char = 'A
printf("Character = %c\n" char) => t

This function prints the following:

Character = A

■ Use extreme care when referring to symbols that represent certain characters. Certain
characters must be escaped if they are the initial character in a symbol name.
Specifically, you must escape any ASCII character other than an alphabetic character [a-
z, A-Z], the underline character (_) or the question mark character (?).

■ You can use a character’s ASCII octal value to represent any character other than NULL.
Be aware that if the octal code you use as a symbol name defines a printable character
then SKILL uses that character as a print name for the symbol. For example,

char = '\120 char => P
printf("Char = %c\n" '\120) => t

and prints

Char = P

■ As an alternative to ASCII octal values, you can refer to the unprintable characters listed
in the Escape Sequences on page 71. For example, the formfeed character is
represented by \f and the newline character is represented by \n.

The table below lists all the ASCII characters and their corresponding symbol. The only ASCII
character that cannot be handled by SKILL is NULL (ASCII code 0) because the null
character always terminates a string in UNIX.

Symbols for ASCII Characters

Character(s) SKILL Symbol Name(s)

a, b, …, z a, b, …, z

A, B, …, Z A, B, …, Z

?, _ ?, _

0, 1, …, 9 \0, \1, …, \9

^A, ^B, …, ^Z, …
(octal codes 001-037)

\001, \002, …, \032, …
(in octal)

<space> \<space> (backslash followed by a space)

! . ; : , \! \. \; \: \,

() [] { } \(\) \[\] \{ …
January 2007 73 Product Version 06.70

SKILL Language User Guide
Language Characteristics
“ # % & + - * \“ \# \% …

< = > @ / \ ^ ~ \< \= \> …

DEL \177

Symbols for ASCII Characters

Character(s) SKILL Symbol Name(s)
January 2007 74 Product Version 06.70

SKILL Language User Guide
3
Creating Functions in SKILL

“Getting Started” on page 27 introduces you to developing a Cadence® SKILL language
function. This chapter introduces you to constructs for defining a function and defining local
and global variables.

This chapter covers the following topics:

■ Terms and Definitions on page 76

■ Kinds of Functions on page 77

■ Syntax Functions for Defining Functions on page 77

■ Defining Parameters on page 80

■ Type Checking on page 82

■ Local Variables on page 83

■ Global Variables on page 84

■ Redefining Existing Functions on page 86

■ Physical Limits for Functions on page 87

See also “Advanced Topics” on page 203 for more information.
January 2007 75 Product Version 06.70

SKILL Language User Guide
Creating Functions in SKILL
Terms and Definitions

function, procedure In SKILL, the terms procedure and function are used
interchangeably to refer to a parameterized body of code that
can be executed with actual parameters bound to the formal
parameters. SKILL can represent a function as both a
hierarchical list and as a function object.

argument, parameter The terms argument and parameter are used interchangeably.
The actual arguments in a function call correspond to the formal
arguments in the declaration of the function.

byte-code A generic term for the machine code for a “virtual” machine.

virtual machine A machine that is not physically built, but is emulated in software
instead.

function object The set of byte-code instructions that implement a function’s
algorithm. SKILL programs can treat function objects on a basic
level like other data types: compare for equality, assigning to a
variable, and pass to a function.

function body The collection of SKILL expressions that define the function’s
algorithm.

compilation The generation of byte-code that implements the function’s
algorithm.

compile time SKILL compiles function definitions when you load source code.
Top-level expressions are compiled and then executed.

run time The time during which SKILL evaluates a function object.
January 2007 76 Product Version 06.70

SKILL Language User Guide
Creating Functions in SKILL
Kinds of Functions

SKILL has several different kinds of functions, classified by the internal names of lambda,
nlambda, and macro. SKILL follows different steps when evaluating these functions.

■ Most of the functions you will define are lambda functions. SKILL executes a lambda
function after evaluating the parameters and binding the results to the formal parameters.

■ You will probably not need to define an nlambda function. However, several built-in
SKILL functions are nlambda functions.

An nlambda function should be declared to have a single formal argument. When
evaluating an nlambda function, SKILL collects all the actual argument expressions
unevaluated into a list and binds that list to the single formal argument. The body of the
nlambda can selectively evaluate the elements of the argument list.

■ It is not likely that you will write many macros. A macro function allows you to adapt the
normal SKILL function call syntax to the needs of your application. Unlike lambda and
nlambda functions, SKILL evaluates a macro at compile-time. When compiling source
code, if SKILL encounters a macro function call, it evaluates the function call
immediately and the last expression computed is compiled in the current function object.

Syntax Functions for Defining Functions

SKILL supports the following syntax functions for defining functions. You should use the
procedure function or the defun function in most cases.

procedure

The procedure function is the most general and is easiest to use and understand. Anything
that can be done with the other function definition functions can be done with a procedure
and possibly a quote in the call.

The procedure function provides the standard method of defining functions. Its return
value is the symbol with the name of the function. For example:

procedure(trAdd(x y)
printf("Adding %d and %d … %d \n" x y x+y)
x+y
) => trAdd

trAdd(6 7) => 13
January 2007 77 Product Version 06.70

SKILL Language User Guide
Creating Functions in SKILL
lambda

The lambda function defines a function without a name. Its return value is a function object
that can be stored in a variable. For example:

trAddWithMessageFun = lambda((x y)
printf("Adding %d and %d … %d \n" x y x+y)
x+y
) => funobj:0x1814b90

You can subsequently pass a function object to the apply function
together with an argument list. For example:

apply(trAddWithMessageFun '(4 5)) => 9

The use of lambda can render code difficult to understand. Often the function being defined
is required at some other point in the program and so a procedural definition is better.
However, the lambda structure can be useful when defining special purpose functions and
for passing very small functions to functions such as sort. For example, to sort a list
signalList of disembodied property list objects by a property named strength, do the
following:

signalList = '(
(nil strength 1.5)
(nil strength 0.4)
(nil strength 2.5)
)

sort(signalList
'lambda((a b) a->strength <= b->strength)
)

Refer to “Declaring a Function Object (lambda)” on page 208 for further details.

nprocedure

Do not use the nprocedure function in new code that you write. It is only included in the
system for compatibility with prior releases.

■ To allow your function to accept an indeterminate number of arguments, use the @rest
option with the procedure function.

■ To allow your function to receive arguments unevaluated, use the defmacro function.

defmacro

The defmacro function provides a means for you to define a macro function. You can use
a macro to design your own customized SKILL syntax. Your macro is responsible for
January 2007 78 Product Version 06.70

SKILL Language User Guide
Creating Functions in SKILL
translating your custom syntax at compile time into a SKILL expression to be compiled and
subsequently executed.

Refer to “Macros” on page 210 for further discussion and examples.

mprocedures

The mprocedure function is a more primitive alternative to the defmacro function. The
mprocedure function has a single argument. The entire custom syntax is passed to the
mprocedure function unevaluated.

Do not use the mprocedure function in new code. It is only included in the system for
compatibility with prior releases. Use the defmacro function instead. If you need to receive
an indeterminate number of unevaluated arguments, use an @rest argument.

Refer to “Macros” on page 210 for further discussion and examples.

Summary of Syntax Functions

The following table summarizes each syntax function for declaring a function. You should
think twice about using anything other than procedure.

Comparison of Syntax Functions

Syntax
Function

Function
Type Argument Evaluation Execution

procedure lambda The arguments are
evaluated and bound to the
corresponding formal
arguments.

The expressions in the body
are evaluated at run time.
The last value computed is
returned.

defmacro macro The arguments are bound
unevaluated to the
corresponding formal
arguments.

The expressions in the body
are evaluated at compile
time. The last value
computed is compiled.

mprocedure macro The entire function call is
bound to the single formal
argument.

The expressions in the body
are evaluated at compile
time. The last value
computed is compiled.
January 2007 79 Product Version 06.70

SKILL Language User Guide
Creating Functions in SKILL
Defining Parameters

You can declare how parameters are to be passed to your function by adding certain at (@)
options in the formal argument list. The @ options are @rest, @optional, and @key. You
can use these options in procedure, lambda, and defmacro argument lists.

@rest Option

The @rest option allows an arbitrary number of parameters to be passed to a function in a
list. The name of the parameter following @rest is arbitrary, although args is a good choice.

The following example illustrates the benefits of an @rest argument.

procedure(trTrace(fun @rest args)
let((result)

printf("\nCalling %s passing %L" fun args)
result = apply(fun args)
printf("\nReturning from %s with %L\n" fun result)
result
) ; let

) ; procedure

For example, invoking the trTrace function passing plus and 1, 2, 3 returns 6.

trTrace('plus 1 2 3) => 6

and displays the following output in the CIW.

Calling plus passing (1 2 3)
Returning from plus with 6

■ The trTrace function calls the fun function and passes the arguments it received.

■ The apply function calls a given function with the given argument list. trTrace
passes the @rest argument list directly to the apply function.

The trTrace function must accept an arbitrary number of arguments. The number of
arguments passed can vary from call to call.

nprocedure nlambda All arguments are gathered
unevaluated into a list and
bound to the single formal
argument.

The expressions in the body
are evaluated at run time.
The last value computed is
returned.

Comparison of Syntax Functions

Syntax
Function

Function
Type Argument Evaluation Execution
January 2007 80 Product Version 06.70

SKILL Language User Guide
Creating Functions in SKILL
Another benefit of @rest is that it puts the arguments into a single list. The trTrace
function would be less convenient to use if the caller had to put fun’s arguments into a list.

@optional Option

The @optional option gives you another way to specify a flexible number of arguments.
With @optional, each argument on the actual argument list is matched up with an
argument on the formal argument list.

You can provide any optional parameter with a default value. Specify the default value using
a default form. The default form is a two-member list. The first member of this list is the
optional parameter’s name. The second member is the default value.

The default value is assigned only if no value is assigned when the function is called. If the
procedure does not specify a default value for an argument, nil is assigned.

If you place @optional in the argument list of a procedure definition, any parameter
following it is considered optional.

The trBuildBBox function builds a bounding box.

procedure(trBuildBBox(height width @optional
(xCoord 0) (yCoord 0))

list(
xCoord:yCoord ;;; lower left
xCoord+width:yCoord+height) ;;; upper right

) ; procedure

Both length and width must be specified when this function is called. However, the
coordinates of the box are declared as optional parameters. If only two parameters are
specified, the optional parameters are given their default values. For xCoord and yCoord,
those values are 0.

Examine the following calls to trBuildBBox and their return values:

trBuildBBox(1 2) => ((0 0) (2 1))
trBuildBBox(1 2 4) => ((4 0) (6 1))
trBuildBBox(1 2 4 10) => ((4 10) (6 11))

@key Option

@optional relies on order to determine what actual arguments are assigned to each formal
argument. The @key option lets you specify the expected arguments in any order.

For example, examine the following generalization of the trBuildBBox function. Notice
that within the body of the function, the syntax for referring to the parameters is the same as
for ordinary parameters:
January 2007 81 Product Version 06.70

SKILL Language User Guide
Creating Functions in SKILL
procedure(trBuildBBox(
@key (height 0) (width 0) (xCoord 0) (yCoord 0))

list(
xCoord:yCoord ;;; lower left
xCoord+width:yCoord+height) ;;; upper right

) ; procedure

trBuildBBox() => ((0 0) (0 0))
trBuildBBox(?height 10) => ((0 0) (0 10))
trBuildBBox(?width 5 ?xCoord 10) => ((10 0) (15 0))

Combining Arguments

@key and @optional are mutually exclusive; they cannot appear in the same argument
list. Consequently, there are two standard forms that procedure argument lists follow:

procedure(functionname([var1 var2 …]
[@optional opt1 opt2 …]
[@rest r])
.
.

)

procedure(functionname([var1 var2 …]
[@key key1 key2 …]
[@rest r])
.
.

)

Type Checking

Unlike most conventional languages that perform type checking at compile time, SKILL
performs dynamic type checking when functions are executed (not when they are defined).
Each SKILL lambda or macro function can have as part of its definition an argument template
that defines the types of arguments that the function expects. Type checking is not supported
in mprocedure functions.

Type characters are discussed in “Data Characteristics” on page 66. For type checking
purposes, you can use several composite type characters (shown in the table below)
representing a union of data types.

Composite Characters for Type Checking

Character Meaning

S Symbol or string

n Number: fixnum, flonum
January 2007 82 Product Version 06.70

SKILL Language User Guide
Creating Functions in SKILL
You specify the argument type template as a string of type characters at the end of a formal
argument list. If the template is present, SKILL matches the data type of each actual
argument against the template at the time the function is invoked. For example:

procedure(f(x y "nn") x**2 + y**2)

nn specifies that f accepts two numerical arguments.

procedure(comparelength(str len "tx") strlen(str) == len)

tx specifies that the first argument must be a string and the second must be an integer.

Local Variables

When you write functions, you should make your variables local. You can define local
variables using the let and prog functions:

■ Defining Local Variables Using the let Function on page 83

■ Defining Local Variables Using the prog Function on page 84

See also “Initializing Local Variables to Non-nil Values” on page 84.

Defining Local Variables Using the let Function

You can use the let function to establish temporary values for local variables.

■ You can include a list of the local variables followed by one or more SKILL expressions.
These variables are initialized to nil.

■ The SKILL expressions make up the body of the let function, which returns the value
of the last expression computed within its body.

■ The local variables are known only within the let statement. The values of the variables
are not available outside the let statement.

procedure(trGetBBoxHeight(bBox)
let((ll ur lly ury)

u Function:
Either the name of a function (symbol) or a lambda function body (list)

g Any data type

Composite Characters for Type Checking

Character Meaning
January 2007 83 Product Version 06.70

SKILL Language User Guide
Creating Functions in SKILL
ll = car(bBox)
lly = cadr(ll)
ur = cadr(bBox)
ury = cadr(ur)
ury - lly

) ; let
) ; procedure

■ The local variables are ll, ur, lly, and ury.

■ They are initialized to nil.

■ The return value is ury - lly.

Defining Local Variables Using the prog Function

A list of local variables and your SKILL statements make up the arguments to the prog
function.

prog((localVariables) yourSKILLstatements)

The prog function allows an explicit loop to be written because the go function is supported
within the prog. In addition, prog allows you to have multiple return points through use of
the return function. If you are not using either of these two features, let is much simpler
and faster (see “Defining Local Variables Using the let Function” on page 83).

Initializing Local Variables to Non-nil Values

You can use let to initialize local variables to non-nil values by making a two element list
with the local variable and its initial value. You cannot refer to any other local variable in the
initialization expression. For example:

procedure(trGetBBoxHeight(bBox)
let(((ll car(bBox)) (ur cadr(bBox)) lly ury)

lly = cadr(ll)
ury = cadr(ur)
ury - lly

) ; let
) ; procedure

Global Variables

Besides predefined functions that you are not allowed to modify, there are several variable
names reserved by various system functions. They are listed in “Naming Conventions” on
page 58.

The use of global variables in SKILL, as with any language, should be kept to a minimum.
January 2007 84 Product Version 06.70

SKILL Language User Guide
Creating Functions in SKILL
Following standard naming conventions and running SKILL Lint can reduce your exposure to
problems associated with global variables.

Testing Global Variables

Applications typically initialize one or more global variables. Before an application runs for the
first time, it is likely that its global variables are unbound. In such circumstances, retrieving
the value of such a global variable causes an error.

Use the boundp function to check whether a variable is unbound before accessing its
value. For example:

boundp('trItems) && trItems

returns nil if trItems is unbound and returns the value of trItems otherwise.

Avoiding Name Clashes

Two applications might accidentally access and set the same global value. Use a standard
naming scheme to minimize the chance of this problem occurring. SKILL Lint can flag global
variables that do not obey your naming scheme. For details, refer to “Cadence SKILL Lint” in
SKILL Development Help.

Assume that trApplication1 and trApplication2 are two application functions that
are supposed to be totally independent. In particular, the order in which they are executed
should not matter. Assume both rely on a single global variable. To observe what can happen
if the two applications were accidentally coded to use the same global variable, consider the
following example.

procedure(trApplication1()
when(!boundp('sharedGlobal) ;;; not set

sharedGlobal = 1
) ; when

) ; procedure

procedure(trApplication2()
when(!boundp('sharedGlobal) ;;; not set

sharedGlobal = 2
) ; when

) ; procedure

The order in which you run trApplication1 and trApplication2 determines the
final value of sharedGlobal.

sharedGlobal = 'unbound
trApplication1() => 1
sharedGlobal => 1
trApplication2() => nil
sharedGlobal => 1
January 2007 85 Product Version 06.70

SKILL Language User Guide
Creating Functions in SKILL
sharedGlobal = 'unbound
trApplication2() => 2
sharedGlobal => 2
trApplication1() => nil
sharedGlobal => 2

Name “clashes” can also occur between functions because programmers can be using the
same function names. In this case, a subsequent function definition either overwrites a
previous one, or, if writeProtect is set, the function definition fails with an error.

Naming Scheme

The recommended naming scheme is to

■ Use casing to separate code that is developed within Cadence from that developed
outside.

■ Use a group prefix to separate code developed within Cadence.

All code developed by Cadence Design Systems should name global variables and functions
with an optional underscore; up to three lowercase characters that signify the code package;
an optional further lowercase character (one of c, i, or v) and then the name itself starting with
an uppercase character. For example, dmiPurgeVersions() or hnlCellOutputs. All
code developed outside Cadence should name global variables by starting them with an
uppercase character, such as AcmeGlobalForm.

Reducing the Number of Global Variables

One other technique to reduce the number of global variables is to consolidate a collection of
related globals into a disembodied property list or a symbol’s property list. That symbol
becomes the only global.

This technique could even be extended to associate one symbol with an entire software
module. The disadvantage of this approach is that long property lists involve an access time
penalty.

Redefining Existing Functions

You often need to redefine a function that you are debugging. The procedure defining
constructs allow you to redefine existing functions; however, functions that are write protected
cannot be redefined.
January 2007 86 Product Version 06.70

SKILL Language User Guide
Creating Functions in SKILL
■ A function not being executed can be redefined if the write protection switch was turned
off when the function was initially defined. To turn off the writeProtect switch, type

sstatus(writeProtect nil)

■ When building contexts, writeProtect is always set to t.

Aside from debugging, the ability to have multiple definitions for the same function is useful
sometimes. For example, within the Open Simulation System (OSS) “default” netlisting
functions can be overridden by user-defined functions.

Finally, you should use a standard naming scheme for functions and variables.

Physical Limits for Functions

The following physical limitations exist for functions:

■ Total number of required arguments is less than 255

■ Total number of keyword/optional arguments is less than 255

■ Total number of local variables in a let is less than 255

■ Max number of arguments a function can receive is less than 32KB

■ Max size of code vector is less than 32KB

The limitation on the size of the code vector is new. In the past, there was no limit on the size
of a SKILL function. Code vectors are limited to functions that can compile to less than 32KB
words. This translates roughly into a limit of 20000 lines of SKILL code per function. The
maximum number of arguments limit of 32KB is mostly applicable in the case when functions
are defined to take an @rest argument or in the case of apply called on an argument list
longer than 32KB elements.

SKILL Lint catches argument numbers greater than the limits with the following message:

NEXT RELEASE (DEF6): <filename - line number> (<funcname> :
definition for <funcname> cannot have more than 255 required or optional arguments.
January 2007 87 Product Version 06.70

SKILL Language User Guide
Creating Functions in SKILL
January 2007 88 Product Version 06.70

SKILL Language User Guide
4
Data Structures

For information on data structures and related topics, see the following sections:

■ Access Operators on page 90

■ Symbols on page 90

■ Disembodied Property Lists on page 95

■ Strings on page 99

■ Defstructs on page 107

■ Arrays on page 111

■ Association Tables on page 113

■ Association Lists on page 117

■ User-Defined Types on page 117
January 2007 89 Product Version 06.70

SKILL Language User Guide
Data Structures
Access Operators

Several of the data access operators have a generic nature. That is, the syntax of accessing
data for different data types can be the same. You can view the arrow operator as being a
property accessor and the array reference operator [] as an indexer. The operators described
below are used in examples throughout this chapter.

Arrow (->) Operator

The arrow (->) operator can be applied to disembodied property lists, defstructs, association
tables, and user types (special application-supplied types) to access property values. The
property must always be a symbol and the value of the property can be any valid Cadence®

SKILL language type.

Squiggle Arrow (~>) Operator

The squiggle arrow (~>) operator is a generalization of the arrow operator. It works the same
way as an arrow operator when applied directly to an object, but it can also accept a list of
such objects. It walks the list applying the arrow operator whenever it finds an atomic object.

Array Access Syntax []

The array access syntax [] can be used to access

■ Elements of an array

■ Key-value pairs in an association list

Symbols

Symbols in SKILL correspond to variables in C. In SKILL, the terms “symbol” and “variable”
are often used interchangeably even though symbols in SKILL are used for other things as
well. Each symbol has the following components:

■ Print name

■ Value

■ Function binding

■ Property list
January 2007 90 Product Version 06.70

SKILL Language User Guide
Data Structures
Except for the name slot, all slots can be optionally empty. It is not advisable to give symbols
both a value and a function binding.

Creating Symbols

The system creates a symbol whenever it encounters a text reference to the symbol for the
first time. When the system creates a new symbol, the value of the symbol is set to unbound.

Normally, you do not need to explicitly create symbols. However, the following functions let
you create symbols.

Creating a Symbol with a Given Base Name (gensym)

Use the gensym function to create a symbol with a given base name. The system determines
the index appended to the base name to ensure that the symbol is new. The gensym function
returns the newly created symbol, which has the value unbound. For example:

gensym('net) => net2

Creating a Symbol from Several Strings (concat)

Use the concat function to create a symbol when you need to build the name from several
strings.

The Print Name of a Symbol

Symbol names can contain alphanumeric characters (a-z, A-Z, 0-9), the underscore (_)
character, and the question mark (?). If the first character of a symbol is a digit, it must be
preceded by the backslash character (\). Other printable characters can be used in symbol
names by preceding each special character with a backslash.

Retrieving the Print Name of a Symbol (get_pname)

Use the get_pname function to retrieve the print name of a symbol. This function is most
useful in a program that deals with a variable whose value is a symbol. For example:

location = 'U235
get_pname(location) => "U235"
January 2007 91 Product Version 06.70

SKILL Language User Guide
Data Structures
The Value of a Symbol

The value of a symbol can be any type, including the type symbol.

Assigning a Symbol’s Value

Use the = operator to assign a value to a symbol. The setq function corresponds to the =
operator. The following are equivalent.

U235 = 100
setq(U235 100)

Retrieving a Symbol’s Value

Refer to the symbol’s name to retrieve its value.

U235 => 100

Using the Quote Operator with a Symbol

If you need to refer to a symbol itself instead of its value, use the quote operator.

location = 'U235 => U235

Storing a Symbol’s Value Indirectly (set)

You can assign a value indirectly to a symbol with the set function. There is no operator that
corresponds to the set function. The following assigns 200 to the symbol U235.

set(location 200)

Retrieving a Symbol’s Value Indirectly (symeval)

You can retrieve a symbol’s value indirectly with the symeval function. There is no operator
that corresponds to the symeval function.

symeval(location) => 200

Global and Local Values for a Symbol

Global and local variables and function parameters are handled differently in SKILL than they
are in C and Pascal.

SKILL uses symbols for both global and local variables. A symbol’s current value is accessible
at any time from anywhere. SKILL manages a symbol’s value slot transparently as if it were
January 2007 92 Product Version 06.70

SKILL Language User Guide
Data Structures
a stack. The current value of a symbol is simply the top of the stack. Assigning a value to a
symbol changes only the top of the stack. Whenever the flow of control enters a let or prog
expression, the system pushes a temporary value onto the value stack of each symbol in the
local variable list.

The Function Binding of a Symbol

When you declare a SKILL function, the system uses the function’s name to determine a
symbol to hold the function definition. The function definition is stored in the function slot.

If you are redefining the function, the same symbol is reused and the previous function
definition is discarded.

Unlike the symbol’s value slot, the symbol’s function slot is not affected when the flow of
control enters or exits let or prog expressions.

The Property List of a Symbol

A property list is a list containing property name/value pairs. Each name/value pair is stored
as two consecutive elements on a property list. The property name, which must be a
symbol, comes first. The property value, which can be of any data type, comes next.

When a symbol is created, SKILL automatically attaches to it a property list initialized to nil.
A symbol property list can be accessed in the same way structures or records are accessed
in C or Pascal, by using the dot operator and arrow operators.

Setting a Symbol’s Property List (setplist)

The setplist function sets a symbol’s property list. For example:

setplist('U235 '(x 200 y 300)) => (x 200 y 300)

Retrieving a Symbol’s Property Lst (plist)

The plist function returns the property list associated with a symbol.

plist('U235) => (x 200 y 300)
January 2007 93 Product Version 06.70

SKILL Language User Guide
Data Structures
Using the Dot Operator to Retrieve Symbol Properties

The dot (.) operator gives you a simple way of accessing properties stored on a symbol’s
property list. The dot operator cannot be nested, and both the left and right sides of the dot
operator must be symbols. For example:

U235.x => 200

The getqq function implements the dot operator. For example, the following behave
identically.

U235.x
getqq(U235 x)

The qq suffix informally indicates that both arguments are implicitly quoted.

If you ask for the value of a particular property on a symbol and the property does not exist
on the symbol’s property list, nil is returned.

Using the Dot and Assignment Operators to Store Symbol Properties

If you assign a value to a property that does not exist, that property is created and put on the
property list.

Using the arrow operator toRetrieve Symbol Properties

The arrow (->) operator gives you a simple way of indirectly accessing properties stored on
a symbol’s property list. The getq function implements the arrow operator. Both the left and
right sides of the -> operator must be symbols. For example:

designator = 'U235
U235.x = 200
U235.y = 300
designator->x => 200
designator->y => 300

Using the Arrow Operator and the Assignment Operator to Store Symbol Properties

The arrow (->) operator and the assignment (=) operator work together to provide a simple
way of indirectly storing properties on a symbol’s property list. For example:

designator->x = 250
U235.x => 250

The putpropq function implements both the arrow operator and the assignment operator. For
example, the following behave identically.

designator->x = 250
putpropq(designator 250 x)
January 2007 94 Product Version 06.70

SKILL Language User Guide
Data Structures
Important Symbol Property List Considerations

Property lists attached to symbols are globally visible to all applications. Whenever you
pass a symbol to a function, that function can add or alter properties on that symbol’s property
list.

In the following example, even though the sample property is established within a let
expression, it is still available outside the let expression. In other words, when the flow of
control enters and subsequently exits a let or prog expression, the property lists of local
symbols are not affected.

x = 0
let((x)

x = 2
x.example = 5
) ; let

x => 0
plist('x) => (example 5)

Caution

If you want to use symbol property lists to pass data from one function to
another, you must make sure you choose unique names to avoid possible
name collisions with other applications. Use setplist with caution
because you might inadvertently destroy properties of importance to
other applications.

Disembodied Property Lists

A disembodied property list is logically equivalent to a record. Unlike C structures or Pascal
records, new fields can be dynamically added or removed. The arrow operator (->) can be
used to store and retrieve properties in a disembodied property list.

A disembodied property list starts with a SKILL data object, usually nil, followed by
alternating name/value pairs. The property names must satisfy the SKILL symbol syntax to
be visible to the arrow operator. The first element of the disembodied list does not have to be
nil. It can be any SKILL data object.

In the following example, a disembodied property list is used to represent a complex number.

procedure(trMakeComplex(@key (real 0) (imaginary 0))
let((result)

result = ncons(nil)
result->real = real
result->imaginary = imaginary
result

) ; let
) ; procedure
January 2007 95 Product Version 06.70

SKILL Language User Guide
Data Structures
complex1 = trMakeComplex(?real 2 ?imaginary 3)
=> (nil imaginary 3 real 2)

complex2 = trMakeComplex(?real 4 ?imaginary 5)
=> (nil imaginary 5 real 4)

i = trMakeComplex(?imaginary 1)
=> (nil imaginary 1 real 0)

procedure(trComplexAddition(cmplx1 cmplx2)
trMakeComplex(

?real cmplx1->real + cmplx2->real
?imaginary cmplx1->imaginary + cmplx2->imaginary

)
) ; procedure

procedure(trComplexMultiplication(cmplx1 cmplx2)
trMakeComplex(

?real
cmplx1->real * cmplx2->real -
cmplx1->imaginary * cmplx2->imaginary

?imaginary
cmplx1->imaginary * cmplx2->real +
cmplx1->real * cmplx2->imaginary

)
) ; procedure

trComplexMultiplication(i i) => (nil imaginary 0 real -1)

In several circumstances using a disembodied property list to represent a record has
advantages over using a symbol’s property list.

■ An appropriate symbol to which you can attach a property list might not be available. For
example, no symbol exists for complex numbers in the example above.

■ If you create a symbol for each record your application tracks and your application
requires many records, SKILL will have a lot of extra symbols to manage.

■ It is easier to pass a disembodied property list as a parameter than it is to pass a symbol
as a parameter.

You can store a disembodied property list as the value of a symbol without affecting the
symbol’s property list.

setplist('x '(example 0.5))
x = complex1 => (nil imaginary 3 real 2)
plist('x) => (example 0.5)
January 2007 96 Product Version 06.70

SKILL Language User Guide
Data Structures
Important Considerations

Be careful when you are assigning disembodied property lists to variables.

Caution

Property list functions that modify property lists modify the original list
structures directly. If the property list is not to be shared, use the copy
function to make a copy of the original property list.

This caution applies in general to assigning lists as values. Internally, SKILL uses pointers to
the lists in virtual memory. For example, as a result of the following assignment

complex1 = complex2

both symbols complex1 and complex2 refer to the same list in virtual memory. Using the
arrow operator to modify the real or imaginary properties of complex2 is reflected in
complex1.

Notice that

complex1 == complex2 => t
eq(complex1 complex2) => t

To avoid this problem, perform the assignment as follows.

complex1 = copy(complex2)

Notice that

complex1 == complex2 => t
eq(complex1 complex2) => nil

Additional Property List Functions

Adding Properties to Symbols or Disembodied Property Lists (putprop)

putprop adds properties to symbols or disembodied property lists. If the property already
exists, the old value is replaced with a new one. The putprop function is a lambda function,
which means all of its arguments are evaluated.

putprop('s 1+2 'x) => 3
s.x = 1+2 => 3

Both examples are equivalent expressions that set the property x on symbol s to 3.
January 2007 97 Product Version 06.70

SKILL Language User Guide
Data Structures
Getting the Value of a Named Property in a Property List (get)

get returns the value of a named property in a property list. get is used with putprop, where
putprop stores the property and get retrieves it.

putprop('U235 8 'pins)

Assigns the property pins on the symbol U235 to a value of 8.

get('U235 'pins) => 8
U235.pins => 8

Adding Properties to Symbols or Disembodied Property Lists (defprop)

defprop adds properties to symbols or disembodied property lists, but none of its arguments
are evaluated. defprop is the same as putprop except that none of its arguments are
evaluated.

defprop(s 3 x) => 3

Sets property x on symbol s to 3.

defprop(s 1+2 x) => 1+2

Sets property x on symbol s to the unevaluated expression 1+2.

Removing a Property and Restoring a Previous Value (remprop)

remprop removes a property from a property list. The return value is not useful.

setplist('U235 '(x 100 y 200)) => (x 100 y 200)

Sets the property list to (x 100 y 200).

putprop('U235 8 'pins) => 8

Sets the value of the pins property to 8.

plist('U235) => (pins 8 x 100 y 200)

Verifies the operation.

get('U235 'pins) => 8

Retrieves the pins property.

remprop('U235 'x)

Removes the x property.

plist('U235) => (pins 8 y 200)
January 2007 98 Product Version 06.70

SKILL Language User Guide
Data Structures
Strings

A string is a specialized one-dimensional array whose elements are characters.

The string functions in this section are patterned after functions of the same name in the C
run-time library. Strings can be compared, taken apart, or concatenated.

Concatenating Strings

Concatenating a List of Strings with Separation Characters (buildString)

buildString makes a single string from the list of strings. You specify the separation character
in the third argument. A null string is permitted. If this argument is omitted, buildString
provides a separating space as the default.

buildString('("test" "il") ".") => "test.il"
buildString('("usr" "mnt") "/") => "usr/mnt"
buildString('("a" "b" "c")) => "a b c"
buildString('("a" "b" "c") "") => "abc"

Concatenating Two or More Input Strings (strcat)

strcat creates a new string by concatenating two or more input strings. The input strings are
left unchanged.

strcat("l" "ab" "ef") => "labef"

You are responsible for any separating space.

strcat("a" "b" "c" "d") => "abcd"
strcat("a " "b " "c " "d ") => "a b c d "

Appending a Maximum Number of Characters from Two Input Strings (strncat)

strncat is similar to strcat except that the third argument indicates the maximum number of
characters from string2 to append to string1 to create a new string. string1 and string2 are
left unchanged.

strncat("abcd" "efghi" 2) => "abcdef"
strncat("abcd" "efghijk" 5) => "abcdefghi"
January 2007 99 Product Version 06.70

SKILL Language User Guide
Data Structures
Comparing Strings

Comparing Two String or Symbol Names Alphabetically (alphalessp)

alphalessp compares two objects, which must be either a string or a symbol, and returns t
if arg1 is alphabetically less than the name of arg2. alphalessp can be used with the sort
function to sort a list of strings alphabetically. For example:

stringList = '("xyz" "abc" "ghi")
sort(stringList 'alphalessp) => ("abc" "ghi" "xyz")

The next example returns a sorted list of all the files in the login directory.

sort(getDirFiles("~") 'alphalessp)

Comparing Two Strings Alphabetically (strcmp)

strcmp compares two strings. To simply test if two strings are equal or not, you can use the
equal command. The return values for strcmp indicate

strcmp("abc" "abb")=> 1
strcmp("abc" "abc")=> 0
strcmp("abc" "abd")=> -1

Comparing Two String or Symbol Names Alphanumerically or Numerically
(alphaNumCmp)

alphaNumCmp compares two string or symbol names. If the third optional argument is non-
nil and the first two arguments are strings holding purely numeric values, a numeric
comparison is performed on the numeric representation of the strings. The return values
indicate

Return Value Meaning

1 string1 is alphabetically greater than string2.

0 string1 is alphabetically equal to string2.

-1 string1 is alphabetically less than string2.

Return Value Meaning

1 arg1 is alphanumerically greater than arg2.

0 arg1 is alphanumerically identical to arg2.
January 2007 100 Product Version 06.70

SKILL Language User Guide
Data Structures
alphaNumCmp("a" "b") =>-1
alphaNumCmp("b" "a") => 1
alphaNumCmp("name12" "name12") => 0
alphaNumCmp("name23" "name12") => 1
alphaNumCmp("00.09" "9.0E-2" t) => 0

Comparing a Llimited Number of Characters (strncmp)

strncmp compares two strings alphabetically, but only up to the maximum number of
characters indicated in the third argument. The return values indicate the same as for strcmp
above.

strncmp("abc" "ab" 3) => 1
strncmp("abc" "de" 4) => -1

Getting Character Information in Strings

Getting the Length of a String in Characters (strlen)

Refer to “Pattern Matching of Regular Expressions” on page 103 for information on the
backslash notation used below.

strlen("abc") => 3
strlen("\007")=> 1

Indexing with Character Pointers

Getting the Index Character of a String (getchar)

getchar returns an indexed character of a string or the print name if the string is a symbol.

getchar("abc" 2) => b
getchar("abc" 4) => nil

getchar returns a symbol whose print name is the character, not a string.

SKILL represents an individual character by the symbol whose print name is the string
consisting solely of the character. For example:

-1 arg2 is alphanumerically greater than arg1.

Return Value Meaning
January 2007 101 Product Version 06.70

SKILL Language User Guide
Data Structures
getchar("1.2" 2) => \.
type(getchar("1.2" 2)) => symbol
get_pname(getchar("1.2" 2)) => "."

If you are familiar with C, you should note that the getchar SKILL function is totally unrelated
to the C function of the same name.

Getting the Tail of a String (index, rindex)

index returns the remainder of string1 beginning with the first occurrence of string2.

index("abc" 'b) => "bc"
index("abcdabce" "dab") => "dabce"
index("abc" "cba") => nil
index("dandelion" "d") => "dandelion"

rindex returns the remainder of string1 beginning with the last occurrence of string2.

rindex("dandelion" "d") => "delion"

Getting the Character Index of a String (nindex)

nindex finds the symbol or string, string2, in string1 and returns the character index,
starting from one, of the first point at which string2 matches part of string1.

nindex("abc" 'b) => 2
nindex("abcdabce" "dab") => 4
nindex("abc" "cba") => nil

Creating Substrings

Copying Substrings (substring)

substring creates a new substring from an input string, starting at an index point (arg2) and
continuing for a given length (arg3).

substring("abcdef" 2 4)=> "bcde"
substring("abcdef" 4 2)=> "de"

Breaking Lists Into Substrings (parseString)

parseString breaks a string into a list of substrings with specified break characters, which
are indicated by an optional second argument.

parseString("Now is the time") => ("Now" "is" "the" "time")

Space is the default break character
January 2007 102 Product Version 06.70

SKILL Language User Guide
Data Structures
parseString("prepend" "e") => ("pr" "p" "nd")

e is the break character.

parseString("feed" "e") => ("f" "d")

A sequence of break characters in t_string is treated as a single break character.

parseString("~/exp/test.il" "./") => ("~" "exp" "test" "il")

Both . and / are break characters.

parseString("abc de" "") => ("a" "b" "c" " " "d" "e")

The single space between c and d contributes " " in the return result.

Converting Case

Converting to Upper Case (upperCase)

upperCase replaces lowercase alphabetic characters with their uppercase equivalents. If
the parameter is a symbol, the name of the symbol is used.

upperCase("Hello world!") => "HELLO WORLD!"

symName = "nameofasymbol" => "nameofasymbol"
upperCase(symName) => "NAMEOFASYMBOL"

Converting to Lower Case (lowerCase)

lowerCase replaces uppercase alphabetic characters with their lowercase equivalents. If the
parameter is a symbol, the name of the symbol is used.

lowerCase("Hello World!") => "hello world!"

Pattern Matching of Regular Expressions

In many applications, you need to match strings or symbols against a pattern. SKILL provides
a number of pattern matching functions that are built on a few primitive C library routines with
a corresponding SKILL interface.
January 2007 103 Product Version 06.70

SKILL Language User Guide
Data Structures
A pattern used in the pattern matching functions is a string indicating a regular expression.
Here is a brief summary of the rules for constructing regular expressions in SKILL:

Rules for Constructing Regular Expressions

Synopsis Meaning

c Any ordinary character (not a special character listed below) matches
itself.

. A dot matches any character.

\ A backslash when followed by a special character matches that
character literally. When followed by one of <, >, (,), and 1,…,9, it has
a special meaning as described below.

[c…] A nonempty string of characters enclosed in square brackets (called a
set) matches one of the characters in the set. If the first character in
the set is ^, it matches a character not in the set. A shorthand S-E is
used to specify a set of characters S up to E, inclusive. The special
characters] and - have no special meaning if they appear as the first
character in a set.

* A regular expression in the above form, followed by the closure
character * matches zero or more occurrences of that form.

+ Similar to *, except it matches one or more times.

\(…\) A regular expression wrapped as \(form \) matches whatever form
matches, but saves the string matched in a numbered register (starting
from one, can be up to nine).

\n A backslash followed by a digit n matches the contents of the nth
register from the current regular expression.

\<…\> A regular expression starting with a \< and/or ending with a \> restricts
the pattern matching to the beginning and/or the end of a word. A word
defined to be a character string can consist of letters, digits, and
underscores.

rs A composite regular expression rs matches the longest match of r
followed by a match for s.

^, $ A ^ at the beginning of a regular expression matches the beginning of
a string. A $ at the end matches the end of a string. Used elsewhere in
the pattern, ^ and $ are treated as ordinary characters.
January 2007 104 Product Version 06.70

SKILL Language User Guide
Data Structures
How Pattern Matching Works

The mechanism for pattern matching

■ Compiles a pattern into a form and saves the form internally

■ Uses that internal form in every subsequent matching against the targets until the next
pattern is supplied

The rexCompile function does the first part of the task, that is, the compilation of a pattern.
The rexExecute function takes care of the second part, that is, actually matching a target
against the previously compiled pattern. Sometimes this two-step interface is too low-level
and awkward to use, so functions for higher-level abstraction (such as rexMatchp) are also
provided in SKILL.

Avoiding Null and Backslash Problems

■ A null string ("") is interpreted as no pattern being supplied, which means the previously
compiled pattern is still used. If there was no previous pattern, an error is signaled.

■ To put a backslash character (\) into a pattern string, you need an extra backslash (\) to
escape the backslash character itself.

For example, to match a file name with dotted extension “.il”, the pattern “^[a-zA-Z]+\\.il$” can
be used, but “^[a-zA-Z]\.il$” gives a syntax error. However, if the pattern string is read in from
an input function such as gets that does not interpret backslash characters specifically, you
should not add an extra backslash to enter a backslash character.

Pattern Matching Functions

Finding a Pattern Within a String or Symbol (rexMatchp)
rexMatchp("[0-9]*[.][0-9][0-9]*" "100.001") => t
rexMatchp("[0-9]*[.][0-9]+" ".001") => t
rexMatchp("[0-9]*[.][0-9]+" ".") => nil
rexMatchp("[0-9]*[.][0-9][0-9]*" "10.") => nil

rexMatchp("[0-9" "100")
=> *Error* rexMatchp: Missing] - "[0-9"

Compiling a Regular Expression String Pattern (rexCompile)

rexCompile compiles a regular expression string pattern into an internal representation to
be used by succeeding calls to rexExecute.
January 2007 105 Product Version 06.70

SKILL Language User Guide
Data Structures
rexCompile("^[a-zA-Z]+") => t
rexCompile("\\([a-z]+\\)\\.\\1") => t
rexCompile("^\\([a-z]*\\)\\1$") => t
rexCompile("[ab") => *Error* rexCompile: Missing] - "[ab"

Matching Against a Previously Compiled Pattern (rexExecute)

rexExecute matches a string or symbol against the previously compiled pattern created by
the last rexCompile call.

rexCompile("^[a-zA-Z][a-zA-Z0-9]*") => t
rexExecute('Cell123) => t
rexExecute("123 cells") => nil

The target "123 cells" does not begin with a-z/A-Z.

rexCompile("\\([a-z]+\\)\\.\\1") => t
rexExecute("abc.bc") => t
rexExecute("abc.ab") => nil

rexCompile("\\(^[a-z]+\\)\\.\\1") =>t
rexExecute("abc.bc") => nil

The caret (^) in the rexCompile pattern requires that the pattern must match from the
beginning of the input string.

Matching a List of Strings or Symbols (rexMatchList)

rexMatchList matches a list of strings or symbols against a regular expression string pattern
and returns a list of the strings or symbols that match.

rexMatchList("^[a-z][0-9]*" '(a01 x02 "003" aa01 "abc"))
=> (a01 x02 aa01 “abc”)

rexMatchList("^[a-z][0-9][0-9]*"
'(a001 b002 "003" aa01 "abc"))

=> (a001 b002)

rexMatchList("box[0-9]*" '(square circle "cell9" "123"))
=> nil

Creating an Association List Made of Matching Strings (rexMatchAssocList)

rexMatchAssocList returns a new association list created out of those elements of an
association list whose key matches a regular expression string pattern.

rexMatchAssocList("^[a-z][0-9]*$"
'((abc "ascii") ("123" "number") (a123 "alphanum")
(a12z "ana")))

=> ((a123 "alphanum"))

rexMatchAssocList("^[a-z]*[0-9]*$"
'((abc "ascii") ("123" "number") (a123 "alphanum")
January 2007 106 Product Version 06.70

SKILL Language User Guide
Data Structures
(a12z "ana")))
=> ((abc "ascii") ("123" "number") (a123 "alphanum"))

Turning Meta-Characters On and Off (rexMagic)

rexMagic turns on or off the special interpretation associated with the meta-characters (^, $,
*, +, \, [,], and so forth) in regular expressions. Users of vi will recognize this as equivalent to
the set magic/set nomagic commands.

rexCompile("^[0-9]+") => t
rexExecute("123abc") => t
rexSubstitute("got: \\0") => "got: 123"
rexMagic(nil) => nil
rexCompile("^[0-9]+") => t;Recompile w/o magic.
rexExecute("123abc") => nil
rexExecute("**^[0-9]+!**") => t
rexSubstitute("got: \\0") => "got: \\0"
rexMagic(t) => t
rexSubstitute("got: \\0") => "got: ^[0-9]+"

Replacing a Substring (rexReplace)

rexReplace replaces the substring(s) in the source string that matched the last regular
expression compiled by the replacement string. The third argument tells which occurrence of
the matched substring is to be replaced. If it’s 0 or negative, all the matched substrings will
be replaced. Otherwise only the specified occurrence is replaced. rexReplace returns the
source string if the specified match is not found

rexCompile("[0-9]+")=> t
rexReplace("abc-123-xyz-890-wuv" "(*)" 1)=> "abc-(*)-xyz-890-wuv"
rexReplace("abc-123-xyz-890-wuv" "(*)" 2)=> "abc-123-xyz-(*)-wuv"
rexReplace("abc-123-xyz-890-wuv" "(*)" 3)=> "abc-123-xyz-890-wuv"
rexReplace("abc-123-xyz-890-wuv" "(*)" 0)=> "abc-(*)-xyz-(*)-wuv"

rexCompile("xyz") => t
rexReplace("xyzzyxyzz" "xy" 0) => "xyzyxyz" ; No rescanning!

Defstructs

Defstructs are collections of one or more variables. They can be of different types and
grouped together under a single name for easy handling. They are the equivalent of structs
in C.

The following template for defstruct defines a data structure with the named slots:

defstruct(s_name s_slot1 [s_slot2..]) => t
January 2007 107 Product Version 06.70

SKILL Language User Guide
Data Structures
The defstruct also creates a constructor function, make_name, where name is the
structure name supplied to defstruct. The constructor function takes keyword arguments:
one for each slot in the structure. All arguments are symbols and none need to be quoted.

Behavior Is Similar to Disembodied Property Lists

Once created, structures behave just like disembodied property lists, but are more efficient in
space utilization and access times. Structures can have new slots added at any time.
However, these dynamic slots are less efficient than the statically declared slots, both in
access time and space utilization.

Defstructs respond to the following operations, assuming struct is an instance built from a
constructor function:

struct->slot

Returns the value associated with a slot of an instance.

struct->slot = newval

Modifies the value associated with a slot of an instance.

struct->?

Returns a list of the slot names associated with an instance.

struct->??

Returns a property list (not a disembodied property list) containing the slot names and values
associated with an instance.

Additional Defstruct Functions

Testing a SKILL Object (defstructp)
defstructp(g_object [st_name]) => t / nil

defstructp tests a SKILL object, returning t if it’s a structure instance, otherwise nil. The
second argument is optional and denotes the name of the structure to test for. The test in this
case is stronger and only returns t if g_object is an instance of defstruct st_name. The name
can be passed either as a symbol or a string.

Printing the Contents of a Structure (printstruct)
printstruct(r_structureInstance) => t
January 2007 108 Product Version 06.70

SKILL Language User Guide
Data Structures
For debugging, the printstruct function prints the contents of a structure in an easily readable
form. It recursively dumps out any slot value that is also a structure instance. The printstruct
function dumps out a structure instance.

Beware of Structure Sharing (copy_<name>)

Structures can contain instances of other structures; therefore, you need to be careful about
structure sharing. If sharing is not desired, a special copy function can be used to generate a
copy of the structure being inserted. The defstruct function also creates a function for the
given defstruct called copy_<name>. This function takes one argument, an instance of the
defstruct. It creates and returns a copy of the instance.

Making a Deep or Recursive Copy (copyDefstructDeep)
copyDefstructDeep(r_object) => r_object

Performs a deep or recursive copy on defstructs with other defstructs as sub-elements,
making copies of all the defstructs encountered. The various copy_name functions are
called to create copies for the defstructs encountered in the deep copy.

Accessing Named Slots in SKILL Structures

Slot Access Example

This example defines a card structure and allocates an instance of card.

defstruct(card rank suit faceUp) => t

This structure has three slots: rank suit faceUp. Next, allocate an instance of card and store
a reference to it in aCard.

aCard = make_card(?rank 'ace ?suit 'spades)
=> array[5]:21556040

Structure instances are implemented as arrays. Refer to “Arrays” on page 111.

aCard => array[5]:21556040

The type function returns the structure name.

type(aCard) => card

Use the Arrow Operator -> and ~> to Access Slots
aCard->rank => ace
aCard->faceUp = t => t
January 2007 109 Product Version 06.70

SKILL Language User Guide
Data Structures
Use ->? to Get a List of the Slot Names
aCard->? => (faceUp suit rank)

Use ->?? to Get a List of Slot Names and Values
aCard->?? => (faceUp t suit spades rank ace)

Slots can be created dynamically for an instance by simply referencing them with the ->
operator.

If you have a list of instances of defstructs and you wish access the same slot in all the
instances in that list use the ~> operator.

cardList = list(make_card(?rank 'ace ?suit 'spades)
 make_card(?rank 'king ?suit 'diamonds))

cardList~>rank => (ace king)
cardList~>faceUp => (nil nil)
cardList~>faceUp = t => (t t)
cardList~>faceUp => (t t)

Extended defstruct Example

1. Define a structure.

defstruct(point x y) => t

2. Define another structure.

defstruct(bbox ll ur) => t

3. Make an instance.

p1 = make_point(?x 100 ?y 200) => array[4]:xxx

4. Make another instance.

p2 = make_point(?x 0 ?y 0) => array[4]:xxxx

5. Make a bbox instance.

b1 = make_bbox() => array[4]:xxxx

6. Set a field in b1.

b1->ll = p2 => array[4]:xxxx

7. Set the other field.

b1->ur = p1 => array[4]:xxxx

8. Look inside and note the recursive printing.

printstruct(b1) ; Look inside
Structure of type bbox : ; Note the recursive printing

ll :
January 2007 110 Product Version 06.70

SKILL Language User Guide
Data Structures
Structure of type point:
x:0

y:0

ur:
Structure of type point:

x: 100
y: 200

b1->ll->x = 12
=> 12

printstruct(p2)
Structure of type point :

x: l2
y: 0

p1->??
=> (y 200 x 100)

b1->??
=> (ur array[4]:xxx ll array[4]:xxx)

9. Add a previously undefined slot.

b1->color = 'blue
printstruct(b1)

Structure of type bbox :
ll :

Structure of type point :
x: 12
y: 0

ur:
Structure of type point :

x: 100
y: 200

color: blue

b1->?
=> (color ll ur)

Returns the list of currently defined fields.

Arrays

An array represents aggregate data objects in SKILL. Unlike simple data types, you must
explicitly create arrays before using them so the necessary storage can be allocated. SKILL
arrays allow efficient random indexing into a data structure using familiar syntax.

■ Arrays are not typed. Elements of the same array can be different data types.

■ SKILL provides run-time array bounds checking.

■ Arrays are one dimensional. You can implement higher dimensional arrays using single
dimensional arrays. You can create an array of arrays.
January 2007 111 Product Version 06.70

SKILL Language User Guide
Data Structures
■ The array bounds are checked with each array access during run-time. An error occurs
if the index is outside the array bounds.

Allocating an Array of a Given Size

Use the declare function to allocate an array of a given size.

declare(week[7]) => array[7]:9780700
week => array[7]:9780700
type(week) => array
arrayp(week) => t
days = '(monday tuesday wednesday

thursday friday saturday sunday)
for(day 0 length(week)-1

week[day] = nth(day days))

■ The declare function returns the reference to the array storage and stores it as the value
of week.

■ The type function returns the symbol array.

■ The arrayp function returns t.

Accessing Arrays

When the name of an array appears without an index on the right side of an assignment
statement, only the array object is used in the assignment; the values stored in the array are
not copied. It is therefore possible for an array to be accessible by different names. Indices
are used to specify elements of an array and always start with 0; that is, the first element of
an array is element 0. SKILL normally checks for an out-of-bounds array index with each array
access.

declare(a[10])
a[0] = 1
a[1] = 2.0
a[2] = a[0] + a[1]

Creates an array of 10 elements. a is the name of the array, with indices ranging from 0 to 9.
Assigns the integer 1 to element 0, the float 2.0 to element 1, and the float 3.0 to element 2.

b = a

b now refers to the same array as a.

declare(c[10])

Declares another array of 10 elements.

declare(d[2])

Declares d as an array of 2 elements.
January 2007 112 Product Version 06.70

SKILL Language User Guide
Data Structures
d[0] = b

d[0] now refers to the array pointed to by b and a.

d[1] = c

d[1] is the array referred to by c.

d[0][2]

Accesses element 2 of the array referred to by d[0].
This is the same element as a[2].

Brackets ([]) are used to represent array references and are part of the statement syntax. The
declare function is also an example of an nlambda function. The arguments of nlambda
functions are passed literally (that is, not evaluated). It is up to the called function to evaluate
selected arguments when necessary.

Association Tables

An association table is a generalized array, a collection of key/value pairs. The SKILL data
types that can be used as keys in a table are integer, float, string, list, symbol, and instances
of certain user-defined types. An association table is implemented internally as a hash table.

An association table lets you look up any entry with valid instances of SKILL data types. Data
is stored in key/value pairs that can be quickly accessed with syntax for standard array access
and various iterative functions. This access is based on a system that uses the SKILL equal
function to compare keys.

Association tables offer convenience and performance not available in disembodied property
lists, arrays, or association lists. Disembodied property lists and association lists are not
efficient in situations where their contents can expand greatly. In addition, using symbols for
properties or keys in a disembodied property list can be wasteful. A simple conversion
process converts disembodied property lists and association lists to association tables. An
association table can also be converted to a list of association pairs.

Initializing Tables

The makeTable function defines and initializes the association table. This function takes a
single string argument as the table name for printing purposes. An optional second argument
provides the default value that is returned when a query to the table yields no match. The
tablep predicate verifies the data type of a table, and the length function determines the
number of keys in the table. To refer to and add elements, use the syntax for standard array
access.
January 2007 113 Product Version 06.70

SKILL Language User Guide
Data Structures
The following example creates a table and loads it with keys and related values that pair
numbers and colors for a color map. The keys can be any of the data type mentioned earlier;
they are not restricted to numeric data types.

myTable = makeTable("atable1" 0) => table:atable1
tablep(myTable) => t
myTable[1] = "blue" => "blue"
myTable["two"] = '(r e d) => (r e d)
myTable["three"] = 'green => green
length(myTable) => 3

If a new pair is added to the table but its key already exists, the new value replaces the existing
value in the table.

If a key to be accessed does not exist, the process returns either the default value specified
at table creation or the symbol unbound, if no default value was specified.

Manipulating Table Data

The foreach, forall, and setof functions scan the contents of an association table and
perform iterative programming functions on each key and its associated value. Standard input
and output functions are available through the readTable, writeTable, and printstruct
functions.

The append function appends data from existing disembodied property lists or association
lists to an existing association table. You specify the association table (created with the
makeTable function) as the first argument for this function. For the second argument, you
specify the disembodied property list, association list, or other association table whose data
is to be appended.

Association Table Functions

Several list-oriented functions also work on tables, including iteration.

List-Oriented Functions for Tables

Use this To do this

Syntax for array access To store and retrieve entries in a table

makeTable function To create and initialize the association table. The arguments
are the table name (required) and (optional) the default
value to return for keys not present in the table. The default
is unbound.
January 2007 114 Product Version 06.70

SKILL Language User Guide
Data Structures
Testing Whether a Data Value is a Table (tablep)

Use the tablep function to test whether a data value is a table.

myTable = makeTable("atable1" 0) => table:atable1
tablep(myTable) => t
tablep(9) => nil

Converting the Contents of an Association Table to an Association List (tableToList)

This function eliminates the efficiency that you gain from referencing data in an association
table. Do not use this function for processing data in an association table. Instead, use this
function interactively to look at the contents of a table.

tableToList(myTable)
=> (("two" (r e d)) ("three" green) (1 "blue"))

Writing the Contents of an Association List to a File (writeTable)

The writeTable function is for writing basic SKILL data types that are stored in an association
table. The function cannot write database objects or other user-defined types that might be
stored in association tables.

writeTable("inventory.log" myTable) => t

Appending the Contents of a File to an Existing Association Table (readTable)

The file must have been created with the writeTable function so that the contents are in a
usable format.

readTable("inventory.log" myTable)=> t

foreach function To execute a collection of SKILL expressions for each key/
value pair in a table

setof function To return a list of keys in a table that satisfy a criterion.

length function To return the number of key/value pairs in a table

remove function To remove a key from a table

List-Oriented Functions for Tables

Use this To do this
January 2007 115 Product Version 06.70

SKILL Language User Guide
Data Structures
Printing the Contents of an Object in a Tabular Format (printstruct)

For debugging, the printstruct function prints the contents of a structure in an easily readable
form. It recursively prints nested structures.

printstruct(myTable)
=> 1: "blue"

"three": green
"two": (r e d)

Traversing Association Tables

Use the foreach function to visit every key in an association table. For example, use the
following function call to print each key/value pair in a table.

foreach(key myTable
println(

list(key myTable[key])
)

)

You can also use the functions forall, exists and setof to traverse association tables. (These
functions are described in detail in “Advanced List Operations” on page 175)

For example, use the following function call to test if every key/value pair in a table are such
that the key is a string and value is an integer.

forall(key myTable
stringp(key) && fixp(myTable[key])
)

To check if there is a single pair that satisfies the above expression, call the following function.

exists(key myTable
stringp(key) && fixp(myTable[key])
)

■ To write the entire contents of a table to a file, use writeTable.

■ To read a file (created using writeTable), use readTable.

■ To view the contents of a table, use printstruct.

The append function appends data from existing disembodied property lists or association
lists to an existing association table.

Implementing Sparse Arrays

A sparse array is an indexed collection, most of whose entries are unused. For large sparse
arrays, it is wasteful to allocate the entire array. Instead, you can use an association table for
January 2007 116 Product Version 06.70

SKILL Language User Guide
Data Structures
a one-dimensional array. Use integers as the keys. To implement a two-dimensional sparse
array, use lists of index pairs as keys.

procedure(tr2DSparseArray()
makeTable(gensym('trSparseArray))

) ; procedure

trSparseTimesTable = tr2DSparseArray()
for(i 0 3

for(j 0 6
trSparseTimesTable[list(i j)] = i*j
) ; for

) ; for

Association Lists

A list of key/value pairs is a natural means to record associations. An association list is a list
of lists. The first element of each list is the key. The key can be an instance of any of SKILL’s
basic types.

assocList = '(("A" 1) ("B" 2) ("C" 3))

The assoc function retrieves the list given the index.

assoc("B" assocList) => ("B" 2)
assoc("D" assocList) => nil

Use the rplaca function to destructively update an entry. The following replaces the car of
the cdr of the association list entry.

rplaca(cdr(assoc("B" assocList)) "two")
=> ("two")

assocList => (("A" 1) ("B" "two") ("C" 3))

Association lists behave the same way as association tables. For lists with less than ten pairs,
it is more efficient to use association lists than association tables. For lists likely to grow
beyond ten pairs, it is more efficient to use association tables.

User-Defined Types

User-defined types are special foreign or external data types exported into SKILL by various
applications. Their behavior is predetermined by the applications that own them. For
example, database and window objects are generally implemented as C-structs and exported
into SKILL as user-defined types.

The application that defines the SKILL behavior for the user-defined types provides methods
for SKILL to apply in various situations. For example, when you apply the accessor operators
January 2007 117 Product Version 06.70

SKILL Language User Guide
Data Structures
-> or ~> to a user-defined type, the SKILL engine resolves the operation by calling the
accessor method implemented for that type by an application.

There are other methods to support a user-defined type’s behavior in SKILL. For example, to
test two user-defined types for equality (equal), the application exporting the type provides a
method to overload the SKILL equal function just for that type. The equal method takes two
arguments and returns t or nil.

The application exporting the type determines what methods are needed to support the type
in SKILL. If the application does not supply a method, SKILL applies a default behavior. In
general, to a user, instances of a user-defined type look and feel very similar to instances of
defstructs.

Specific information on user-defined types is supplied by the applications exporting the types.
For example, creating instances of user-defined types happens when certain application
functions are called, such as dbOpen.
January 2007 118 Product Version 06.70

SKILL Language User Guide
5
Arithmetic and Logical Expressions

Expressions are Cadence® SKILL language objects that also evaluate to SKILL objects.
SKILL performs a computation as a sequence of function evaluations. A SKILL program is a
sequence of expressions that perform a specified action when evaluated by the SKILL
interpreter. The three types of primitive expressions in SKILL are constants, variables, and
function calls. You can combine constants, variables, and function calls with operators to
form arithmetic and logical expressions (see “Creating Arithmetic and Logical Expressions”
on page 120).

A constant is an expression that evaluates to itself. That is, evaluating a constant returns the
constant itself. For example:

123

10.5

"abc"

A variable stores values used during the computation and returns its value when evaluated.
For example:

a

x

init_var

When SKILL creates a variable, it gives the variable an initial value of unbound (that-value-
which-represents-no-value). If the interpreter encounters an unbound variable, you get an
error message. You must initialize all variables. For example:

myVariable = 5

Note: You will encounter the unbound variable error message if you misspell a variable
because the misspelling creates a new variable.

A function call applies the named function to the list of arguments and returns the result
when called. For example:

f(a b c d)

abs(-123)

exit()
January 2007 119 Product Version 06.70

SKILL Language User Guide
Arithmetic and Logical Expressions
See the following sections for more information:

■ Creating Arithmetic and Logical Expressions on page 120

■ Differences Between SKILL and C Syntax on page 133

■ SKILL Predicates on page 134

■ Type Predicates on page 137

Creating Arithmetic and Logical Expressions

You can combine constants, variables, and function calls with infix operators such as less
than (<), colon (:), and greater than (>) to form arithmetic and logical expressions. For
example:

1+2

a*b+c

x>y

You can form arbitrarily complicated expressions by combining any number of primitive
expressions (constants, variables, and function calls) and operators.

For more information about creating arithmetic and logical expressions, see the following:

■ Role of Parentheses on page 121

■ Quoting to Prevent Evaluation on page 121

■ Arithmetic and Logical Operators on page 121

■ Predefined Arithmetic Functions on page 125

■ Bitwise Logical Operators on page 126

■ Bit Field Operators on page 126

■ Mixed-Mode Arithmetic on page 128

■ Function Overloading on page 131

■ Integer-Only Arithmetic on page 131

■ True (non-nil) and False (nil) Conditions on page 132

■ Controlling the Order of Evaluation on page 132

■ Testing Arithmetic Conditions on page 133
January 2007 120 Product Version 06.70

SKILL Language User Guide
Arithmetic and Logical Expressions
Role of Parentheses

Parentheses delimit the names of functions from their argument lists and delimit nested
expressions. In general, the innermost expression of a nested expression is evaluated first,
returning a value used in turn to evaluate the expression enclosing it, and so on until the
expression at the top level is evaluated.

Parentheses resemble natural mathematical notation and are used in both arithmetic and
control expressions.

Quoting to Prevent Evaluation

Occasionally you might want to prevent expressions from being evaluated. This is done by
“quoting” the expression, that is, putting a single quote just before the expression.

Quoting Variables

Quoting is often used with the names of variables and their values. For example, putting a
single quote before the variable a (that is, 'a) prevents a from being evaluated. Instead of
returning the value of a, the name of the variable a is returned when 'a is evaluated.

Quoting Lists

You generally specify lists of data within a program by quoting. Quoting is necessary because
of the common list representation used for both program and data. For example, evaluating
the list (f a b c) leads to the interpretation that f is the name of a function and (a b c)
is a list of arguments for f. By quoting the same list, '(f a b c), the list is instead treated
as a data list containing the four elements f, a, b, and c.

Try It Out

The best way to understand evaluation and quoting is by trying them out in SKILL. An
interactive session with the SKILL interpreter will help to clarify and reinforce many of the
concepts just described.

Arithmetic and Logical Operators

All arithmetic operators are translated into calls to predefined SKILL functions. These
operators are listed in the table below in descending order of operator precedence. The table
also lists the names of the functions, which can be called like any other SKILL function.
January 2007 121 Product Version 06.70

SKILL Language User Guide
Arithmetic and Logical Expressions
Error messages report problems using the name of the function. The letters in the Synopsis
column refer to data types. Refer to the Data Types on page 67 for a discussion of data type
characters.

Arithmetic and Logical Operators

Name of Function(s) Synopsis Operator

Data Access

arrayref a[index] []

setarray a[index] = expr

bitfield1 x<bit> <>

setqbitfield1 x<bit>=expr

setqbitfield x<msb:lsb>=expr

quote 'expr '

getqq g.s .

getq g–>s –>

putpropqq g.s = expr, g–>s = expr ~>

putpropq d~>s, d~>s = expr

Unary

preincrement ++s ++

postincrement s++ ++

predecrement --s --

postdecrement s-- --

minus –n –

null !expr !

bnot ~x ~

Binary

expt n1 ** n2 **

times n1 * n2 *

quotient n1 / n2 /

plus n1 + n2 +
January 2007 122 Product Version 06.70

SKILL Language User Guide
Arithmetic and Logical Expressions
difference n1 - n2 –

leftshift x1 << x2 <<

rightshift x1 >> x2 >>

lessp n1<n2 <

greaterp n1>n2 >

leqp n1<=n2 <=

geqp n1>=n2 >=

equal g1 == g2 ==

nequal g1 != g2 !=

band x1 & x2 &

bnand x1 ~& x2 ~&

bxor x1 ^ x2 ^

bxnor x1 ~^ x2 ~^

bor x1 | x2

bnor x1 ~| x2 |, ~|

and rel. expr && rel. expr &&

or rel. expr || rel. expr ||

range g1 : g2 :

setq s = expr =

Arithmetic and Logical Operators

Name of Function(s) Synopsis Operator
January 2007 123 Product Version 06.70

SKILL Language User Guide
Arithmetic and Logical Expressions
The following table gives more details on some of the arithmetic operators.

More on Arithmetic Operators

Arithmetic Operator Comments

+, –, *, and / Perform addition, subtraction, multiplication, and division
operations.

Exponentiation operator ** Has the highest precedence among the binary operators.

Shift operators (<<, >>) Shift their first arguments left or right by the number of bits
specified by their second arguments. Both the left and right
shifts are logical (that is, vacated bits are 0-filled).

Preincrement operator
(++ appearing before the
name of a variable)

Takes the name of a variable as its argument, increments its
value (which must be a number) by one, stores it back into
the variable, and then returns the incremented value.

Postincrement operator
(++ appearing after the name
of a variable)

Takes the name of a variable as its argument, increments its
value (which must be a number) by one, and stores it back
into the variable.
However, it returns the original value stored in the variable
as the result of the function call.

Predecrement and
postdecrement operators

Similar to pre- and postincrement, but they decrement
instead of increment the values of their arguments by one.

Range operator (:) Evaluates both of its arguments and returns the results as a
two-element list. It provides a very convenient way of
grouping a pair of data values for subsequent processing.
For example, 1:3 returns the list (1 3).
January 2007 124 Product Version 06.70

SKILL Language User Guide
Arithmetic and Logical Expressions
Predefined Arithmetic Functions

In addition to the basic infix arithmetic operators, several functions are predefined in SKILL.

Predefined Arithmetic Functions

Synopsis Result

General Functions

add1(n) n + 1

sub1(n) n – 1

abs(n) Absolute value of n

exp(n) e raised to the power n

log(n) Natural logarithm of n

max(n1 n2 …) Maximum of the given arguments

min(n1 n2 …) Minimum of the given arguments

mod(x1 x2) x1 modulo x2, that is, the integer remainder of dividing x1 by x2

round(n) Integer whose value is closest to n

sqrt(n) Square root of n

sxtd(x w) Sign-extends the rightmost w bits of x, that is, the bit field x<w-
1:0> with x<w-1> as the sign bit

zxtd(x w) Zero-extends the rightmost w bits of x, executes faster than
doing x<w-1:0>

Trigonometric Functions

sin(n) sine, argument n is in radians

cos(n) cosine

tan(n) tangent

asin(n) arc sine, result is in radians

acos(n) arc cosine

atan(n) arc tangent
January 2007 125 Product Version 06.70

SKILL Language User Guide
Arithmetic and Logical Expressions
Bitwise Logical Operators

The bnot, band, bnand, bxor, bxnor, bor, and bnor operators all perform bitwise
logical operations on their integer arguments.

Bit Field Operators

Bit field operators operate on bit fields stored inside 32-bit words. To avoid confusion in
naming bits, SKILL uses the uniform convention that the least significant bit in an integer is
bit 0, with the bit number increasing as you move left in the direction of the most significant bit.

■ You can select bit fields by naming the leftmost and the rightmost bits in the bit field or
by just naming the bit if the bit field is only one bit wide.

■ You can use either integer constants or integer variables to specify bit positions, but
expressions are not allowed.

■ All bit fields are treated as unsigned integers.

Random Number Generator

random(x) Returns a random integer between 0 and x-1. If random is
called with no arguments, it returns an integer that has all of its
bits randomly set.

srandom(x) Sets the initial state of the random number generator to x

Bitwise Logical Operators

Meaning Operator

bitwise AND &

bitwise inclusive OR |

bitwise exclusive OR ^

left shift >>

right shift <<

one’s complement (unary) ~

Predefined Arithmetic Functions

Synopsis Result
January 2007 126 Product Version 06.70

SKILL Language User Guide
Arithmetic and Logical Expressions
■ Use the sxtd function for sign-extending a bit field.

Bit Field Examples
x = 0b01101 => 13

Assigns x to 13 in binary.

x<0> => 1

The contents of the rightmost bit of x is 1.

x<1> => 0

The contents of bit one of x is 0.

x<2:0> => 5

Extracts the contents of the rightmost three bits of x. These are 101 or 5 in decimal.

x<7:4> = 0b1010 => 173

Stores the bit pattern into the bits 4 through 7.

(x + 4)<4:3> => 2

Adds 4 to x, then extracts the 3rd and 4th bits. 173 plus 4 is 177. SKILL returns the result of
the last expression, which is binary 10 or 2 decimal.

Calling Conventions for Bit Field Functions

Because of limitations in the grammar, only integer constants or names of variables are
permitted inside the angle brackets. To use the value of an expression to specify a bit position,
you must either first assign the value of the expression to a variable or directly call the bit field

1011

01234567

Contents of x

31

…

1011 0

01234567

11 0 Contents of x

31

…

1011

01234567

11 0 Contents of x0

31

…

January 2007 127 Product Version 06.70

SKILL Language User Guide
Arithmetic and Logical Expressions
functions without using the less than (<), colon (:), and greater than (>) infix operators. The
calling conventions for the bit field functions are as follows:

bitfield1(
x_value
x_bitPosition)

setqbitfield1(
s_name
x_newvalue
x_bitPosition)

bitfield(
x_value
x_leftmostBit
x_rightmostBit)

setqbitfield(
s_name
x_newvalue
x_leftmostBit
x_rightmostBit)

Mixed-Mode Arithmetic

SKILL makes a distinction between integers and floating-point numbers.

■ Integer arithmetic is used if all the arguments given to an arithmetic operator are
integers.

■ Floating-point arithmetic is used if all arguments are floating-point numbers.

■ When integers and floating-point numbers are mixed, SKILL uses integer arithmetic until
it encounters a floating-point number. SKILL then switches to floating-point arithmetic
and returns a floating-point number as the result.

See the following topics for more information:

■ Floating-Point Issues on page 128

■ Integer vs. Floating-Point Division on page 129

■ Type Conversion Functions (fix and float) on page 129

■ Comparing Floating-Point Numbers on page 130

Floating-Point Issues

Because IEEE floating-point numbers use what are essentially binary (base 2) fractions to
represent real numbers, some functions that operate on floating-point numbers yield
unexpected (and incorrect) results.
January 2007 128 Product Version 06.70

SKILL Language User Guide
Arithmetic and Logical Expressions
There are some floating-point numbers that the computer cannot represent exactly as binary
fractions. In these cases, the computer uses a binary (base 2) floating-point number to
approximate your decimal (base 10) floating-point number. These approximations can lead to
incorrect results for some functions that operate on floating-point numbers. Consider the
following:

Binary representation can result in a loss of precision. Also, when a program does not save
or retrieve the least significant bits of a number, that number loses precision. See also
“Comparing Floating-Point Numbers” on page 130 and “Type Conversion Functions (fix and
float)” on page 129.

Note: Some applications use single precision to represent floating-point numbers. SKILL
uses double precision.

Integer vs. Floating-Point Division

The division operator requires special attention because

■ Integer division truncates its results

■ Floating-point division computes an exact number

Type Conversion Functions (fix and float)

Before you can compare an integer to a floating-point number, you must convert both
numbers to the same type (that is, integer or float).

Note: See also “Comparing Floating-Point Numbers” on page 130 for more information.

The fix function converts a floating-point number to an integer. The float function
converts an integer to a floating-point number. If the argument given to fix or float is
already of the desired type, the argument is returned. See “SKILL Language Functions” in the
SKILL Language Reference for more information about these functions.

Decimal fraction Equivalent Binary fraction Result

0.125 1/10 + 2/100 + 5/1000 0.001 Exact representation

0.3333… 3/10 + 3/100 + 3/1000… 0.010101010101… Approximation

.1 1/10 0.0001100110011… Approximation
January 2007 129 Product Version 06.70

SKILL Language User Guide
Arithmetic and Logical Expressions
Important

Because of the “Floating-Point Issues” on page 128, you can pass a floating-point
argument to the fix function that yields an incorrect result. For example:

Skill > fix(4.1 * 100)
409

Skill > fix((30 - 18.1) * 10)
118

Tip

You can load the following SKILL file (real_fix.il) into your SKILL development
environment to force correct results in cases like those shown above.

procedure(real_fix(number)
let((num_string fix_num)
sprintf(num_string, "%f" number)
fix_num = atoi(car(parseString(num_string)))
fix_num
)
);

Comparing Floating-Point Numbers

Note: Two numbers can only be equal if they are of the same type (either integer or
float) and have identical values. Two floating-point numbers can appear the same when
printed while differing internally in their least significant bits.

Simple comparison rarely works for floating-point numbers. For example:

if((a == b) println("same"))

You can compare against an acceptable tolerance range with more success as follows
(assuming a is not zero):

if((abs(a - b)/a < 1e-6) println("same"))

Caution

Unless two floating-point numbers are assigned identical constants or
are generated by exactly the same sequence of computations, it is
unlikely SKILL will treat them as equal when compared.

You can think of a loop (such as for) as a special case of comparing floating-point numbers.
Each time a program increments a floating-point loop variable, the number can lose precision
resulting in a cummulative error. Under these circumstances, your loop might not execute the
expected number of times.
January 2007 130 Product Version 06.70

SKILL Language User Guide
Arithmetic and Logical Expressions
Function Overloading

Some applications that are based on SKILL overload the arithmetic and/or bit-level functions
with new or modified semantics. While sqrt(-1) normally signals an error in SKILL, it
returns a valid result as a complex number when some applications are running.

Because the arithmetic and bit-level operators are just simpler syntax for calling their
corresponding functions, by overloading these functions with extended semantics for new
data types, you can use the same familiar notation in writing expressions involving objects of
these new data types.

By overloading the plus, difference, times, and quotient functions for a complex-
number data type, you can use +, -, *, and / in forming arithmetic expressions involving
complex numbers as you normally do in writing mathematical formulas.

Caution

This kind of function overloading is done by the individual application.
There is no support for user-definable function overloading in SKILL.
Refer to the reference manuals of the individual applications for more
details about which functions/operators have been overloaded and what
semantics to use.

Integer-Only Arithmetic

In addition to standard arithmetic functions that can handle integers and floating-point
numbers, SKILL provides several integer-only arithmetic functions that are slightly faster than
the standard functions. These functions are named by prepending x to the names of the
corresponding standard functions: xdifference, xplus, xquotient, and xtimes.

When integer mode is turned on using the sstatus function, the SKILL parser translates all
arithmetic operators into calls on integer-only arithmetic functions. This results in small
execution time savings and makes sense only for compute-intensive tasks whose inner loops
are dominated by integer arithmetic calculations.

sstatus(integermode t)=> t

Turns on integer mode.

status(integermode)=> t

Checks the status of integermode and returns t if integermode is on. The default is off.

The internal variables are typically Boolean switches that accept only the Boolean values of
t and nil. For efficiency and security, system variables are stored as internal variables that
January 2007 131 Product Version 06.70

SKILL Language User Guide
Arithmetic and Logical Expressions
can only be set by status, rather than as SKILL variables you can set directly. Refer to “Names
of Variables” on page 59 for a discussion of internal variables.

True (non-nil) and False (nil) Conditions

Unlike C or other programming languages that use integers to represent true and false
conditions, SKILL uses the nonnumeric special atom nil to represent the false condition.
The true condition is represented by the special atom t or anything other than nil.

Relational Operators

The relational operators lessp (<), leqp (<=), greaterp (>), geqp (>=), equal (==), and
nequal (!=) operate on numeric arguments and return either t or nil depending on the
results.

Logical Operators

The logical operators and (&&), or (||), and null (!), on the other hand, operate on
nonnumeric arguments that represent either the false (nil) or true (non-nil) conditions.

False/True Conditions Do Not Equal Constants 0 and 1

If you program in C, be especially careful not to interpret the false/true conditions as
equivalent to the integer constants 0 and 1.

Testing for Equality and Inequality

You can also use the equal (==) and the nequal (!=) operators to test for the equality and
inequality of nonnumeric atoms.

■ Two atoms are equal if they are the same type and have the same value.

■ Two lists are equal if they contain exactly the same elements.

Controlling the Order of Evaluation

The binary operators && and || are often used to control the order of evaluation.
January 2007 132 Product Version 06.70

SKILL Language User Guide
Arithmetic and Logical Expressions
The && Operator

The && operator evaluates its first argument and, if the result is nil, returns nil without
evaluating the second argument. If the first argument evaluates to non-nil, && proceeds to
evaluate the second argument and returns that value as the value of the function.

The || Operator

The || operator also evaluates its first argument to see if the result is non-nil. If so, || returns
that result as its value and the second argument is not evaluated. If the first argument
evaluates to nil, || proceeds to evaluate the second argument and returns that value as the
value of the function.

Testing Arithmetic Conditions

In addition to the six infix relational operators, several arithmetic predicate functions are
available for efficient testing of arithmetic conditions. These predicates are listed in the table
below.

Differences Between SKILL and C Syntax

Arithmetic and logical expressions in SKILL are the same as in the C programming language
with the following minor differences:

■ SKILL supports the following exponentiation operator: ** (two asterisks).

■ The function mod replaces the modulo operator “%” so that you do not have to use “%” for
this infrequently-used function: Use mod(i j) instead of i % j.

Arithmetic Predicate Functions

Synopsis Result

minusp(n) t if n is a negative number, nil otherwise

plusp(n) t if n is a positive number, nil otherwise

onep(n) t if n is equal to 1, nil otherwise

zerop(n) t if n is equal to 0, nil otherwise

evenp(x) t if x is an even integer, nil otherwise

oddp(x) t if x is an odd integer, nil otherwise
January 2007 133 Product Version 06.70

SKILL Language User Guide
Arithmetic and Logical Expressions
■ The more general if/then/else control construct in SKILL makes the conditional
expression operators ? and : obsolete.

■ The indirection operator * and the address operator & do not have any meaning in SKILL
and are not supported.

■ The set of bitwise operators is augmented by ~& (nand), ~| (nor), and ~^ (xnor).

■ Logical expressions that evaulate to false return the special atom nil and those that
evaluate to true return any non-nil value (usually, the special atom t).

SKILL Predicates

The following predicate functions test for a condition:

■ The atom Function on page 134

■ The boundp Function on page 134

For a list of predicate functions for testing the type of a data object, see “Type Predicates” on
page 137.

The atom Function

atom checks if an object is an atom. Atoms are all SKILL objects (except nonempty lists). The
special symbol nil is both an atom and a list.

atom('hello) => t

x = '(a b c)
atom(x) => nil
atom(nil) => t

The boundp Function

boundp checks if a symbol is bound (has an assigned value).

x = 5 ; Binds x to the value 5.
y = 'unbound ; Unbinds y

boundp('x) => t

boundp('y) => nil

y = 'x ; Binds y to the constant x.
boundp(y) => t ; Returns t because y evaluates to x, which is bound.
January 2007 134 Product Version 06.70

SKILL Language User Guide
Arithmetic and Logical Expressions
Using Predicates Efficiently

Some predicates are faster than others. For example, the eq, neq, memq, and caseq
functions are faster than their close relatives the equal, nequal, member, and case
functions.

The equal, nequal, member, and case functions compare values while the eq, neq,
memq, and caseq functions test if the objects are the same. That is, they test whether the
objects reside in the same location in virtual memory.

These functions result in quicker tests but might require that you alter your application to take
advantage of them.

The eq Function

eq checks addresses when testing for equality. The eq function returns t if both arguments
are the same object in virtual memory. You can test for equality between symbols using eq
more efficiently than using the == operator. The following example illustrates the differences
between equal (==) and eq for lists.

list1 = '(1 2 3) => (1 2 3)
list2 = '(1 2 3) => (1 2 3)
list1 == list2 => t
eq(list1 list2) => nil

list3 = cons(0 list1) => (0 1 2 3)
list4 = cons(0 list1) => (0 1 2 3)
list3 == list4 => t
eq(cdr(list3) list1) => t

aList = '(a b c) => a b c
eq('a car(aList)) => t

The equal Function

equal tests for equality.

■ If the arguments are the same object in virtual memory (that is, they are eq), equal
returns t.

■ If the arguments are the same type and their contents are equal (for example, strings with
identical character sequence), equal returns t.

■ If the arguments are a mixture of fixnums and flonums, equal returns t if the numbers
are identical (for example, 1.0 and 1).

This test is slower than using eq but works for comparing objects other than symbols.
January 2007 135 Product Version 06.70

SKILL Language User Guide
Arithmetic and Logical Expressions
x = 'cat
equal(x 'cat) => t

x == 'dog => nil; == is the same as equal.

x = "world"
equal(x "world") => t

x = '(a b c)
equal(x '(a b c)) => t

The neq Function

neq checks if two arguments are not equal, and returns t if they are not. Any two SKILL
expressions are tested to see if they point to the same object.

a = 'dog
neq(a 'dog) => nil
neq(a 'cat) => t

z = '(1 2 3)
neq(z z) => nil
neq('(1 2 3) z) => t

The nequal Function

nequal checks if two arguments are not logically equivalent and returns t if they are not.

x = "cow"
nequal(x "cow") => nil
nequal(x "dog") => t

z = '(1 2 3)
nequal(z z) => nil
nequal('(1 2 3) z) => nil

The member and memq Functions

These functions test for list membership. member tests using equal while memq uses eq and
is therefore faster. These functions return a non-nil value if the first argument matches a
member of the list passed in as the second argument.

x = 'c
memq(x '(a b c d)) => (c d)
memq(x '(a b d)) => nil

x = "c"
member(x '("a" "b" "c" "d")) => (“c” “d”)
memq('c '(a b c d c d)) => (c d c d)
memq(concat(x) '(a b c d)) => (c d)
January 2007 136 Product Version 06.70

SKILL Language User Guide
Arithmetic and Logical Expressions
The tailp Function

tailp returns the first argument if a list cell eq to the first argument is found by cdr’ing down
the second argument zero or more times, nil otherwise. Because eq is being used for
comparison, the first argument must actually point to a tail list in the second argument for this
predicate to return a non-nil value.

y = '(b c)
z = cons('a y) => (a b c)
tailp(y z) => (b c)
tailp('(b c) z) => nil

nil was returned because '(b c) is not eq the cdr(z).

Type Predicates

Many predicate functions are available for testing the data type of a data object. The suffix p
on the name of a function usually indicates that it is a predicate function. Type predicates
appear in the table below.

Note: g (general) can be any data type.

Type Predicates

Function Value Returned

arrayp(g) t if g is an array, nil otherwise

bcdp(g) t if g is a binary function, nil otherwise

dtpr(g) t if g is a non-empty list, nil otherwise (note that dtpr (nil) returns
nil)

fixp(g) t if g is a fixnum, nil otherwise

floatp(g) t if g is a flonum, nil otherwise

listp(g) t if g is a list, nil otherwise (note that listp(nil) returns t)

null(g) t if g is nil, nil otherwise

numberp(g) t if g is a number (that is, fixnum or flonum), nil otherwise

otherp(g) t if g is a foreign data pointer, nil otherwise

portp(g) t if g is an I/O port, nil otherwise

stringp(g) t if g is a string, nil otherwise

symbolp(g) t if g is a symbol, nil otherwise
January 2007 137 Product Version 06.70

SKILL Language User Guide
Arithmetic and Logical Expressions
symstrp(g) t if g is either a symbol or a string, nil otherwise

type(g) a symbol whose name describes the type of g

typep(g) same as type(g)

Type Predicates
January 2007 138 Product Version 06.70

SKILL Language User Guide
6
Control Structures

You can read about control structures in the following sections:

■ Control Functions on page 140

■ Selection Functions on page 142

■ Declaring Local Variables with prog on page 143

■ Grouping Functions on page 145
January 2007 139 Product Version 06.70

SKILL Language User Guide
Control Structures
Control Functions

The Cadence® SKILL language control functions provide a great deal of functionality familiar
to users of a language such as C. These high-level control functions give SKILL additional
power over most Lisp languages.

The control functions are also the biggest cause of inefficient code in the SKILL language.
One of the inevitabilities of providing so many control structures is that some are more
efficient than others and that there is a great deal of overlap between the functions. This
means that it is easy for a programmer to choose a structure that works perfectly well for the
task in hand, but is not in fact the best structure to use as far as efficiency and (even
occasionally) readability are concerned.

A control function is any function that controls the evaluation of expressions given to it as
arguments. The order of evaluation can depend on the result of evaluating test conditions, if
any, given to the function. In addition to supporting standard control constructs such as if/
while/for, SKILL makes it easy for you to define control functions of your own. Because
control functions in SKILL correspond to “statements” in conventional languages, this manual
sometimes uses the terms interchangeably.

Conditional Functions

Conditional functions test for a condition and perform operations when that condition is found.

There are four conditional functions available to the SKILL programmer: if, when, unless,
and cond. These each have their own distinct characteristics and uses. Because the four
functions carry out very similar tasks, it is very easy for the programmer to choose an
inappropriate function. Choose a conditional function according to the following criteria:

if There are exactly two values to consider, true and false.

when There are statements to carry out when the test proves true.

unless There are statements to carry out unless the test proves true.

cond There is more than one test condition, but only the statements of
one test are to be carried out.

The cond function is discussed here. For a discussion of the if, when, and unless
functions, refer to “Getting Started” on page 27.
January 2007 140 Product Version 06.70

SKILL Language User Guide
Control Structures
The cond Function

The cond function offers multiway branching.

cond(
(condition1 exp11 exp12 …)
(condition2 exp21 exp22 …)
(condition3 exp31 exp32 …)
(t expN1 expN2 …)
) ; cond

The cond function

■ Sequentially evaluates the conditions in each branch until it finds one that is non-nil. It
then executes all the expressions in the branch and exits.

■ Returns the last value computed in the branch it executes.

The cond function is equivalent to

if condition1 exp11 exp12 …
else if condition2 exp21 exp22 …
else if condition3 exp31 exp32 …
…
else expN1expN2 ….

For example, this version of the trClassify function is equivalent to the one using the
prog and return functions in “The return Function” on page 144.

procedure(trClassify(signal)
cond(

(!signal nil)
(!numberp(signal) nil)
(signal >= 0 && signal < 3 'weak)
(signal >= 3 && signal < 10 'moderate)
(signal >= 10 'extreme)
(t 'unexpected)
) ; cond

) ; procedure

Iteration Functions

There are two basic iteration functions available in the SKILL language: while and for.
These are both very general functions that have many uses.

The while Function

The while function is the more general function because everything that can be done with
a for can be done with a while.
January 2007 141 Product Version 06.70

SKILL Language User Guide
Control Structures
When using the while function remember that all parts of the test condition are evaluated
on each pass of the loop. This means that if there are parts of the test that do not depend on
the contents of the loop, they should be moved outside of the loop. Consider the following
code:

while(i < length(myList)
…
i++

)

If the value of the symbol myList does not change within this loop, the value of
length(myList) is being re-evaluated on each loop for no reason. It would be better to
assign the value of length(myList) to a variable before starting the while loop.

When using a while loop, consider whether it would be better to use one of the list iteration
and quantifier functions such as foreach, setof, or exists.

The for Function

The main advantage of the for function is that it automatically declares the loop variable.
This means that the variable does not need to be declared in a local variable section of a
structure such as prog or let. It also means that the variable cannot be used outside the
loop, which differs from the case in C. Consider the following code:

for(i 1 length(myList)
evaluateList(i)

)
if(i == 0

printf("The list was empty!\n")
)

The if test is incorrect because the variable i will be unbound by the time it is executed.

Selection Functions

There are two selection functions in SKILL: caseq and case. The difference between these
functions is the range of values that are allowed within the test conditions.

caseq is a considerably faster version of case. caseq uses the function eq rather than
equal for comparison. The comparators for caseq are therefore restricted to being either
symbols or small integer constants (-256 <= i <= 255), or lists containing symbols and small
integer constants.

The caseq and case functions allow lists of elements within the test parts and match if the
test value is eq or equal to one of those elements, as appropriate.
January 2007 142 Product Version 06.70

SKILL Language User Guide
Control Structures
One common fault with the use of the caseq function is the misconception that the values in
the conditional part of the function are evaluated. Consider the following call to caseq:

caseq(x
('a "a")
('b "b")
)

The conditional parts of this, 'a and 'b, are not evaluated, so this code equates to

caseq(x
((quote a) "a")
((quote b) "b")
)

That is, if the value of x is the symbol a or is the symbol quote, caseq returns the value a.
This is clearly not what was actually required.

Be careful when using symbols in these selection functions because the symbol t indicates
the default case and should not therefore be used. For example, consider the case where a
function returns one of the values t, nil, or indeterminate.

It might be tempting to write a function such as

caseq(value
(t printf("Suceeded.\n"))
(nil printf("Failed.\n"))
(indeterminate printf("Indeterminate.\n"))
)

But this function will not work because the t case is the default and always matches. The
correct way to write this test is

caseq(value
(nil printf("Failed.\n"))
(indeterminate printf("Indeterminate.\n"))
(t when(eq(value,t)

printf("Succeeded.\n")
)

)
) /* caseq */

The problem can also be avoided by putting the t within parentheses because the default
case only matches against a single t. This is not recommended because it is an
implementation dependency. The SKILL Lint program always warns of dubious uses of the t
case in a selection function.

Declaring Local Variables with prog

All variables that appear in a SKILL program are global to the whole program unless they are
explicitly declared as local variables. You declare local variables using the prog control
construct, which initializes all its local variables to nil upon entry and restores their original
January 2007 143 Product Version 06.70

SKILL Language User Guide
Control Structures
values (that is, the values of the variables before the prog was executed) upon exit from the
prog.

A symbol’s current value is accessible at any time from anywhere. The SKILL interpreter
transparently manages a symbol’s value slot as if it were a stack.

■ The current value of a symbol is simply the top of the stack.

■ Assigning a value to a symbol changes only the top of the stack.

Whenever your program invokes the prog function, the system pushes a temporary value
onto the value stack of each symbol in the local variable list. When the flow of control exits,
the system pops the temporary value off the value stack, restoring the previous value.

The prog Function

The prog function allows an explicit loop to be written since go is supported within the
prog. In addition, prog allows you to have multiple return points through use of the function
return. If you are not using either of these two features, let is much simpler and faster.

If you need to conditionally exit a collection of SKILL statements, use the prog function. A
list of local variables and your SKILL statements make up the arguments to the prog
function.

prog((local variables) your SKILL statements)

The return Function

Use the return function to force the prog to immediately return a value skipping over
subsequent statements. If you do not call the return function, the prog expression returns
nil.

Example: The trClassify function returns either nil, weak, moderate,
extreme, or unexpected depending on signal. It does not use any local variables.

procedure(trClassify(signal)
prog(()

unless(signal return(nil))
unless(numberp(signal)return(nil))
when(signal >= 0 && signal < 3return('weak))
when(signal >= 3 && signal < 10return('moderate))
when(signal >= 10return('extreme))
return('unexpected)
) ; prog

) ; procedure

Use the prog function and the return function to exit early from a for loop. This example
finds the first odd integer less than or equal to 10.
January 2007 144 Product Version 06.70

SKILL Language User Guide
Control Structures
prog(()
for(i 0 10

when(oddp(i)
return(i)
) ; when

) ; for
) ; prog

Grouping Functions

Three main functions allow the grouping of statements where only a single statement would
otherwise be allowed. These functions are prog, let, and progn. In addition, the let and
prog functions allow for the declaration of local variables. The prog function also allows for
the use of return statements to jump out from within a piece of code and the go function,
along with labels, to jump around within the code.

When considering whether to use prog, let, or progn, the function with the least extra
functionality should be used at all times because the functions are progressively more
expensive in terms of run time. Use the functions as follows:

■ If local variables and jumps are not needed, use a progn.

■ If local variables are needed but not jumps, use a let.

■ Only if jumps are really needed, use a prog.

Using prog, return, and let

The prog statement should be used only when it is absolutely necessary. Its overuse is one
of the biggest causes of inefficiency in all SKILL code. Returning from the middle of a piece
of code is not only highly expensive, but can also lead to code that is difficult to read and
understand. As with all high level programming languages, the use of go (the SKILL ‘goto’
statement) is highly discouraged. There are cases when it is necessary, but these are few.

A programmer usually uses the prog form when a certain amount of error checking must be
done at the start of a function, with the rest of the function only being carried out if the error
checking succeeds. Consider the following piece of code:

procedure(check(arg1 arg2)
prog(()

 when(illegal_val(arg1)
printf("Arg1 in error.\n")
return()

) /* end when */

when(illegal_val(arg2)
printf("Arg2 in error.\n")
January 2007 145 Product Version 06.70

SKILL Language User Guide
Control Structures
return()
) /* end when */

Rest of code …
) /* end prog */
) /* end check */

This code is reasonably clear, except that it is easy for someone to miss the return
statements, and it uses the prog form. Consider the following alternative. This code seems
to be a longer procedure, but it is clearer, faster, and more maintainable:

procedure(check(arg1 arg2)
cond(

(illegal_val(arg1)
printf("Arg1 in error.\n")
nil

) /* check arg1 */

(illegal_val(arg2)
printf("Arg2 in error.\n")
nil

) /* check arg2 */

(t
Rest of code …

)
) /* end cond */
) /* end check */

A separate function could be called from within the t condition, which could expect its
arguments to be correct. This would, at the small cost of an extra function call, separate the
error checking code completely from the main body of the function, thereby making it even
easier for programmer maintaining the code to see exactly what is involved in the function,
without having to worry about the peripheral interfaces.

Another common mistake with the use of the prog and let functions is the initialization of
the local variables to nil. All local variables in a prog or let are automatically initialized to
nil. Remember that the let function allows local variables to be initialized within the
declaration. This saves both time and space, and, as long as care is taken over the layout of
the code, can be no less readable:

procedure(test()
let(((localvar1 initvalue1)

(localvar2 initvalue2)
localvar3 /* initial value nil */
)

Rest of code …
) /* end let */

) /* end procedure */

When setting initial values within the declaration, reference cannot be made to other local
variables. For example, the following is wrong:

procedure(incorrect(list)
let(((listHead car(list))

(headval car(listHead)) /* WRONG!!! */
January 2007 146 Product Version 06.70

SKILL Language User Guide
Control Structures
)
Rest of code …

Note that the prog and let functions have different return values.

■ The prog function returns the value given in a return statement or, if it exits without
a return, returns nil.

■ The let function always returns the value of the last statement.

This means that in converting a prog to a let, it might be necessary to add an extra nil
to the end of the function.

Using the progn Function

The progn function is a simple means of grouping statements where multiple statements are
required, but only one is expected.

An example is the setof function, which only allows a single statement in the conditional
part.

Remember that there is an overhead in using progn. It should only be used where there is
more than one statement, and only one statement is allowed.

Using the prog1 and prog2 Functions

Two minor grouping functions that have roughly the same overhead as the progn function
are prog1 and prog2.

The prog1 Function

prog1 evaluates expressions from left to right and returns the value of the first expression.

prog1(
x = 5
y = 7)

=> 5

The prog2 Function

prog2 evaluates expressions from left to right and returns the value of the second
expression.

prog2(
x = 4
January 2007 147 Product Version 06.70

SKILL Language User Guide
Control Structures
p = 12
x = 6)

=> 12

prog1 and prog2 are often useful when a local variable would otherwise be needed to hold
a temporary variable before that variable is returned. These two functions should be used with
caution, because they can detract from the readability of the program, and they are generally
only useful where otherwise a let would be necessary. For example:

procedure(main()
let((status)

initialize()
/* Main body of program */
status = analyzeData()
wrapUp()

/* Return the status */
status

) /* end let */
) /* end main */

This code can be more efficiently (but less clearly) implemented using a prog2:

procedure(main()
prog2(

initialize()
/* Main body of program.
* The value of this will be returned by prog2.
*/
nalyzeData()
wrapUp()

) /* end prog2 */
) /* end main */
January 2007 148 Product Version 06.70

SKILL Language User Guide
7
I/O and File Handling

You can read about I/O and file handling topics in the following sections:

■ File System Interface on page 150

■ Ports on page 159

■ Output on page 162

■ Input on page 166

■ System-Related Functions on page 172
January 2007 149 Product Version 06.70

SKILL Language User Guide
I/O and File Handling
File System Interface

All input and output in the Cadence® SKILL language is defined with respect to the UNIX file
system. Writing I/O statements in SKILL requires an understanding of files, directories, and
paths.

Files

A file contains data, usually organized in multiple records, and has several attributes such as
name, the date the file was created, the last time it was accessed, access permissions, and
so on. A device is a file with special attributes.

Directories

A directory has a name, just like a file, but it contains a list of other files. Directories can be
nested to as many levels as desired. A directory allows related files to be grouped together.
Because of the thousands of files that can exist on a single disk, using directories helps to
avoid chaos. Most network-wide file systems are dependent on directories.

Directory Paths

Often, there are several directories you want to search in a particular order by specifying a
set of directory paths. You can specify a file name in an absolute sense or in a relative sense.

The following description uses ‘path’ as a generic term where either a file name or a directory
name can be used. However, because a directory under UNIX is just a special kind of file, file
name is often used as a synonym for path.

Absolute Paths

You can specify the path with a slash character (/). When used as the first character of a
name, it represents the system root directory. Intermediate levels of directories can use the
slash character again as a separator.

Relative Paths

Any path that does not begin with a slash is a relative name.
January 2007 150 Product Version 06.70

SKILL Language User Guide
I/O and File Handling
If the path begins with a tilde followed by a slash (~/), the search path begins in your home
directory.

If the tilde is followed by a name, the name is interpreted as a user name. That is, ~jones/
file1 specifies a file named file1 in jones’ home directory.

If the path begins with a period and a slash (./), the search begins with the current working
directory.

If the file name begins with two periods and a slash (../), the search begins with the parent
of the current working directory.

If you are using a function that refers to the SKILL path, refer to the following section.

The SKILL Path

SKILL provides a flexible mechanism for using relative paths. An internal list of paths, referred
to as the SKILL path, is used in many file-related functions.

Importance of the First Path Character

When a relative path that does not begin with ~ or ./ is given to a function, the paths in the
SKILL path are used as directory names and prepended to the given path (with a / separator
if needed) to form possible paths. The setSkillPath and getSkillPath functions
access and change this internal SKILL path setup.

Path Order when the Same File Name Exists in Multiple Directories

The order of the paths on the SKILL path is very important when the same file name is in
multiple directories. If a file is opened for input or queried for status, all readable directories
in the SKILL path are checked, in order, for the given file name. The first one found is taken
to be the intended path.

Path Order when a File is Updated or Written for the First Time

The order of the paths is also very important when a file is updated or written for the first time.
If you open an output file, all directory paths in the SKILL path are checked, in the order
specified, for that file name. If found, the system overwrites the first updateable file in the list.
If no updateable file is found, it places a new file of that name in the first writable directory.
January 2007 151 Product Version 06.70

SKILL Language User Guide
I/O and File Handling
Know Your SKILL Path

Having an implicit list of search paths provides a powerful shortcut in many situations, but it
can also be a source of possible confusion. When in doubt, double check the current setup
of your SKILL path or set it to nil.

When you start your system, the SKILL path might be set to a default value. You can use the
setSkillPath function to make sure it is set up correctly.

Working with the SKILL Path

Setting the Internal SKILL Path (setSkillPath)

setSkillPath sets the internal SKILL path. You can specify the directory paths either as a
string, where each alternate path is separated by spaces, or as a list of strings. The system
tests the validity of each directory path as it puts the input into standard form.

■ If all directory paths exist, it returns nil

■ If any path does not exist, it returns a list in which each element is an invalid path

The paths on the SKILL path are always searched for in the path order you specify. Even if a
path does not exist (and hence appears in the returned list), it remains on the new SKILL path.
The use of the SKILL path in other file-related functions can be effectively disabled by calling
setSkillPath with nil as the argument.

setSkillPath('("." "~" "~/cpu/test1"))
=> nil ; If "~/cpu/test1" exists.
=> ("~/cpu/test1") ; If "~/cpu/test1" does not exist.

The same task can be done with the following call that puts all paths in one string.

setSkillPath(". ~ ~/cpu/test1")

Finding the Current SKILL Path (getSkillPath)

getSkillPath returns directory paths from the current SKILL path setting. The result is a
list where each element is a path component as specified by setSkillPath.

setSkillPath('("." "~" "~/cpu/test1"))=> nil
getSkillPath()=> ("." "~" "~/cpu/test1")

The example below shows how to add a directory to the beginning of your search path
(assuming a directory “~/lib”).

setSkillPath(cons("~/lib" getSkillPath()))=> nil
getSkillPath()=> ("~/lib" "." "~" "~/cpu/test1")
January 2007 152 Product Version 06.70

SKILL Language User Guide
I/O and File Handling
Working with the Installation Path

Finding the Installation Path (getInstallPath)

getInstallPath returns the system installation path (that is, the root directory where the
Cadence products are installed in your file system) as a list of a single string, where

■ The path is always returned in absolute format

■ The result is always a list of one string

getInstallPath() => ("/usr5/cds/4.2")

Attaching the Installation Path to a Given Path (prependInstallPath)

prependInstallPath prepends the Cadence installation path to the given path (possibly
adding a slash (/) separator if needed) and returns the resulting path as a string. The typical
use of this function is to compute one member of a list passed to setSkillPath.

getInstallPath()
=> ("/usr5/cds/4.2")

Assume this is your install path.

prependInstallPath("etc/context")
=> "/usr5/cds/4.2/etc/context"

A slash (/) is added.

prependInstallPath("/bin")
=> "/usr5/cds/4.2/bin"

setSkillPath(list("." prependInstallPath("bin")
prependInstallPath("etc/context")))

=> nil

Finding the Root of the Hierarchy (cdsGetInstPath)

getInstallPath returns the root of the dfII hierarchy whereas cdsGetInstPath
returns the root of the hierarchy. cdsGetInstPath is more general and is meant to be used
by all dfII and non-dfII applications. For example:

getInstallPath() => ("/usr/mnt/hamilton/9304/tools/dfII")
cdsGetInstPath() => "/usr/mnt/hamilton/9304"
January 2007 153 Product Version 06.70

SKILL Language User Guide
I/O and File Handling
Checking File Status

Checking if a File Exists (isFile, isFileName)

isFileName checks if a file exists. The file name can be specified with either an absolute
path or a relative path. In the latter case, the current SKILL path is used if it’s not nil. Only
the presence or absence of the name is checked. If found, the name can belong to either a
file or a directory. isFileName differs from isFile in this regard.

isFileName("myLib")=> t

A directory is just a special kind of file.

isFileName("triadc")=> t
isFileName("triad1")=> nil

Result if triad1 is not in the current working directory.

isFile checks if a file exists. isFile is identical to isFileName, except that directories
are not viewed as (regular) files. Uses the current SKILL path for relative paths.

isFile("triadc")=> t

Checking if a Path Exists and if it is the Name of a Directory (isDir)

isDir checks if a path exists and if it is the name of a directory. When the path is a relative
path, the current SKILL path is used if it’s non-nil.

isDir("myLib") => t
isDir("triadc") => nil

Assumes myLib is a directory and triadc is a file under the current working directory and
the SKILL path is nil.

isDir("test")=> nil

Result if test does not exist.

Checking if You Have Permission to Read a File or List a Directory (isReadable)

isReadable checks if you have permission to read the file or list the directory you specify.
Uses the current SKILL path for relative paths.

isReadable("./") => t

Result if current working directory is readable.

isReadable("~/myLib")=> nil
January 2007 154 Product Version 06.70

SKILL Language User Guide
I/O and File Handling
Result if ~/myLib is not readable or does not exist.

Checking for Permission to Write a File or Update a Directory (isWritable)

isWritable checks if you have permission to write a file or update a directory that you
specify. It uses the current SKILL path for relative paths.

isWritable("/tmp") => t
isWritable("~/test/out.1") => nil

Result if out.1 does not exist or there is no write permission to it.

Checking for Permission to Execute a File or Search a Directory (isExecutable)

isExecutable checks if you have permission to execute a file or search a directory. A
directory is executable if it allows you to name that directory as part of your UNIX path in
searching files. It uses the current SKILL path for relative paths.

isExecutable("/bin/ls") => t
isExecutable("/usr/tmp") => t
isExecutable("attachFiles") => nil

Result if attachFiles does not exist or is not executable.

Determining the Number of Bytes in a File (fileLength)

fileLength determines the number of bytes in a file. A directory is viewed just as a file in
this case. fileLength uses the current SKILL path if a relative path is given.

fileLength("/tmp") => 1024

Return value is system-dependent.

fileLength("~/test/out.1") => 32157

This examples assumes the file exists. If the file does not exist, you get an error message,
such as

Error fileLength: no such file or directory - "~/test/out.1"

Getting Information About Open Files (numOpenFiles)

numOpenFiles returns the number of files that are open and the maximum number of files
that a process can open. The numbers are returned as a two-element list.

numOpenFiles() => (6 64)

Result is system-dependent.
January 2007 155 Product Version 06.70

SKILL Language User Guide
I/O and File Handling
f = infile("/dev/null") => port:"/dev/null"
numOpenFiles() => (7 64)

One more file is open now.

Working with File Offsets (fileTell, fileSeek)

fileTell returns the current offset (from the beginning of the file) in bytes for the file opened
on a port.

fileSeek sets the position for the next operation to perform on the file opened on a port.
The position is specified in bytes. fileSeek takes three arguments. The first two are for port
and for offset designated in number of bytes to move forward (or backward with a negative
argument). The valid values for the third argument are

0 Offset from the beginning of the file
1 Offset from current position of file pointer
2 Offset from the end of the file.

Let the file test.data contain the single line of text:

0123456789 test xyz

p = infile("test.data") => port:"test.data"
fileTell(p) => 0
for(i 1 10 getc(p)) => t Skip first 10 characters
fileTell(p) => 10

fscanf(p "%s" s) => 1 s = "test" now
fileTell(p) => 15

fileSeek(p 0 0) => t
fscanf(p "%d" x) => 1 x = 123456789 now

fileSeek(p 6 1) => t
fscanf(p "%s" s) => 1 s = "xyz" now

fileSeek(p -12 2) => t
fscanf(p "%d" x) => 1 x = 89 now

Working with Directories

Creating a Directory (createDir)

createDir creates a directory. The directory name can be specified with either an absolute
or relative path; the SKILL path is used in the latter case. You get an error message if the
directory cannot be created because you do not have permission to update the parent
directory or a parent directory does not exist.
January 2007 156 Product Version 06.70

SKILL Language User Guide
I/O and File Handling
createDir("/usr/tmp/test") => t
createDir("/usr/tmp/test") => nil

Directory already exists.

Deleting a Directory (deleteDir)

deleteDir deletes a directory. The directory name can be specified with either an absolute
or relative path; the SKILL path is used in the latter case. You get an error message if you do
not have permission to delete a directory or the directory you want to delete is not empty.

createDir("/usr/tmp/test")=> t
deleteDir("/usr/tmp/test")=> t
deleteDir("/usr/bin")

If you do not have permission to delete /bin, you get an error message about permission
violation.

deleteDir("~")

Assuming there are some files in ~, you get an error message that the directory is not empty.

Deleting a File (deleteFile)

deleteFile deletes a file. The file name can be specified with either an absolute or relative
path; the SKILL path is used in the latter case. If a symbolic link is passed in as the argument,
it is the link itself, not the file or directory referenced by the link, that gets removed.

deleteFile("~/test/out.1") => t

If the file exists and is deleted.

deleteFile("~/test/out.2")=> nil

If the file does not exist.

deleteFile("/bin/ls")

If you do not have write permission for /bin, signals an error about permission violation.

Creating a Unique File Name (makeTempFileName)

makeTempFileName appends a string suffix to the last component of a path template such
that the resultant composite string does not duplicate any existing file name. (That is, it
checks that the file does not exist; the SKILL path is not used in this checking.)
January 2007 157 Product Version 06.70

SKILL Language User Guide
I/O and File Handling
Successive calls to makeTempFileName return different results only if the first
name returned is actually used to create a file in the same directory before
a second call is made.

■ The last component of the resultant path is guaranteed to be no more than 14 characters.
The example below requests a “file” with 15 characters

makeTempFileName("/tmp/123456789123456")
=> "/tmp/12345678a08717"

■ If the original template has a long last component, it is truncated from the end if needed

makeTempFileName("/tmp/123456789.123456")
=> "/tmp/12345678a08717"

■ Any trailing Xs are removed from the template before the new string suffix is appended

You should follow the convention of placing temporary files in the /tmp directory on your
system.

d = makeTempFileName("/tmp/testXXXX") => "/tmp/testa00324"

Trailing Xs are removed.

createDir(d) => t

The name is used this time.

makeTempFileName("/tmp/test") => "/tmp/testb00324"

A new name is returned this time.

Listing the Names of All Files and Directories (getDirFiles)

getDirFiles lists the names of all files and directories (including . and ..) in a directory.
Uses the current SKILL path for relative paths.

getDirFiles(car(getInstallPath())) =>
("." ".." "bin" "cdsuser" "etc" "group" "include" "lib" "pvt"
"samples" "share" "test" "tools" "man" "local")

Expanding the Name of a File to its Full Path (simplifyFilename)

simplifyFilename returns the fully expanded name of a file. Tilde expansion is performed,
./ and ../ are compressed, and redundant slashes are removed. Symbolic links are also
resolved by default, unless the second (optional) argument g_dontResolveLinks is
specified to non-nil. If the file you supply is not absolute, the current working directory is
prefixed to the returned file name.

simplifyFilename("~/test") => "/usr/mnt/user/test"
January 2007 158 Product Version 06.70

SKILL Language User Guide
I/O and File Handling
Returns the fully expanded name of test, assuming the user’s home directory is /usr/
mnt/user.

Getting the Current Working Directory (getWorkingDir)

getWorkingDir returns the current working directory as a string. The result is put into a "~/
prefixed" form if possible by testing for commonality with the current user’s home directory.
For example, ~/test is returned in preference to /usr/mnt/user1/test, assuming that
the home directory for user1 is /usr/mnt/user1 and the current working directory is /
usr1/mnt/user1/test.

getWorkingDir() => "~/project/cpu/layout"

Changing the Current Working Directory (changeWorkingDir)

Changes the working directory to the name you supply. The name can be specified with
either a relative or absolute path. If you supply a relative path, the cdpath shell variable is
used to search for the directory, not the SKILL path.

Different error messages are output if the operation fails because the directory does not exist
or you do not have search (execute) permission.

Caution

Use this function with care: if “.” is either part of the SKILL path or the
libraryPath, changing the working directory can affect the visibility of
SKILL files or design data.

Assume there is a directory /usr5/design/cpu with proper permission and there is no
test directory under /usr5/design/cpu.

changeWorkingDir("/usr5/design/cpu") => t
changeWorkingDir("test")

Signals an error that no such directory exits.

Ports

All input and output in SKILL goes through a data type called a port. A port can be opened
either for reading (an input port) or writing (an output port). Ports are analogous to FILE*
variables used by the stdio library in C. Most implementations of the UNIX operating system
impose a strict limit (typically between 30 and 64) on the number of files that can be open at
any time.
January 2007 159 Product Version 06.70

SKILL Language User Guide
I/O and File Handling
Your application typically needs to use some of these scarce file descriptors, leaving you with
only a few free ports with which to work. You should therefore always close ports that are no
longer in use and avoid using an excessive number of ports; you might otherwise run out of
ports when your code is moved to a different UNIX machine.

Predefined Ports

Most I/O functions in SKILL accept a port as an optional argument. If a port is not specified,
the piport and poport are used as default ports for input and output respectively. The table
below lists the names and the use of the input/output ports predefined in SKILL.

Caution

You can redefine the default values, if necessary, but many internal SKILL
functions are hard wired to use particular ports and you should be careful
not to assign any of them an illegal value.

The stdin, stdout, and stderr ports are also predefined. These ports correspond to the
standard input, standard output, and standard error streams available to every UNIX
program.

Opening and Closing Ports

The following functions work with opening and closing ports. Both of the file opening functions
use the SKILL path variable.

Predefined Input/Output Ports

Name Usage

piport Standard input port, analogous to and initialized to stdin in C

poport Standard output port, analogous to and initialized to stdout in C

errport Output port for printing error messages, analogous to and initialized to
stderr in C

ptport Output port for printing trace information; initialized to stdout in C

woport Output port for printing warning messages; analogous to and initialized to
stdout in C.
January 2007 160 Product Version 06.70

SKILL Language User Guide
I/O and File Handling
Opening an Input Port to Read a File (infile)

infile opens an input port ready to read a file you specify. The file name can be specified
with either an absolute path or a relative path. In the latter case, the current SKILL path is
used if it’s not nil.

infile("~/test/input.il")=> port:"~/test/input.il"

Result if such a file exists and is readable.

infile("myFile") => nil

Result if myFile does not exist according to the SKILL path or exists but is not readable.

Opening an Output Port to Write a File (outfile)

outfile opens an output port ready to write to the file you specify. The file name can be
specified with either an absolute path or a relative path.

■ If a relative path is given and the current SKILL path setting is not nil, all directory paths
from the SKILL path are checked, in the order specified, for that file name

■ If found, the system overwrites the first updateable file in the list

■ If no updateable file is found, it places a new file of that name in the first writable directory

p = outfile("out.il" "w") => port:"out.il"

Returns the name of the output port ready to write to the file.

outfile("/bin/ls") => nil

Returns nil if the file cannot be opened for writing.

Writing Out All Characters in the Output Buffer of a Port (drain)

drain writes out all characters that are in the output buffer of a port. drain is analogous to
a combination of fflush and fsync in C. You get an error message if the port to drain is
an input port or has been closed.

drain() => t
drain(poport) => t

Draining, Closing, and Freeing a Port (close)

The port is drained, closed, and freed. When a file is closed, it frees the FILE* associated with
the port. Do not use this function on piport, poport, stdin, stdout, and stderr.
January 2007 161 Product Version 06.70

SKILL Language User Guide
I/O and File Handling
p = outfile("~/test/myFile") => port:"~/test/myFile"
close(p) => t

Output

SKILL provides functions for unformatted and formatted output.

Unformatted Output

Printing the Value of an Expression in the Default Format (print, println)

print prints the value of an expression using the default format for the data type of the value
(for example, strings are enclosed in double quotes).

print("hello")
"hello"
=> nil

Prints to poport and returns nil.

println prints the value of an expression just like print, but a newline character is
automatically printed after printing the input value. println flushes the output port after
printing each newline character.

println("Hello World!")
"Hello World!"
=> nil

Printing a Newline (\n) Character (newline)

Prints a newline (\n) character. If you do not specify the output port, it defaults to poport,
the standard output port. The newline function flushes the output port after printing each
newline character.

print("Hello") newline() print("World!")
"Hello"
"World!"
=> nil

Printing a List with a Limited Number of Elements and Levels of Nesting
(printlev)

printlev prints a list with a limited number of elements and levels of nesting. Lists are
normally printed in their entirety no matter how many elements they have or how deeply
nested they are.
January 2007 162 Product Version 06.70

SKILL Language User Guide
I/O and File Handling
Applications can, however, set upper limits on the number of elements and the levels of
nesting shown when printing lists using printlev. These limits are sometimes necessary to
control the volume of interactive output because the SKILL top-level automatically prints the
results of expression evaluation. Limits can also protect against infinite looping on circular
lists possibly created when novices use the destructive list modification functions, such as
rplaca or rplacd, without a thorough understanding of how they work. printlev uses
the following syntax:

printlev(g_value x_level x_length [p_outputPort]) => nil

Two integer variables, print length and print level (specified by x_length and x_level),
control the maximum number of elements and the levels of nesting that are printed. List
elements beyond the maximum specified by print length are abbreviated as “…” and lists
nested deeper than the maximum level specified by print level are abbreviated as “&.” Both
print length and print level are initialized to nil (meaning no limits are imposed) by SKILL,
but each application can set its own limits.

The printlev function is identical to print except that it takes two additional arguments
specifying the maximum level and length to use in printing the expression.

List = '(1 2 (3 (4 (5))) 6)
printlev(List 100 2)
(1 2 …)
=> nil

printlev(List 3 100)
(1 2 (3 (4 &)) 6)
=> nil

printlev(List 3 3 p)
(1 2 (3 (4 &)) …)
=> nil

Assumes port p exists. Prints to port p.

Formatted Output

You can precede format characters with a field width specification. For example, %5d prints
an integer in a field that is 5 columns wide. If the field width begins with the digit “0”, zero
padding is done instead of blank padding. For the format characters f and e, the width
specification can be followed by a period “.” and an integer specifying the precision, that is,
the number of digits to print after the decimal point.

Output is right justified within a field by default unless an optional minus sign “-” immediately
follows the “%” character, which will then be left justified. To print a percent sign, you must use
January 2007 163 Product Version 06.70

SKILL Language User Guide
I/O and File Handling
two percent signs in succession. You must explicitly put “\n” in your format string to print a
newline character and “\t” for a tab.

For formatted output, SKILL makes available the standard C stdio library routines printf,
fprintf, and sprintf. SKILL provides a robust interface to these routines. Below is a brief
description of each routine in the context of the SKILL runtime environment. If more detailed
descriptions are needed for these functions, consult your C programming manual.

Writing Formatted Output to Ooport (printf)

printf writes formatted output to poport. Optional arguments following the format string
are printed according to their corresponding format specifications. printf is identical to fprintf
except that it does not take a port argument and the output is written to poport.

x = 197.9687
printf("The test measures %10.2f.\n" x)

Prints the following line to poport and returns t.

Common Output Format Specifications

Format
Specification

Type(s) of
Argument Prints

%d fixnum Integer in decimal radix

%o fixnum Integer in octal

%x fixnum Integer in hexadecimal

%f flonum Floating-point number in the style [-]ddd.ddd

%e flonum Floating-point number in the style
[-]d.ddde[-]ddd

%g flonum Floating-point number in style f or e, whichever
gives full precision in minimum space

%s string, symbol Prints out a string (without quotes) or the print
name of a symbol

%c string, symbol The first character

%n fixnum, flonum Number

%L list Default format for the data type

%P list Point

%B list Box
January 2007 164 Product Version 06.70

SKILL Language User Guide
I/O and File Handling
The test measures 197.97. => t

Writing Formatted Output to a Port (fprintf)

fprintf writes formatted output to the port given as the first argument. The optional
arguments following the format string are printed according to their corresponding format
specifications.

x = 197.9687
fprintf(p "The test measures %10.2f.\n" x)

Prints the following line to port p and returns t.

The test measures 197.97. => t

Writing Formatted Output to a String Variable (sprintf)

sprintf formats the output and puts the resultant string into the variable given as the first
argument. If nil is specified as the first argument, no assignment is made. The formatted
string is returned. Because of internal buffering in sprintf, there is a limit to how many
characters sprintf can handle, but the limit is large enough (8192 characters) that it should
not present any problem.

sprintf(s "Memorize %s number %d!" "transaction" 5)
=> "Memorize transaction number 5!"

s
=> "Memorize transaction number 5!"

p = outfile(sprintf(nil "test%d.out" 10))
=> port:"test10.out"

Pretty Printing

SKILL provides functions for “pretty printing” function definitions and long data lists with
proper indenting to make them more readable and easier to manipulate in text form.

You need the SKILL Development Environment license to pretty print function definitions
using the pp SKILL function below.

Pretty Printing a Function Definition (pp)

pp pretty prints a function definition. The function must be a readable interpreted function.
(Binary functions cannot be pretty printed.) Each function definition is printed so it can be read
back into SKILL. pp does not evaluate its first argument but does evaluate the second
argument, if given.
January 2007 165 Product Version 06.70

SKILL Language User Guide
I/O and File Handling
procedure(fac(n) if(n <= 1 1 n*fac(n-1)))=> fac
pp fac
procedure(fac(n)

if((n <= 1) 1
(n * fac(n - 1)))

)
)
=> nil

Defines the factorial function fac, then pretty prints it to poport.

Pretty Printing Long Data Lists (pprint)

pprint is identical to print except that it tries to pretty print the value whenever possible.
(pprint does not work the same as the pp function. pp is an nlambda and only takes a
function name whereas pprint is a lambda and takes an arbitrary SKILL object.)

The pprint function is useful, for example, when printing out a long list where print simply
prints the list on one (possibly huge) line but pprint limits the output on a single line and
produces a multiple-line printout if necessary. This multiple-line printout makes later input
much easier.

pprint '(1 2 3 4 5 6 7 8 9 0 a b c d e f g h i j k)
(1 2 3 4 5

6 7 8 9 0
a b c d e
f g h i j
k

)
=> nil

Input

When describing input functions, this manual often uses the term “form” to refer to a logical
unit of input. A form can be an expression, such as source code or a data list that can span
multiple input lines. Input functions such as lineread read in one input line at a time but
continue reading if they do not find a complete form at the end of a line.
January 2007 166 Product Version 06.70

SKILL Language User Guide
I/O and File Handling
You can think of input forms and how the SKILL functions work with them in the following
ways.

SKILL forms read from a file are either evaluated or not evaluated. Input strings can have an
application-specific syntax of their own, such as a netlist syntax. It is the programmer’s
responsibility to open a port, understand the application-specific syntax, process the input,
and then close the port.

Reading and Evaluating SKILL Formats

Reading and Evaluating an Expression Stored in a String (evalstring)

evalstring reads and evaluates an expression stored in a string. The resulting value is
returned. Notice that evalstring does not allow the outermost set of parentheses to be
omitted, as in the top level. Refer to the “Top Levels” on page 218 for a discussion of the top
level.

evalstring("1+2") => 3
evalstring("cons('a '(b c))") => (a b c)
car '(1 2 3) => 1

evalstring("car '(1 2 3)")

Signals that car is an unbound variable.

Input Functions

Input Source SKILL
Evaluated

SKILL
Not Evaluated

Application-Specific
Formats

File load
loadi

lineread infile
gets
getc
fscanf
close

String evalstring
loadstring
errsetstring

linereadstring instring
gets
getc
fscanf
close
January 2007 167 Product Version 06.70

SKILL Language User Guide
I/O and File Handling
Opening a String and Executing its Expressions (loadstring)

loadstring opens a string for reading, then parses and executes expressions stored in the
string just as load does in loading a file. loadstring is different from evalstring in two
ways. loadstring

■ Uses lineread mode

■ Always returns t if it evaluates successfully

loadstring "1+2" => t
loadstring "procedure(f(n) x=x+n)" => t
loadstring "x=10\n f 20\n f 30" => t
x => 60

Reading and Evaluating an Expression then Checking for Errors (errsetstring)

errsetstring reads and evaluates an expression stored in a string. Same as
evalstring except that it calls errset to catch any errors that might occur during the
parsing and evaluation.

errsetstring("1+2") => (3)
errsetstring("1+'a") => nil

Returns nil because an error occurred.

errsetstring("1+'a" t) => nil

Prints out an error message:
Error plus: can’t handle (1 + a)

Loading Files (load, loadi)

load opens a file, repeatedly calls lineread to read in the file, and immediately evaluates
each form after it is read in. It closes the file when end of file is reached. Unless errors are
discovered, the file is read in quietly. If load is interrupted by pressing Control-c, the function
skips the rest of the file being loaded.

SKILL has an autoload feature that allows applications to load functions into SKILL on
demand. If a function being executed is undefined, SKILL checks if the name of the function
(a symbol) has a property called autoload attached to it. If the property exists, its value, which
must be either a string or a function call that returns a string, is used as the name of a file to
load. The file should contain a definition for the function that triggered the autoload. Execution
proceeds normally after the function is defined. The whole autoload sequence is functionally
transparent. Refer to “Delivering Products” on page 223

load("testfns.il") ; Load file testfns.il
fn.autoload = "myfunc.il" ; Declares an autoload property.
fn(1)
January 2007 168 Product Version 06.70

SKILL Language User Guide
I/O and File Handling
fn is undefined at this point, so this call triggers an autoload of myfunc.il, which contains
the definition of fn.

fn(2) ; fn is now defined and executes normally.

loadi is identical to load, except that loadi ignores errors encountered during the load,
prints an error message, and then continues loading.

loadi("testfns.il")

Loads the testfns.il file.

loadi("/tmp/test.il")

Loads the test.il file from the tmp directory.

Reading but Not Evaluating SKILL Formats

Parsing the Next Line in the Input Pport into a List (lineread)

lineread parses the next line in the input port into a list that you can further manipulate. It
is used by the interpreter’s top level to read in all input and understands only SKILL syntax.

Only one line of input is read in unless there are still open parentheses pending at the end of
the first line, or binary infix operators whose right-hand argument has not yet been
supplied, in which case additional input lines are read until all open parentheses have been
closed and all binary infix operators satisfied. The symbol t is returned if lineread reads
a blank input line and nil is returned at the end of the input file.

lineread(piport) ; Reads in the next input expression
f 1 2 + ; First input line of the file being read
3 ; Second input line
=> f (1 (2 + 3))

lineread(piport)
f(a b c) ; Another input line of the file
=> ((f a b c)) ; Returns a list of input objects

Reading a String into a List (linereadstring)

linereadstring executes lineread on a string and returns the form read in. Anything
after the first form is ignored.

linereadstring "abc" => (abc)
linereadstring "f a b c" => (f a b c)
linereadstring "x + y" => ((x + y))
linereadstring "f a b c\n g 1 2 3" => (f a b c)

In the last example, only the first form is read in.
January 2007 169 Product Version 06.70

SKILL Language User Guide
I/O and File Handling
Reading Application-Specific Formats

The following input functions are helpful when you must read input from a file that was not
written in SKILL-compatible format.

Reading Formatted Input (fscanf)

fscanf reads the input from a port according to format specifications in a format string. The
results are stored in corresponding variables in the call. fscanf can be considered the
inverse of the fprintf output function. fscanf returns the number of input items it
successfully matches with its format string. It returns nil if it encounters an end of file.

The maximum size of any input string being read as a string variable for fscanf is 8K. Also,
the function lineread is a faster alternative to fscanf for reading SKILL objects.

The input formats accepted by fscanf are summarized below.

fscanf(p "%d %f" i d)

Scans for an integer and a floating-point number from the input port p and stores the values
read in the variables i and d, respectively.

Assume there is a file testcase with one line:

hello 2 3 world

x = infile("testcase") => port:"testcase"
fscanf(x "%s %d %d %s" a b c d)=> 4
(list a b c d) => ("hello" 2 3 "world")

Reading a Line and Storing it in a Variable (gets)

gets reads a line from the input port and stores it as a string in a variable. The string is also
returned as the value of gets. The terminating newline character of the line becomes the last

Common Input Format Specifications

Format
Specification

Type(s) of
Argument Scans for

%d fixnum An integer

%f flonum A floating-point number

%s string A string (delimited by spaces) in the input
January 2007 170 Product Version 06.70

SKILL Language User Guide
I/O and File Handling
character in the string. gets returns nil if EOF is encountered and the variable maintains
its last value. Assume the test1.data file has the following first two lines:

#This is the data for test1
0001 1100 1011 0111

p = infile("test1.data") => port:"test1.data"
gets(s p) => "#This is the data for test1\n"
gets(s p) => "0001 1100 1011 0111\n"
s => "0001 1100 1011 0111\n"

Reading and Returning a Single Character from an Input Port (getc)

getc reads a single character from the input port and returns it as the value of getc. If the
character returned is a non-printable character, its octal value is stored as a symbol. If you
are familiar with C, you should note that the getc and getchar SKILL functions are totally
unrelated. getc returns nil if EOF is encountered.

The input port arguments for both gets and getc are optional. If the port is not given, the
functions take their input from piport. In the following example assume the file
test1.data has its first line read as:

#This is the data for test1

p = infile("test1.data") => port:"test1.data"
getc(p) => \#
getc(p) => T
getc(p) => h

Reading Application-Specific Formats from Strings

In addition to being able to accept input from the terminal and from text files, SKILL can also
take its input directly from strings. Some applications store programs internally as strings and
then parse the strings into their corresponding internal SKILL representations as needed.

Because parsing is a relatively expensive operation, you should avoid calling any of the
following functions repeatedly on the same string. It is a good practice to convert each string
into its internal SKILL representation before using it more than once.

Opening a String for Reading (instring)

Opens a string for reading just as infile opens a file. An input port that can be used to read
the string is returned.

s = "Hello World!" => "Hello World!"
p = instring(s) => port:"*string*"
fscanf(p "%s %s" a b)=> 2
a => "Hello"
January 2007 171 Product Version 06.70

SKILL Language User Guide
I/O and File Handling
b => "World!"
close(p) => t

Caution

Always remember to close the port when you are done.

System-Related Functions

Various SKILL functions are available to interact with and query the system environment.

Executing UNIX Commands

From within SKILL, you can execute individual UNIX commands or invoke the sh or cshUNIX
shell.

Starting the UNIX Bourne-Shell (sh, shell)

Starts the UNIX Bourne-shell sh as a child process to execute a command string. If the sh
function is called with no arguments, an interactive UNIX shell is invoked that prompts you
for UNIX command input (available only in nongraphic applications).

sh("rm /tmp/junk")

Removes the junk file from the /tmp directory and returns t if it is removed successfully.

Starting the UNIX C-Shell (csh)

Starts the UNIX C-shell csh as a child process to execute a command string. Identical to the
sh function, but invokes the C-shell (csh) rather than the Bourne-shell (sh).

csh("mkdir ~/tmp")

Creates a directory called tmp in your home directory.

System Environment

The following functions find and compare the current time, retrieve the version number of the
software you are using, and determine the value of a UNIX environment variable.
January 2007 172 Product Version 06.70

SKILL Language User Guide
I/O and File Handling
Getting the Current Time (getCurrentTime)

getCurrentTime returns the current time in the form of a string. The format of the string is
month day hour:minute:second year.

getCurrentTime() => "Jan 26 18:15:18 1993"

Comparing Times (compareTime)

compareTime compares two string arguments, representing a clock-calendar time. The
format of the string is month day hour:minute:second year. The units are seconds.

compareTime("Apr 8 4:21:39 1991" "Apr 16 3:24:36 1991")
=> -687777.

687,777 seconds have occurred between the two dates. For a positive number of seconds,
the most recent date needs to be the first argument.

compareTime("Apr 16 3:24:36 1991" "Apr 16 3:14:36 1991")
=> 600

600 seconds (10 minutes) have occurred between the two dates.

Getting the Current Version Number of Cadence Software (getVersion)

Returns the version number of software you are using.

getVersion()
=> "cds3 version 4.2.2 Fri Jan 26 20:40:28 PST 1993"

Getting the Value of a UNIX Environment Variable (getShellEnvVar)

getShellEnvVar returns the value of a UNIX environment variable, if it has been set.

getShellEnvVar("SHELL") => "/bin/csh"

Returns the current value of the SHELL environment variable.

Setting a UNIX Environment Variable (setShellEnvVar)

setShellEnvVar sets the value of a UNIX environment variable to a new value.

setShellEnvVar("PWD=/tmp") => t

Sets the parent working directory to the /tmp directory .

getShellEnvVar("PWD")=> "/tmp"

Gets the parent working directory.
January 2007 173 Product Version 06.70

SKILL Language User Guide
I/O and File Handling
January 2007 174 Product Version 06.70

SKILL Language User Guide
8
Advanced List Operations

“Getting Started” on page 27 introduces you to building Cadence® SKILL language lists.
Information in this chapter helps you perform more advanced list operations.

It is helpful to understand how lists are stored in virtual memory so that you can understand
how SKILL functions such as car and cdr manipulate lists and the issues behind building
long lists efficiently (see “Conceptual Background” on page 176).

You can read more about the following topics:

■ Summary of List Operations on page 178

■ Altering List Cells on page 179

■ Accessing Lists on page 180

■ Building Lists Efficiently on page 181

■ Reorganizing a List on page 184

■ Searching Lists on page 185

■ Copying Lists on page 186

■ Filtering Lists on page 187

■ Removing Elements from a List on page 188

■ Substituting Elements on page 189

■ Transforming Elements of a Filtered List on page 190

■ Validating Lists on page 190

■ Using Mapping Functions to Traverse Lists on page 191

■ List Traversal Case Studies on page 197
January 2007 175 Product Version 06.70

SKILL Language User Guide
Advanced List Operations
Conceptual Background

How Lists Are Stored in Virtual Memory

SKILL functions that manipulate lists and symbols are actually dealing with memory pointers.
When you assign a list to a variable, the variable is internally assigned a pointer to the head
of the list. When a list is taken apart by functions such as car and cdr, only pointers to
various parts of the list are returned and no new list cells are created.

SKILL suppresses your awareness of pointers by how it displays lists and symbols. In
general, when SKILL displays a supported data type, it uses a characteristic syntax to
suppress irrelevant detail and focus on the essentials of the data. This syntax has implications
for list and symbol data types. Instead of displaying memory addresses, SKILL displays

■ The elements of a list surrounded by parentheses

■ The name of a symbol

A SKILL List as a List Cell

SKILL represents a list by means of a list cell. A list cell occupies two locations in virtual
memory.

■ The first location holds a reference to the first element in the list.

■ The second location holds a reference to the tail of the list, that is, another list cell or nil.

The expression aList = '(2 3 4) allocates the following three list cells.

The car function returns the contents of the first location of a list cell.

car(aList) => 2

The cdr function returns the contents of the second location of a list cell.

cdr(aList) => (3 4)

nil43
cdr(aList)

2aList
January 2007 176 Product Version 06.70

SKILL Language User Guide
Advanced List Operations
Lists Containing Sublists

The expression bList = '(1 (2 3 4) 5) allocates the following list cells.

cadr(bList) => (2 3 4)

Lists Containing Symbols

The expression bList = '(1 (2 a a) b) allocates the following list cells.

Internally the expression 'a returns the pointer to the symbol a in the symbol table.

nil

5 nil

43

1

2

bList

cadr(bList)

2 nil

nil1

b'b'a a

bList

The Symbol
January 2007 177 Product Version 06.70

SKILL Language User Guide
Advanced List Operations
Destructive versus Non-Destructive Operations

Non-Destructive Operations

The term non-destructive modification refers to any operation that allocates a
copy of a list that reflects the desired alteration. The original list is not altered. It is your
responsibility to update any variables that need to reflect the operation.

Such operations are generally easier for you to implement than destructive operations that do
alter the original list. The disadvantage is that making an altered copy of the original list might
be significantly time-consuming.

Destructive Operations

The term destructive list modification refers to any operation that alters either
the car or cdr of a list cell. Destructive modification functions do not need to create new list
structures. They are therefore considerably faster than equivalent nondestructive
modification functions.

Depending on the operation, any variable referring to the original list can be affected. Many
subtle problems can arise when these functions are used without a thorough understanding
of the implications.

Caution

You should only use the destructive modification functions described in
this chapter with a very good understanding of how the SKILL language
represents lists in virtual memory.

Summary of List Operations

The following table summarizes the list operations that are discussed in this chapter. Use the
destructive modification functions with great care.

List Operations

Operation Function Non-destructive Destructive

Altering List Cells rplaca, rplacd x

Accessing a List nthelem, nthcdr, last x
January 2007 178 Product Version 06.70

SKILL Language User Guide
Advanced List Operations
Altering List Cells

The most fundamental destructive operations concern altering a list cell. You can change
either the car cell or the cdr cell. rplaca and rplacd are destructive operations.

The rplaca Function

Use the rplaca function to replace the first element of a list.

aList = '(1 2 3) => (1 2 3)
bList = rplaca(aList 4) => (4 2 3)
aList => (4 2 3)
eq(aList bList) => t

Building a List cons, ncons, xcons,
append1

x

tconc, nconc, lconc x

Reorganizing a List reverse x

sort, sortcar x

Removing Elements remove, remq x

remd, remdq x

Searching Lists member, memq,
exists

x

Filtering Lists setof x

Substituting subst x

Traversal mapc, map, mapcar,
maplist, mapcan

x

Traversal mapcan x

List Operations

Operation Function Non-destructive Destructive

nil321
4

aList

bList
January 2007 179 Product Version 06.70

SKILL Language User Guide
Advanced List Operations
The rplacd Function

Use the rplacd function to replace the tail of a list.

aList = '(1 2 3) => (1 2 3)
bList = rplacd(aList '(4 5)) => (1 4 5)
aList => (1 4 5)
eq(aList bList) => t

Notice that the rplacd function returns a list with the desired modifications. An important
point to remember about destructive operations is that the modified list is literally the same
list in virtual memory as the original list. To verify this fact, use the eq function, which returns
t if both arguments are the same object in virtual memory.

Accessing Lists

The following functions are convenient variations and extensions of the cdr and nth
functions introduced in “Getting Started” on page 27.

Selecting an Indexed Element from a List (nthelem)

nthelem returns an indexed element of a list, assuming a one-based index. Thus
nthelem(1 l_list) is the same as car(l_list).

nthelem(1 '(a b c)) => a
z = '(1 2 3)
nthelem(2 z) => 2

Applying cdr to a List a Given Number of Times (nthcdr)

You supply the iteration count and the list of elements.

nthcdr(3 '(a b c d)) => (d)
z = '(1 2 3)
nthcdr(2 z) => (3)

1

4 5

32

nil

nil

bList

aList
January 2007 180 Product Version 06.70

SKILL Language User Guide
Advanced List Operations
Getting the Last List Cell in a List (last)

last returns the last list cell in a list. The car of the last list cell is the last element in the
list. The cdr of the last list cell is nil.

last('(a b c)) => (c)
z = '(1 2 3)
last(z) => (3)

Building Lists Efficiently

To build lists efficiently, you must understand how lists are constructed. Using a function like
append involves searching for the end of a list, which can be unacceptably slow for large
lists.

Adding Elements to the Front of a List (cons, xcons)

If order is unimportant, the easiest way to build a list is to repeatedly call cons to add new
elements at the head of the list.

The cons function allocates a new list cell consisting of two memory locations. It stores its
first argument in the first location and its second argument in the second location.

The cons function returns a list whose first element is the one you supplied (1 below) and
whose cdr is the list you supplied (aList below). The expressions

aList = '(2 3 4)
aList = cons(1 aList) => (1 2 3 4)

allocate the following.

xcons accepts the same arguments as the cons function, but in reverse order. xcons adds
an element to the beginning of a list, which can be nil.

1

nil

aList

2 3 4

aList

before

after
January 2007 181 Product Version 06.70

SKILL Language User Guide
Advanced List Operations
xcons('(b c) 'a) => (a b c)

Building a List with a Given Element (ncons)

ncons builds a list by adding the element you supply to the beginning of an empty list. It is
equivalent to cons(g_element nil).

ncons('a) => (a) ;;; equivalent to cons('a nil)
z = '(1 2 3)
ncons(z) => ((1 2 3)) ;;; equivalent to cons(z nil)

Adding Elements to the End of a List (tconc)

Because lists are singly linked in only one direction, searching for the end of a list typically
requires the traversal of every list cell in the list, which can be quite slow with a long list
containing many list cells. This long traversal poses a problem when you want to build a list
by adding elements at the end of a list. If a list must be built by adding new elements at the
end of the list, the most efficient way is to use tconc.

The tconc function creates a list cell (known as a tconc structure) whose car points to
the head of the list being built and whose cdr points to the last element of the list.

The tconc structure allows subsequent calls to tconc to find the end of a list instantly
without having to traverse the entire list. For this reason, call tconc once to initialize a
special list cell and pass this special list cell to subsequent calls on tconc. Finally, to obtain
the actual value of the list you have been building, take the car of this special list cell. The
typical steps required to use tconc are as follows:

1. Create the tconc structure by calling tconc with nil as its first argument and the first
element of the list being built as the second argument.

x = tconc(nil 1)

2. Repeatedly call tconc with other elements to be added to the end of the list, each time
giving the tconc structure as the first argument to tconc. There is no need to assign

nil321

x

January 2007 182 Product Version 06.70

SKILL Language User Guide
Advanced List Operations
the value returned by tconc to a variable because tconc modifies the tconc
structure. For example:

tconc(x 2), tconc(x 3) …

3. After the list has been built, take the car of the tconc structure to get the actual value
of the list being built. For example:

x = car(x)

Appending Lists

The nconc Function

Use the nconc function to quickly append lists destructively. The nconc function takes two
or more lists as arguments. Only the last argument list is unaltered.

cList = '(1 2)
dList = '(3 4 5)
eList = '(6 7)
nconc(cList dList eList) => (1 2 3 4 5 6 7)
cList => (1 2 3 4 5 6 7)
dList => (3 4 5 6 7)
eList => (6 7)

Use the apply function and the nconc function to append a list of lists.

apply('nconc '((1 2) (3 4 5) (6 7)))
=> (1 2 3 4 5 6 7)

cList

6 7 nil

dList

eList

3 4

2

5 nil

nil1
January 2007 183 Product Version 06.70

SKILL Language User Guide
Advanced List Operations
The lconc Function

lconc uses a tconc structure to efficiently splice lists to the end of lists. The tconc
structure must initially be created using the tconc function. See the example below.

x = tconc(nil 1) ; x is initialized ((1) 1)
lconc(x '(2 3 4)) ; x is now ((1 2 3 4) 4)
lconc(x nil) ; Nothing is added to x.
lconc(x '(5)) ; x is now ((1 2 3 4 5) 5)
x = car(x) ; x is now (1 2 3 4 5)

Reorganizing a List

SKILL provides several functions that reorganize a list. Sometimes the most efficient way to
build a list is to reverse it or sort it after you have built it incrementally with the cons function.
These functions change the sequence of the top-level elements of your list.

Reversing a List

The following is a non-destructive operation.

Reversing the Order of Elements in a List (reverse)

reverse returns the top-level elements of a list in reverse order.

aList = '(1 2 3)
aList = reverse(aList) => (3 2 1)
anotherList = '(1 2 (3 4 5) 6)
reverse(anotherList) => (6 (3 4 5) 2 1)

Although reverse(anotherList) returns the list in reverse order, the value of
anotherList, the original list, is not modified. It is your responsibility to update any
variables that you want to reflect this reversal.

anotherList => (1 2 (3 4 5) 6)

Sorting Lists

The following functions are helpful when you must sort lists according to various criteria and
locate elements within lists. They are destructive operations.

The sort Function

The syntax statement for the sort function is
January 2007 184 Product Version 06.70

SKILL Language User Guide
Advanced List Operations
sort(l_data u_comparefn) => l_result

sort sorts a list of objects (l_data) according to the sort function (u_comparefn) you
supply. u_comparefn(g_x g_y) returns non-nil if g_x can precede g_y in sorted
order and nil if g_y must precede g_x. If u_comparefn is nil, alphabetical order is
used. The algorithm in sort is based on recursive merge sort.

sort('(4 3 2 1) 'lessp) => (1 2 3 4)
sort('(d b c a) 'alphalessp) => (a b c d)

The sortcar Function

sortcar is similar to sort except that only the car of each element in a list is used for
comparison by the sort function.

sortcar('((4 four) (3 three) (2 two)) 'lessp)
=> ((2 two) (3 three) (4 four)

sortcar('((d 4) (b 2) (c 3) (a 1)) nil)
=> ((a 1) (b 2) (c 3) (d 4))

The list is modified in place and no new storage is allocated. Pointers previously pointing to
the list might not be pointing at the head of the sorted list.

Searching Lists

SKILL provides several functions for locating elements within a list that satisfy a criterion. The
most basic criterion is equality, which in SKILL can mean either value equality or
memory address equality.

The member Function

The member function is briefly discussed in “Getting Started” on page 27. It uses the equal
function as the basis for finding a top-level element in a list. The member function

■ Returns nil if the element is not equal to any top-level element in the list.

■ Returns the first tail of the list that starts with the element.

Some examples include

member(3 '(2 3 4 3 5)) => (3 4 3 5)
member(6 '(2 3 4 3 5)) => nil

The member function resembles the cdr function in that it internally returns a pointer to a
list cell. The car of the list cell is equal to the element. You can use the member function
January 2007 185 Product Version 06.70

SKILL Language User Guide
Advanced List Operations
with the rplaca function to destructively substitute one element for the first top-level
occurrence of another in a list. For example, find the first occurrence of 3 and replace it with 6:

rplaca(
member(3 '(2 3 4 3 5))
6)

SKILL provides a non-destructive subst function for substituting an element at all levels of
a list. See “Substituting Elements” on page 189.

The memq Function

The memq function is the same as the member function except that it uses the eq function
for finding the element. Because the eq function is more efficient than the equal function,
use memq whenever possible based on the nature of the data. For example, if the list to
search contains only symbols, then using the memq function is more efficient than using the
member function.

The exists Function

The exists function can use an application-specific testing function to locate the first
occurrence of an element in a list. The exists function generalizes the member and memq
functions, which locate the first occurrence of an element in a list based on equality.

exists(x '(2 4 7 8) oddp(x)) => (7 8)
exists(x '(2 4 6 8) evenp(x)) => (2 4 6 8)

exists(x '(1 2 3 4) (x > 1))=> (2 3 4)
exists(x '(1 2 3 4) (x > 4))=> nil

Copying Lists

Sometimes it is more efficient to apply a destructive operation to a copy of a list than it is to
apply a non-destructive operation. First determine whether a shallow copy of only the top-
level elements is sufficient.

The copy Function

copy returns a copy of a list. copy only duplicates the top-level list cells. All lower-level
objects are still shared. You should consider making a copy of any list before using a
destructive modification on the list.

z = '(1 (2 3) 4) => (1 (2 3) 4)
x = copy(z) => (1 (2 3) 4)
equal(z x) => t
January 2007 186 Product Version 06.70

SKILL Language User Guide
Advanced List Operations
z and x have the same value.

eq(z x) => nil

z and x are not the same list.

Copying a List Hierarchically

The following function recursively copies a list.

procedure(trDeepCopy(arg)
cond(

(!arg nil)
(listp(arg);;; argument is a list

cons(
trDeepCopy(car(arg))
trDeepCopy(cdr(arg))
)

)
(t arg) ;;; return the argument itself
) ; cond

) ; procedure

Filtering Lists

Many list operations can be abstractly considered as making a filtered copy of a list. The filter
can be any function that accepts a single argument. If the filter function returns non-nil, the
element is included in the new list. If the filter function returns nil, the element is excluded
from the new list.

setof makes a filtered copy of the top-level elements of a list, including all elements that
satisfy a given criteria. For example, contrast the following two approaches to computing the
intersection of two lists.

■ One way to proceed is to use the cons function as follows:

procedure(trIntersect(list1 list2)
let((result)

foreach(element1 list1
when(member(element1 list2)

result = cons(element1 result)
) ; when

) ; foreach
result
) ; let

) ; procedure

■ The more efficient way is as follows:

procedure(trIntersect(list1 list2)
setof(

element list1
January 2007 187 Product Version 06.70

SKILL Language User Guide
Advanced List Operations
member(element list2))
) ; procedure

The criteria is used to decide whether to include each element of the list. The copied element
is not transformed.

Removing Elements from a List

SKILL has several functions that remove all top-level occurrences of an element from a list.

Non-Destructive Operations

The remove Function

remove returns a copy of an argument with all top-level elements equal to a given SKILL
object removed. The equal function, which implements the = operator, is used to test for
equality.

aList = '(1 2 3 4 5)
remove(3 aList) => (1 2 4 5)
aList => (1 2 3 4 5)

It is your responsibility to make the appropriate assignment so that aList reflects the
removal.

aList = remove(3 aList)

The element to remove can itself be a list.

remove('(1 2) '(1 (1 2) 3)) => (1 3)

The remq Function

remq returns a copy of an argument list with all top-level elements equal to a given SKILL
object removed. The eq function is used to test for equality. This function is faster than the
remove function because the eq equality test is faster than the equal equality test.

The Removal Function

Non-destructive Destructive

Uses equal remove remd

Uses eq remq remdq
January 2007 188 Product Version 06.70

SKILL Language User Guide
Advanced List Operations
However, the eq test is only meaningful for certain data types, such as symbols and lists. The
remq function is appropriate, for example, when dealing with a list of symbols.

remq('x '(a b x d f x g)) => (a b d f g)

The remq function does not work on association tables.

Destructive Operations

The remd Function

remd removes all top-level elements equal to a given SKILL object from a list. remd uses
equal for comparison. This is a destructive removal.

remd("x" '("a" "b" "x" "d" "f")) => ("a" "b" "d" "f")

The remdq Function

remdq removes all top-level elements equal to the first argument from a list. remdq uses eq
instead of equal for comparison. This is a destructive removal.

remdq('x '(a b x d f x g)) => (a b d f g)

Substituting Elements

The subst function is a non-destructive operation. It is your responsibility to update any
variables that you want to reflect this substitution.

Substituting One Object for Another Object in a List (subst)

subst returns the result of substituting the new object (first argument) for all equal
occurrences of the previous object (second argument) at all levels in a list.

aList = '(a b c) => (a b c)
subst('a 'b aList) => (a a c)
anotherList = '(a b y (d y (e y)))
subst('x 'y anotherList) => (a b x (d x (e x)))

Although subst('x 'y anotherList) returns a list reflecting the desired
substitutions, the value of anotherList, the original list, is not modified.

anotherList => (a b y (d y (e y)))
January 2007 189 Product Version 06.70

SKILL Language User Guide
Advanced List Operations
Transforming Elements of a Filtered List

Many list operations can be modeled as a filtering pass followed by a transformational pass.
For example, suppose you are given a list of integers and you want to build a list of the
squares of the odd integers.

Phase I: Filter the odd integers into a list.

You can use the setof function here.

setof(x '(1 2 3 4 5 6) oddp(x)) => (1 3 5)

Phase II: Square each element of the list.

You can use the mapcar function together with a function that squares its argument:

mapcar(
lambda((x) x*x) ;; square my argument
'(1 3 5)
) => (1 9 25)

or use the foreach function:

foreach(mapcar x '(1 3 5) x*x) => (1 9 25)

The trListOfSquares function summarizes this approach.

procedure(trListOfSquares(aList)
let((filteredList)

filteredList =
setof(element aList oddp(element))

foreach(mapcar element filteredList
element * element
) ; foreach

) ; foreach
) ; procedure

trListOfSquares('(1 2 3 4 5 6)) => (1 9 25)

Validating Lists

A predicate is a function that validates that a single SKILL object satisfies a criterion. SKILL
provides many basic predicates. (Refer to “SKILL Predicates” on page 134 and “Type
Predicates” on page 137.) Predicates return t or nil.

SKILL provides the forall function and the exists function so you can check whether all
elements or some elements in a list satisfy a criterion. These two functions correspond to
quantifiers in mathematical logic.
January 2007 190 Product Version 06.70

SKILL Language User Guide
Advanced List Operations
■ forall is represented mathematically as ∀ .

■ exists is represented mathematically as ∃ .

The criterion is represented by a SKILL expression with a single argument that you identify
as the first argument to the forall or exists function.

The forall Function

forall verifies that an expression remains true for every element in a list. The forall
function can also be used to verify that an expression remains true for every key/value pair
in an association table. (Refer to “Association Tables” on page 113 for further details.)

forall(x '(2 4 6 8) evenp(x)) => t
forall(x '(2 4 7 8) evenp(x)) => nil

The exists Function

exists can use an application-specific testing function to locate the first occurrence of an
element in a list based on equality. The exists function generalizes the member and memq
functions, which locate the first occurrence of an element in a list based on equality.

exists(x '(2 4 7 8) oddp(x)) => (7 8)
exists(x '(2 4 6 8) evenp(x)) => (2 4 6 8)

exists(x '(1 2 3 4) (x > 1))=> (2 3 4)
exists(x '(1 2 3 4) (x > 4))=> nil

Using Mapping Functions to Traverse Lists

SKILL provides a family of very powerful functions for iterating over lists. For historical
reasons, these are called mapping functions. The five mapping functions are map, mapc,
mapcar, mapcan, and maplist.

All five map* functions have the same arguments.

■ A function, which must take a single argument.

■ A list.

Using lambda with the map* Functions

It is often convenient to use the lambda construct to define a nameless function to be used
as the first argument.
January 2007 191 Product Version 06.70

SKILL Language User Guide
Advanced List Operations
For example:

mapcar(
lambda((x) list(x x**2)) ;;; return pair of x x**x
'(0 1 2 3))
=> ((0 0) (1 1) (2 4) (3 9))

Refer to “Syntax Functions for Defining Functions” on page 77 for further details on the
lambda construct.

Using the map* Functions with the foreach Function

Alternatively, you can use each mapping function as an option to the foreach function.
Often, using the foreach function results in more understandable code.

For example, the following are equivalent.

foreach(mapcar x '(0 1 2 3)
list(x x**2) ;;; build 2 element list of a x and x*x
)
=> ((0 0) (1 1) (2 4) (3 9))

mapcar(
lambda((x) list(x x**2)) ;;; return pair of x x**x
'(0 1 2 3))

The relationship between the two usages of the mapping functions is very tight. When you
use the foreach function, SKILL actually incorporates the expressions within the foreach
body in a lambda function as illustrated below. This lambda function is passed to the
mapping function. For example, the following are equivalent:

foreach(mapcar x aList
exp1()
exp2()
exp3()
)

mapcar(
lambda((x)

exp1()
exp2()
exp3()
)

aList
)

The following descriptions illustrate both approaches to using each mapping function.

The mapc Function

The mapc function is the default mapping function used by the foreach macro. When used
with the foreach function
January 2007 192 Product Version 06.70

SKILL Language User Guide
Advanced List Operations
■ The foreach function iterates over each element of the argument list.

■ At each iteration, the current element is available in the loop variable of the foreach.

■ The foreach function returns the original argument list as a result.

For example:

foreach(mapc x '(1 2 3 4 5)
println(x)

)

mapc(
lambda((x) println(x))
'(1 2 3 4 5)
)

displays the following:

1
2
3
4
5

The return value is (1 2 3 4 5).

The map Function

The map function is useful for processing each list cell because it uses cdr to step down the
argument list. When used with the foreach function

■ The foreach function iterates over each list cell of its argument.

■ At each iteration, the current list cell is available in the loop variable of the foreach.

■ The foreach function returns the original argument list as a result.

For example, suppose you want to make substitutions at the top-level of a list using a look-up
table such as the following:

trLookUpList = '(
(1 "one")
(2 "two")
(3 "three"))

By using the map function, you gain access to each successive list cell, allowing you to use
the rplaca function to make the desired substitution. Notice that the lookup list is an
association list so that you can use the assoc function to retrieve the appropriate
substitution.

assoc(2 trLookUpList) => (2 "two")
assoc(5 trLookUpList) => nil
January 2007 193 Product Version 06.70

SKILL Language User Guide
Advanced List Operations
procedure(trTopLevelSubst(aList aLookUpList)
let((currentElement substValue)

foreach(map listCell aList
currentElement = car(listCell)
substValue = cadr(

assoc(currentElement aLookUpList))
when(substValue

rplaca(listCell substValue)
) ; when

) ; foreach
aList
) ; let

) ; procedure

trList = '(1 4 5 3 3)
trTopLevelSubst(trList trLookUpList) =>

("one" 4 5 "three" "three")

The mapcar Function

The mapcar function is useful for building a list whose elements can be derived one-for-one
from the elements of an original list. When used with the foreach function

■ The foreach function iterates over each element of the argument list.

■ At each iteration, the current element is available in the loop variable of the foreach.

■ Each iteration produces a result value.

■ These values are returned in a list as the result of the function.

For example:

foreach(mapcar x '(1 2 3 4 5)
println(x)
x*3

)

displays the following:

1
2
3
4
5

The return value is (3 6 9 12 15).

The maplist Function

The maplist function is useful for processing each list cell because it uses cdr to step
down the argument list. Like the mapcar function, it returns the list of results that it collects
for each iteration. When used with the foreach function
January 2007 194 Product Version 06.70

SKILL Language User Guide
Advanced List Operations
■ The foreach function iterates over each list cell of the argument list.

■ At each iteration, the current list cell is available in the loop variable of the foreach.

■ Each iteration produces a result value, and these values are returned in a list as the
result of the foreach function.

For example, consider the substitution example illustrating the map function. In addition to
making the substitutions, suppose that the function must display a message giving the
number of substitutions made.

By using maplist instead of map you can build a list of 1s and Os reflecting the
substitutions made. Use the apply function with plus to add up the numbers to produce
the desired count.

procedure(trTopLevelSubst(aList aLookUpList)
let((currentElement substValue substCountList)
substCountList = foreach(maplist listCell aList

currentElement = car(listCell)
substValue = cadr(

assoc(currentElement aLookUpList))
if(substValue

then
rplaca(listCell substValue)
1

else
0

) ; if
) ; foreach

printf("There were %d substitutions\n"

apply('plus substCountList)
)

aList
) ; let

) ; procedure
trList = '(1 4 5 3 3)
trTopLevelSubst(trList trLookUpList) =>

("one" 4 5 "three" "three")
There were 3 substitutions

The mapcan Function

Like the mapcar function, the mapcan function is useful for building a list by transforming
the elements of the original list. However, instead of collecting the intermediate results into a
list as mapcar does, mapcan appends them. The intermediate results must be lists. Notice
that the resulting list need not be in 1-1 correspondence with the original list.

The mapcan function iterates over each element of the argument list. When used with the
foreach function
January 2007 195 Product Version 06.70

SKILL Language User Guide
Advanced List Operations
■ At each iteration, the current element is available in the loop variable of the foreach.

■ Each iteration produces a result value, which must be a list. These lists are then
concatenated by the destructive modification function nconc, and the new list is
returned as the result of the function as a whole.

For example, flattening a list of lists can be easily done with

foreach(mapcan x '((1 2) (3 4 5) (6 7))
x
) => (1 2 3 4 5 6 7)

mapcan(
lambda((x) x)
'((1 2) (3 4 5) (6 7))
) => (1 2 3 4 5 6 7)

For another example, the following builds a list of squares of the odd integers in the list (1
2 3 4 5 6).

foreach(mapcan x '(1 2 3 4 5 6)
when(oddp(x)

list(x)
)

) => (1 3 5)

mapcan(
lambda((x) when(oddp(x) list(x)))
'(1 2 3 4 5 6)
) => (1 3 5)

Summarizing the List Traversal Operations

The table below summarizes how the mapping functions work. The term Function refers
to the function you pass to the mapping function. Each table entry is a mapping function that
behaves according to the row and column headings. In one case, there is no such mapping
function.

Summary of the Mapping Functions

Mapping Function
Return Value

Function
is Passed
Successive
Elements

Function
is Passed
Successive
List Cells

Ignores the result of each iteration. Returns
the original list.

mapc
(default option)

map

Collects the result of each iteration. Returns
the list of results.

mapcar maplist
January 2007 196 Product Version 06.70

SKILL Language User Guide
Advanced List Operations
List Traversal Case Studies

The most useful mapping functions are mapc, mapcar, and mapcan. A good understanding
of these functions simplifies most list handling operations in SKILL.

Handling a List of Strings

Suppose you need to calculate the length of each string in a list of strings so that the lengths
are returned in a new list. That is, the function should perform the following transformation:

("sam" "francis" "nick") => (3 7 4)

Someone not familiar with the mapcar option to foreach might code this as follows:

procedure(string_lengths(stringList)
let((result)

foreach(element stringList
result = cons(strlen(element) result)
) ; foreach

reverse(result)
) ; let

) ; procedure

Using the mapcar function allows this code to be written as

procedure(string_lengths(stringList)
foreach(mapcar element stringList

strlen(element)
) ; foreach

) ; procedure

In fact, the foreach function is implemented as a macro that expands to one of the mapping
functions, so the same example can be written using the mapping function directly as follows:

procedure(string_lengths(stringList)
mapcar('strlen stringList)
) ; procedure

Collects the result of each iteration. Uses
nconc to append the result of each iteration.

mapcan No such
function

Summary of the Mapping Functions

Mapping Function
Return Value

Function
is Passed
Successive
Elements

Function
is Passed
Successive
List Cells
January 2007 197 Product Version 06.70

SKILL Language User Guide
Advanced List Operations
Making Every List Element into a Sublist

You can perform this operation with either version of the trMakeSublists function.

procedure(trMakeSublists(aList)
foreach(mapcar element aList

list(element)
) ; foreach

) ; procedure

procedure(trMakeSublists(aList)
mapcar(

'ncons ;;; return argument in a list
aList

)
) ; procedure

trMakeSublists('(1 2 3)) => ((1) (2) (3))

Using mapcan for List Flattening

The mapcan function is useful when a new list is derived from an old one, and each member
of the old list produces a number of members in the new list. (Note that using mapcar
allows only a one-to-one mapping). One application of mapcan is in list flattening.
Suppose we have a list that contains lists of numbers:

x = '((1 2 3) (4) (5 6 7 8) () (9))

This list can be flattened using the following procedure:

procedure(flatten(numberList)
foreach(mapcan element numberList

element
) ; foreach

) ; procedure

flatten(x) => (1 2 3 4 5 6 7 8 9)

This function simply concatenates all sublists of the argument. Remember that nconc is a
destructive modification function, so variable x no longer holds useful information after
the call.

To preserve the value of x, each sublist should be copied within the foreach function to
produce a new sublist that can be harmlessly modified:

procedure(flatten(numberList)
foreach(mapcan element numberList

copy(element)
) ; foreach

) ; procedure

x = '((1 2 3) (4) (5 6 7 8) () (9))
flatten(x) => (1 2 3 4 5 6 7 8 9)
x => ((1 2 3) (4) (5 6 7 8) nil (9))
January 2007 198 Product Version 06.70

SKILL Language User Guide
Advanced List Operations
Flattening a List with Many Levels

By using a type predicate and a recursive step, this procedure can be modified to flatten a list
with many levels:

procedure(flatten(numberList)
foreach(mapcan element numberList

if(listp(element)
flatten(copy(element)) ;; then
ncons(element)
) ; if

) ; foreach
) ; procedure

x = '((1) ((2 (3) 4 ((5)) () 6) ((7 8 ()))) 9)
flatten(x) => (1 2 3 4 5 6 7 8 9)
x => ((1) ((2 (3) 4 ((5)) nil 6) ((7 8 nil))) 9)

The body of the foreach first checks the type of the current list member.

■ If the member is a list, the result is a list obtained by flattening a copy of it.

■ If the member is not a list, it cannot be flattened further, and the result is a one-
element list containing the member.

Remember that when using mapcan, the result of each iteration must be a list so that the
results can be concatenated using nconc.

Manipulating an Association List

Mapping functions can be very powerful when used together. For example, suppose there is
a database of names and extension numbers:

thePhoneDB = '(
("eric" 2345 6472 8857)
("sam" 4563 8857)
("julie" 7765 9097 5654 6653)
("francis")
("pat" 5527)
)

The database is stored as a list with one entry for each person. An entry consists of a list of
the person’s name followed by a list of extensions at which the person can be reached. This
type of list is known as an association list. Some people can be reached at several
extensions, and some people at none at all. An automated dialing system has been
introduced that accepts only name-number pairs: in other words, it requires data in the
following format:

(("eric" 2345)
("eric" 6472)
("eric" 8857)
("sam" 4563)
.
January 2007 199 Product Version 06.70

SKILL Language User Guide
Advanced List Operations
How can the information be transformed from one format to another? Each person entry in
the original database can produce several entries in the new database, so mapcan must be
used to traverse person entries. Each number in the old database produces a single entry
in the new database, so mapcar can be used to traverse the numbers.

From this information, a function can be written to translate the database:

procedure(translate(phoneDB)
let((name)

foreach(mapcan personEntry phoneDB
name = car(personEntry)
foreach(mapcar number cdr(personEntry)

list(name number)
) ; foreach

) ; foreach
) ; let

) ; procedure

To show that this works, consider the innermost foreach loop first. This loop is called for
each person entry in the database. Suppose that the entry ("sam" 4563 8857) is being
processed. In this case, name is set to "sam" and the foreach iterates over the list of
numbers (4563 8857).

Because this iteration is a mapcar, the result of the foreach is a new list with one entry for
each number in the old list. Each entry in this new list is a name-number pair constructed by
the expression list(name number). Hence, the result of this foreach is the list

(("sam" 4563) ("sam" 8857))

The outermost foreach concatenates these lists of name-number pairs: it works exactly
like the first example of flatten given previously. Notice that there is no need to copy the
elements before concatenating them (as was the case in flatten) because they have just
been created.

Using the exists Function to Avoid Explicit List Traversal

SKILL provides a large number of list iteration functions. The most basic of these is the
foreach function, which traverses all elements of a list. This traversal is useful, but often
what is required is to traverse just part of a list, to check for a certain condition. In this
situation, correct use of the exists, forall, and setof functions can greatly improve
your code. Generally the alternatives are less efficient.

Consider writing a simple function that iterates over all integers in a list and checks whether
there is any even integer. There are several approaches.

One approach is to use a while loop that explicitly tests a Boolean variable found.

procedure(contains_even(list)
let((found)
January 2007 200 Product Version 06.70

SKILL Language User Guide
Advanced List Operations
 while(list && !found
when(evenp(car(list))
 found = t

)
 list = cdr(list)
) /* end while */

 /* Return whether found. */
 found

) /* end let */
) /* end contains_pass */

contains_even('(1 2 3 4)) => t
contains_even('(1 7 3 9)) => nil
contains_even(nil) => nil

Another approach is to jump out of the while loop:

procedure(contains_even(list)
prog(()

while(list
if(evenp(car(list))

return(t)
)
list = cdr(list)

) /* end while */
return(nil)

) /* end prog */
) /* end contains_pass */

This approach might appear to be better because there is no need for the local variable.

A third approach involves jumping out of a foreach loop:

procedure(contains_even(list)
prog(()
foreach(element list

if(evenp(element)
return(t)

)
) /* end foreach */
return(nil)

) /* end prog */
) /* end contains_pass */

But this approach still requires the prog to allow the jump out of the foreach loop once the
element has been found.

A much simpler way of writing this procedure is as follows:

procedure(contains_even(list)
when(exists(element list evenp(element))

t
) /* when */

) /* end contains_pass */

This approach has neither the prog nor any local variables, and is just as intuitive. The
exists function terminates as soon as a matching list member has been found, so this
example is just as efficient in this respect as the previous ones (which had to use return to
January 2007 201 Product Version 06.70

SKILL Language User Guide
Advanced List Operations
achieve this result). The result of an exists is nil if no matching entry is found. Otherwise
the result is the sublist of the argument that contains the matching member as its head. For
example:

exists(x '(1 2 3 4) evenp(x)) => (2 3 4)

Because SKILL considers nil to be equivalent to false and non-nil to be equivalent to true,
the result of an exists can be treated as a boolean if desired. Note that if the
contains_even function was defined to return either nil or non-nil (rather than t), it
could be further simplified to

procedure(contains_even(list)
exists(element list evenp(element))

) /* end contains_pass */

As with all the other iterative functions, there is no need to declare the loop variable for
exists because the loop variable is local to the function and automatically declared.

Commenting List Traversal Code

The examples above demonstrate the power of these mapping functions. Generally, wherever
a foreach loop is used to build a list, a mapping function can usually be used instead.
Because the mapping functions collect all the results and apply a single list building
operation, they are faster than the equivalent iterative function and often look more succinct.

However, the mapping functions all look very similar, and it is often difficult to see exactly what
a piece of code using a mapping function is trying to do. For this reason whenever a mapping
function is used, you should write a comment detailing exactly what the function is expected
to return.
January 2007 202 Product Version 06.70

SKILL Language User Guide
9
Advanced Topics

You can find information about advanced topics in the following sections:

■ Cadence SKILL Language Architecture and Implementation on page 204

■ Evaluation on page 205

■ Function Objects on page 207

■ Macros on page 210

■ Variables on page 214

■ Error Handling on page 215

■ Top Levels on page 218

■ Memory Management (Garbage Collection) on page 219

■ Exiting SKILL on page 221
January 2007 203 Product Version 06.70

SKILL Language User Guide
Advanced Topics
Cadence SKILL Language Architecture and
Implementation

When you first encounter the Cadence® SKILL language in an application and begin typing
expressions to evaluate, you are encountering what is known as the read-eval-print loop.

The expression you type in is first “read” and converted into a format that can be evaluated.
The evaluator then does an “eval” on the output from the “read.” The result of the “eval” is a
SKILL data value, which is then printed. The same sequence is repeated when other
expressions are entered.

The “read” in this case performs the following tasks.

■ The expression is parsed, resulting in the generation of a parse tree.

■ The parse tree is then compiled into a body of code, known as a function object, made
of a set of instructions that, when executed, results in the desired effect from the
expression.

The instructions generated are not those of a particular machine architecture. They are the
instructions of an abstract machine. Generally, this set of instructions might be referred to as
byte-code or p-code. (p-code was the target instruction set of some of the early Pascal
compilers and lent the name to this technique.)

The evaluator executes the byte-code generated by the compiler. In a sense, the evaluator
emulates in software the operations of a hardware CPU. This technique of using an abstract

The read-eval-print Loop

Parse Compile Evaluate Print

Read Sequence

Type an expression

Scan

eval Sequence
January 2007 204 Product Version 06.70

SKILL Language User Guide
Advanced Topics
instruction set to be executed by an engine written in software has several advantages for the
implementation of an extension language.

■ This technique lends itself well to an interpreter-based implementation.

■ This technique offers faster performance than direct source interpretation.

■ Once SKILL code is compiled into contexts (refer to Delivering Products on page 223)
the context files are faster to load than original source code and are portable from one
machine to another.

That is, if the context file is generated on a machine with architecture A from vendor X, it can
be copied onto a machine with architecture B from vendor Y and SKILL will load the file
without the need for recompilation or translation.

Evaluation

SKILL provides functions that invoke the evaluator to execute a SKILL expression. You can
therefore store programs as data to be subsequently executed. You can dynamically create,
modify, or selectively evaluate function definitions and expressions.

Evaluating an Expression (eval)

eval accepts any SKILL expression as an argument. eval evaluates an argument and
returns its value.

eval('(plus 2 3))=> 5

Evaluates the expression plus(2 3).

x = 5
eval('x)=> 5

Evaluates the symbol x and returns the value of symbol x.

eval(list('max 2 1)) => 2

Evaluates the expression max(2 1).

Getting the Value of a Symbol (symeval)

symeval returns the value of a symbol. symeval is slightly more efficient than eval and can
be used in place of eval when you are sure that the argument being evaluated is indeed a
symbol.
January 2007 205 Product Version 06.70

SKILL Language User Guide
Advanced Topics
x = 5
symeval('x)=> 5

y = 'unbound
symeval('y)=> unbound

Returns unbound if the symbol is unbound.

Use the symeval function to evaluate symbols you encounter in lists. For example, the
following foreach loop returns aList with the symbols replaced by their values.

a = 1
b = 2
aList = '(a b 3 4)
anotherList = foreach(mapcar element aList

if(symbolp(element)
then symeval(element)
else element
) ; if

)
=> (1 2 3 4)

Applying a Function to an Argument List (apply)

apply is a function that takes two or more arguments. The first argument must be either a
symbol signifying the name of a function or a function object. (Refer to “Declaring a Function
Object (lambda)” on page 208.) The rest of the arguments to apply are passed as arguments
to the function.

apply calls the function given as the first argument, passing it the rest of the arguments.
apply is flexible as to how it takes the arguments to pass to the function. For example, all the
calls below have the same effect, that of applying plus to the numbers 1, 2, 3, 4, and 5:

apply('plus '(1 2 3 4 5))
=> 15

apply('plus 1 2 3 '(4 5))

apply('plus 1 2 3 4 5 nil)
=> 15

The last argument to apply must always be a list.

If the function is a macro, apply evaluates it only once, that is, apply expands the macro
and returns the expanded form, but does not evaluate the expanded form again (as eval
does).

apply('plus (list 1 2)) ; Apply plus to its arguments.
=> 3

defmacro(sum (@rest nums) `(plus ,@nums)) ; Define a macro.
=> sum

apply('sum '(sum 1 2))
=> (1 + 2) ; Returns expanded macro.
January 2007 206 Product Version 06.70

SKILL Language User Guide
Advanced Topics
eval('(sum 1 2))
=> 3

Function Objects

When you use the procedure function to define a function in SKILL, the byte-code compiler
generates a block of code known as a function object and places that object on the function
property of a symbol.

Subsequently, when SKILL encounters the symbol in a function call, the function object is
retrieved and the evaluator executes the instructions.

Function objects can be used in assignment statements and passed as arguments to
functions such as sort and mapcar.

SKILL provides several functions for manipulating function objects.

Retrieving the Function Object for a Symbol (getd)

You can use the getd function to retrieve the function object that the procedure function
associates with a symbol.

For example:

procedure(trAdd(x y)
printf("Adding %d and %d … %d \n" x y x+y)
x+y
)

=> trAdd

getd('trAdd) => funobj:0x1814bc0

If there is no associated function object, getd returns nil. The following table shows several
other possible return values.

The getd Function

Function Return Value Explanation

trAdd funobj:0x1814bc0 Application SKILL function.

edit t Read-protected SKILL function.
A function is read protected when it is loaded
from a context or from an encrypted file.

max lambda:0xf6f25c Built-in lambda function.
January 2007 207 Product Version 06.70

SKILL Language User Guide
Advanced Topics
Assigning a New Function Binding (putd)

The putd function binds a function object to a symbol. You can undefine a function by setting
its function binding to nil. You cannot change the function binding of a write-protected
function using putd.

For example, you can copy a function definition into another symbol as follows:

putd('mySqrt getd('sqrt))=> lambda:0x108b8

Assigns the function mySqrt the same definition as sqrt.

putd('newFun
lambda((x y) x + y)
)

=> funobj:0x17e0b3c

newFun(5 6)
=> 11

Assigns the symbol newFun a function definition that adds its two arguments.

Declaring a Function Object (lambda)

The word lambda in SKILL is inherited from Lisp, which in turn inherits it from lambda
calculus, a mathematical compute engine on which Lisp is based.

The lambda function builds a function object. The arguments to the lambda function are

■ The formal arguments

■ The SKILL expressions that make up the function body (these expressions are evaluated
when the function object is passed to the apply function or the funcall function)

Unlike the procedure function, the lambda function does not associate the function object
with any particular symbol. For example:

(lambda (x y) (sqrt (x*x + y*y)))

defines an unnamed function capable of computing the length of the diagonal side of a right-
angled triangle.

breakpt nlambda:0xf7a784 Built-in nlambda function.

The getd Function

Function Return Value Explanation
January 2007 208 Product Version 06.70

SKILL Language User Guide
Advanced Topics
Evaluating a Function Object

Unnamed or anonymous functions are useful in various situations. For example, mapping
functions such as mapcar require a function as the first argument. You can pass either a
symbol or the function object itself.

mapcar('get_pname '(sin cos tan))
=> ("sin" "cos" "tan")
mapcar(lambda((x) strlen(get_pname(x)))

'(sin cos tan))
=> (3 3 3)

Note that a quote before a lambda construct is not needed. In fact, a quote before a
lambda construct used as a function is slower than one without a quote because the
construct is compiled every time before it is called. That is, the quote prevents the lambda
construct from being compiled into a function object when the code is loaded. You can save
function objects in data structures. For example:

var = (lambda (x y) x + y)
=> funobj:0x1eb038

The result is a function object stored in the variable var. Function objects are first class
objects. That is, you can use function objects just like an instance of any other type to pass
as an argument to other functions or to assign as a value to variables. You can also use
function objects with apply or funcall. For example:

apply(var '(2 8))
=> 10
funcall(var 2 8)
=> 10

Efficiently Storing Programs as Data

Whenever possible, store SKILL programs as function objects instead of text strings. Function
objects are more efficient because calls to eval, errset, evalstring, or
errsetstring require the compiler and generate garbage parsing the text strings. On the
other hand, unquoted lambda expressions are compiled once. Use apply or funcall to do
the evaluation.

Converting Strings to Function Objects (stringToFunction)

To convert an expression represented as a string into a function object with zero arguments,
use stringToFunction. For example:

f = stringToFunction("1+2") => funobj:0x220038

apply(f nil) => 3
January 2007 209 Product Version 06.70

SKILL Language User Guide
Advanced Topics
To convert an expression represented as a list, you can construct a list with lambda and
eval it. Make sure you account for any parameters:

expr = '(x + y)
f = eval(‘(lambda (x y) ,expr)) => funobj:0x33ab00
apply(f '(5 6)) => 11

You can always construct the expression as a lambda construct at the outset to avoid an
unnecessary call to eval.

Macros

Macros in SKILL are different from macros in C.

■ In C, macros are essentially syntactic substitutions of the body of the macro for the call
to the macro.

■ A macro function allows you to adapt the normal SKILL function call syntax to the needs
of your application.

Benefits of Macros

SKILL macros can be used in various situations:

■ To gain speed by replacing function calls with in-line code

■ To expand constant expressions for readability

■ As convenience wrappers on top of existing functions

Caution

Note that in-line expansion increases the size of the code using macros,
so use macros sparingly and only in those situations where they clearly
add value to the code.

Macro Expansion

When SKILL encounters a macro function call, it evaluates the function call immediately and
the last expression computed is compiled in the current function object. This process is called
macro expansion. Macro expansion is inherently recursive: the body of a macro function can
refer to other macros including itself.
January 2007 210 Product Version 06.70

SKILL Language User Guide
Advanced Topics
Macros should be defined before they are referenced. This is the most efficient way to
process macros. If a macro is referenced before it is defined, the call is compiled as
“unknown” and the evaluator expands it at run-time, incurring a serious penalty in
performance for macros.

Redefining Macros

If you are in development mode and you redefine a macro, make sure all code that uses that
macro is reloaded or redefined. Otherwise, wherever the macro was expanded, the previous
definition continues to be used.

defmacro

To define a macro in SKILL, use defmacro.

For example, if you want to check the value of a variable to be a string before calling printf
and you don’t want to write the code to perform the check at every place where printf is
called, you might consider writing a macro:

(defmacro myPrintf (arg) `when((stringp ,arg)
printf("%s" ,arg)))

As you can see, the macro myPrintf returns an expression constructed using backquote,
which is substituted for the call to myPrintf at the time a function calling myPrintf is
defined.

mprocedure

The mprocedure function is a more primitive facility on which defmacro is based. Avoid
using mprocedure in new code that you are developing. Use defmacro instead. While
compiling source code, when SKILL encounters an mprocedure call, the entire list
representing the function call is passed to the mprocedure immediately, bound to the single
formal argument. The result of the last expression computed within the mprocedure is
compiled.

Using the Backquote (`) Operator with defmacro

Here is a sample macro that highlights the effect of compile time macro expansion in SKILL.
It assumes isMorning and isEvening are defined.

(defmacro myGreeting (_arg)
let((_res)

cond((isMorning()
January 2007 211 Product Version 06.70

SKILL Language User Guide
Advanced Topics
_res= sprintf(nil "Good morning %s" _arg))
 (isEvening()

_res= sprintf(nil "Good evening %s" _arg)))
`println(,_res))

)

Use the utility function expandMacro to test the expansion, for example,

expandMacro('myGreeting("Sue")) ; using the above definition
=> println("Good morning Sue") ; if isMorning returns t

When called, myGreeting returns a println statement with the desired greeting to be in-
line substituted for the call to myGreeting. Because the call to sprintf inside
myGreeting is performed outside of the expression returned, the greeting message reflects
the time when the code was compiled, and not when it was run.

This is how myGreeting should be rewritten to have the greeting message reflect the time
the code was run:

(defmacro myGreeting (_arg)
`let((_res)

cond((isMorning()
_res= sprintf(nil "Good morning %s" ,_arg))

(isEvening()
_res= sprintf(nil "Good evening %s" ,_arg)))

println(_res))
)

The above, when compiled, substitutes the entire let expression in-line for the macro call.

Using an @rest Argument with defmacro

The next macro example shows how a functionality can be implemented efficiently by
exploiting in-line expansion. The macro implements letStar (read: let-star). It
differs from regular let in that it performs the bindings for the declared local variables in
sequence, so an earlier declared variable can be used in expressions evaluated to bind
subsequent variable declarations, which is not safe to do in a let. For example:

(letStar ((x 1) (y x+1) …)

guarantees that x is first bound to 1 when the binding for y is done.

The letStar macro

defmacro(letStar (decl @rest body)
cond((zerop(length(decl))

cons(‘progn body))
 (t ‘let((,car(decl))

letStar(,cdr(decl),@body)))
)

)

January 2007 212 Product Version 06.70

SKILL Language User Guide
Advanced Topics
is defined recursively. For each variable declaration, it nests let statements, thereby
guaranteeing that all bindings are performed sequentially. For example:

procedure(foo()
letStar(((x 1) (y x+1))

y+x))

expands to

procedure(foo()
let(((x 1))

let(((y x+1))
progn(y+x))))

Using @key Arguments with defmacro

The following example illustrates a custom syntax for a special way to build a list from an
original list by applying a filter and a transformation. To build a list of the squares of the odd
integers in the list

(0 1 2 3 4 5 6 7 8 9)

you write

trForeach(
?element x
?list '(0 1 2 3 4 5 6 7 8 9)
?suchThat oddp(x)
?collect x*x
) => (1 9 25 49 81)

instead of the more complicated

foreach(mapcar x
setof(x '(0 1 2 3 4 5 6 7 8 9) oddp(x))
x * x
) => (1 9 25 49 81)

Implementing an easy-to-maintain macro requires knowledge of how to build SKILL
expressions dynamically using the backquote (‘),
comma (,), and comma-at (,@) operators.

The definition for trForeach follows.

defmacro(trForeach (@key element list suchThat collect)
 `foreach(mapcar ,element

setof(,element ,list ,suchThat)
,collect

) ; foreach
) ; defmacro
January 2007 213 Product Version 06.70

SKILL Language User Guide
Advanced Topics
Variables

SKILL uses symbols for both global and local variables. In SKILL, global and local variables
are handled differently from C and Pascal.

Lexical Scoping

In C and Pascal, a program can refer to a local variable only within certain textually defined
regions of the program. This region is called the lexical scope of the variable. For
example, the lexical scope of a local variable is the body of the function. In particular

■ Outside of a function, local variables are inaccessible

■ If a function refers to non-local variables, they must be global variables

Dynamic Scoping

SKILL does not rely on lexical scoping rules at all. Instead

■ A symbol’s current value is accessible at any time from anywhere within your application

■ SKILL transparently manages a symbol’s value slot as if it were a stack

■ The current value of a symbol is simply the top of the stack

■ Assigning a value to a symbol changes only the top of the stack

■ Whenever the flow of control enters a let or prog expression, the system pushes a
temporary value onto the value stack of each symbol in the local variable list (he local
variables are normally initialized to nil)

■ Whenever the flow exits the let or prog expression, the prior values of the local
variables are restored

Dynamic Globals

During the execution of your program, the SKILL programming language does not distinguish
between global and local variables.

The term dynamically scoped variable refers to a variable used as a local variable in
one procedure and as a global in another procedure. Such variables are of concern because
any function called from within a let or prog expression can alter the value of the local
variables of that let or prog expression. For example:
January 2007 214 Product Version 06.70

SKILL Language User Guide
Advanced Topics
procedure(trOne()
let((aGlobal)

aGlobal = 5 ;;; set the value of trOne’s local variable
trTwo()
aGlobal ;;; return the value of trOne’s local variable
) ;let

) ; procedure

procedure(trTwo()
printf("\naGlobal: %L" aGlobal)
aGlobal = 6
printf("\naGlobal: %L\n" aGlobal)
aGlobal
) ; procedure

The trOne function uses the let function to define aGlobal to be a local variable. However,
aGlobal’s temporary value is accessible to any function trOne calls. In particular, the
trTwo function changes aGlobal.

This change is not intuitively expected and can lead to problems that are very difficult to
isolate. SKILL Lint reports this type of variable as an “Error Global.” It is generally
recommended that users should not rely on the dynamic behaviour of variable bindings.

Error Handling

SKILL has a robust error handling environment that allows functions to abort their execution
and recover from user errors safely. When an error is discovered, you can send an error signal
up the calling hierarchy. The error is then caught by the first error catcher that is active. The
default error catcher is the SKILL top level, which catches all errors that were not caught by
your own error catchers.

The errset Function

The errset function catches any errors signalled during the execution of its body. The
errset function returns a value based on how the error was signalled. If no error is signalled,
the value of the last expression computed in the errset body is returned in a list.

errset(1+2)(3)

In the following example, without the errset wrapper, the expression

1+"text"

signals an error and display the messages

Error plus: can’t handle (1 + "text")

To trap the error, wrap the expression in an errset. Trapping the error causes the errset
to return nil.
January 2007 215 Product Version 06.70

SKILL Language User Guide
Advanced Topics
errset(1+"text") => nil

If you pass t as the second argument, any error message is displayed.

errset(1+"text" t) => nil
Error plus: can’t handle (1 + "text")

Information about the error is placed in the errset property of the errset symbol.
Programs can therefore access this information with the errset.errset construct after
determining that errset returned nil.

errset(1+"text") => nil
errset.errset =>
("plus" 0 t nil

("*Error* plus: can’t handle (1 + \"text\")"))

Using err and errset Together

Use the err function to pass control from the point at which an error is detected to the closest
errset on the stack. You can control the return value of the errset by your argument to the err
function.

If this error is caught by an errset, nil is returned by that errset. However, if an optional
argument is given, that value is returned from the errset in a list and can be used to identify
which err signaled the error. The err function never returns.

procedure(trDivide(x)
cond(

(!numberp(x) err())
(zerop(x) err('trDivideByZero))
(t 1.0/x)
)

) ; procedure

errset(trDivide(5)) => (0.2)
errset(trDivide(0)) => (trDivideByZero)
errset(trDivide("text")) => nil

errset(err('ErrorType)) => (ErrorType)
errset.errset => nil
January 2007 216 Product Version 06.70

SKILL Language User Guide
Advanced Topics
The error Function

error prints any error messages and then calls err flagging the error. The first argument
can be a format string that causes the rest of the arguments to print using that format. Here
are some examples:

The warn Function

warn queues a warning message string. After a function returns to the top level, all queued
warning messages are printed in the Command Interpreter Window and the system flushes
the warning queue. Arguments to warn use the same format specification as sprintf,
printf, and fprintf.

This function is useful for printing SKILL warning messages in a consistent format. You can
also suppress a message with a subsequent call to getWarn.

arg1 = 'fail
warn("setSkillPath: first argument must be a string or list of strings - %s\n"
arg1)
=> nil

WARNING setSkillPath: first argument must be a string or list of strings - fail

The getWarn Function

getWarn dequeues the most recently queued warning from a previous warn function call
and returns that warning as its return result.

procedure(testWarn(@key (dequeueWarn nil))
warn("This is warning %d\n" 1) ;;; queue a warning
warn("This is warning %d\n" 2) ;;; queue a warning
warn("This is warning %d\n" 3) ;;; queue a warning
when(dequeueWarn

getWarn() ;;; return the most recently queued warning
)

) ; procedure

The testWarn function prints the warning if t is passed in and gets the warning if nil is
given as an argument.

This function: Prints the following:

error("myFunc" "Bad List") *Error* myFunc: Bad List

error("bad args - %s %d %L" "name" 100 '(1 2 3))

Error bad args - name 100 (1 2 3)

errset(error("test") t)=> nil *Error* test
January 2007 217 Product Version 06.70

SKILL Language User Guide
Advanced Topics
testWarn(?dequeueWarn nil)
=> nil
WARNING This is warning 1
WARNING This is warning 2
WARNING This is warning 3

Returns nil and the system prints all the queued warnings.

testWarn(?dequeueWarn t)
=> "This is warning 3\n"
WARNING This is warning 1
WARNING This is warning 2

Returns the dequeued (most recent) warning and the system prints the remaining queued
warnings.

Top Levels

When you run SKILL or non-graphical applications built on top of SKILL, you are talking to
the SKILL top level, which reads your input from the terminal, evaluates the expressions, and
prints the results. If an error is encountered during the evaluation of expressions, control is
usually passed back to the top level.

When you are talking to the top level, any complete expression that you type (followed by
typing the Return key to signal the end of your input) is evaluated immediately. Following the
evaluation, the value of the expression is pretty printed.

If only the name of a symbol is typed at the top level, SKILL checks if the variable is bound.
If so, the value of the variable is printed. Otherwise, the symbol is taken to be the name of a
function to call (with no arguments). The following examples show how the outer pair of
parentheses can be omitted at the top-level.

if (ga > 1) 0 1
if((a > 1) 0 1)

loadi "file.ext"
loadi("file.ext")

exit ; Assuming exit has no variable binding
exit()

The default top level uses lineread, so it quietly waits for you to complete an expression if
there are any open parentheses or any binary infix operators that have not yet been
assigned a right operand. If SKILL seems to do nothing after you press Return, chances are
you have mistyped something and SKILL is waiting for you to complete your expression.

Sometimes typing a super right bracket (]) is all you need to properly terminate your input
expression. If you mistype something when entering a form that spans multiple lines, you can
cancel your input by pressing Control-c. You can also press Control-c to interrupt function
execution.
January 2007 218 Product Version 06.70

SKILL Language User Guide
Advanced Topics
Memory Management (Garbage Collection)

In SKILL all memory allocation and deallocation is managed automatically. That is, the
developer using SKILL does not have to remember to deallocate unused structures. For
example, when you create an array or an instance of a defstruct and assign it as a value
to a variable declared locally to a procedure, if the structure is no longer in use after the
procedure exits, the memory manager reclaims that structure automatically. In fact, reclaimed
structures are subsequently recycled. For users programming in SKILL, garbage collection
simplifies bookkeeping to the point that most users do not have to worry about storage
management at all.

The allocator keeps a pool of memory for each data type and, on demand, it allocates from
the various pools and reclaimed structures are returned to the pool. The process of
reclaiming unused memory - garbage collection (GC) - is triggered when a memory pool is
exhausted.

Garbage collection replenishes the pool by tracking all unused or unreferenced memory and
making that memory available for allocation. If garbage collection cannot reclaim sufficient
memory, the allocator applies heuristics to expand the memory pools by a factor determined
at run time.

Garbage collection is transparent to SKILL users and to users of applications built on top of
SKILL. The system might slow down for a brief moment when garbage collection is triggered,
but in most cases it should not be noticeable. However, unrestrained use of memory in SKILL
applications can result in more time spent in garbage collection than intended.

How to Work with Garbage Collection

The garbage collector uses a heuristic procedure that dynamically determines when and if
additional working memory should be allocated from the operating system. The procedure
works well in most cases, but because optimal time/space trade-offs can vary from
application to application, you might sometimes want to override the default system
parameters.

When an application is known to use certain SKILL data types more than others, you can
measure the amount of memory pools needed for the session and preallocate that pool. This
allocation helps reduce the number of garbage collection cycles triggered in a session.
However, because the overhead caused by garbage collection is typically only several
percent of total run time, such fine-tuning might not be worthwhile for many applications.

First you need to analyze your memory usage by using gcsummary. This function prints a
breakdown of memory allocation in a session. See the next section for a sample output. Once
you have determined how many instances of a data type you need for the session, you can
January 2007 219 Product Version 06.70

SKILL Language User Guide
Advanced Topics
preallocate memory for that data type by using needNCells (described at the end of this
section).

For the most part, you do not need to fine tune memory usage. You should first use memory
profiling (refer to ”Cadence SKILL Profiler” in SKILL Development Help) to see if you can
track down where the memory is generated and deal with that first. Use the memory tuning
technique described in this section as a last resort. Remember, because all memory tuning
is global, you can’t just tune the memory for your application. All other applications running in
the same currently running binary are affected by your tuning.

Printing Summary Statistics

The gcsummary function prints a summary of memory allocation and garbage collection
statistics in the current SKILL run.

************* SUMMARY OF MEMORY ALLOCATION *************
Maximum Process Size (i.e., voMemoryUsed) = 3589448
Total Number of Bytes Allocated by IL = 2366720
Total Number of Static Bytes = 1605632

Type Size Allocated Free Static GC count

list 12 339968 42744 1191936 9
fixnum 8 36864 36104 12288 0
flonum 16 4096 2800 20480 0
string 8 90112 75008 32768 0
symbol 28 0 0 303104 0
binary 16 0 0 8192 0
port 60 8192 7680 0 0
array 16 20480 8288 8192 0
TOTALS -- 516096 188848 1576960 9

How to Interpret the Summary Report

Column Contains

Type Data type names.

Size Size of each atom representing the data type in bytes.

Allocated Total number of bytes allocated in the pool for the data type.

Free Number of bytes that are free and available for allocation.

Static Memory allocated in static pools that are not subject to GC. This
memory is usually generated when contexts are built. When variables
are write protected, their contents are shifted to static pools.

GC Count Number of GC cycles triggered because the pool for this data type was
exhausted.
January 2007 220 Product Version 06.70

SKILL Language User Guide
Advanced Topics

User Type (ID) Allocated Free GC count

hiField (20) 8192 7504 0
hiToggleItem (21) 8192 7900 0
hiMenu (22) 8192 7524 0
hiMenuItem (23) 8192 5600 0
TOTALS -- 32768 28528 0

Bytes allocated for :
 arrays = 38176
 strings = 43912
 strings(perm)= 68708
 IL stack = 49140
 (Internal) = 12288
TOTAL GC COUNT 9
----- Summary of Symbol Table Statistics -----
Total Number of Symbols = 11201
Hash Buckets Occupied = 4116 out of 4499
Average chain length = 2.721331

Allocating Space Manually

The needNCells function takes a cell count and allocates the appropriate number of pages
to accommodate the cell count. The name of the user type can be passed in as a string or a
symbol. However, internal types, like list or fixnum, must be passed in as symbols. For
example:

needNCells('list 1000)

guarantees there will always be 1000 list cells available in the system.

Exiting SKILL

Normally you exit SKILL indirectly by selecting the Quit menu command from the CIW while
running the Cadence software in graphic mode, or by typing Control-d at the prompt while
running in non-graphic mode. However, you can also call the exit function to exit a running
SKILL application with or without an explicit status code. Actually, both the Quit menu
command in the CIW and Control-d in standalone SKILL trigger a call to exit.

Sometimes you might like to do certain cleanup actions before exiting SKILL. You can do this
by registering exit-before and/or exit-after functions, using the regExitBefore and
regExitAfter functions. An exit-before function is called before exit does anything, and
an exit-after function is called after exit has performed its bookkeeping tasks and just before
it returns control to the operating system. The user-defined exit functions do not take any
arguments.
January 2007 221 Product Version 06.70

SKILL Language User Guide
Advanced Topics
To give you even more control, an exit-before function can return the atom ignoreExit to
abort the exit call totally. When exit is called, first all the registered exit-before functions are
called in the reverse order of registration. If any of them returns the special atom
ignoreExit, the exit request is aborted and it returns nil to the caller. After calling the exit-
before functions, it does some bookkeeping tasks, calls all the registered exit-after functions
in the reverse order of their registration, and finally exits to the operating system.

For compatibility with earlier versions of SKILL, you can still define the functions named
exitbefore and exitafter as one of the exit functions. They are treated as the first
registered exit functions (the last being called). To avoid confusing the system setup, do not
use these names for other purposes.
January 2007 222 Product Version 06.70

SKILL Language User Guide
10
Delivering Products

Overview information:

■ Contexts on page 224

■ Autoloading Your Functions on page 237

■ Encrypting and Compressing Files on page 238

■ Protecting Functions and Variables on page 238
January 2007 223 Product Version 06.70

SKILL Language User Guide
Delivering Products
Contexts

Note: This information is for users who are writing a large volume of using the Cadence®

SKILL language code and are interested in modularizing the code and possibly autoloading
it at run time.

Contexts are binary representations of the internal state of the interpreter. Their primary
purpose is to help speed the loading of SKILL files. They are best used when the set of SKILL
files to load is large.

Caution

A SKILL Development license is required to build contexts using the
saveContext command.

All SKILL-related structures can be saved in a context except those with values meaningless
outside of a session. For example, port values, database handles, and window types are
meaningful only to current sessions, whereas lists, integers, floats, defstructs, and so forth
are transportable from one session to another.

SKILL contexts contain source code and data. Their main purpose is to allow for fast loading
and initializing of product code. One way of looking at contexts is to view them as snapshots
of the internal state of the interpreter, much like a core file in UNIX is an image of the running
process.

Contexts cannot store at save time and retrieve at load time process-dependent structures.
For example, file descriptors stored in port structures or process IDs cannot be saved in
contexts. All other non process-dependent SKILL structures can be safely stored: Lists,
numbers, strings, arrays, and so forth can be saved into and retrieved from a context.

When a SKILL source file is loaded, it is first parsed. The evaluator is called for each complete
expression read in. This is how procedures are defined. Context files, on the other hand,
January 2007 224 Product Version 06.70

SKILL Language User Guide
Delivering Products
contain binary data that is loaded directly into memory. The binary data stored into a context
has been parsed and evaluated before being saved.

Deciding When to Use Contexts

You must decide when it is better to use contexts versus straight or encrypted SKILL code.
Some considerations include the following:

Important

Context size should be kept small. Context files greater than five megabytes are not
recommended.

■ Is the code likely to become a product?

Generally speaking, the first criteria is whether the code is likely to become a product that
will be shipped. Contexts offer a good vehicle for productizing code.

■ How long does the code take to load?

The second criteria is whether there is enough SKILL code to warrant being in a context.
This is difficult to measure. A simple test is to load the source code and see if the time it
takes is likely to be unacceptable to a user. For example, if the code is likely to be auto-
loaded during the physical manipulation of graphics, the impact of the load and
initialization should be minimized. Contexts can help in this case.

Source Files

Read and Eval Contents

State After Load

Load Binary Data

State After Load

Context File Created
After saveContext

Relationship Between SKILL Source Files and a Context File

Context File
January 2007 225 Product Version 06.70

SKILL Language User Guide
Delivering Products
The more code and initialization needed at load time, the better it is to use contexts. For
very small amounts of code (200 lines), contexts might be overkill. To load and initialize
20,000 lines of SKILL code without using contexts takes approximately 30 seconds,
whereas loading the same code using a context takes approximately 4 seconds. In this
case, the perceptible impact is high, so using contexts makes sense.

■ Do you need to modularize your code?

Sometimes it is necessary to modularize code according to predefined capabilities.
There might be a need to have these capabilities loaded incrementally at run-time. Thus
it is not necessary to load all the code at once. Contexts, as snapshots of the interpreter’s
internal state, can be saved into separate files, even though code that goes into one
context might depend on code in another.

The dependencies are resolved at load time. For example, the SKILL code for the
schematics editor relies, among other things, on having code for the graphics editor
present, but the context for the schematics editor does not contain any of the graphic
editor’s code or structures.

■ Can you create contexts at integration time?

The process of creating contexts must always be a separate step done at integration
time, the time when all C code is compiled and linked and SKILL files are digested to
produce context files. During integration and when contexts are being created, the
interpreter enters a state that renders all normal use inefficient.

For example, during context creation, the memory management subsystem works in a
special mode such that incremental snapshots of the memory can be made and saved
into contexts. Context creation and code that is used to create contexts should not be
part of the normal function of any product.

Creating Contexts

When you use SKILL contexts for delivering a product, you must develop an organization for
those contexts.

Creating the Directory Structure

First, group the SKILL code on a product/capability basis. This is best done by designating a
special directory, for example, source/context and then using make files or simple scripts
to copy the code into separate directories under source/context.
January 2007 226 Product Version 06.70

SKILL Language User Guide
Delivering Products
If the capability names are cap1 and cap2, create two directories under source/context
named source/context/cap1 and source/context/cap2. Copy the source code for
each capability into the respective directory.

For each capability context directory, create a single file named startup.il that uses the
SKILL load command to load all the files in that directory in the necessary order. The figure
below shows a layout of the context directories.

Caution

The first 12 characters in a context file name must be unique.

How the Process of Building Contexts Works

Using the directory structure described above, the process of building contexts starts by
loading code from each directory and generating a binary context corresponding to the state
of the interpreter when the files are loaded (in the sequence specified in the startup.il
file).

The binary context file can go into one of several directories. If auto-loading of the context is
necessary, the file can be placed in the /your_install_dir/tools/dfII/local/
context directory. The autoload mechanism looks in this directory. If direct commands are
issued to load the context, it can be placed anywhere system administrators deem
appropriate.

source/context

startup.il
x1.il
x2.il …

startup.il
y1.il
y2.il …

cap1
cap2

;; Contents of startup.il

load("x1.il")
load("x2.il")
load("xn.il")
January 2007 227 Product Version 06.70

SKILL Language User Guide
Delivering Products
Creating Utility Functions

Given the directory structure above, the code for generating the contexts can now be written.
First let us define a few utility functions.

Assumptions

Source code is stored under the /user/source/context directory. The created contexts
are saved under /user/etc/context, where user is any installation path you choose for
keeping sources and contexts. These contexts are hard-coded in the sample code below, but
you can pass them as arguments to the functions.

Create myContextBuild.il

Put the following code in a separate file. Call it myContextBuild.il.

procedure(getContext(cxt)
;;------------------------
;; Given a context name load the context into the session

(let ((ff (strcat "/<user>/etc/context/" cxt ".cxt")))
(cond ((null (isFile ff)) nil)

((null (loadContext ff))
(printf "Failed to load context %s\n" cxt))

((null (callInitProc cxt))
(printf "Failed to initialize context %s\n"

cxt))
(t (printf "Loading Context %s\n" cxt))

)
)

)

procedure(makeContext(cxt)
;;-------------------------
;; Given a context name create and save the context
;; under "/<user>/etc/context". Assumes user source
;; code is located under /<user>/source/<context>

(let ((newPath (strcat "/<user>/source/" cxt))
(oldPath (getSkillPath))

 (fileName (strcat "/<user>/etc/context/" cxt ".cxt"))
 (oldStatus (status writeProtect))
)

(printf "Building context for %s\n" cxt)
(setSkillPath newPath)

(sstatus writeProtect t)
;; setContext is a function that takes the name of
;; a context and indicates to the system that
;; whatever is loaded or evaluated from
;; the point of this call to the time context
;; is saved belongs to the named context.

(setContext cxt)
January 2007 228 Product Version 06.70

SKILL Language User Guide
Delivering Products
;; Load all the SKILL files corresponding to the
;; given context. Relies on skill path being set earlier

(loadi "startup.il")

;; After the load save the files into a context
;; file containing all the necessary data to load
;; the context

(saveContext fileName)

;; It is important to call the initialization function
;; AFTER the context file is saved. This procedure
;; may create structures that can’t be saved into
;; a context file but a subsequent load of SKILL files
;; for another context may need the call to have taken
;; place.

(callInitProc cxt)

;; Set the SKILL path back to what it was.

(setSkillPath oldPath)
(unless oldStatus (sstatus writeProtect nil))

))

procedure(buildContext(cxt)
;;--------------------------
;; Deletes existing context and prepares to create the context

(progn
(deleteFile (strcat "/<user>/etc/context/" cxt ".cxt"))
(cond ((isDir cxt "/<user>/source/")

(makeContext cxt))
(t (printf "Can’t find context directory %s\n" cxt))

)
))

;; Using getContext, load all the contexts that the code is
;; likely to need. For instance, the most basic
;; of contexts from Cadence are loaded first.

getContext("skillCore")
getContext("dbRead")
getContext ….

;; After loading all the dependencies, build all local
;; contexts

buildContext("cap1")
buildContext("cap2")
buildContext("capn")

exit
;; end of file myContextBuild.il
January 2007 229 Product Version 06.70

SKILL Language User Guide
Delivering Products
Building the Contexts

At this point everything is ready to build the contexts in a special call to the Cadence
executable. Let us assume that the executable is called cds. The following line can be typed
at the UNIX command line or can be made part of a make file to be called during the normal
integration cycle.

cds -ilLoadIL myContextBuild.il -nograph

The output from the cds call can be piped into a file if a record of the build is needed.

ilLoadIL Option

The -ilLoadIL option causes the executable to switch into a special mode for context
building and to allow itself to first read and evaluate the SKILL file before doing any of the
normal operations for initializing the executable. That is why a call to the exit command is
the last thing the file myContextBuild.il performs. It is meaningless to do more with the
system after that.

nograph Option

The second option -nograph causes the executable to run with all graphics turned off. This
option is useful if the integration is done on a machine that does not have X running. This
option is not necessary for context building to work.

Initializing Contexts

Certain process-dependent constructs cannot be saved into a context. In the following
example, a file port needs to be opened as part of the initialization phase of the code to be
loaded. Use

myFile = outfile("/tmp/data")

The contents of the myFile symbol are not saved into a context because they would be
meaningless when loaded into a different session. You need to define a special initialization
function to initialize variables or structures that can only be initialized in the current session.

You can use the defInitProc function to define an initialization for each context. Let us assume
a capability called cap1 that opens a file and starts a child process. If the code for the
capability needs to go into a binary context file, you need an initialization function to set up
the file and the child process in the current session. The arrangement is as follows:

procedure(cap1InitProc()
;;---------------------
;; This procedure initializes two global variables: myFile
January 2007 230 Product Version 06.70

SKILL Language User Guide
Delivering Products
;; and myChild

myFile = outfile("/tmp/data")
myChild = hiBeginProcess(..)

)

;; The next line of code designates the above function
;; to be the initialization code for the context cap1.

(defInitProc "cap1" 'cap1InitProc)

;; end sample code

The call to defInitProc must be executed when the code is loaded, that is, it should not be
included in a procedure but rather it should be placed at the top-level of a file to be executed
during the loading of the file.

To summarize the work so far, you have seen how to

■ Organize the source code

■ Set up code to initialize the context

■ Write the SKILL code to drive the building of contexts

Loading Contexts

Context loading can be done in two ways, depending on the need for a particular context.

Loading Contexts at the Start of a Session

If the code in the context is needed at the start of a session, use the .cdsinit file to force
the loading of the required contexts by adding the following lines to the .cdsinit file.

loadContext(strcat(prependInstallPath("etc/context/")
"cap1.cxt")

callInitProc("cap1")

These two lines are needed for every context that is force-loaded by a call to loadContext.The
call to callInitProc is needed to cause the initialization function for the context to be called.
The basic loadContext function does not automatically do that.

Loading Contexts on Demand

Another option for contexts is to use the auto-load mechanism. This mechanism forces the
context to be loaded on demand. There are two steps to achieving this.

■ Generate an auto-load file.
January 2007 231 Product Version 06.70

SKILL Language User Guide
Delivering Products
■ Load the auto-load file in the .cdsinit file.

The context is loaded automatically whenever one of its functions is called. To generate the
auto-load file, first isolate all the entry point functions of a certain capability/context. When
these functions are known, the contents of the auto-load file should look as follows.

;; This is the auto-load file for cap1. func1 through funcN
;; are the entry point functions for the capability cap1.
;; Call this file cap1.al

foreach(x '(func1 func2 func3 ..funcN)
(putprop x "/<user>/etc/context/cap1.cxt" 'autoload))

;; end of auto-load file

The call to the putprop function causes the symbol name of the function to have the autoload
property assigned a string value corresponding to the name of the context, with full path, to
which the function belongs. This is how the evaluator makes the connection between function
name and context file. The autoload mechanism always looks for a context file to autoload
under /your_install_dir/tools/dfII/local/context directory. If you choose to
place the file under this directory, you don’t need to give the property a full path; just the name
of the context file is enough.

When the function is called during a normal session, and it does not have a function definition,
the evaluator force-loads and initializes the context at that point. It is important to stress that
the auto-load mechanism automatically calls the initialization function associated with the
loaded context. After the context is loaded and the symbol gets a function definition, the
evaluator calls the function and continues with the session.

Now that the auto-load file has been created, it can go anywhere the .cdsinit file can find
it. You can place this file anywhere you choose, provided it is loaded at startup. The entry in
the .cdsinit file needed to load the auto-load file is as follows.

load("/your_install_dir/tools/dfII/local/context/cap1.al")

Working with a Menu-Driven User Interface

Some applications or capabilities have a menu-driven user interface. This implies that
potentially the context for a capability does not have to be loaded, but the menus from which
the capability is driven have to be put in place. In this case, the auto-load file (cap.al) must
be augmented with the necessary code to create and insert menus in the appropriate places,
such as banners.

When the auto-load file is loaded during the initialization phase of the executable, the desired
menus appear and the callbacks for menu entries have the auto-load property set as
explained above. The effect is that when menu commands are selected, the callback forces
the corresponding context to load and execute the selected function. It is always safer to
create and insert menus before adding the auto-load property on the function symbols.
January 2007 232 Product Version 06.70

SKILL Language User Guide
Delivering Products
Customizing External Contexts

You might want to customize the loading of externally supplied contexts. Consider the
following example. Whenever the schematics context is loaded in an instance, a block of
customer code needs to execute to set up special menus or load extra functionality. This can
be accomplished using the defUserInitProc function. This function takes the following
arguments.

■ A string denoting the name of the capability and context to customize

■ A symbol denoting the user-defined callback function to trigger whenever the named
context is loaded.

defUserInitProc("schematic", 'mySchematicCustomFunc)

The defUserInitProc call causes the mySchematicCustomFunc function to be called
after the context for schematic is loaded and initialized. Only a single customizing callback
function can be added for each capability context. You can centralize your customizing for
each context in a single predefined function and associate the function with a context using
defUserInitProc.

The defUserInitProc call is similar to the defInitProc function that initializes a context.
The context loading mechanism calls the function defined by defInitProc first and then
calls the function defined by defUserInitProc.

Potential Problems

Binary context files are built incrementally. This can introduce inter-context errors, which
means that references are made in one context to values outside its own space. Therefore,
when the contexts are loaded independently, those values become meaningless. Because
the SKILL language is dynamically scoped, excessive use of global data structures and
vague boundaries around the program and data spaces of applications can result in this type
of error. SKILL programmers can practice caution by modularizing their code and by using
strict naming conventions for their symbol names.

When inter-context errors are detected during context building, they are flagged but the
context continues to build, leaving the values indicated as crossing context boundaries to be
nil. The following sample cases of code cause inter-context errors.

Sharing Lists Across Contexts

Consider the following sample code involving two contexts.

;; Code in context 1. This code builds list structures by
;; sharing sub-lists
January 2007 233 Product Version 06.70

SKILL Language User Guide
Delivering Products
field = list('nil '_item "hello world" 'item2 22)
form1 = list('xxx field)
form2 = list('yyy field)

;; Code in context 2. Also building list structures but
;; sharing sub-lists from context1

form3 = list('zzz field)

;; end sample code

In the three form variables, the field structure is shared. However when contexts are saved
separately, the list structure for the field part of form3 is not saved with the data in
context 2, because it is outside the context’s bounds. If the two contexts were created in the
sequence given, an error would be flagged indicating the part of the list in context 2 that is
crossing boundaries with context 1. Both contexts would be named and the lists involved
displayed.

If each context maintained the lists it needs within the context boundary, this would solve the
problem. In this case, if the contents of the variable field are needed, a copy should be
performed in context 2 to get a copy of the list locally to that context.

The Conditional eq Failure

The context saving algorithms attempt to smooth out the inter-context problems by copying
atoms across context boundaries. For instance:

;; Code in context 1. Here a function is defined such that
;; when called it constructs and returns a list.

procedure(foo()
list(42 "hello world" 42)

)
var1 = foo()

;; Code in context 2. A call to foo is made and the result is
;; stored in var2

var2 = foo()

(eq (cadr var1) (cadr var2)) ;; Normally returns t
(equal (cadr var1) (cadr var2)) ;; Normally returns t

;; end sample code

When separate contexts are generated incrementally for the code above and you load both
contexts in a session, the call to eq returns nil indicating the two strings “hello world” in the
two separate lists pointed to by var1 and var2 are not the same instance or pointer. That
is because the string “hello world” was copied into context 2 when the binary context for
context 2 was saved. This allows the list pointed to by var2 to remain complete. Such copying
is only done on atomic structures, such as integers or strings.
January 2007 234 Product Version 06.70

SKILL Language User Guide
Delivering Products
This condition is not flagged by any errors at context build time.

Execution During Load

The SKILL code executed during the loading of startup.il executes all top-level
statements (that is how procedure definitions are done). It was explained earlier that certain
data types cannot be saved into a context and have to be regenerated using a context-specific
initialization function. There are process-related executions (that is, not necessarily data-
related) that have to occur during the context initialization phase. For example, consider the
following.

;; Assume the function isMorning is a boolean that calls
;; time related internal functions and returns t if the
;; current time is AM.

if (isMorning()
then greeting = "good morning"
else greeting = "good afternoon")
form->title->value = greeting

;; end of sample

When the context is built using the code above, the isMorning function is executed and the
greeting is set correctly. The value of greeting and the value of form->title->value
are “frozen” in the context file. On subsequent loads of the context, the isMorning function
will not execute so the greeting will take the value given to it at the time the context was built.
To remedy this situation, the code above should be made part of the initialization function for
a context.

Context Building Functions

Saving the Current State of the SKILL Language Interpreter as a Binary File
(saveContext)

saveContext saves the current state of the SKILL language interpreter as a binary file. This
function is best used in conjunction with setContext. saveContext saves all function and
variable definitions that occur, usually due to file loading, between the calls to setContext
and saveContext. Those definitions can then be loaded into a future session much faster
in the form of a context using the loadContext function.

By default all functions defined in a context are read and write protected unless the
writeProtect system switch was turned off when the function was defined between the
calls to setContext and saveContext. If the full path is not specified, this function uses
the SKILL path to determine where to store the context file name.
January 2007 235 Product Version 06.70

SKILL Language User Guide
Delivering Products
setContext("myContext") => t
load("mySkillCode.il") => t
defInitProc("myContext" 'myInit) => t
saveContext("myContext.cxt") => t

Saving Contexts Incrementally (setContext)

setContext allows contexts to be saved incrementally, creating micro contexts from a
session’s SKILL context. To understand this, think of the SKILL interpreter space as linear;
the function call setContext sets markers along the linear path. Any SKILL files loaded
between a setContext and a saveContext are saved in the file named in the saveContext
call. This function can be used more than once during a session.

Loading the Context File into the Current Session (loadContext)

loadContext loads the context file into the current session. You should always fully qualify
the file name. The default directories will be searched for the file if the name is not fully
qualified. The context file must have been created using the function saveContext. For
example:

loadContext("/usr/mnt/charb/myContext.cxt")

Loads the myContext.cxt context.

It is advisable to not load context files supplied by Cadence using loadContext. It is better
to rely on the autoload mechanism for context files you do not own.

Calling Initialization Functions Associated with a Context (callInitProc)

callInitProc takes the same argument as loadContext and causes the initialization
functions associated with the context to be called. This function need not be used if the
loading of the context is happening through the autoload mechanism. Use this function only
when calling loadContext manually. For example

loadContext("myContext") => t
callInitProc("myContext") => t

Functions defined through defInitProc and defUserInitProc are called.

Registering an Initialization Function for a Context (defInitProc)

defInitProc registers an initialization function associated with a context. The initialization
function is called when the context is loaded.
January 2007 236 Product Version 06.70

SKILL Language User Guide
Delivering Products
defInitProc always returns t when set up. The initialization function is not actually called
at this point, but is called when the associated context is loaded.

defInitProc("myContext" 'myInitFunc) => t

Registering a Function for Contexts You Don’t Own (defUserInitProc)

defUserInitProc registers a user defined function that the system calls immediately after
loading and initializing a context. For instance, this function lets you customize Cadence
supplied contexts. Generally, most Cadence-supplied contexts have internally defined an
initialization function through the defInitProc function. defUserInitProc defines a
second initialization function, called after the internal initialization function, thereby allowing
you to customize on top of Cadence-supplied contexts. The call to defUserInitProc is
best done in the .cdsinit file.

defUserInitProc always returns t when set up. Note that the initialization function is not
actually called at this point, but is called when the associated context is loaded.

defUserInitProc("someContext" 'myInitSomeContext) => t

Autoloading Your Functions

Autoloading is the facility through which SKILL code can be loaded dynamically. That is, the
code supporting a capability is not loaded until that capability is needed. The load is usually
triggered by a call to a function that is undefined in the current session. The evaluator calls
on the loader to locate and load the code for the function. You should use autoloading to tune
the amount of code loaded in a session to that only needed for that session.

The autoloader follows these rules:

■ If there is a property on the function being called with the symbol "autoload" and the
value of the property is a string denoting the name of a context (with the extension .cxt),
the loader looks for the file under /your_install_dir/tools/dfII/etc/
context (this is where Cadence-supplied contexts are stored) and /
your_install_dir/tools/dfII/local/context.

■ If the value of the autoload property is a string denoting the name of a file with a full path
and the file is a context file (.cxt extension), the context is loaded. If the extension is
anything other than .cxt, loadi is called with the file name as its argument.

■ If the value of the autoload property is an expression, the expression is evaluated. The
expression is responsible for taking the necessary steps to define the function triggering
the autoload.
January 2007 237 Product Version 06.70

SKILL Language User Guide
Delivering Products
Encrypting and Compressing Files

Encrypting and compressing files allows distribution of SKILL code in a manner that an end
user cannot read the code. This is an alternative method to contexts and is intended for small
sets of SKILL code that need protection.

Encrypting a File (encrypt)

You can encrypt SKILL programs and data files. These can subsequently be reloaded using
the load, loadi, or include functions. encrypt encrypts a file and places the output into
another file. If a password is supplied, the same password must be given to the command
used to reload the encrypted file.

encrypt("triadb.il" "triadb_enc.il" "option") => t

Encrypts the triadb.il file into the triadb_enc.il file with option as the password.
Returns t if successful.

Reducing the Size of a File (compress)

You can compress SKILL files to remove unnecessary blank spaces and comments from the
file. compress reduces the size of a source file and places the output into a destination file.

Compression renders the data less readable because indentation and comments are lost. It
is not the same as encrypting the file because the representation of destination file is still in
ASCII format.

compress("triad.il" "triad_cmp.il") => t

Protecting Functions and Variables

The following functions get and set the write-protect status bit on functions and variables.
These functions can be used to secure the definitions of functions and the contents of
variables when delivering products.

You can write protect a function by setting the writeProtect status flag. Once turned on,
all subsequent function definitions are write protected.

Explicitly Protecting Functions

Protecting functions on a per-function basis is an alternative to sstatus which protects
functions on a per-context basis.
January 2007 238 Product Version 06.70

SKILL Language User Guide
Delivering Products
Setting the Write-Protect Bit on a Function (setFnWriteProtect)

setFnWriteProtect sets the write-protect bit on a function.

■ If the function has a function value, it can no longer be changed.

■ If the function does not have a function value but does have an autoload property, the
autoload is still allowed. This is treated as a special case so that all the desired functions
can be write-protected first and autoloaded as needed.

This example defines a function and sets its write protection so it cannot be redefined.

procedure(test() println("Called function test"))
setFnWriteProtect('test) => t

procedure(test() println("Redefine function test"))

Error def: function name already in use and cannot be
redefined - test

setFnWriteProtect('plus) => nil

Returns nil because the plus function is already write protected.

Finding the Value of a Function’s Write-Protect Bit (getFnWriteProtect)

getFnWriteProtect returns the value of the write-protect bit on a function. The value is t
if the function is write-protected or nil otherwise.

getFnWriteProtect('strlen) => t

Protecting Variables

Setting the Write-Protect Bit on a Variable (setVarWriteProtect)

setVarWriteProtect sets the write-protect on a variable. Use this function only when the
variable and its contents are to remain constant.

■ If the variable has a value, it can no longer be changed.

■ If the variable does not have a value, it cannot be used.

■ If the variable holds a list as its value, that list can no longer be changed.

For example, if the list is a disembodied property list, attempting to modify the value of
properties will fail:

y = 5 ; Initialize the variable y.
setVarWriteProtect('y)=> t ; Set y to be write protected.
setVarWriteProtect('y)=> nil ; Already write protected.
January 2007 239 Product Version 06.70

SKILL Language User Guide
Delivering Products
y = 10 ; y is write protected.
Error setq: Variable is protected and cannot be assigned to - y

getVarWriteProtect

Returns the value of the write-protect on a variable.

x = 5
getVarWriteProtect('x)=> nil

Returns nil if the variable x is not write protected.

Global Function Protection

Write-protecting code has two benefits. First, it renders the code secure from tampering.
Second, write-protected code is saved in memory segments that incur no garbage collection
costs.

To turn on global protection for functions saved in a context, be sure the following line is in
your makeContext utility function described earlier:

sstatus(writeProtect t)

However, if certain pieces of code need to have write-protection turned off (for example, when
a function is user definable), use the following method.

;; Sample code showing how to turn off write-protection
;; The following let statement should surround all
;; that is to have write-protection turned off.

let(((priorStatus (status writeProtect)))

;; Turn off write-protection
(sstatus writeProtect nil)

;; Body of code to have no write-protection
procedure(proc1() …)
procedure(proc2() …)
…etc.

;; Turn write-protection status back to what it was
(sstatus writeProtect priorStatus)

) ;; end-of-let
;; end of sample

The call to sstatus takes only the values t/nil as its second argument.
January 2007 240 Product Version 06.70

SKILL Language User Guide
11
Writing Style

Good style in any language can lead to programs that are understandable, reusable,
extensible, efficient, and easy to maintain. These attributes are particularly important to have
in programs developed using an extension language like the Cadence® SKILL language
because the programs tend to change a lot and the number of contributors can be many.

Useful SKILL programs, or pieces of them, get copied and passed around via e-mail or
bulletin boards. Hence, it is important to consider the following when writing SKILL programs:

■ Be specific, concise, and most importantly consistent.

■ Anticipate a novice reader’s questions and document the code accordingly.

■ Be conventional. Using fancy techniques that are generally possible in a Lisp-based
language, yet generally not well understood, might not be a good idea (unless you are
doing it to gain in performance or reduce memory use).

■ Avoid too many global states and direct access to them. Use abstractions.

■ Make functional interfaces non-modal. That is, try and not predicate your interfaces on a
global state or global mode such that a second user of the interface does not experience
unpredictable behavior. For example, it is bad style to have a procedure that puts an
editor in “insert” mode and uses subsequent calls to insert objects into the design. It is
better to have one call that takes a list of objects to be inserted:

As in all programming languages, the layout of code within a file can greatly affect the
readability and maintainability of the code. The code examples in this manual use a layout
that is both intuitive and easy to understand, but layout is really a matter of taste.

GOOD BAD

EDinsert(database '(obj1 obj2 obj3)) EDstartInsert(database)
EDinsert(obj1)
EDinsert(obj2)
EDinsert(obj3)
EDendInsert(database)
January 2007 241 Product Version 06.70

SKILL Language User Guide
Writing Style
The rest of this chapter describes specific situations where coding style issues are important.

■ Code Layout on page 242

■ Using Globals on page 246

■ Coding Style Mistakes on page 248

■ Red Flags on page 250

Code Layout

The readability of the code is the most important aspect of the code layout. The following
guidelines can help you to write more readable code.

Comments and Documentation

You can use either of the following methods for commenting in SKILL:

■ ; at the beginning of a line

■ /*…*/ surrounding your comments

Note: Because /*…*/ comments cannot be nested, some programmers find them
easier to see.

While it is typically easier to understand and maintain code that is well-commented, you must
also keep your comments consistent with your code. Comments that are misleading because
they have not been maintained along with the code can be worse than not having any
comments at all.

You should document your data structures by describing the motivation behind them and the
effect of each structure on the algorithm. Well-designed and -documented data structures
can tell a lot about the nature of the program.

If you are reading someone else’s code and find it inadequately documented, write down your
questions as comments. They may get answered or will encourage other readers to
persevere.

As you develop a program, you should maintain a “to-do” list. For example, you can put a
“to-do” comment around a dubious looking piece of code to explain your misgivings so that
another developer can track a bug in that code.

Generally, if you find that you need to write convoluted comments about a convoluted
algorithm, you should rewrite the algorithm. Strong code can be self-documenting.
January 2007 242 Product Version 06.70

SKILL Language User Guide
Writing Style
Things to Comment and Document

Cadence suggests that you comment the following items:

Things Not to Comment and Document

While including any number of comments in your code does not affect performance once it
has been read into the SKILL interpreter, Cadence suggests that you do not comment the
following in production code:

Item to comment What to comment

Code modules Each code module should have a header containing at least the
author, creation date, and change history of the module, plus a
general description of the contents.

Procedure definitions Precede procedure definitions with a block comment detailing
the functionality of and interfaces to the procedure. Add a help
string inside the procedure (see “procedure” on page 77). Help
systems extract this information for display. As much as
possible, add type templates for procedure arguments to help
catch erroneous use; type information can be extracted by help
systems.

Data structures Describe contents of data structures and impact on algorithms.

Complex conditionals Comment any test within a conditional function that is nontrivial
to indicate the pass/fail conditions.

Mapping functions Comment complex mapping functions to state what the return
values are.

Terminating parentheses Where a function call extends over several lines, label the
closing parenthesis with the function name.

Item not to comment Explanation

Long change details You should use your source code control system (such as RCS
or SCCS) to maintain full details of any changes you make and
include only a brief outline of your changes in the module
header (rather than in the body of the code). Including details in
the body of the code can make maintenance more difficult.

PCR details You should maintain product change request information in the
PCR itself.
January 2007 243 Product Version 06.70

SKILL Language User Guide
Writing Style
Function Calls and Brackets

Function calls in SKILL can be written in two distinct ways, with the opening parenthesis either
before the function name, as in Lisp, or after it, as in C. Once again, the method chosen is not
as important as ensuring that it is chosen consistently. However, putting the parenthesis after
the function name does make it easier for a non-Lisp programmer to read the code. It is also
easier to distinguish between function names and arguments, and between function calls and
other lists.

When a function call extends over more than one line in a file, it is recommended that the
closing parenthesis is aligned, on a separate line, with the beginning of the function name.
This makes it is easier to see where a particular function call finishes and has the added
advantage that missing parentheses are easier to see.

Note: Having extra newlines to allow alignment of function arguments or parentheses does
not affect the performance of the code once it has been read into the SKILL interpreter.

Avoid Using a Super Right Bracket

Using the super right bracket (]) is strongly discouraged except when using the interactive
interpreter because

■ Missing parentheses can become difficult to locate.

■ Inserting another function call around the code containing the super right bracket can be
difficult.

■ Bracket-matching procedures in editors neither manage nor account for super right
bracket.

Tip

One method you can use to make sure that all your parentheses are matching when
writing SKILL code is to insert the closing parenthesis immediately after the opening
parenthesis of a function call, and then to go back and fill in the arguments.

Brackets in SKILL Are Always Significant

■ In C, it is possible to insert brackets where they are not really needed and not affect the
functionality of the program.

■ In SKILL, the insertion of extra brackets can be, and usually is, incorrect.
January 2007 244 Product Version 06.70

SKILL Language User Guide
Writing Style
The problem usually occurs with infix operators. In SKILL (as in Lisp) every function evaluates
to a list whose head is the function name. Thus, code such as

a + b

is held internally as the list

(plus a b)

You must understand the relative precedence of the built-in SKILL functions. For example,
consider the following code:

a = b && c

The line of code above is held as the following list:

(setq a (and b c))

rather than

(and (setq a b) c)

While this precedence is exactly what you would expect from any language, it might not
necessarily be what you want. Consider the following:

if(res = func1(arg) && res != no_val then …)

The programmer needs to write the code as follows to perform the desired function:

if((res = func1(arg)) && res != no_val then …)

Caution

Using too many parentheses can cause the code to fail. For example, the
following statement has too many levels of parentheses:
a = ((func1(arg1)) && (func2(arg2)))

Note: Parentheses in function calls are only optional for the built-in unary and infix operators,
such as ! and +. The following functions are equivalent:

!a

!(a)

(!a)

What the programmer meant to do: What actually happens:

1. Call func1 and store the result in res.

2. Check that res is not equal to no_val.

1. The interpreter evaluates the expression
func1(arg) && (res != no_val)
and assigns the result to res.
January 2007 245 Product Version 06.70

SKILL Language User Guide
Writing Style
Commas

Commas between function arguments, and list elements, are optional in SKILL.
Programmers from a C programming background will probably want to insert commas, those
from a Lisp background probably will not. The general recommendation is that commas
should not be used.

Using Globals

The use of global variables in SKILL, as with any language, should be kept to a minimum. The
problems are greater in SKILL however because of its dynamic scoping of variables.

The problem with global variables is that different programmers can be using a variable with
the same name. This type of “name clash” can cause problems that are even more difficult to
isolate than the “Error Global” problem, because programs can fail because of the order in
which they have been run. However, because this problem can usually be easily avoided by
adopting a standard naming scheme, SKILL Lint will report this type of variable as a “Warning
Global”. To illustrate the problem, consider the example code below:

/***
 * myShowForm()
***/

procedure(myShowForm()
/* If we don’t already have the form, then create it. */
unless(boundp('theForm) && theForm

myBuildForm()
)

/* Display the form. */
hiDisplayForm(theForm)

) /* end myShowForm */

/**
 * yourShowForm()
***/

procedure(yourShowForm()
/* If we don’t already have the form, then create it. */
unless(boundp('theForm) && theForm

yourBuildForm()
)
/* Display the form. */
hiDisplayForm(theForm)

) /* end yourShowForm */

/***
 * myBuildForm()
***/

procedure(myBuildForm()
hiCreateForm('theForm,

“My Form”
“myFormCallback()”
list(hiCreateStringField(?name 'string1,
January 2007 246 Product Version 06.70

SKILL Language User Guide
Writing Style
?prompt “my field”)
) /* end list */

) /* end hiCreateForm */
) /* end myBuildForm */

/***
 * yourBuildForm()
 *
 * Build the form.
***/

procedure(yourBuildForm()
hiCreateForm('theForm,

“Your Form”
“yourFormCallback()”
list(hiCreateStringField(?name 'string1,

?prompt “your field”)
) /* end list */

) /* end hiCreateForm */
) /* end myBuildForm */

If myShowForm is called before yourShowForm, the global variable theForm will be set
to a different value than if yourShowForm is called before myShowForm.
January 2007 247 Product Version 06.70

SKILL Language User Guide
Writing Style
Coding Style Mistakes

C programmers sometimes make the following mistakes when programming in SKILL. Even
though these mistakes have mostly to do with coding style, some of them can have an impact
on performance.

■ Inefficient Use of Conditionals

■ Misusing prog and Conditionals on page 249

Inefficient Use of Conditionals

A common mistake with conditional checks is to use multiple inversions and boolean checks
when using De Morgan’s Law would result in a simpler and clearer test. For example, the
code below shows a common form of check.

if(!template || !templateDir
warn("Invalid templates\n")

) /* end if */

This check can be optimized using De Morgan’s Law to be:

if(!(template && templateDir)
warn("Invalid templates\n")

) /* end if */

Another common mistake is made by many programmers used to having only the standard
if and case conditionals. SKILL provides a rich variety of conditional functions, and
appropriate use of these functions can lead to much clearer and faster code. For example, an
unless could be used in the above check to yield the clearer and more efficient:

unless(template && templateDir
warn("Invalid templates\n")

) /* end unless */

Another example is where multiple if-then-else checks are used, such as:

if(stringp(layer) then
layerName = layer

else
if(fixp(layer) then

layerNum = layer
else

if(listp(layer) then
layerPurpose = cadr(layer)

) /* end if */
) /* end if */

) /* end if */

This can be more clearly and efficiently implemented using a cond:

cond(
(stringp(layer) layerName = layer)
January 2007 248 Product Version 06.70

SKILL Language User Guide
Writing Style
(fixp(layer) layerNum = layer)
(listp(layer) layerPurpose = cadr(layer))

) /* end cond */

When applying multiple tests, either in a nested if function or a cond function, it is important
to consider the order in which the tests will be carried out.

■ If one test is more likely to be true than the others then it should go first.

■ If all tests are equally likely to be true, then the test that involves the most work should
go last.

Misusing prog and Conditionals

Quite often, prog statements are used to return from a procedure when an error condition
occurs. In the example below, template and templateDir are both verified, and only if
both are correct is the rest of the procedure executed:

procedure(EditCallback()
prog((templateFile templateDir fullName)

templateFile = ReportForm->Template->value
templateDir = ReportForm->TemplateDir->value

/* Check the template directory. */

if(((templateDir == "") || (!templateDir)) then
return(warn("Invalid template directory.\n"))

)

/* Check the template file. */

if(((templateFile == "") || (!templateFile)) then
return(warn("Invalid template file name.\n"))

)

/* If both are correct then act.*/

sprintf(fullName "%s/%s" templateDir templateFile)
if(isFile(fullName) then

LoadCallback()
else

SetUpEnviron()
) /* end if */

return(hiDisplayForm(EditTemplateForm))
) /* end prog */

) /* end EditCallback */

Using the fact that a cond returns the value of the last statement executed allows us to more
efficiently implement this example using a let:

procedure(EditCallback()
let(((templateFile ReportForm->Template->value)

(templateDir ReportForm->TemplateDir->value)
 fullName)

cond(
/* Check the template directory. */
January 2007 249 Product Version 06.70

SKILL Language User Guide
Writing Style
((templateDir == "") || (!templateDir)
warn("Invalid template directory.\n")

)

/* Check the template file. */

((templateFile == "") || (!templateFile)
warn("Invalid template file name.\n")

)

/* If both are correct then act. */

(t
sprintf(fullName "%s/%s" templateDir

templateFile)
if(isFile(fullName) then

LoadCallback()
else

SetUpEnviron()

) /* if */

hiDisplayForm(EditTemplateForm)
)

) /* end cond */
) /* end let */

) /* end of EditCallback */

Red Flags

The following are situations or functions that require special attention. Their use is often
symptomatic of problems with the way interfaces or algorithms are designed. In some cases,
their use is legitimate and these comments do not apply.

■ Any Use of eval or evalstring on page 250

■ Excessive Use of reverse and append on page 251

■ Excessive Use of gensym and concat on page 251

■ Overuse of the Functions Combining car and cdr on page 251

■ Use of eval Inside Macros on page 251

■ Misuse of prog and return in SKILL++ mode on page 251

Any Use of eval or evalstring

Strictly speaking these calls are inefficient and any code using them is either suffering
through using a bad interface from another application or the code itself is badly designed.
January 2007 250 Product Version 06.70

SKILL Language User Guide
Writing Style
Excessive Use of reverse and append

Excessive use of reverse and append is an indication that algorithms using list structures
are badly designed. They are acceptable when prototyping but production code should not
suffer their consequences. Both these functions are capable of generating a lot of memory.
There are alternatives to these functions and the recommendation is that code using these
functions should be rewritten using tconc.

Excessive Use of gensym and concat

Symbols are large structures and applications that have to generate symbols at run time may
not be designed to use the right data structure. Many times applications use symbols in place
of small strings to save on memory because symbols are unique in the system. However,
SKILL caches strings so this optimization might not always yield the desired effect.

Overuse of the Functions Combining car and cdr

One function that combines car and cdr is cdaddr. Using such functions, which are not as
intuitive as calls to nthelem and nthcdr, can lead to programmer and reader errors.

Use of eval Inside Macros

Calling eval inside a macro means you are determining the value of an entity at compile time
as opposed to evaluating it at run time, which may result in undesirable behavior. In general,
macros should massage expressions and return expressions (see “Macros” on page 210).

Misuse of prog and return in SKILL++ mode

Misuse of prog and return in SKILL++ might corrupt SKILL++ environment frames and
can lead to a fatal programming error. The following example demonstrates misuse that you
should avoid (using prog and return in a SKILL++ .ils file). Immediately following this
example is an example of what you should do instead.

procedure(myFunc(namelist keys "ll")
let((selectedlist)
foreach(name namelist
prog(()
foreach(key keys
when(rexMatchp(key name)
return(t)

)
)
return(nil)

)

January 2007 251 Product Version 06.70

SKILL Language User Guide
Writing Style
selectedlist = cons(name selectedlist)
)

)
)

Instead, do this:

procedure(myFunc(namelist keys "ll")
let(()
setof(name namelist
setof(key keys rexMatchp(key name))

)
)

)

January 2007 252 Product Version 06.70

SKILL Language User Guide
12
Optimizing SKILL

Before you embark on optimizing your SKILL code, your SKILL program should work. You
might waste time if you try to optimize the performance of a program that has not yet met its
functional requirements.

Note: In this chapter, you can find information about techniques for modifying your programs
to run faster. You will not learn how to create better algorithms: You need to design algorithmic
performance into your programs from the outset.

When optimizing your SKILL code, you should do the following:

■ Focus your efforts

Before optimizing, you should determine what you need to optimize. If 80% of the time is
spent in 20% of the code, you should focus your efforts on optimizing that small portion
of the program where there is a performance bottle-neck.

Always measure the benefit gained after you modify your code. You should leave
well-written and well-structured code untouched if the changes do not yield significant
performance improvements.

■ Use profiling tools to measure code performance

Important

You should expect reduced execution speed when profiling and gathering
performance data because these operations are necessarily intrusive in nature. The
measurements you gather should take this into account. When profiling, you should
think of code performance in terms of percentages rather than absolute values. See
“Printing Summary Statistics” on page 220 for information on the how to obtain and
interpret a summary of memory allocation.

You can optimize your SKILL code for time spent and memory used.

❑ Time: You can use the SKILL Profiler to find out where most of the time is spent in
your program. You can gather global statistical information about time spent in
functions called in a given session. The profiler takes a sample of the runtime stack
January 2007 253 Product Version 06.70

SKILL Language User Guide
Optimizing SKILL
at pre-specified intervals and presents timing information as call graphs identifying
the critical paths. You can use this information to direct your effort.

You can use measureTime to evaluate specific expressions and get timing results.
You can also add your own more deterministic instrumentation to the code to collect
relevant information about your algorithms and structures.

❑ Memory: You can use the SKILL Profiler to track memory usage in your program.
SKILL has an automatic memory manager and programs can be written to generate
excessive amounts of memory. Before you optimize for time, make sure to profile
memory usage to see if that is where you need to spend your effort. A good indicator
that memory usage needs optimizing is if the function gc (garbage collection)
appears high among functions profiled for time.

See the following sections for more information:

■ Optimizing Techniques on page 255

■ General Optimizing Tips on page 258

■ Miscellaneous Comparative Timings on page 265
January 2007 254 Product Version 06.70

SKILL Language User Guide
Optimizing SKILL
Optimizing Techniques

You can try the following techniques to optimize your code. Not all techniques are effective in
all circumstances. You should experiment and measure performance gain.

■ Macros

■ Caching on page 255

■ Mapping and Qualifying on page 256

■ Write Protection on page 256

■ Minimizing Memory on page 257

Macros

In many situations, you can improve the performance of your code by replacing function calls
with macros. However, because macros are in-line expanded, they can grow the size of the
code at runtime. So there is a balance as to what kind of functions can be written as macros.

For example, functions small in size that are likely to be used a lot are good candidates.
Expressions that can be reduced at compile time leaving smaller subexpressions to be
evaluated at run time are also good candidates.

Caching

Caching is a technique used to save the results of costly computations in a fast access cache
structure. You have to balance the benefit of time saved versus amount of memory used for
the cache structure.

A good data structure to use for caches is the association table. For example, if you called a
compute-intensive function, say factorial or fibonacci, many times in a session, you might
consider caching the results so a second call to the function with same argument will run
faster. To do this, you first need to create an assoc table and store it as a property on the
symbol for the function, for example:

The fibonacci function described in “Fibonacci Function” on page 354.

myFib.cache = makeTable("fibonacciTable" nil)
procedure(myFib(num)
(let ((res myFib.cache[num]))

cond(!res myFib.cache[num]= fibonacci(num))
(t res)

))
January 2007 255 Product Version 06.70

SKILL Language User Guide
Optimizing SKILL
You could write the function myFib as a macro:

defmacro(myFib (num)
‘or(myFib.cache[,num]

myFib.cache[,num] = fibonacci(,num)
))

For example, compare the following timing numbers (in seconds).

fibonacci(25)myFib(25)

1st call 23 23
2nd call 23 0.009

Mapping and Qualifying

Mapping functions (map, mapcar, maplist, and so forth) have been described in detail
in “Advanced List Operations” on page 175 When manipulating lists, you can achieve
significant performance gains if you use map* functions instead of loops that directly
manipulate the lists. The same argument applies to qualifiers like foreach, setof and
exists. The qualifiers are generic in nature in that they apply to lists as well as to
association tables.

Consider the following two examples performing the same operation of adding consecutive
numbers in two equal length lists and returning a list of the results. The example using
mapcar is at least twice as fast.

L1 = '(1 2 3 4 5 … 100)
L2 = '(100 99 98 .. 1)

mapcar(lambda((x y) x+y) L1 L2)

(let (res)
while(car(L1)

res=cons(car(L1)+car(L2) res)
L1 = cdr(L1)
L2 = cdr(L2)

) res
)

Write Protection

Ensuring that all of your functions and data structures that are static in nature are write
protected reduces the amount of work the garbage collector has to perform whenever it is
triggered. Generally, all functions can be write protected because they are not likely to be
over-written at run time. Some data structures, like lookup tables, whose contents are not
likely to be modified at run time, can also be write protected.

It is highly recommended that SKILL code destined for production be packaged in contexts
and that all contexts are built with the status flag writeProtect set to t (see “Protecting
January 2007 256 Product Version 06.70

SKILL Language User Guide
Optimizing SKILL
Functions and Variables” on page 238). To set write protection on global variables use
setVarWriteProtect.

When SKILL memory is write protected, the garbage collector does not touch it, thus
considerably reducing the amount paging and work done at run time.

Minimizing Memory

The way memory is used in SKILL is by consing (the basic list building operation), creating
strings, arrays, and so forth, or by generating instances of defstructs and user types. The goal
of memory optimizing is to reduce the overall amount of memory used. This reduction

■ Saves on run-time page swapping that an operation has to perform when physical
memory resources are scarce

■ Reduces the work load on the garbage collector

Run the SKILL Profiler in Memory Mode

To start optimizing memory usage, use the SKILL profiler in memory mode to discover the
functions responsible for the largest amount of memory used. From there start tweaking the
functions. You should be aware of the nature of the utilities and library calls you use.

For example, removing elements from lists using remove makes a copy of the original list
minus the element removed. You should check to see if that is the desired behavior. If you can
use a destructive remove instead, such as remd, you can cut down memory use
considerably on this particular operation. Experiment.

Ways to Minimize

When generating large data structures in memory from information on disk, you should ask
yourself whether you need to generate the whole image in memory if all of it is not likely to be
used. Use the technique known as lazy evaluation to expand your structures on demand
rather than at start-up.

For example, you can embed lambda constructs in your data structures to retrieve
information on demand (see “Declaring a Function Object (lambda)” on page 208 for a
description of lambda constructs). Experiment.

If you know from the outset the amount of memory your application is likely to need at run
time, you can preallocate that memory to reduce the number of times the garbage collector
is triggered. There is a delicate balance you have to make here between total memory
allocated and garbage collection.
January 2007 257 Product Version 06.70

SKILL Language User Guide
Optimizing SKILL
Remember, preallocating memory is not a substitute for fine tuning memory use in your
program.

Only preallocate memory when you have tuned the program and determined the minimum
amount of memory needed to run efficiently. Read “Memory Management (Garbage
Collection)” on page 219 to better understand the nature of automatic memory management.

General Optimizing Tips

See the following sections for general optimizing tips:

■ Element Comparison

■ List Accessing on page 261

■ List Building on page 261

■ List Searching on page 264

■ List Sorting on page 264

■ Element Removal and Replacing on page 264

■ Alternatives to Lists on page 265

Element Comparison

In SKILL, there are two basic functions used to compare values. These functions are eq and
equal (also known as the infix operator, ==).

It is important to understand the difference between these two functions, because both are
useful in particular circumstances. There are several functions in SKILL which have
alternative implementations depending on whether the user wants to compare using the eq
or equal function. For example, the two functions memq and member are used to search a
list for an object. memq uses the eq function for comparison and member uses the equal
function.

The eq function is far stricter in its comparison than the equal function. There are objects
which equal would consider to be the same, but which eq considers to be different.

You can compare the following objects using eq:

■ SKILL symbols

■ Small integers (-2**29 <= i <= 2**28)
January 2007 258 Product Version 06.70

SKILL Language User Guide
Optimizing SKILL
■ List objects (NOT their contents)

■ Any pointers

■ Characters (NOT strings)

■ Ports

The important things that cannot be reliably compared by eq are strings and lists, unless they
are identical objects referenced by the same pointer. In many situations SKILL tries to
optimize memory use by caching certain objects and reusing them. For example, there is a
string caching mechanism that saves SKILL from generating the same string multiple times.
Code and data segments in static (write-protected) memory are also cached so they are
reused within the static space.

The following are some examples of the more unexpected differences between the
comparison operations:

x = '(1 2 3)
y = '(1 2 3)
eq(x y) => nil
equal(x y) => t

s1 = "string"
s2 = "string"
s3 = s2
eq(s1 s2) => t ; unreliable
equal(s1 s2) => t ; reliable
eq(s3 s2) => t ; reliable
equal(s3 s2) => t ; reliable

eq(12345 12345) => nil
l = '(12345)
eq(car(l) car(l)) => t
l = '("string")
eq(car(l) car(l)) => t

To understand more about equal and eq, keep in mind how they are implemented. The
following are pseudo-code definitions of the two functions (they are actually implemented in
C):

eq(A B)
if A is the same object as B
then t
else nil
end eq

equal(A B)
if eq(A B)
then t
else

if the contents of A and B are ‘equal’
then t
else nil

end equal
January 2007 259 Product Version 06.70

SKILL Language User Guide
Optimizing SKILL
Suppose the two functions are used to compare two SKILL objects, A and B. If A and B are
in fact the same object then eq will immediately return t. Because the first thing that equal
does is call eq, it too will immediately return t in this case. Now suppose that A and B
represent distinct objects. In this case, eq will immediately return nil. equal, however,
goes on to try to establish if the contents of the two objects are the same, (for example, if
the objects are lists, equal compares each element of the two lists for equality) and this
process involves a large overhead. To summarize this behavior:

eq('a 'a) => t (fast)

equal('a 'a) => t (fast)
eq('a 'b) => nil (fast)
equal('a 'b) => nil (SLOW)

If in doubt about which of eq and equal to use, observe the following rules:

■ If the objects are simple (symbols, small integers, pointers, characters), use eq because
eq is faster than equal.

■ If the objects are compound or complex (lists or strings, for example), consider what
functionality is needed. To test whether two strings contain the same characters, use
equal; To test whether two strings are in fact the same object, use eq.

Some common tests can be more efficiently implemented by using the built-in SKILL
functions, or simply by using the fact that in SKILL, any non-nil object is true, not just t.
Examples of some simple transformations are:

For a != nil, providing a Boolean value is all that is required, for example,

if(a != nil) can be coded as if(a)

For !null(a), providing a Boolean value is all that is required, for example,

if(!null(a)) can be coded as if(a)

Original Test Improved Test

a == 0 zerop(a)

a == 1 onep(a)

strcmp(a,"teststring") == 0 a == "teststring"

a != nil a

a == nil !a

!null(a) a
January 2007 260 Product Version 06.70

SKILL Language User Guide
Optimizing SKILL
List Accessing

The basic list accessing operations of SKILL (car, cdr and so forth) are very fast, and their
performance is very predictable. The nth and nthcdr functions are significantly faster than
the equivalent number of basic operations (because they avoid procedure call overhead) and
should be used if lists are long. The operation that should be used with the most care is the
last operation. This function must traverse the entire list to find the last element, so a large
overhead is incurred for long lists.

List Building

There are two main methods of building lists: iteratively, either as part of a program’s
operation or when all the elements are the same type and non-iteratively when the format and
number of elements are known. List building is an area that is open to abuse, and it is
important that the processes involved are clearly understood.

Iterative List Creation

The standard function for adding an element to the start of a list is the cons function, which
is very efficient and has predictable performance. New users often find cons difficult to use
because elements are added to the front of the list, giving a result that is “back to front”.
There are several methods of producing a list in the “right” order, which vary in efficiency:

Use append1 to add each element to the end of the list rather than to the start.

This is the most inefficient method, and lists should never be iteratively created in this way.
As each element is added, the append1 function makes a copy of the original list, with the
new element on the end. If a list of n elements is built using this method, then on the order of
n2 list cells are created, and most of them are promptly discarded again.

Use nconc to add each element to the end of the list rather than to the start.

This method is also quite inefficient, and lists should never be iteratively created in this way.
Because nconc is a “destructive” append, only n list cells need to be created to form the list.
However, on the order of n2 list cells must be traversed to build the list.

Use cons to build the list backwards, and then use reverse to turn the list around.

This is a much more efficient, and easily understood method. To create a list of n elements,
2n list cells are created, but half of them are immediately discarded.

Use the tconc structure and function to build the list in the right order.
January 2007 261 Product Version 06.70

SKILL Language User Guide
Optimizing SKILL
This is the most efficient method in terms of storage requirements. To create a list of n
elements, only n+1 list cells are created. Because creation of list cells is relatively time
consuming, this means that using tconc to build a long list is faster than using cons and
reverse. A slight disadvantage is that the code is less intuitive.

In general, if the code is not time critical, it might be better to build the list backwards using
cons and then apply reverse. If the code is in a time critical part of the program, then the
tconc method should be used, along with some detailed commenting. From a memory
usage point of view, if the list being built is long, then it is better to use the tconc method to
prevent the garbage collector being called unnecessarily.

To build lists that are derived from existing lists, it is far better to use the mapping functions,
possibly coupled with the foreach function. This is discussed in detail later.

Programmers coming from a Prolog or compiled Lisp background might be tempted to build
a list in the right order using a tail recursive algorithm. SKILL has no tail recursion optimization
so this method yields no performance gain.

Non-Iterative List Creation

To build lists of known format, use one of the list, quote, or backquote functions as
follows:

■ Use list when all elements of the result must be evaluated (in other words, none of the
list members are known constants).

■ Use backquote when the list contains a mixture of known constants and evaluated
entries.

■ Use quote when the list consists entirely of known constants.

For example, suppose we have the three variables, a, b, and c such that:

a = 1
b = "a string"
c = '(A B C D E)

If we wanted to make a disembodied property list (dpl) of symbol-value pairs using these
variables then we could use list or a mixture of quote and backquote, as follows:

/* These are identical in function. */
dpList1 = list('a a 'b b 'c c)
dpList2 = ‘(a ,a b ,b c ,c)

In the second case, some items are preceded with commas (with no space after the comma)
and some are not. Those not preceded with commas are treated as literals, as if this was a
normal quoted list. Those preceded by commas are evaluated, as if the list was declared
using list.
January 2007 262 Product Version 06.70

SKILL Language User Guide
Optimizing SKILL
If this was the only use of backquote, it would not be very useful. However, there are two
useful extra features. The first is that you can splice in entire lists by using the ,@
(comma-at) specifier, as follows:

‘(a ,a b ,b c ,@c) => (a 1 b "a string" c A B C D E)

Here, the five elements A, B, C, D, and E have been used in place of the placeholder ,@c.
This cannot be done easily using list. The second useful feature is that the expansion can
descend hierarchically. Suppose that instead of a dpl we wanted to create an assoc list. To
do this using just list, would require the following:

list(list('a a) list('b b) list('c c))
=> ((a 1) (b "a string") (c (A B C D E)))

Using backquote simplifies this to:

‘((a ,a) (b ,b) (c ,c))
=> ((a 1) (b "a string") (c (A B C D E)))

The last element can still be flattened using ,@ if required:

‘((a ,a) (b ,b) (c ,@c))
=> ((a 1) (b "a string") (c A B C D E))

Note: Care should be taken with lists defined using quote. These lists form part of the
program code, and if edited using the destructive list operations the actual program code will
be changed. This is particularly important when building tconc lists. It is very tempting to
initialize a tconc structure to '(nil nil), but this is wrong. If this is done, then as each
element is added the program itself is being modified.

Consider the following naive list copy:

procedure(copylist(inputList)
let(((tc '(nil nil)))

foreach(element inputList
tconc(tc element)

)
car(tc)

) /* let */
) /* copylist */

This works the first time it is called, but the list assigned to tc in the variable declaration part
is being modified as part of the program, so the next time the function is called, the copied list
will actually be appended to the list that was copied in the first call:

copylist('(1 2 3)) => (1 2 3)
copylist('(a b c)) => (1 2 3 a b c)

The list should be initialized by using either list(nil nil) or tconc(nil nil). The
second method makes it more obvious that the variable is being initialized as a tconc
structure, but in this case the return value would be cdar(tc) rather than car(tc).
January 2007 263 Product Version 06.70

SKILL Language User Guide
Optimizing SKILL
List Searching

There are two methods for searching a list, depending on its structure. For a simple list, the
functions memq and member can be used to search the list. The memq function is faster
because it uses the eq function for comparison and is therefore preferred whenever the list
contains elements for which the eq function is suitable.

If the list is an assoc list, that is, it is a list of key-value pairs, then the functions assoc and
assq should be used to do the searching. Again, assq is faster because it uses the eq
function for the comparison. It is therefore worthwhile, when building assoc lists, trying to
ensure that the key elements are suitable for use with the eq function. In particular, when
building an assoc list that would normally have keys that are strings, it may be worthwhile
using the concat function to turn these strings into symbols, and then using those symbols
as the keys in the list. This will then allow the assq rather than the assoc function to be
used.

There are, however, two disadvantages with this method. The first disadvantage is that
symbols in SKILL use memory and are not garbage collected (they are persistent), so
creating many symbols uses up memory. Garbage collection is also slowed because the
speed of this is directly related to the number of symbols. The second disadvantage is that
the concat function is itself quite slow, so the overhead of this might outweigh any gains
from using assq instead of assoc.

List Sorting

The sort and sortcar functions for lists are based on a recursive merge sort and are thus
reasonably efficient. The list is sorted in-place, with no new list elements created, thus the list
returned replaces the one passed as argument, and the one passed as argument should no
longer be used.

Element Removal and Replacing

Two non-destructive functions are provided for removal of elements from a list, remq and
remove. The equivalent but destructive functions are remd and remdq These functions
remove all elements from the list which match a given value, using the eq and equal
function respectively. The remq function is faster than the remove function.

The function subst is provided for replacement of all elements of a list matching a particular
value with another value. This function uses equal and so should be used sparingly.

It should be noted that the non-destructive functions return a copy of the original list with the
matching elements removed. This means that these functions should not be used within a
January 2007 264 Product Version 06.70

SKILL Language User Guide
Optimizing SKILL
loop in order to remove a large number of elements. If a number of different elements must
be removed from a list, then it is more efficient to generate a new list by traversing the old one
just once, selecting only the required elements for the new list.

Alternatives to Lists

In many cases, there are faster and more compact alternatives to list structures. For example,
if you need a property list that is likely to remain small in contents and most of the properties
are known, consider using a defstruct.

If you need an assoc or property list whose contents are likely to be large (in the order of tens
at least), then consider using assoc tables. Assoc tables offer much faster access time and
for a large set of key-value pairs memory usage is more efficient. Assoc tables are not
ordered (they are implemented as hash tables).

Miscellaneous Comparative Timings

This section gives comparative timings for various pieces of SKILL code to further
demonstrate and reinforce the comments made in the previous sections. The examples are
listed in an order that matches the structure of the preceding sections.

The timings were ascertained using the SKILL profile command and are expressed in
ratios of the first example. In producing the timings, every effort has been made to compare
like with like.

Element Comparison

The difference in speed between the eq and equal functions can be demonstrated using
the following functions:

procedure(equal_test()
equal('fred 'joe)
equal('fred 'fred)

) /* end equal_test */

procedure(eq_test()
eq('fred 'joe)
eq('fred 'fred)

) /* end eq_test */

Note that each procedure has two comparisons, one failing and one succeeding. The
comparative times for these were:

equal_test 1.00
eq_test 0.92
January 2007 265 Product Version 06.70

SKILL Language User Guide
Optimizing SKILL
Further tests demonstrated that it is when the symbols are not equal that the eq function
gains over the equal function. This means that if the test is expected to succeed on most
occasions, there is little difference between the two functions.

List Building

As noted, there are several methods for building a list. The following examples attempt to build
a list of the first 50 integers. The last example builds the list in descending order; the others
build the list in ascending order.

procedure(list1()
let((returnList)

for(i 1 50
returnList = append1(returnList i)

)
/* return */
returnList

) /* end let */
) /* end list1 */

procedure(list2()
let(((returnList list(nil nil))

)
for(i 1 50

tconc(returnList i)
)
car(returnList)

) /* end let */
) /* end list2 */

procedure(list3()
let((returnList)

for(i 1 50
returnList = cons(i returnList)

)
reverse(returnList)

) /* end let */
) /* end list3 */

procedure(list4()
let((returnList)

for(i 1 50
returnList = cons(i returnList)

)
returnList

) /* end let */
) /* end list4 */

The outcome of this test depends on the length of the list being built. These examples use a
medium length list, and the results of running these examples are:

list1 1.00
list2 0.14
list3 0.11
list4 0.10
January 2007 266 Product Version 06.70

SKILL Language User Guide
Optimizing SKILL
These results demonstrate that with this size of list there is little difference between using the
tconc method and the cons and reverse method. In fact, there will be little difference
between these methods for any length of list because they both have to carry out the same
basic functions. The only difference is that the reverse method must find twice as many list
elements as the tconc method. This gives a greater chance of the garbage collector being
called, which might cause the program to slow down, especially for large lists.

Mapping Functions

To demonstrate the relative speeds of the mapping functions, consider the following
implementations of a function that picks every even integer out of a list of integers, returning
the list of even integers in the same order as the originals.

procedure(map1(intList)
let((res)

while(intList
when(evenp(car(intList))

res = cons(car(intList) res)
)
intList = cdr(intList)

) /* end while */
reverse(res)

) /* end let */
) /* end map1 */

procedure(map2(intList)
let((res)

foreach(i intList
when(evenp(i)

res = cons(i res)
)

) /* end foreach */
reverse(res)

) /* end let */
) /* end map2 */

procedure(map3(intList)
foreach(mapcan i intList

when(evenp(i)
ncons(i)

)
) /* end foreach */

) /* end map3 */

procedure(map4(intList)
mapcan((lambda (i) when(evenp(i) ncons(i)))

intList
)

) /* end map4 */

The relative timings for these are:

map1 1.00
map2 0.68
map3 0.64
map4 0.29
January 2007 267 Product Version 06.70

SKILL Language User Guide
Optimizing SKILL
This shows that the version using a lambda function along with the basic mapping function
is the fastest. However, this is the least readable of these functions and should only be used
with a great deal of caution, and a large number of comments.

Data Structures

It is difficult to give meaningful comparisons between the data structure functions because
they are all suitable for different tasks. The following two examples attempt to compare the
time taken to access and change one element of a data structure stored as an array, simple
list, assoc list, defstruct and property list.

elem_number = 9
elem_symbol = 'j

procedure(access1(array)
array[elem_number]

) /* end access1 */

procedure(access2(list)
nth(elem_number list)
) /* end access2 */

procedure(access3(assoc_list)
cadr(assq(elem_symbol assoc_list))
) /* end access3 */

procedure(access4(dstruct)
get(dstruct elem_symbol)
) /* end access4 */

procedure(access5(plist)
get(plist elem_symbol)
) /* end access5 */

procedure(access6(assocTable)
assocTable[elem_symbol]
) /* end access */

The comparative timings for these are:

access1 1.00
access2 1.3
access3 1.47
access4 1.08
access5 1.55
access6 1.11

procedure(set1(array val)
array[elem_number] = val
) /* end set1 */

procedure(set2(list val)
rplaca(nthcdr(elem_number list) val)
) /* end set2 */

procedure(set3(assoc_list val)
rplaca(cdr(assq(elem_symbol assoc_list)) val)
) /* end set3 */
January 2007 268 Product Version 06.70

SKILL Language User Guide
Optimizing SKILL
procedure(set4(dstruct val)
putprop(dstruct val elem_symbol)
) /* end set4 */

procedure(set5(plist val)
putprop(plist val elem_symbol)
) /* end set5 */

procedure(set6(assocTable val)
assocTable[elem_symbol] = val
) /* end set6 */

The comparative timings for these are:

set1 1.00
set2 1.14
set3 1.09
set4 0.93
set5 1.71
set6 1.2

No comment will be made about the readability of these functions because access
procedures should be made available for all data structure access anyway. It is clear from
these results that there is little to be gained, in terms of speed from the choice of data
structure, although arrays do seem to be fastest overall. When choosing data structures it is
more important to consider the other factors mentioned in the data structures section of this
document.

Because the structures used contained a small number of elements, the experiment is
naturally biased. You can repeat this experiment using measureTime to find out how
effective your data structure accesses are for a given volume of data. For example, for sets
of hundreds of elements, association tables will be significantly faster to access than property
lists and assoc lists. For large sets it would be impractical to use arrays or defstructs.
January 2007 269 Product Version 06.70

SKILL Language User Guide
Optimizing SKILL
January 2007 270 Product Version 06.70

SKILL Language User Guide
13
About SKILL++ and SKILL

Cadence® SKILL++ is the second generation extension language for Cadence software.
SKILL++ combines the ease-of-use of the SKILL environment with the power of the Scheme
programming language. The major power brought in from Scheme is its use of lexical scoping
and functions with lexically-closed environments called closures:

■ Lexical scoping makes reliable and modular programming more easily achievable,
because you have total control over the use and reference of variables for any code
without worrying about accidental corruptions caused by the use of the same variable
name in a remote place.

■ Closures are powerful entities that only exist in the more advanced programming
languages. They encapsulate the code and related data into a single unit, with total
control on the exported interface. Many modern programming idioms and paradigms,
such as message-passing and objects with inheritance, can be implemented elegantly
using closures.

Other advantages of SKILL++ include the following:

■ SKILL++ provides environments as first-class objects. With closures and first-class
environments, you can create your own module or package systems. You are no longer
restricted to SKILL’s single flat name space model. Instead, you can organize the code
into a hierarchy of name spaces.

■ In addition to Scheme semantics, SKILL++ includes an object layer that makes explicit
object-oriented style programming possible. The object layer supports classes, generic
functions, methods, and single inheritance.

■ Because SKILL++ and SKILL can coexist harmoniously in the same environment,
backward compatibility and interoperability are not an issue. All existing SKILL code can
still run without any changes, and all or part of any SKILL package can be migrated to
SKILL++. Code developed in SKILL++ and SKILL can call each other and share the
same data structures transparently.
January 2007 271 Product Version 06.70

SKILL Language User Guide
About SKILL++ and SKILL
See the following sections for more information:

■ Background Information about SKILL and Scheme

■ Relating SKILL++ to IEEE and CFI Standard Scheme on page 273

■ Extension Language Environment on page 276

■ Contrasting Variable Scoping on page 277

■ Contrasting Symbol Usage on page 280

■ Contrasting the Use of Functions as Data on page 282

■ SKILL++ Closures on page 283

■ SKILL++ Environments on page 286

Background Information about SKILL and Scheme

SKILL was originally based on a flavor of Lisp called “Franz Lisp.” Franz Lisp and all other
flavors of Lisp were eventually superceded by an ANSI standard for Lisp called “Common
Lisp.” The semantics and nature of SKILL make it ideal for scripting and fast prototyping. But
the lack of modularity and good data abstraction, or its general openness, make it harder to
apply modern software engineering principles especially for large endeavors. Since its
inception, SKILL has been used for writing very large systems within the Cadence tools
environments. To this end Cadence chose to offer Scheme within the SKILL environment.

Scheme is a Lisp-like language developed originally for teaching computer science at the
Massachusetts Institute of Technology and is now a popular language in computer science
and sometimes EE curriculums. Scheme is a modern language whose semantics empower
engineers to develop sound software systems. There is an IEEE standard for Scheme.
Scheme was also the choice of the CAD Framework Initiative (CFI) for an extension language
base. Cadence supplies major Scheme functionality as part of the SKILL environment.
Benefits include the following:

■ New programs written in Scheme can coexist and call procedures in existing programs
written in SKILL without paying penalties in performance or functionality.

■ Scheme and SKILL will share the run-time environment so structures allocated in
Scheme programs can be passed without modification to SKILL programs and
visa-versa.

■ Suppliers and consumers can choose to migrate to Scheme independently of each other.
For example, a Cadence-supplied layer can choose to remain written in SKILL while
users of that layer can switch to using Scheme. The converse is also true.
January 2007 272 Product Version 06.70

SKILL Language User Guide
About SKILL++ and SKILL
Relating SKILL++ to IEEE and CFI Standard Scheme

CFI has chosen IEEE standard Scheme as the base of their proposed CAD Framework
extension language. Because the intended use was as a CAD tool extension language, which
must be embeddable within large applications in a mixed language environment, CFI relaxed
the requirement for the support of full “call-with-current-continuation” and the full numeric
tower (only numbers equivalent to C's long and double are required).

For the same reason, CFI added a few extensions such as exception handling and functions
for evaluating Scheme code, as well as a specification on the foreign function interface APIs,
to their proposal.

SKILL++ is designed with IEEE Scheme and CFI Scheme compliance in mind, but due to its
SKILL heritage and compatibility, it is not fully compliant with either standard.

The following sections describe the differences between SKILL++ and the standard Scheme
language.

Syntax Differences

SKILL++ uses the same familiar SKILL syntax with the following restrictions and extensions.

Restrictions

■ Because most of the special characters are used as infix symbols in SKILL++ and
SKILL, they cannot be used as regular name constituents. However, many standard
Scheme functions and syntax forms have been systematically renamed for ease of use
under SKILL++'s syntax, for example

pair? ==> pairp
list->vector ==> listToVector
make-vector ==> makeVector
set! ==> setq
let* ==> letseq (for “sequential let”)

■ Except for vector literals (such as #(1 2 3)), the #… syntax is not supported, so use t
for #t, nil for #f, and use single character symbols for character literals and so forth.
January 2007 273 Product Version 06.70

SKILL Language User Guide
About SKILL++ and SKILL
Extensions

■ Like SKILL, but unlike standard Scheme, SKILL++ symbols are case- sensitive.

■ SKILL++ inherited all the SKILL syntactic features, such as infix notation,
optional/keyword arguments with default values, and many powerful looping special
forms (such as for, foreach, setof).

■ SKILL++ code can define macros using the mprocedure/defmacro as well as use
existing macros defined in SKILL.

Semantic Differences

SKILL++ adopts the standard Scheme semantics with the following restrictions and
extensions.

Restrictions

■ The atom nil is the same as the empty list '(), as well as the false value. Standard
Scheme uses #f for the only false value and treats the empty list as a true value.

■ The cons cells in SKILL++ are like SKILL's, that is, their cdr slot can only be either nil
or another cons cell. In standard Scheme, the cdr slot of a cons cell can hold any value.

■ The SKILL++ map function and the SKILL map function share the same name and
implementation, but behave differently from standard Scheme’s map function. To get the
behavior of Scheme’s map, use mapcar in SKILL++.

■ Strings in SKILL++ and SKILL are immutable, so there is no support for functions like
Scheme's string-set!.

■ The character type is not supported yet. As in SKILL, symbols of one character can
be used as characters.

■ No “eof” object. The lineread function returns nil on end-of-file.

■ Tail-call optimization is normally turned-off (for better debugging and stack tracing
support). Because there are many looping constructs inherited from SKILL, this is
normally not a problem for programming in SKILL++.

Extensions

■ Environments are treated as first class objects. The theEnvironment form can be
used to get the enclosing lexical environment, and bindings in an environment can be
accessed easily. This provides a powerful encapsulation tool.
January 2007 274 Product Version 06.70

SKILL Language User Guide
About SKILL++ and SKILL
■ SKILL++ inherits the SKILL set of powerful data structures, such as defstruct and
association tables, as well as all the functions and many special forms of SKILL.

■ Support for transparent cross-language (SKILL <-> SKILL++) mixed programming.

Syntax Options

SKILL++ adopts the same SKILL syntax, which means SKILL++ programs can be written in
the familiar infix syntax and the general Lisp syntax.

If syntax is not an issue for you and you are comfortable with the infix notation, continue to
use that.

If you are concerned that the knowledge of SKILL++ you build by programming in the infix
syntax will not be useful if you were to program in a Scheme environment (without SKILL),
then use the Lisp syntax for programming in SKILL++. The syntactic differences between
SKILL++ using Lisp syntax and standard Scheme are:

■ In SKILL++, you may not use any special characters (such as +, -, /, *, %, !, $, &, and
so forth) in identifiers because most of these characters are used as infix operators.

■ As a general convention, Scheme functions ending with an exclamation point (!) are
provided either without the exclamation point or as the equivalent SKILL function. For
example, Scheme set! is SKILL++ setq. Scheme functions using -> are provided
using To as part of the function name. For example, list->vector becomes
listToVector. See “Scheme/SKILL++ Equivalents” in the SKILL Language
Reference for a complete list of name mappings.

■ Scheme's dotted pairs are not available in SKILL++. Use simple lists instead.

■ You can use => and … as identifiers.

Compliance Disclaimer

Cadence-supplied Scheme is not fully IEEE compliant for the following reason:

■ Scheme was not originally designed as an extension language. Features in Scheme that
cannot be used safely in conjunction with a system written in C/C++ are omitted, such
as “call/cc” and non-null terminated strings.

■ Cadence puts a high value on making the system fully backward compatible for SKILL
programs and procedural interfaces. As a result, the empty list nil is a Boolean true
in the Scheme standard while Cadence's SKILL and SKILL++ treat nil as a Boolean
January 2007 275 Product Version 06.70

SKILL Language User Guide
About SKILL++ and SKILL
false. Without this treatment of nil, the migration of existing SKILL programs to
Scheme would require many existing procedural interfaces written in SKILL to change.

In general, SKILL++ is implemented to support both the Lisp syntax and the more familiar
SKILL infix syntax for writing Scheme programs, as well as to provide a smooth path for
migrating SKILL code to Scheme.

References

You can read the following for more information about Scheme:

Structure and Interpretation of Computer Programs, Harold Abelson, Gerald Sussman,
Julie Sussman, McGraw Hill, 1985.

Scheme and the Art of Programming, G. Springer & D. Friedman, McGraw Hill, 1989.

An Introduction to Scheme, J. Smith, Prentice Hall, 1988.

“Draft Standard for the Scheme Programming Language,” P1178/D5, October 1, 1990. IEEE
working paper.

Extension Language Environment

Cadence’s extension language environment supports two integrated extension languages,
SKILL and SKILL++. Your application can consist of source code written in either language.
Programs in either language can call each other’s functions and share data.

■ You can maintain existing SKILL applications with no change whatsoever.

■ Using SKILL++, you can hide private functions and private data so that you can design
and implement your application with reusable components.

You should consider developing new applications using the SKILL++ language, in conjunction
with SKILL procedural interfaces as necessary.
January 2007 276 Product Version 06.70

SKILL Language User Guide
About SKILL++ and SKILL
For source code files, the file extension indicates the language:
.il for SKILL, .ils for SKILL++.

By default, the session accepts SKILL expressions. Interactively, you can invoke a top level
for either SKILL or SKILL++ as follows:

Advanced programmers can use the eval function to evaluate an expression using either
SKILL semantics or SKILL++ semantics.

Contrasting Variable Scoping

Variables associate an identifier with a memory location. A referencing environment is the
collection of identifiers and their associated memory locations. The scope of a variable refers
to the part of your program within which the variable refers to the same location.

During your program’s execution, the referencing environment changes according to certain
scoping rules. Even though the syntax of both languages is identical, SKILL and SKILL++ use
different scoping rules and partition a program into pieces differently.

Language Command

SKILL toplevel 'il

SKILL++ toplevel 'ils

Evaluator

SKILL
Compiler

SKILL++
Compiler

SKILL Parser

source.ilssource.il
January 2007 277 Product Version 06.70

SKILL Language User Guide
About SKILL++ and SKILL
See the following sections for more information:

■ SKILL++ Uses Lexical Scoping

■ SKILL Uses Dynamic Scoping on page 278

■ Lexical versus Dynamic Scoping on page 278

■ Example 1: Sometimes the Scoping Rules Agree on page 279

■ Example 2: When Dynamic and Lexical Scoping Disagree on page 279

■ Example 3: Calling Sequence Effects on Memory Location on page 280

SKILL++ Uses Lexical Scoping

SKILL++ uses lexical scoping. Because lexical scoping relies solely on the static layout of the
source code, the programmer can confidently determine how reusing a program affects the
scope of variables.

The lexical scoping rule is only concerned with the source code of your program. The phrase
‘a part of your program’ means a block of text associated with a SKILL++ expression, such
as let, letrec, letseq, and lambda expressions. You can nest blocks of text in the
source code.

SKILL Uses Dynamic Scoping

SKILL uses dynamic scoping. Modifying a SKILL program can sometimes unintentionally
disrupt the scope of a variable. The probability of introducing subtle bugs is higher.

The dynamic scoping rule is only concerned with the flow of control of your program. In
SKILL, the phrase ‘a part of your program’ means a period of time during execution of an
expression. Usually, the dynamic scoping and lexical scoping rules agree. In these cases,
identical expressions in both SKILL and SKILL++ return the same value.

Lexical versus Dynamic Scoping

It is important that the scope of variables not be unintentionally disrupted when a programmer
modifies or otherwise reuses a program. Subtle bugs can result when modification or reuse
in another setting changes the scope of a variable.

Lexical scoping makes it possible for you to inspect the source code to determine the effect
on the scope of variables. Dynamic scoping—which relies on the execution history of your
January 2007 278 Product Version 06.70

SKILL Language User Guide
About SKILL++ and SKILL
program—can make it difficult to write reusable, modular code by preventing confident reuse
of existing code.

Example 1: Sometimes the Scoping Rules Agree

The following example has line numbers added for reference only.

1:let((x)
2: x = 3
3: x
4:)

In both SKILL and SKILL++, the let expression establishes a scope for x and the expression
returns 3.

■ In SKILL++, the scope of x is the block of text comprising line 2 and line 3. The x in line
2 and the x in line 3 refer to the same memory location.

■ In SKILL, the scope of x begins when the flow of control enters the let expression and
ends when the flow of control exits the let expression.

Example 2: When Dynamic and Lexical Scoping Disagree

In example 1, the two scoping rules agree and the let expression returns the same value in
both SKILL and SKILL++. Example 2 illustrates a case in which dynamic and lexical scoping
disagree. Notice that the following extends the first example by merely inserting a function call
to the A function between two references to x. However, the A function assigns a value to x.

1: procedure(A() x = 5)
2: let((x)
3: x = 3
4: A()
5: x
6:)

Consider the x in line 1.

■ In SKILL++, the x in line 1 and the x in line 5 refer to different locations because the x
in line 1 is outside the block of text determined by the let expression. The let
expression returns 3.

■ In SKILL, because line 1 executes during the execution of the let expression, the x in
line 1 and the x in line 5 refer to the same location. The let expression returns 5.
January 2007 279 Product Version 06.70

SKILL Language User Guide
About SKILL++ and SKILL
Example 3: Calling Sequence Effects on Memory Location

In SKILL, dynamic scoping dictates that the memory location affected depends on the
function calling sequence. In the code below, function B updates the global variable x. Yet
when called from the function A, function B alters function A’s local variable x instead.
Function B actually updates the x that is local to the let expression in A.

■ In SKILL, function A returns 6.

■ In SKILL++, function A returns 5.

procedure(A()
let((x)

x = 5 ;;; set the value of A’s local variable x
B()
x ;;; return the value of A’s local variable x
) ;let

) ; procedure

procedure(B()
let((y z)

x = 6
z
)

) ; procedure

See “Dynamic Scoping” on page 214 for guidelines concerning the use of dynamic scoping.

Contrasting Symbol Usage

SKILL and SKILL++ share the same symbol table. Each symbol in the symbol table is visible
to both languages.

How SKILL Uses Symbols

SKILL has a data structure called a symbol. A symbol has a name which uniquely identifies
it and three associated memory locations. For more information, see “Symbols” on page 90.

The Value Slot

SKILL uses symbols for variables. A variable is bound to the value slot of the symbol with the
same name. For example, x = 5 stores the value 5 in the value slot of the symbol x. The
symeval function returns the contents of the value slot. For example, symeval('x)
returns the value 5.
January 2007 280 Product Version 06.70

SKILL Language User Guide
About SKILL++ and SKILL
The Function Slot

SKILL uses the function slot of a symbol to store function objects. SKILL evaluates a function
call, such as

fun(1 2 3)

by fetching the function object stored in the function slot of the symbol fun. Dynamic scoping
does not affect the function slot at all.

The Property List

Dynamic scoping does not affect the property list at all. See “Important Symbol Property List
Considerations” on page 95.

Summary

You can call the set, symeval, getd, putd, get, and putprop SKILL functions to
access the three slots of a symbol. The following table summarizes the SKILL operations that
affect the three slots of a symbol.

How SKILL++ Uses Symbols

Normally, each SKILL++ global variable is bound to the function slot of the symbol with the
same name. In this way, SKILL and SKILL++ can share functions transparently.

Sometimes your SKILL++ program needs to access a SKILL global variable. You can use the
importSkillVar function to change the binding of the SKILL++ global from the function
slot of a symbol to the value slot of the symbol.

SKILL Construct Value Slot Function Slot Property List

assignment operator (=) x

set, symeval x

let and prog constructs x

procedure declaration x

getd, putd x

function call x

get, putprop x
January 2007 281 Product Version 06.70

SKILL Language User Guide
About SKILL++ and SKILL
Contrasting the Use of Functions as Data

In SKILL++ it is much easier to treat functions as data than it is in SKILL.

Assigning a Function Object to a Variable

In SKILL++, function objects are stored in variables just like other data values. You can use
the familiar SKILL algebraic or conventional function call syntax to invoke a function object
indirectly. For example, in SKILL++:

addFun = lambda((x y) x+y) => funobj:0x1e65c8
addFun(5 6) => 11

In SKILL, the same example can be done two different ways, both of them less convenient.

addFun = lambda((x y) x+y)
apply(addFun list(5 6)) => 11

or

putd('addFun lambda((x y) x+y))
addFun(5 6) => 11

Passing a Function as an Argument

To pass a function as an argument in SKILL++ does not require special syntax. In SKILL the
caller must quote the function name and the callee must use the apply function to invoke
the passed function.

1.00.50.0 1.5
January 2007 282 Product Version 06.70

SKILL Language User Guide
About SKILL++ and SKILL
The areaApproximation function in the following example computes an approximation
to the area under the curve defined by the fun function over the interval (0 1). The
approximation consists of adding the areas of three rectangles, each with a width of 0.5 and
with heights of fun(0.0), fun(0.5), and fun(1.0).

In SKILL++
procedure(areaApproximation(fun)

0.5*(fun(0.0) + fun(0.5) + fun(1.0))
) => areaApproximation

areaApproximation(sin) => 0.6604483
areaApproximation(cos) => 1.208942

In SKILL
procedure(areaApproximation(fun)

0.5*(
apply(fun '(0.0)) +
apply(fun '(0.5)) +
apply(fun '(1.0))
)

) => areaApproximation

areaApproximation('sin) => 0.6604483
areaApproximation('cos) => 1.208942

SKILL++ Closures

A SKILL++ closure is a function object containing one or more free variables (defined
below) bound to data. Lexical scoping makes closures possible. In SKILL, dynamic scoping
prevents effective use of closures, but a SKILL++ application can use closures as software
building blocks.

Relationship to Free Variables

Within a segment of source code, a free variable is a variable whose binding you cannot
determine by examining the source code. For example, consider the following source code
fragment.

procedure(Sample(x y)
x+y+z
)

By examination, x and y are not free variables because they are arguments. z is a free
variable. In SKILL++ lexical scoping implies that the bindings of all of a function’s free
variables is determined at the time the function object (closure) is created. In SKILL, dynamic
scoping implies that all references to free variables are determined at run time.
January 2007 283 Product Version 06.70

SKILL Language User Guide
About SKILL++ and SKILL
For example, you can embed the above definition in a let expression that binds z to 1. Only
code in the same lexical scope of z can affect z’s value.

let(((z 1))
procedure(Sample(x y)

x+y+z
)

;;; code that invokes Sample goes here.
)

How SKILL++ Closures Behave

A SKILL++ application can use closures as software building blocks. The following examples
increase in complexity to illustrate how SKILL++ closures behave.

Example 1
let(((z 1))

procedure(Sample(x y)
x+y+z
)

;;; code that invokes Sample goes here.
Sample(1 2)
)

=> 4

Example 2
let(((z 1))

procedure(Sample(x y)
x+y+z
)

;;; code that invokes Sample goes here.
z = 100
Sample(1 2)
)

=> 103

This example assigns 100 to the binding of z. Consequently, the Sample function returns
103. In this case, dynamic scoping and lexical scoping agree.

Example 3
let(((z 1))

procedure(Sample(x y)
x+y+z
) ; procedure

;;; code that invokes Sample goes here.
let(((z 100))

Sample(1 2)
) ; let
January 2007 284 Product Version 06.70

SKILL Language User Guide
About SKILL++ and SKILL
) ; let
=> 4

This example invokes Sample from within a nested let expression. Although dynamic
scoping would dictate that z be bound to 100, lexically it is bound to 1.

Example 4
procedure(CallThisFunction(fun)

let(((z 100))
fun(1 2)

)
)

let(((z 1))
procedure(Sample(x y)

x+y+z
) ; procedure

CallThisFunction(Sample)
)

=> 4

In this SKILL++ example, the let expression binds z to 1, creates the Sample function and
then passes it to the CallThisFunction function. Whenever the Sample function runs,
z is bound to 1. In particular, when the CallThisFunction function invokes Sample, z
is bound to 1 even though CallThisFunction binds z to a different value prior to calling
Sample.

Therefore, Sample has encapsulated a value for its free variable z. To do this in SKILL is
impossible, because dynamic scoping dictates that Sample would see the binding of z to
100.

Therefore, SKILL++ allows you to build a function object that you can pass an argument,
certain that its behavior will be independent of specifics of how it is ultimately called.

Example 5
W = let(((z 1))

lambda((x y)
x+y+z
)

)
=> funobj:0x1bc828
W(1 2) => 4

In this example, the name Sample is insignificant because the let expression itself does
not contain a call to Sample. Instead, the let expression returns the function object. This
function object is a closure. The code returns a distinct closure each time the code is
executed. In SKILL++, there is no way to affect the binding of z. The function object has
effectively encapsulated the binding of z.
January 2007 285 Product Version 06.70

SKILL Language User Guide
About SKILL++ and SKILL
Example 6

The makeAdder function below creates a function object which adds its argument x to the
variable delta. Each call to makeAdder returns a distinct closure.

procedure(makeAdder(delta)
lambda((x) x + delta)
)

=> makeAdder

In SKILL++, you can pass 5 to makeAdder and assign the result to the variable add5. No
matter how you invoke the add5 function, its local variable delta is bound to 5.

add5 = makeAdder(5)=> funobj:0x1e3628
add5(3) => 8

let(((delta 1))
add5(3)
) => 8

let(((delta 6))
add5(3)
) => 8

SKILL++ Environments

This section introduces the run-time data structures called environments that SKILL++
uses to support lexical scoping. This section covers how SKILL++ manages environments
during run time. Understanding this material is important if your application use closures.

For more information, “Using SKILL and SKILL++ Together” on page 313 covers how
inspecting environments can help you debug SKILL++ programs.

The Active Environment

During the execution of your SKILL++ program, the set of all the variable bindings is called
an environment. To accommodate the sequence of nested lexical scopes which contain
the current SKILL++ statement being executed, an environment is a list of environment
frames such that

■ SKILL++ stores all the variables with the same lexical scope in a single environment
frame

■ The sequence of nested lexical scopes correspond to a list of environment frames

Consequently, each environment frame is equivalent to a two column table. The first column
contains the variable names and the second column contains the current values.
January 2007 286 Product Version 06.70

SKILL Language User Guide
About SKILL++ and SKILL
The Top-Level Environment

When a SKILL++ session starts, the active environment contains only one environment
frame. There are no other environment frames. All the built-in functions and global variables
are in this environment. This environment is called the top-level environment. The
toplevel('ils) function call uses the SKILL++ top-level environment by default.
However, it is possible to call the toplevel('ils) function and pass a non-top-level
environment. Consider an expression such as

let(((x 3)) x) => 3

in which we insert a call to toplevel('ils). During the interaction we attempt to
retrieve the value of x and then set it. References to x affect the SKILL++ top-level.

ILS-<2> let(((x 3)) toplevel('ils) x)
ILS-<3> x
Error eval: unbound variable - x
ILS-<3> x = 5
5
ILS-<3> resume()
3
ILS-<2>

Compare it with the following in which we call toplevel passing in the lexically enclosing
(active) environment. Thus the toplevel function can be made to access a non-top-level
environment!

ILS-<2> let(((x 3)) toplevel('ils theEnvironment()) x)
ILS-<3> theEnvironment()->??
(((x 3)))
ILS-<3> x
3
ILS-<3> x = 5
5
ILS-<3> resume()
5
ILS-<2> x
Error eval: unbound variable - x
ILS-<2>

Creating Environments

During the execution of your program, when SKILL++ evaluates certain expressions that
affect lexical scoping, SKILL++ allocates a new environment frame and adds it to the front of
the active environment. When the construct exits, the environment frame is removed from the
active environment.
January 2007 287 Product Version 06.70

SKILL Language User Guide
About SKILL++ and SKILL
Example 1
let(((x 2) (y 3))

x+y
)

When SKILL++ encounters a let expression, it allocates an environment frame and adds it
to the front of the active environment.

To evaluate the expression x+y, SKILL++ looks up x and y in the list of environment frames,
starting at the front of the list. When the expression terminates, SKILL++ removes it from the
active environment. The environment frame remains in memory as long as there are
references to the environment frame.

In this simple case, there are none, so the frame is discarded, which means it’s garbage and
therefore liable to be garbage collected.

Example 2
let(((x 2) (y 3))

let(((u 4) (v 5)(x 6))
u*v+x*y
)

)

At the time SKILL++ is ready to evaluate the expression u*v+x*y, there are two environment
frames at the front of the active environment.

An Environment Frame

Variable Value

x 2

y 3

Environment Frame for the Outermost let

Variable Value

x 2

y 3
January 2007 288 Product Version 06.70

SKILL Language User Guide
About SKILL++ and SKILL
To determine a variable’s location is a straight-forward look up through the list of environment
frames. Notice that x occurs in both environment frames. The value 6 is the first found at the
time the expression u*v+x*y is evaluated.

Functions and Environments

When you create a function, SKILL++ allocates a function object with a link to the
environment that was active at the time the function object was created.

When you call a function, SKILL++ makes the function object’s environment active (again)
and allocates a new environment frame to hold the arguments. For example,

procedure(example(u v)
let(((x 2) (y 3))

x*y + u*v
)

)
example(4 5)

allocates the following:

and adds to the front of the active environment, which is the environment saved when the
example function was first created.

When the function returns, SKILL++ removes the environment frame holding the arguments
from the active environment and, in this case, the environment frame becomes garbage. It
then restores the environment that was active before the function call.

Environment Frame for the Innermost let

Variable Value

u 4

v 5

x 6

An Environment Frame

Variable Value

u 4

v 5
January 2007 289 Product Version 06.70

SKILL Language User Guide
About SKILL++ and SKILL
Persistent Environments

The makeAdder example below shows a function which allocates a function object and then
returns it. The returned function object contains a reference to the environment that was
active at the time the function object was created. This environment contains an environment
frame that holds the actual argument to the original function call.

Therefore, whenever you subsequently call the returned function object, it can refer the local
variables and arguments of the original function even though the original function has
returned.

This capability gives SKILL++ the power to build robust software components that can be
reused. Full understanding of this capability is the basis for advanced SKILL++ programming.

procedure(makeAdder(delta)
lambda((x) x + delta)
)

=> makeAdder

add2 = makeAdder(2) => funobj:0x1e6628
add2(1) => 3

The function object that makeAdder returns is within the lexical scope of the delta
argument.

Calling makeAdder again returns another function object.

add3 = makeAdder(3) => funobj:0x1e6638

The figure below shows several environments. The encircled environments belong to the
add2 and add3 functions. The gray environment is the active environment at the time

Active
environment
when the
makeAdder(2)ev
aluation began

Active
environment
when the function
object was
created

Active
environment
when the add2(1)
evaluation begins

Value of
delta is 2.

Value of x
is 1.

0 1 2 time
January 2007 290 Product Version 06.70

SKILL Language User Guide
About SKILL++ and SKILL
add2(1) at its entry point. The other environment belongs to the add3 function, which
becomes active only if add3 is called.

add2’s environment

add3’s environment

delta = 3
delta = 2

x = 1

Usually
toplevel
January 2007 291 Product Version 06.70

SKILL Language User Guide
About SKILL++ and SKILL
January 2007 292 Product Version 06.70

SKILL Language User Guide
14
Using SKILL++

This chapter deals with the pragmatics of writing programs in the Cadence® SKILL++
language.

“About SKILL++ and SKILL” on page 271 provides an overview of the differences between
the Cadence SKILL language and SKILL++.

“Using SKILL and SKILL++ Together” on page 313 focuses on the key areas in which
SKILL++ semantics differ from SKILL semantics.

“SKILL++ Object System” on page 327 describes a system that allows for object-oriented
interfaces based on classes and generic functions composed of methods specialized on
those classes.

For more information, see the following sections:

■ Declaring Local Variables in SKILL++ on page 293

■ Sequencing and Iteration on page 298

■ Software Engineering with SKILL++ on page 304

■ SKILL++ Packages on page 304

Declaring Local Variables in SKILL++

SKILL++ provides three binding constructs to declare local variables together with
initialization expressions. The syntax for let, letseq and letrec is identical but they
differ in the order of evaluation of the initialization expressions and in the scope of the local
variables.

Syntax Template for let, letseq and letrec
let(

((s_var1 g_initExp1) (s_var2 g_initExp2)…)
g_bodyExp1
g_bodyExp2
January 2007 293 Product Version 06.70

SKILL Language User Guide
Using SKILL++
…
)

Using let

Each local variable has the body of the let expression as its lexical scope. The order of
evaluation of the initialization expressions and the binding sequence is unspecified. You
should avoid cross-references between variables in a let expression.

Caution

The initialization expression bound to one local variable should not refer
to any of the other local variables.

Example 1
let(((x 2) (y 3))

x*y
) => 6

Example 2
let(((x 2) (y 3))

let(((z 4))
x + y + z
) ; let

) ; let
=> 9

Example 3
let(((x 2) (y 3))

let(((x 7) (z x+y))
z*x
)

) => 35

Because the initialization expressions are outside of the scope of the let, z is bound to 2+3,
instead of 7+3.

Example 4
let(((x 2) (y 3))

let(((x 7) (foo lambda((z) x + y + z)))
foo(5)
)

)
=> 10
January 2007 294 Product Version 06.70

SKILL Language User Guide
Using SKILL++
This example shows that the initialization expressions are also outside the scope of the let.
Specifically, the occurrence of x in the body of foo is in the scope of the outer let.

Using letseq

Use letseq to control the order of evaluation of the initialization expressions and the binding
sequence of the local variables. Evaluation proceeds from left to right. The scope of each
variable includes the remaining initialization expressions and the body of letseq. It is
equivalent to a corresponding sequence of nested let expressions.

Example 1
letseq(((x 1) (y x+1))

y
)

=> 2

The code above is a more convenient equivalent to the code below in
which you control the sequence explicitly by the nesting.

let(((x 1))
let(((y x+1))

y
)

)

Example 2
let(((x 2) (y 3))

letseq(((x 7) (z x+y))
z*x
)

) => 70

This example is identical to “Example 3” on page 294 except that the inner let is replaced
with letsec.

Example 3
let(((x 2) (y 3))

letseq(((x 7) (foo lambda((z) x + y + z)))
foo(5)
)

)
=> 15

This example is identical to “Example 4” on page 294 except that the inner let is replaced
with letseq.
January 2007 295 Product Version 06.70

SKILL Language User Guide
Using SKILL++
Using letrec

Unlike let and letseq, each variable’s scope is the entire letrec expression. In
particular, each variable’s scope includes all of the initialization expressions. Each
initialization expression can refer to the other local variables with the following restriction:
each initialization expression must be executable without accessing the other variables. This
restriction is met when each initialization expression is a lambda expression. Therefore, use
letrec to declare mutually recursive local functions.

Example 1
letrec(

(;;; variable list
(f

lambda((n)
if(n > 0 then n*f(n-1) else 1

) ; if
) ; lambda

) ; f
) ; variable list

f(5)
) ; letrec

=> 120

This example declares a single recursive local function. The f function computes the factorial
of its argument. The letrec expression returns the factorial of 5.

Example 2
procedure(trParity(x)

letrec(
(

(isEven
lambda((x)

x == 0 || isOdd(x-1)
) ; lambda

) ; isEven
(isOdd

lambda((x)
x > 0 && isEven(x-1)) ; lambda

) ; isOdd
) ;

if(isEven(x) then 'even else 'odd)
) ; letrec

) ; procedure

The trParity function returns the symbol even, if its argument is even, and returns the
symbol odd otherwise. trParity relies on two mutually recursive local functions isEven
and isOdd.
January 2007 296 Product Version 06.70

SKILL Language User Guide
Using SKILL++
Using procedure to Declare Local Functions

As an alternative to using letrec to define local functions, you can use the procedure
syntax.

Example 1

This example uses the procedure construct to declare a local function instead of using
letrec.

procedure(trParity(x)
procedure(isEven(x)

x == 0 || isOdd(x-1)
)

procedure(isOdd(x)
x > 0 && isEven(x-1)
)

if(isEven(x) then 'even else 'odd)
) ; procedure

Example 2
procedure(makeGauge(tolerance)

let(((iteration 0) (previous 0.0) test)
procedure(performTest(value)

++iteration
test = (abs(value - previous) <= tolerance)
previous = value
when(test list(iteration value))
) ; procedure

performTest
) ; let

) ; procedure

G = makeGauge(.1)
=> funobj:0x322b28
G(2) => nil ;; first iteration
G(3)=> nil ;; second
G(3.01) = > ;; third iteration

(3 3.01)

The makeGauge function declares the local performTest function and returns it. This
function object is the gauge. Passing a value to the gauge compares it to the previous value
passed then updates the previous value. The gauge returns a list of the iteration count and
the value, or nil. The function object has access to the local variables iteration,
previous, and test, as well as access to the argument tolerance. Notice that using
a gauge object can simplify your code by isolating variables used only for the tracking of
successive values.

For another makeGauge example, see “Example 4: Using a Gauge When Computing the
Area Under a Curve” on page 301.
January 2007 297 Product Version 06.70

SKILL Language User Guide
Using SKILL++
Example 3
procedure(trPartition(nList)

procedure(loop(numbers nonneg neg)
cond(

(!numbers list(nonneg neg))
(car(numbers) > 0

loop(
cdr(numbers)
cons(car(numbers) nonneg) ; ppush on nonneg
neg
) ; loop

)
(car(numbers) < 0

loop(
cdr(numbers)
nonneg
cons(car(numbers) neg) ; ppush on neg
) ; loop

)
) ; cond

) ; procedure
loop(nList nil nil)
) ; procedure

trPartition('(3 -2 1 6 5)) => ((5 6 1 3) (-2))

In this example, the trPartition function separates a list of integers into a list of non-
negative elements and negative elements. The local loop function is recursive.

Sequencing and Iteration

The following sequencing and iteration functions are provided in SKILL++:

■ Use begin to construct a single expression from one or more expressions.

■ Use do to iteratively execute one or more expressions.

■ Use a named let construct to extend the let construct with a recursive iteration
capability.

Using begin

Use begin to construct a single expression from one or more expressions. The expressions
are evaluated from left to right. The return value of the begin expression is the return value
of the last expression in the sequence.

The begin function is equivalent to the progn function. The progn function is used to
implement the { } syntax. Use the begin function to write SKILL++-compliant code.
January 2007 298 Product Version 06.70

SKILL Language User Guide
Using SKILL++
Example 1
ILS-1> begin(

x = 0
printf("Value of x: %d\n" ++x)
printf("Value of x: %d\n" ++x)
x
) ; begin

Value of x: 1
Value of x: 2
2

This example shows a transcript using the begin function.

Example 2
ILS-1> { x = 0

printf("Value of x: %d\n" ++x)
printf("Value of x: %d\n" ++x)
x }

Value of x: 1
Value of x: 2
2

This example uses the { } braces to group the same expressions.

Using do

Use do to iteratively execute one or more expressions. The do expression allows multiple
loop variables with arbitrary variable initializations and step expressions. You can specify

■ One or more loop variables, including an initialization expression and a step expression
for each variable.

■ A termination condition that is evaluated before the body expressions are executed.

■ One or more termination expressions that are evaluated upon termination to determine
a return value.

Syntax Template for do Expressions
do((
(s_var1 g_initExp1 [g_stepExp1])
(s_var2 g_initExp2 [g_stepExp2])…)

(g_terminationExp g_terminationExp1 …)
g_loopExp1 g_loopExp2 …)

=> g_value

A do expression evaluates in two phases: the initialization phase and the iteration phase.
January 2007 299 Product Version 06.70

SKILL Language User Guide
Using SKILL++
The initialization expressions g_initExp1, g_initExp2, … are evaluated in an
unspecified order and the results bound to the local variables var1, var2, …

The iteration phase is a sequence of steps going around the loop zero or more times with the
exit determined by the termination condition.

1. Each iteration begins by evaluating the termination condition.

2. If the termination condition evaluates to a non-nil value, the do expression exits with a
return value computed as follows:

3. The termination expressions terminationExp1, terminationExp2, … are
evaluated in order. The value of the last termination condition is returned as the value of
the do expression.

4. Otherwise, the do expression continues with the next iteration as follows.

5. The loop body expressions g_loopExp1, g_loopExp2, … are evaluated in order.

6. The step expressions g_stepExp1, g_stepExp2, …, if given, are evaluated in an
unspecified order.

7. The local variables var1, var2, … are bound to the above results. Reiterate from
step one.

Example 1
procedure(sumList(L)

do(
(

(tail L cdr(tail))
(sum 0 sum + car(tail))

)
(!tail sum)
)

) ; procedure

sumList(nil) => 0
sumList('(1 2 3 4 5 6 7)) => 28

Example 2

By definition, the sum of the integers 1, …, N is the Nth triangular number. The following
example finds the first triangular number greater than a given limit.

procedure(trTriangularNumber(limit)
do(

(;;; start loop variables
(i 0 i+1)
(sum 0) ;;; no update expression

;;; same as (sum 0 sum)
January 2007 300 Product Version 06.70

SKILL Language User Guide
Using SKILL++
) ;;; end loop variables
(sum > limit ;;; test

sum ;;; return result
)

sum = sum+i ;;; body
) ; do

) ; procedure

trTriangularNumber(4) => 6
trTriangularNumber(5) => 6
trTriangularNumber(6) => 10

Example 3
procedure(approximateArea(dx fun lower upper)

do(
(; loop variables

(sum
0.0 ;;; initial value
sum+fun(x) ;; update
)

(x
lower ;;; initial value
x+dx ;;; update expression
)

) ; end loop vars
(x >= upper ;;; exit test

dx*sum ;;; return value
)

;;; no loop expressions
;;; all work is in the update expression for sum
) ; do

) ; procedure

approximateArea(.001 lambda((x) 1) 0.0 1.0) => 1
approximateArea(.001 lambda((x) x) 0.0 1.0) => .4995

The function approximateArea computes an approximation to the area under the graph
of the fun function over the interval from lower to upper. It sums the values fun(x),
fun(x+dx), fun(x+dx+dx) …

Example 4: Using a Gauge When Computing the Area Under a Curve
procedure(makeGauge(tolerance)

let(((iteration 0) (previous 0.0) test)
lambda((value)

++iteration
test = (abs(value - previous) <= tolerance)
previous = value
when(test list(iteration value))
) ; lambda

) ; let
) ; procedure

procedure(computeArea(fun lower upper tolerance)
let(((gauge makeGauge(tolerance)) result)

do(
January 2007 301 Product Version 06.70

SKILL Language User Guide
Using SKILL++
(; loop variables
(

dx
1.0*(upper-lower)/2 ;;; initial value
dx/2 ;;; update expression
)

) ; end loop variables
(result =

gauge(approximateArea(dx fun lower upper))
result
)

nil ;;; empty body
) ; do

) ; let
) ; procedure

computeArea(lambda((x) 1) 0 1 .00001) => (2 1.0)
computeArea(lambda((x) x) 0 1 .00001) => (16 0.4999924)
pi = 3.1415
computeArea(sin 0 pi/2 .00001) =>(18 0.9999507)

The computeArea function invokes approximateArea iteratively until two successive
results fall within the given tolerance. The dx loop variable is initialized to 1.0*(upper-
lower)/2 and updated to dx/2. This example uses a gauge to hide the details of
comparing successive results. The source for the makeGauge function is replicated for your
convenience. See Example 2 on page 297 in the "Using procedure to Declare Local
Functions" section for a discussion of makeGauge and gauges in general.

Using a Named let

The named let construct extends the let construct with a recursive iteration capability.
Besides the name you provide in front of the list of the local variables, the named let has
the same syntax and semantics as the ordinary let except you can recursively invoke the
named let expression from within its own body, passing new values for the local variables.

Syntax Template for Named let
let(

s_name
((s_var1 g_initExp1) (s_var2 g_initExp2)…)
g_bodyExp1
g_bodyExp2
…
)

Example 1
let(

factorial
((n 5))
if(n > 1
January 2007 302 Product Version 06.70

SKILL Language User Guide
Using SKILL++
then
factorial(n-1)*n

else
1

)
) ; let => 120

This example computes the factorial of 5 with a named let expression. Compare the
example above with the following

let(((n 5))
procedure(factorial(n)

if(n> 1
then

n*factorial(n-1)
else

1
) ; if

) ; procedure
factorial(n)
) ; let => 120

and with the following

letrec(
(;;; variable list

(n 5)
(factorial

lambda((n)
if(n > 0 then n*factorial(n-1) else 1) ; if
) ; lambda

) ; f
) ; variable list

factorial(n)
) ; letrec => 120

Example 2
let(loop ;;; name for the let

(;;; start let variables
(numbers '(3 -2 1 6 -5))
(nonneg nil)
(neg nil)
) ;;; end of let variables

cond(
(!numbers ;;; loop termination test and return result

list(nonneg neg)
)

(car(numbers) > 0 ;;; found a non-negative number
loop(;; recurse

cdr(numbers)
cons(car(numbers) nonneg)
neg
) ; loop

)
(car(numbers) < 0 ;;; found a negative number

loop(;; recurse
cdr(numbers)
nonneg
January 2007 303 Product Version 06.70

SKILL Language User Guide
Using SKILL++
cons(car(numbers) neg)
) ; loop

)
) ; cond

) ;;; loop let
=> ((613) (-5 -2))

This example separates an initial list of integers into a list of the negative integers and a list
of the non-negative integers. Compare this example with the trPartition function in
“Example 3” on page 298 which explicitly relies on a local recursive function.

Software Engineering with SKILL++

SKILL++ supports several modern software engineering methodologies, such as

■ Procedural packages

■ Modules

■ Object-oriented programming with classes (see Chapter 16, “SKILL++ Object System”)

SKILL++ also facilitates information hiding. Information hiding refers to using private
functions and private data which are not accessible to other parts of your application.
Information hiding promotes reusability and robustness because your implementation is
easier to change with no adverse effect on the clients of the module.

SKILL++ Packages

A package is a collection of functions and data. Functions within a package can share
private data and private functions that are not accessible outside the package. Packages are
a hallmark of modern software engineering.

SKILL++ facilitates two approaches to packages.

■ You can explicitly represent the package as an collection of function objects and data.
Clients of the package use the arrow (->) operator to retrieve the package functions.
Different packages can have functions with the same name.

■ You might want to reimplement a collection of SKILL functions as a SKILL++ package.
Informal SKILL packages have no opportunity to hide private functions or data.
Reimplementing a SKILL package in SKILL++ provides the opportunity. Usually, you
want to do this in a way that clients do not need to change their calling syntax. In this
case, you do not need to represent the collection as a data structure. Instead, the
package exports some of its function objects and hides the remainder.
January 2007 304 Product Version 06.70

SKILL Language User Guide
Using SKILL++
The Stack Package
Stack = let(()

procedure(getContents(aStack)
aStack->contents
) ; procedure

procedure(setContents(aStack aList)
aStack->contents = aList
) ; procedure

procedure(ppush(aStack aValue)
setContents(

aStack
cons(

aValue
getContents(aStack)
) ; cons

)
) ; procedure

procedure(ppop(aStack)
letseq((

(contents getContents(aStack))
(v car(contents))
)

setContents(aStack cdr(contents))
v
) ; letseq

) ; procedure
procedure(new(initialContents)

list(nil 'contents initialContents)
) ; procedure

list(nil 'ppop ppop 'ppush ppush 'new new)
) ; let

=> (nil
ppop funobj:0x1c9b38
ppush funobj:0x1c9b28
new funobj:0x1c9b48)

Using the Stack Package
S = Stack->new('(1 2 3 4)) => (nil contents (1 2 3 4))
Stack->ppop(S) => 1
Stack->ppush(S 1) => (1 2 3 4)

Comments

The Stack package is represented by a disembodied property list. Alternate representations
such as a defstruct are possible. The only requirement is that the package data structure obey
the -> protocol.

Only the ppush, ppop, and new function are visible to the clients of the package.

The ppush and ppop functions use the getContents and setContents functions. If
you choose a different representation for a stack, you only need to change the new,
January 2007 305 Product Version 06.70

SKILL Language User Guide
Using SKILL++
getContents, and setContents functions. The getContents and setContents
functions are hidden to protect the abstract behavior of a stack.

Retrofitting a SKILL API as a SKILL++ Package
define(stackPush nil)
define(stackPop nil)
define(stackNew nil)
let(()

procedure(getContents(aStack)
aStack->contents
) ; procedure

procedure(setContents(aStack aList)
aStack->contents = aList
) ; procedure

procedure(ppush(aStack aValue)
setContents(
aStack
cons(
aValue
getContents(aStack)
) ; cons

)
) ; procedure

procedure(ppop(aStack)
letseq((

(contents getContents(aStack))
(v car(contents))
)

setContents(aStack cdr(contents))
v
) ; letseq

) ; procedure
procedure(new(initialContents)

list(nil 'contents initialContents)
) ; procedure

stackPush = ppush
stackPop = ppop
stackNew = new

nil
) ; let

Using the stackNew, stackPop, and stackPush Functions
S = stackNew('(1 2 3 4)) => (nil contents (1 2 3 4))
stackPop(S) => 1
stackPush(S 5) => (5 2 3 4)

Comments

This example assumes stackNew, stackPop, and stackPush are the names of the
functions to be exported from the stack package. As is customary, the package prefix stack
informally indicates the functions that compose a package.
January 2007 306 Product Version 06.70

SKILL Language User Guide
Using SKILL++
■ The getContents and setContents functions are local functions invisible to
clients.

■ Using the define forms for stackNew, stackPop, and stackPush is not strictly
necessary. Using the define form alerts the reader to those functions which the
ensuing let expression assigns a value to an exported API.

SKILL++ Modules

You can structure a SKILL++ module around a creation function, which the client invokes to
allocate one or more instances of the module. The client passes an instance to a procedural
interface.

The makeStack and makeContainer functions in the following examples are creation
functions in the following sense: when you call makeStack it “creates” a stack instance. The
stack instance is a function object whose internals can only be manipulated (outside of the
debugger) by the ppushStack and popStack functions.

The creation function has

■ Arguments

■ Local variables

■ Several local functions that can access the arguments to the creation function and can
communicate between themselves through the local variables

The creation function returns one of the following, depending on the implementation:

■ A single local function object

■ A data structure containing several of the local function objects

■ A single function object which dispatches control to the appropriate local functions

Stack Module Example

A stack is a well-known data structure that allows the client to push a data value onto it and
to pop a data value from it.
January 2007 307 Product Version 06.70

SKILL Language User Guide
Using SKILL++
The Procedural Interface

The following table summarizes the procedural interface functions to the sample stack
module.

The variable aStack is assumed to contain a stack object allocated by calling the
makeStack function.

Allocating a Stack
S = makeStack('(1 2 3 4)) => funobj:0x1e36d8

Popping a Value
popStack(S) => 1
popStack(S) => 2

Pushing a Value on the Stack
pushStack(S 5) => (5 3 4)

Returns a list of stack contents at this point.

Implementing the makeStack Function

The makeStack function returns a function object. This function object is an instance of the
stack module. In turn, this function object returns one of several functions local to the
makeStack function.

procedure(makeStack(initialContents)
let(((theStack initialContents))

procedure(ppush(value)
theStack = cons(value theStack)
)

procedure(ppop()
let(((v car(theStack)))

Action Function Call Return Value

Allocate a stack. makeStack(aList) Function object

Push a value onto the stack. pushStack(
aStack aValue)

A list of the stack contents

Pop a value from the stack. popStack(aStack) A popped value
January 2007 308 Product Version 06.70

SKILL Language User Guide
Using SKILL++
theStack = cdr(theStack)
v
)

)

lambda((msg) ;;;; return a function object
case(msg

((ppush) ppush)
((ppop) ppop)
(t nil)
)

)
) ; let

) ; procedure

Implementing the pushStack and popStack Functions

The variable aStack contains a function object.

■ When aStack is called, it returns the appropriate local function ppush and ppop.

■ The ppush and ppop functions are within the lexical scope of the local variable
theStack.

Notice the syntactic convenience of calling the stack object indirectly through the fun
variable.

procedure(pushStack(aStack aValue)
let(((fun aStack('ppush)))

;;; retrieve local ppush function
fun(aValue) ;;; call it
)

)

procedure(popStack(aStack)
let(((fun aStack('ppop)))

;;; retrieve local ppop function
fun() ;;; call it
)

)

The Container Module

Containers are like variables with an important difference. You can reset a container to
the original value that you provided when you created the container.
January 2007 309 Product Version 06.70

SKILL Language User Guide
Using SKILL++
The Procedural Interface

The following table summarizes the procedural interface to the sample container module.
This interface relies on the availability of several function objects in the container instance’s
data structure. The arrow (->) operator is used to retrieve the interface functions.

Implementing the makeContainer Function

■ The makeContainer function returns a disembodied property list containing the local
functions as property values.

■ The three functions resetValue, setValue, and getValue are local but are
accessible through makeContainer’s return value.

■ Unlike the stack module example, there are no global functions in the procedural
interface.

procedure(makeContainer(initialValue)
let(((value initialValue)) ;;; initialize the container

procedure(resetValue() ;;; reset value
value = initialValue
)

procedure(setValue(newValue) ;;; store new value
value = newValue
)

procedure(getValue() ;;; return current value
value
)

resetValue()
list(nil ;;; the return value

'set setValue
'get getValue
'reset resetValue
)

Action Function Call Return Value

Allocate a container with
an initial value.

aContainer =
makeContainer(aValue)

A disembodied property list
representing the container
instance.

Return the container’s
current value.

aContainer->get() Current value in
aContainer

Store a new value in the
container.

aContainer->set(
bValue)

The container’s new value.

Reset the container to the
initial value

aContainer->reset() The container’s original
value.
January 2007 310 Product Version 06.70

SKILL Language User Guide
Using SKILL++
) ; let
) ; procedure

Allocating Container Instances
x = makeContainer(0)

=> (nil
set funobj:0x1e38f8
get funobj:0x1e3908
reset funobj:0x1e38e8)

This example allocates a container instance with initial value 0.

y = makeContainer(2)
=> (nil

set funobj:0x1e3928
get funobj:0x1e3938
reset funobj:0x1e3918)

This example allocates a container instance with an initial value of 2. Notice that the returned
value contains different function objects.

Retrieving Container Values
x->get() + y->get() => 2

This example retrieves the values of the two containers and adds them. Notice the
conventional function call syntax accepts an arrow (->) operator expression in place of a
function name to access member functions.
January 2007 311 Product Version 06.70

SKILL Language User Guide
Using SKILL++
January 2007 312 Product Version 06.70

SKILL Language User Guide
15
Using SKILL and SKILL++ Together

This chapter discusses the pragmatics of developing programs in the Cadence® SKILL++
language. You should be familiar with both SKILL and SKILL++, specifically the material in
“About SKILL++ and SKILL” on page 271 and “Using SKILL++” on page 293.

Developing a SKILL++ application involves the same basic tasks as for developing SKILL
applications. Because most viable applications will involve tightly integrated SKILL and
SKILL++ components, there are several more factors to consider:

■ Selecting an interactive language

When entering a language expression into the command interpreter, you need to choose
the appropriate language mode.

■ Partitioning an application into a SKILL portion and a SKILL++ portion

You are free to implement your application as a heterogenous collection of source code
files. You need to choose a file extension accordingly.

■ Cross-calling between SKILL and SKILL++

In general, SKILL++ functions and SKILL functions can transparently call one another.
However, a few families of SKILL functions can operate differently when called from
SKILL than when called from SKILL++. You need to be able to identify such SKILL
functions, adjust your expectations, and exercise caution, when calling them from
SKILL++.

■ Debugging a SKILL++ program

In a hybrid application, errors can occur in either SKILL functions or SKILL++ functions.
Displaying the SKILL stack will reveal SKILL++ environments and SKILL++ function
objects which you will want to examine.

■ Communicating between SKILL and SKILL++

Data allocated with one language is accessible from the other language. For example,
you can allocate a list in a SKILL++ function and retrieve data from it in a SKILL function.
Both languages use the same print representations for data.
January 2007 313 Product Version 06.70

SKILL Language User Guide
Using SKILL and SKILL++ Together
The phrase ‘from within a SKILL program’ means

■ from a SKILL interactive loop

■ from within SKILL source code, outside of a function definition

■ from within a SKILL function

Similar definitions apply ‘from within a SKILL++ program’.

For more information, see the following sections:

■ Selecting an Interactive Language on page 315

■ Partitioning Your Source Code on page 316

■ Cross-Calling Guidelines on page 316

■ Redefining Functions on page 318

■ Sharing Global Variables on page 318

■ Debugging SKILL++ Applications on page 320
January 2007 314 Product Version 06.70

SKILL Language User Guide
Using SKILL and SKILL++ Together
Selecting an Interactive Language

You can use SKILL or SKILL++ for interactive work. Both languages support a read-eval-print
loop in which you repeat the following steps:

1. You type a language expression.

2. The system parses, compiles, and evaluates the expression in accordance with either
SKILL or SKILL++ languages syntax and semantics.

3. The system displays the result using the print representation appropriate to the result’s
data type.

Starting an Interactive Loop (toplevel)

You can call the toplevel function to start an interactive loop with either SKILL or SKILL++.
SKILL is the default.

➤ To select the SKILL language, type

toplevel('il)

➤ To select the SKILL++ language and the SKILL++ top-level environment, type

toplevel('ils)

➤ To select the SKILL++ language and the environment to be made active during the
interactive loop, pass the environment object as the second argument:

toplevel('ils envobj(0x1e00b4))

In this example, the environment object is retrieved from the print representation.

Exiting the Interactive Loop (resume)

Use the resume function to exit the interactive loop, returning a specific value. This value is
the return value of the toplevel function. The following example is a transcript of a brief
session, including prompts.

> R = toplevel('ils)
ILS-<2> resume(1)
1
> R
1 ;;;return value of the toplevel function.
January 2007 315 Product Version 06.70

SKILL Language User Guide
Using SKILL and SKILL++ Together
Partitioning Your Source Code

You are free to implement your application as a heterogenous collection of source code
files.The load and loadi functions select the language to apply to the source code based
on the file extension.

FileA.il
FileB.il
FileC.ils
FileD.ils
FileE.ils

Functions defined in each file can call functions defined in the other files without regard to the
language in which the functions are written. The syntax for function calls is the same
regardless of whether the function called is a SKILL function or a SKILL++ function.
Specifically,

■ SKILL++ functions are visible to the SKILL portions of your application

■ SKILL functions are automatically visible to the SKILL++ portions of your application

You may call SKILL application procedural interface functions from a SKILL++ program. Most
applications continue to rely heavily on SKILL functions.

Cross-Calling Guidelines

Several key semantic differences between SKILL and SKILL++ dictate certain guidelines you
should follow when calling SKILL functions from SKILL++, including the following:

■ All SKILL++ environments, other than the top-level environment, are invisible to SKILL

■ All SKILL++ local variables are invisible to SKILL

You should avoid calling SKILL functions that call

■ The eval, symeval, or evalstring functions

■ The set function

You should avoid calling nlambda SKILL functions.

Avoid Calling SKILL Functions That Call eval, symeval, or evalstring

When you call the one-argument version of eval, symeval, or evalstring functions
from a SKILL function, you are using dynamic scoping. Any symbol or expression which you
January 2007 316 Product Version 06.70

SKILL Language User Guide
Using SKILL and SKILL++ Together
pass to a SKILL function will probably evaluate to a different result than it would have in the
SKILL++ caller.

In general, to determine whether a SKILL function calls any of these functions, you should
consult the reference documentation.

Avoid Calling nlambda Functions

The nlambda category of SKILL functions are highly likely to call the eval or symeval
functions.

A SKILL nlambda function receives all of its argument expressions unevaluated in a list.
Such a function usually evaluates one or more of the arguments. The addVars SKILL
function adds the values of its arguments.

nprocedure(addVars(args)
let(((sum 0))

foreach(arg args
sum = sum+eval(arg)
) ; foreach

sum
)

)

let(((x 1) (y 2) (z 3))
addVars(x y z)
)

=> 6

When called from SKILL++, the eval function uses dynamic scoping to resolve the variable
references. In this case, the variable x was unbound.

ILS-<2> let(((x 1) (y 2) (z 3))
addVars(x y z)
)

WARNING (addVars): calling NLambda from Scheme code -
addVars(x y z)

Error eval: unbound variable - x
ILS-<2>

If necessary, reimplement the SKILL nlambda function as a SKILL or SKILL++ macro, using
defmacro. For example,

defmacro(addVars (@rest args)
`let(((sum 0))

foreach(arg list(,@args)
sum = sum + arg
) ; foreach

sum
)

)

January 2007 317 Product Version 06.70

SKILL Language User Guide
Using SKILL and SKILL++ Together
Use the set Function with Care

Avoid calling SKILL functions that in turn call the set function. Usually such SKILL functions
store values in other SKILL variables. If you call such a function from SKILL++ and pass a
quoted local variable, the SKILL function will not store the value in the SKILL++ local variable.
Instead, the value goes into the SKILL variable of the same name.

The following SetMyArg SKILL function behaves differently when called from SKILL++ than
when called from SKILL.

SetMyArg Called from SKILL
> procedure(SetMyArg(aSymbol aValue)

set(aSymbol aValue)
) ; procedure

SetMyArg
> let(((x 3))

SetMyArg('x 5)
x
) ; let

5

SetMyArg Called from SKILL++
> toplevel 'ils
ILS-<2> let(((x 3))
SetMyArg('x 5)
x
) ; let

3

Redefining Functions

During a single session, you are warned when you redefine a SKILL function to be a SKILL++
function, or visa versa.

You are only likely to encounter this when doing interactive work and are confused about
which language “owns” the interaction.

Sharing Global Variables

It is generally desirable to avoid relying on global variables. However, it is sometimes
necessary or expedient for the SKILL++ and SKILL portions of your application to
communicate through global variables.
January 2007 318 Product Version 06.70

SKILL Language User Guide
Using SKILL and SKILL++ Together
Using importSkillVar

Before the SKILL and SKILL++ portions of your application can share a global variable, you
must first call the importSkillVar function. The SKILL++ global variable and the SKILL
global variable will then be bound to the same location.

For example, consider the following interaction with a SKILL top level.

> delta = 2
2
> procedure(adder(y)

delta+y
) ;

adder
>

To set the value of the delta variable from within a SKILL++ program, you should first

importSkillVar(delta)

as the following sample interaction with a SKILL++ top level shows.

> toplevel 'ils
ILS-<2>delta
Error eval: unbound variable - delta
ILS-<2> importSkillVar(delta)
ILS-<2> delta
2
ILS-<2> adder(4)
6

Note: You do not need to import delta just to call adder from within SKILL++ code.

How importSkillVar Works

Although understanding this level of detail is not necessary to effectively use
importSkillVar, this section is provided for expert users.

In SKILL++, a variable is bound to a memory location called the variable's binding. The
familiar operation of “storing a value in a variable” actually stores the value in the variable's
binding. SKILL++ variable bindings are organized into environment frames. The SKILL++ top-
level environment contains all the variable bindings initially available at system start up.

Normally, all global (top-level) SKILL++ variables are bound to the function slot of the SKILL
symbol with the same name as the variable. For example, the variable foo is bound to the
function slot of the symbol foo. Consequently, in SKILL++, when you retrieve the value of a
SKILL variable, you are getting the contents of the symbol’s function slot.

The importSkillVar function directs the compiler to instead bind a SKILL++ global
variable in the top-level environment to the value slot of the symbol with the same name.
January 2007 319 Product Version 06.70

SKILL Language User Guide
Using SKILL and SKILL++ Together
Informally, you can use importSkillVar to enable access to a SKILL symbol's current
value binding from within SKILL++.

Evaluating an Expression with SKILL Semantics

As an advanced programmer, you might find that separating closely related SKILL code and
SKILL++ code into different files is distracting or otherwise not convenient. For example,
suppose that in the middle of a SKILL++ source code file you want to declare a SKILL function
that refers to a SKILL variable.

Using the previous example

delta = 5
procedure(adder(y)

delta+y)

The inSkill macro below allows you to splice SKILL language source code into a SKILL++
source code file. You can use the inSkill macro as shown.

inSkill(
delta = 5
procedure(adder(y)

delta+y) ; procedure
)

Debugging SKILL++ Applications

This section addresses common tasks that arise when debugging hybrid SKILL and SKILL++
applications.

Retrieving a Function Object (funobj)

You can retrieve a function object from its print representation. This capability gives you full
use of the information displayed in stack traces and environment objects. The argument to
the funobj function should be the hexadecimal number displayed in the print
representation. The following example confirms that the function object is indeed retrieved by
applying it to some arguments.

lambda((x y) x + y) => funobj:0x1e3768
apply(funobj(0x1e3768) list(5 6)) => 11
January 2007 320 Product Version 06.70

SKILL Language User Guide
Using SKILL and SKILL++ Together
Examining the Source Code for a Function Object

Use the pp SKILL function to display the source code for a global function. The pp function
expects that its argument is a symbol. It retrieves the function object stored in the function slot
of the symbol you pass. To use pp to display the source code for a function object, store the
function object in an unused global.

In SKILL++

G4 = funobj(0x1e3628)
pp(G4)

In SKILL

putd('G4) = funobj(0x1e3628)
pp(G4)

The pp function pretty-prints the function object stored in the function slot of the symbol. The
pp function uses the global symbol to name the function object. This is only seriously
misleading if the function object is recursive.

Pretty-Printing Package Functions

Use the pp function as explained above to pretty-print package functions.

MathPackage = let(()
procedure(add(x y) x+y)
procedure(mult(x y) x*y)
list(nil 'add add 'mult mult)
)
=> (nil add funobj:0x1c9c48 nult funobj:0x1c9c58)

ILS-1> Q = MathPackage->add
funobj:0x1c9c48
ILS-1> pp(Q)
procedure(Q(x y)

(x + y)
)

January 2007 321 Product Version 06.70

SKILL Language User Guide
Using SKILL and SKILL++ Together
Inspecting Environments

A significant SKILL++ application is likely to include many function objects, each with its own
separate environment. While debugging, you may need to interactively examine or set a local
variable in an environment other than the active environment.

You can

■ Retrieve the active environment

■ Inspect an environment with the -> operator

■ Retrieve the environment of a function object

Retrieving the Active Environment

The theEnvironment function returns the enclosing lexical environment when you call it
from within SKILL++ code.

Example 1
Z = let(((x 3))

theEnvironment()
) ; let
=> envobj:0x1e0060

This example returns the environment that the let expression establishes. The value of Z is
an environment in which x is bound to 3. Each time you execute the above expression, it
returns a different environment object.

Example 2
W = let(((r 3) (y 4))

let(((z 5) (v 6))
theEnvironment()
)

)

This example returns the environment that the nested let expressions establish.
January 2007 322 Product Version 06.70

SKILL Language User Guide
Using SKILL and SKILL++ Together
Testing Variables in an Environment (boundp)

Use the boundp function to determine whether a variable is bound in an environment. The
optional second argument should be a SKILL++ environment.

boundp('b W) => nil
boundp('r W) => t

Using the -> Operator with Environments

You can use the -> operator against an environment to read and write variables bound in the
environment.

W->z => 5
W->v = 100

Alternatively, you can use the symeval function to retrieve the value of a variable relative to
an environment.

symeval('r W) => 3

Alternatively, you can use the set function to set the value of a variable in an environment.

set('r 200 W) => 200

Using the ->?? Operator with Environments

Use the ->?? operator to dump out the environment as a list of association lists with one
association list for each environment frame.

W->?? => (((z 5) (v 6)) ((r 3) (y 4)))

Evaluating an Expression in an Environment (eval)

Use the eval function to evaluate an expression in a given lexical environment.

eval('(z+v) W) => 11
eval('(z = 100) W) => 100
eval('(z+v) W) => 106

Retrieving an Environment (envobj)

You can retrieve an environment object from its print representation. The argument to the
envobj function should be the hexadecimal number displayed in the print representation.
This capability gives you full use of the information displayed in stack traces.

E => envobj:0x1e00b4
envobj(0x1e00b4) => envobj:0x1e00b4
January 2007 323 Product Version 06.70

SKILL Language User Guide
Using SKILL and SKILL++ Together
Examining Closures

As function objects, closures have both source code and data. For example, consider the
following closure generated when the makeAdder function is called.

procedure(makeAdder(delta)
lambda((x) x + delta)
)

=> makeAdder
add5 = makeAdder(5)
=> funobj:0x1fe668

Examining the Source Code

Use the pp function as explained above to examine the source code for the closure.

ILS-1> pp(add5)
procedure(add5(x)

(x + delta)
)
nil

Examining the Environment

Install the SKILL Debugger and use the theEnvironment function to retrieve the
environment for the function object. Use the ->?? operator to examine the environment.

theEnvironment(funobj(0x1fe668))->??
=> (((delta 5)))

See the makeStack example in “Implementing the makeStack Function” on page 308

S = makeStack('(1 2 3)) => funobj:0x1e3758
E = theEnvironment(S) => envobj:0x1e00b4
E->push => funobj:0x1e3738
E->initialContents => (1 2 3)

General SKILL Debugger Commands

Tracing (tracef)

You can only use the tracef function to trace SKILL functions or SKILL++ functions defined
in the top-level SKILL++ environment.
January 2007 324 Product Version 06.70

SKILL Language User Guide
Using SKILL and SKILL++ Together
Setting Breakpoints

You can only set breakpoints at SKILL functions or SKILL++ functions defined in the top-level
SKILL++ environment.

Calling the break Function

You can insert a call to the break function but that requires redefining the function that calls
the break functions. If called from SKILL++, the enclosing lexical environment is the active
environment during the debugger session.

ILS-<2> MathPackage = let(()
procedure(add(x y) break() x+y)
procedure(mult(x y) x*y)
list(nil 'add add 'mult mult)
)

(nil add funobj:0x1c9ca8 mult funobj:0x1c9cb8)

ILS-<2> MathPackage->add(3 4)
<<< Break >>> on explicit 'break' request
SKILL Debugger: type 'help debug' for a list of commands or debugQuit to leave.
ILS-<3> theEnvironment()->??
(((x 3)

(y 4)
)
((add funobj:0x1c9ca8)

(mult funobj:0x1c9cb8)
)

)
ILS-<3>

Examining the Stack (stacktrace)

During the execution of both SKILL and SKILL++ function calls, use the stacktrace
function to examine the SKILL stack. The stack will probably contain several function object
and environment object references. You can use the techniques discussed above to display
source code for a function object and to examine an environment.

For example, at the break point in the previous example notice that the break function
passes the active environment to the break handler.

ILS-<3> stacktrace()
<<< Stack Trace >>>
breakHandler(envobj:0x1bb108)
break()
funcall((MathPackage->add) 3 4)
toplevel('ils)
4
ILS-<3>
January 2007 325 Product Version 06.70

SKILL Language User Guide
Using SKILL and SKILL++ Together
January 2007 326 Product Version 06.70

SKILL Language User Guide
16
SKILL++ Object System

To gain benefits from object-oriented programming, the Cadence® SKILL language requires
extensions beyond lexical scoping and persistent environments.

The Cadence SKILL++ Object System allows for object-oriented interfaces based on classes
and generic functions composed of methods specialized on those classes. A class can inherit
attributes and functionality from another class known as its superclass. SKILL++ class
hierarchies result from this single inheritance relationship.

To attain the maximum benefit from the SKILL++ Object System, you should only use it with
lexical scoping, because lexical scoping magnifies the power of the interfaces you can
develop with the SKILL++ Object System.

You do not need to be familiar with another object-oriented programming language or system
to understand or use the SKILL++ Object System. However, if you are familiar with the
Common Lisp Object System (CLOS), the following comments will help you apply your
experience to learning the SKILL++ Object System. The SKILL++ Object System is modelled
after a subset of the Common Lisp Object System with the following restrictions:

■ In the SKILL++ Object System, a class can have only a single superclass. (CLOS allows
a class to have more than one superclass.)

■ In the SKILL++ Object System, a method can only be applied to the class of the method’s
first argument.

■ In the SKILL++ Object System, all methods are primary. (CLOS allows for ancillary
methods known as before and after methods which are combined with the primary
method.)

For more information, see the following sections:

■ Basic Concepts on page 328

■ Class Hierarchy on page 334

■ Browsing the Class Hierarchy on page 335

■ Advanced Concepts on page 338
January 2007 327 Product Version 06.70

SKILL Language User Guide
SKILL++ Object System
Basic Concepts

The following items are central concepts of the SKILL++ Object System:

■ Classes and Instances on page 328

■ Generic Functions and Methods on page 328

■ Subclasses and Superclasses on page 329

For more information, see the following sections:

■ Defining a Class (defclass) on page 329

■ Instantiating a Class (makeInstance) on page 331

■ Reading and Writing Instance Slots on page 331

■ Defining a Generic Function (defgeneric) on page 332

■ Defining a Method (defmethod) on page 332

Classes and Instances

A class is a data structure template. A specific application of the template is termed an
instance. All instances of a class have the same slots. SKILL++ Object System provides the
following functions:

■ defclass function to create a class

■ makeInstance function to create an instance of a class

Generic Functions and Methods

A generic function is a collection of function objects. Each element in the collection is
called a method. Each method corresponds to a class. When you call a generic function, you
pass an instance as the first argument. The SKILL++ Object System uses the class of the first
argument to determine which methods to evaluate.

To distinguish them from SKILL++ Object System generic functions, SKILL functions are
called simple functions. The SKILL++ Object System provides the following functions.

■ defgeneric function to declare a generic function

■ defmethod function to declare a method
January 2007 328 Product Version 06.70

SKILL Language User Guide
SKILL++ Object System
Subclasses and Superclasses

SKILL++ Object System provides for one class B to inherit structure slots and methods from
another class A. You can describe the relationship between the class A and class B as
follows:

■ B is a subclass of A

■ A is a superclass of B

Defining a Class (defclass)

The domain of geometric objects provides good examples for using object oriented
programming. Use the defclass function to define a class. You specify the superclass, if
any, and all the slots of the class.

defclass(GeometricObject
() ;;; superclass
() ;;; list of slot descriptions
) ; defclass

This example defines the GeometricObject class. Defining the GeometricObject class
allows the subsequent definition of default behavior of all geometric objects. It has no slots.
Because no superclass is specified, the superclass is the standardObject class.

defclass(Triangle
(GeometricObject) ;;; superclass
(

(x) ;;; x slot description
(y) ;;; y slot description
(z) ;;; z slot description
)

) ; defClass

This example defines the Triangle class. It declares that

■ The Triangle class is a subclass of the GeometricObject class

■ Each instance shall have three slots named x, y, and z
January 2007 329 Product Version 06.70

SKILL Language User Guide
SKILL++ Object System
Slot Options

Slot options, also known as slot specifiers, govern how you initialize the slot as well as your
access to the slot.

Example 1
defclass(Triangle

(GeometricObject)
(

(x
@initarg x
)

(y
@initarg y
)

(z
@initarg z
)

)
) ; defClass

Example 2
defclass(Circle

(GeometricObject)
(

(r @initarg r)
)

) ; defClass

Slot Option Value Meaning

@initarg symbol Defines a keyword argument for the makeInstance
function.

@initform expression Defines an expression which initializes the slot.

@reader symbol Defines a generic function with this name. The function
returns the value of the slot.

@writer symbol Defines a generic function with this name. The function
accepts a single argument which becomes the new slot
value.
January 2007 330 Product Version 06.70

SKILL Language User Guide
SKILL++ Object System
Instantiating a Class (makeInstance)

Use the makeInstance function to instantiate a class. The first argument designates the
class you are instantiating. Subsequent keyword arguments initialize the instance’s slots. The
makeInstance function returns the newly allocated instance of the class.

procedure(makeTriangle(x y z)
if(x<y+z && y<z+x && z<x+y
then
makeInstance('Triangle
?x 1.0*x
?y 1.0*y
?z 1.0*z
)

else
error(
"%n %n %n fail triangle inequality test\n"
x y z
)

) ; if
) ; procedure

exampleTriangle = makeTriangle(3 4 5) => stdobj:0x1e6030

The print representation for a SKILL++ Object System instance consists of stdobj: followed
by a hexadecimal number.

Reading and Writing Instance Slots

You can use the arrow operator to read a slot’s value.

exampleTriangle->x => 3.0
exampleTriangle->y => 4.0
exampleTriangle->z => 5.0

You can use the -> operator on the left-side of an assignment statement.

exampleTriangle->x = 3.5

The ->?? expression returns a list of the slots and their values.

Another approach is to use the @reader and @writer slot options to define generic
functions for reading and writing slots when you define the class.

defclass(Triangle
(GeometricObject)
(

(x
@initarg x
@reader get_x
@writer set_x
)

(y
@initarg y
@reader get_y
January 2007 331 Product Version 06.70

SKILL Language User Guide
SKILL++ Object System
@writer set_y
)

(z
@initarg z
@reader get_z
@writer set_z
)

)
) ; defClass

exampleTriangle = makeTriangle(3 4 5) => stdobj:0x1e603c
get_y(exampleTriangle) => 4.0
set_x(exampleTriangle 3.5) => 3.5

Defining a Generic Function (defgeneric)

Use the defgeneric function to define a generic function. The body of the generic function
defines the default method for the generic function.

defgeneric(Perimeter (geometricObject)
error("Subclass responsibility\n")
) ; defgeneric

This example indicates that relevant subclasses of the geometricObject class, such the
polygon class, should have a Perimeter method. Although not strictly necessary to do so,
defining a generic function before defining any methods for it has two advantages:

■ You can specify a default method

Using the defgeneric function gives you control over the default method. When you
invoke a generic function that has no default method, the SKILL++ Object System raises
an error. The following example illustrates calling a generic function which does not have
a method defined for the specific argument.

Perimeter(3)
Error (Default-method) generic:Perimeter class:fixnum

■ You can document the template argument list

All methods for a generic function must have congruent argument lists (see “Method
Argument Restrictions” on page 338). In the absence of a generic function, the first
method you define automatically declares the generic function. The method’s argument
list becomes the template argument list.

Defining a Method (defmethod)

Use the defmethod function to define a method. You do not need to define the generic
function before you define a method for it. When you invoke a generic function, the SKILL++
Object System chooses the method to run based on the class of the first argument you pass
to the function.
January 2007 332 Product Version 06.70

SKILL Language User Guide
SKILL++ Object System
■ If you use conventional syntax defmethod(…) in place of the LISP syntax
(defmethod …), use white space to separate the method name from the argument
list.

■ You must specify the class of the method’s first argument to the defmethod function.
The first argument to defmethod uses the following syntax:

(s_arg1 s_class)

Example 1
defmethod(Perimeter ((triangle Triangle))

let((
(x triangle->x)
(y triangle->y)
(z triangle->z)
)
x+y+z
) ; let

) ; defmethod

Perimeter(exampleTriangle) => 12.0

This example defines a method named Perimeter. It is specialized on the Triangle class.

Example 2
defmethod(Perimeter ((c Circle))

2*c->r*3.1415
) ; defmethod

This example defines a Circle class and defines the Perimeter method for the Circle
class.
January 2007 333 Product Version 06.70

SKILL Language User Guide
SKILL++ Object System
Class Hierarchy

The diagram below is a horizontal view of the SKILL++ Object System class hierarchy.

■ t is the superclass of all classes. Class t has two immediate subclasses,
standardObject and systemObject.

■ standardObject is the superclass of all classes you define with defclass function.
This is the primary portion of the class hierarchy that you can extend.

■ systemObject is the superclass of primitiveObject and specialObject. No
subclasses of systemObject can be used with defclass. However, you can add a
subclass of specialObject by passing a defstruct to the addDefstructClass
function.

■ primitiveObject is the superclass of all SKILL built-in classes.

■ specialObject is the superclass of all classes corresponding to the C-level registrable
“user-types.” It is also the superclass of all classes you define with the
addDefstructClass function.

This example shows how you can list all of the subclasses. Run this program to see what the
class hierachy is at any given time.

procedure(getDirectSubclasses(classObject)
foreach(mapcar c subclassesOf(classObject)

className(c)
) ; foreach

) ; procedure

t

systemObject

[All user defined classes (via defclass)]
[All user defined structures (via defstruct)]

standardObject

wtype

dbobject

assocTable

specialObject

number
symbol
string
array
internal
list
port
funobj

primitiveObject

fixnum
flonum
January 2007 334 Product Version 06.70

SKILL Language User Guide
SKILL++ Object System
procedure(getAllSubclasses(classObject)
let((direct)

direct = getDirectSubclasses(classObject)
cons(

className(classObject)
direct && foreach(mapcar c direct

getAllSubclasses(findClass(c))
) ; foreach

) ; cons
) ; let

) ; procedure

getAllSubclasses(findClass('t)) =>

(t
(standardObject

(GeometricObject
(Triangle)

(Point)
)

)
(systemObject

(primitiveObject
list()
(port)
(funobj)
(array)
(string)
(symbol)
(number

(fixnum)
(flonum)
)

)
(specialObject

(other)
(assocTable)
)

)
)

Browsing the Class Hierarchy

The SKILL++ Object System provides a number of functions for browsing the class hierarchy:

■ Getting the Class Object from the Class Name on page 336

■ Getting the Class Name from the Class Object on page 336

■ Getting the Class of an Instance on page 336

■ Getting the Superclasses of an Instance on page 336

■ Checking if an Object Is an Instance of a Class on page 337

■ Checking if One Class Is a Subclass of Another on page 337
January 2007 335 Product Version 06.70

SKILL Language User Guide
SKILL++ Object System
Examples in these sections refer to the following code:

defclass(GeometricObject
() ;;; superclass
() ;;; list of slot descriptions
) ; defclass

defclass(Triangle
(GeometricObject) ;;; superclass
(

(x @initarg x) ;; x slot description
(y @initarg y) ;; y slot description
(z @initarg z) ;; z slot description
)

) ; defClass

exampleTriangle = makeTriangle(3 4 5) => stdobj:0x1e6030

Getting the Class Object from the Class Name

Use the findClass function to get the class object from its name. Use a SKILL symbol to
represent the class name.

findClass('Triangle) => funobj:0x1cb2d8

Getting the Class Name from the Class Object

Use the className function to get the class symbol. The term class symbol refers to the
symbol used to represent the class name. The SKILL++ Object System uses a SKILL symbol
to represent the class name.

className(findClass('Triangle)) => Triangle

Getting the Class of an Instance

Use the classOf function to get the class of an instance.

className(classOf(exampleTriangle)) => Triangle

Getting the Superclasses of an Instance

Use the superclassesOf function to get the superclasses of a class. The function returns
a list of class objects.

L = superclassesOf(classOf(exampleTriangle))

foreach(mapcar classObject L
className(classObject)
) ; foreach

=> (Triangle GeometricObject standardObject t)
January 2007 336 Product Version 06.70

SKILL Language User Guide
SKILL++ Object System
Checking if an Object Is an Instance of a Class

Use the classp function to check if an object is an instance of a class. You can pass either
the class symbol or the class object as the second argument.

Example 1
classp(exampleTriangle 'Triangle) => t
classp(5 'fixnum) => t
classp(5 'Triangle) => nil

5 is a fixnum. 5 is not an instance of Triangle.

Example 2
classp(exampleTriangle 'GeometricObject) => t
classp(exampleTriangle 'standardObject) => t
classp(exampleTriangle t) => t

This example illustrates that classp returns t for all superclasses of the class of an
instance. Triangle is a subclass of GeometricObject. GeometricObject is a subclass
of standardObject. standardObject is a subclass of t.

Checking if One Class Is a Subclass of Another

Use the subclassp function to determine whether one class is a subclass of another.

Example 1
subclassp(

findClass('Triangle)
findClass('GeometricObject)
) => t

Triangle is a subclass of GeometricObject.

Example 2
subclassp(

findClass('Triangle)
findClass(t)
) => t

Triangle is a subclass of t.
January 2007 337 Product Version 06.70

SKILL Language User Guide
SKILL++ Object System
Example 3
subclassp(

findClass('Triangle)
findClass('fixnum)
) => nil

Triangle is not a subclass of fixnum.

Advanced Concepts

This section covers the following advanced aspects of the SKILL++ Object System:

■ Method Argument Restrictions

■ Applying a Generic Function on page 339

■ Incremental Development on page 340

■ Methods versus Slots on page 341

■ Sharing Private Functions and Data Between Methods on page 341

Method Argument Restrictions

Method argument lists have the following restrictions:

Aspect Restriction

Number of arguments All methods of a generic function must have the same number of
required arguments and @optional arguments.

@rest arguments All methods of a generic function must take @rest arguments if
any of the methods take @rest arguments.

Keyword arguments Each method of a generic function must

■ Take @rest arguments if any of the methods take @rest
arguments

■ Allow a superset of the keyword arguments specified in the
defgeneric declaration

@rest picks up all keyword arguments that have no matching
keyword in the formal argument list. Different methods may have
different default forms for the optional arguments and may accept
different set of keywords.
January 2007 338 Product Version 06.70

SKILL Language User Guide
SKILL++ Object System
Applying a Generic Function

When you apply a generic function to some arguments, the SKILL++ Object System performs
the following actions to complete the function call. This process is called method
dispatching. The SKILL++ Object System

1. Retrieves the methods of the generic function.

2. Determines the class of the first argument to the generic function.

Based on the class of the first argument passed to the generic function, the SKILL++
Object System finds

❑ No applicable methods

SKILL++ Object System calls the default method for the generic function if one
exists. Otherwise it signals an error.

❑ Exactly one method

❑ More than one applicable method

This situation occurs when you have methods specialized on one or more
superclasses of the first argument’s class.

3. Determines applicable methods by examining the method’s class specializer.

A method is applicable if it specialized on the class of the first argument or a superclass
of the class of the first argument.

4. Sorts the applicable methods according to the chain of superclasses of the first
argument’s class.

❑ The first method in the ordering is the most specific method.

❑ The last method in the ordering is the least specific method.

5. Calls the first method.

You can invoke the callNextMethod function from within a method to access the next
applicable method in the ordering. For example:

defgeneric(describe (obj) ())
defclass(GeometricObject () ()) ; no slots or superclasses

defclass(Point
(GeometricObject)
(

(name @initarg name)
(x @initarg x);;; x-coordinate
(y @initarg y);;; y-coordinate
)

January 2007 339 Product Version 06.70

SKILL Language User Guide
SKILL++ Object System
) ; defclass

defmethod(describe ((object GeometricObject))
className(classOf(object))
) ; defmethod

defmethod(describe ((p Point))
sprintf(nil "%s %s @ %n:%n"

callNextMethod(p)
p->name
p->x
p->y
)

) ; the most specific method

aPoint = makeInstance('Point ?name "A" ?x 1 ?y 0)
describe(aPoint)

=> "Point A @ 1:0"

In the example, the describe generic function has two methods that are applicable to the
argument aPoint:

■ The method specialized on the Point class

■ The method specialized on the GeometricObject class

The method specializing on the Point class is the more specific method, therefore the
SKILL++ Object System applies the most specific method to the argument.

Incremental Development

In the SKILL++ environment , you can redefine SKILL++ functions incrementally. You should
observe the following guidelines when redefining SKILL++ Object System elements of your
application:

■ Redefining methods

During development, you can expect to redefine methods about as frequently as you
redefine procedures. You can redefine a method as long as the redefined method’s
argument list continues to conform to the generic function.

■ Redefining generic functions

You need to redefine a generic function to change the generic function’s default method
or argument list. Such need occurs infrequently. When you redefine a generic function,
the SKILL++ Object System discards all existing methods for the generic function.

■ Redefining classes

You need to redefine a class when you want to
January 2007 340 Product Version 06.70

SKILL Language User Guide
SKILL++ Object System
❑ Change the superclass

❑ Add or remove a slot

❑ Add or remove a slot option

If you need to redefine a class, you should exit the SKILL++ environment and reload you
application. A frequent need to redefine classes probably indicates that you should
analyze your application before further programming.

Methods versus Slots

Methods are generally more expensive to use compared to slots but they offer data hiding
and safety. Consider whether the Triangle’s Area method should access a slot containing
the (precomputed) area or whether the area should be computed on the fly. The nature of
your application dictates your final decision.

Computing the area on the fly may be costly if, for example, the area of triangles is used often.
In such a situation it would be more advantageous to add a slot for area to the triangle class.
But then we would have to add @writer methods for the sides of a triangle to recalculate the
area when the length of a side changes.

Sharing Private Functions and Data Between Methods

Using lexical scoping with the SKILL++ Object System allows all methods specialized on a
class to share private functions and data.

The methods for a class might need access to data, such as an association table, that is
shared between all instances of the class. Slots you specify in the defclass declaration are
allocated within each instance of the class.

The methods for a class might all rely on certain helper functions which you need to make
private.

Using the following template as a guide achieves both goals.

defgeneric(Fun1 (obj …) …)
defgeneric(Fun2 (obj …) …)
defclass(Example (…) (…))
let(

(
(classVar1 …) ;data shared between all
(classVar2 …) ….) ;instances of the class
)

procedure(HelpFun1(….) ;private helper functions
procedure(HelpFun2(….)
…

January 2007 341 Product Version 06.70

SKILL Language User Guide
SKILL++ Object System
defmethod(Fun1 ((obj Example) ….)
defmethod(Fun2 ((obj Example) …)
….
) ; let
January 2007 342 Product Version 06.70

SKILL Language User Guide
17
Programming Examples

See the following sections for programming examples:

■ List Manipulation on page 344

■ Symbol Manipulation on page 344

■ Sorting a List of Points on page 345

■ Computing the Center of a Bounding Box on page 346

■ Computing the Area of a Bounding Box on page 347

■ Computing a Bounding Box Centered at a Point on page 347

■ Computing the Union of Several Bounding Boxes on page 348

■ Computing the Intersection of Bounding Boxes on page 348

■ Prime Factorizations on page 349

■ Fibonacci Function on page 354

■ Factorial Function on page 354

■ Exponential Function on page 355

■ Counting Values in a List on page 355

■ Counting Characters in a String on page 357

■ Regular Expression Pattern Matching on page 357

■ Geometric Constructions on page 358
January 2007 343 Product Version 06.70

SKILL Language User Guide
Programming Examples
List Manipulation

A list is a linear sequence of Cadence® SKILL language data objects. The elements of a list
can have any data type, including symbols or other lists. The printed presentation for a SKILL
list uses a matching pair of parentheses to enclose the printed representations of the list
elements. The trListIntersection and trListUnion functions illustrate

■ Documenting at the function level

■ Using the setof function

■ Using the member function

The trListUnion function also illustrates the nconc function, which destroys all but its last
argument. In this case, the first argument is a new, anonymous list created by the setof
function.

procedure(trListIntersection(list1 list2)
setof(element list1

member(element list2)
) ; setof

) ; procedure

procedure(trListUnion(list1 list2)
nconc(

setof(element list2
!member(element list1)

) ; setof
list1

) ; nconc
) ; procedure

trListIntersection(‘(a b c) ‘(b c d)) => (b c)
trListUnion(list(1 2 3) list(3 4 5 6)) => (4 5 6 1 2 3)

Symbol Manipulation

A symbol is the primary data structure within SKILL. A SKILL symbol has four data slots: the
name, the value, the function definition, and the property list. Except for the name slot, all
slots can be empty.

The trReplaceSymbolsWithValues function makes a copy of an arbitrary SKILL
expression, in which all references to a symbol are replaced by the symbol’s value.

a = "one" b = "two" c = "three"
testCase = '(1 2 (a b))
trReplaceSymbolsWithValues(testCase) => (1 2 ("one" "two"))

testCase = '(1 (a (c)) b)
trReplaceSymbolsWithValues(testCase) => (1 ("one" ("three")) "two")
January 2007 344 Product Version 06.70

SKILL Language User Guide
Programming Examples
The trReplaceSymbolsWithValues illustrates

■ Using recursion to process an arbitrary SKILL expression, making a copy of the
expression in which all references to a symbol are replaced by the symbol’s value.

■ How the cond function handles several possibilities.

The listp function determines whether the expression is a list.

The symbolp function determines whether the expression is a list.

The symeval function retrieves the value of the expression, provided it is a symbol.

In the general case, the cond function recursively descends into the car of the expression
and the cdr of the expression and builds a list from the results.

procedure(trReplaceSymbolsWithValues(expression)
cond(

(null(expression) nil)
(symbolp(expression) symeval(expression))
(listp(expression)

cons(
trReplaceSymbolsWithValues(car(expression))
trReplaceSymbolsWithValues(cdr(expression))
)

)
(t expression)
) ; cond

) ; procedure

x = 5
a = 1
trReplaceSymbolsWithValues(‘(x a))
=> (5 1)

Sorting a List of Points

The trPointLowerLeftp function indicates whether pt1 is located to the lower left of pt2.
This function illustrates

■ Documenting at the function level

■ Using the xCoord and yCoord functions

Note: The xCoord and yCoord functions are aliases for the car and cadr functions.

■ Using the cond function

procedure(trPointLowerLeftp(pt1 pt2)
let((pt1x pt2x pt1y pt2y)
pt1x = xCoord(pt1)
pt2x = xCoord(pt2)
cond(
January 2007 345 Product Version 06.70

SKILL Language User Guide
Programming Examples
(pt1x < pt2x t)
(pt1x == pt2x

pt1y = yCoord(pt1)
pt2y = yCoord(pt2)
pt1y < pt2y)

(t nil)
) ; cond

) ; let
) ; procedure

trPointLowerLeftp(0:0 100:100)
=> t

trPointLowerLeftp(100:100 0:0)
=> nil

The trSortPointList function returns a list of points sorted destructively and illustrates

■ Documenting at the function level

■ Using the sort function

procedure(trSortPointList(aPointList)
sort(aPointList 'trPointLowerLeftp)

); procedure

x = list(100:0 100:100 0:0 50:50 0:100)
trSortPointList(x)
=>
((0 0)
(0 100)
(50 50)
(100 0)
(100 100))

Computing the Center of a Bounding Box

The trBBoxCenter function returns the point at the center of a bounding box and illustrates

■ Documenting at the function level

■ Using the xCoord and yCoord function

■ Using the lowerLeft and upperRight function

■ Using the colon (:) operator to build a point

procedure(trBBoxCenter(bBox)
let((llx lly urx ury)

ury = yCoord(upperRight(bBox))
urx = xCoord(upperRight(bBox))

llx = xCoord(lowerLeft(bBox))
lly = yCoord(lowerLeft(bBox))
(urx + llx)/2 : (ury + lly)/2

) ; let
) ; procedure
January 2007 346 Product Version 06.70

SKILL Language User Guide
Programming Examples
trBBoxCenter(list(0:0 100:100))
=> (50 50)

Computing the Area of a Bounding Box

The trBBoxArea function returns the area of a bounding box and illustrates

■ Documenting at the function level

■ Using the xCoord and yCoord functions

■ Using the lowerLeft and upperRight functions

■ Using parentheses to change priority of arithmetic operations

procedure(trBBoxArea(bBox)
let((llx lly urx ury)

urx = xCoord(upperRight(bBox))
ury = yCoord(upperRight(bBox))
llx = xCoord(lowerLeft(bBox))
lly = yCoord(lowerLeft(bBox))
(ury - lly) * (urx - llx)

) ; let
) ; procedure

Computing a Bounding Box Centered at a Point

The trDot function returns bounding box coordinates with a given point as its center and
illustrates

■ Using @key to declare keyword arguments

■ Establishing default values for a keyword argument

■ Documenting at the function level

■ Using the let function

■ Using the xCoord and yCoord functions

■ Building a bounding box with the list function and colon (:) operator

procedure(trDot(aPoint @key (deltaX 1) (deltaY 1))
let((llx lly urx ury aPointX aPointY)

aPointX = xCoord(aPoint)
aPointY = yCoord(aPoint)
llx = aPointX - deltaX
urx = aPointX + deltaX
lly = aPointY - deltaY
ury = aPointY + deltaY
list(llx:lly urx:ury)
January 2007 347 Product Version 06.70

SKILL Language User Guide
Programming Examples
) ; let
) ; procedure

trDot(100:100 ?deltaX 50 ?deltaY 50)
=> ((50 50) (150 150))

Computing the Union of Several Bounding Boxes

The trBBoxUnion function returns the smallest bounding box coordinates containing all the
boxes in a given list and illustrates

■ Using foreach(mapcar …)

■ Using the apply function with the min and max functions

■ Using the list function and the colon (:) operator to construct a bounding box

■ Documenting at the function level

procedure(trBBoxUnion(bBoxList)
let((llxList llyList

urxList uryList
minllx minlly
maxurx maxury
)
llxList = foreach(mapcar bBox bBoxList

xCoord(lowerLeft(bBox)))
llyList = foreach(mapcar bBox bBoxList

yCoord(lowerLeft(bBox)))
urxList = foreach(mapcar bBox bBoxList

xCoord(upperRight(bBox)))
uryList = foreach(mapcar bBox bBoxList

yCoord(upperRight(bBox)))
minllx = apply('min llxList)
minlly = apply('min llyList)
maxurx = apply('max urxList)
maxury = apply('max uryList)
list(minllx:minlly maxurx:maxury)

) ; let
) ; procedure

trBBoxUnion(list(list(0:0 100:100) list(50:50 150:150)))
=> ((0 0) (150 150))

Computing the Intersection of Bounding Boxes

The trBBoxIntersection function illustrates

■ Using foreach(mapcar …)

■ Using the apply function with the min and max functions

■ Using the cond function
January 2007 348 Product Version 06.70

SKILL Language User Guide
Programming Examples
■ Using the list function and colon (:) operator to construct a bounding box

procedure(trBBoxIntersection(bBoxList)
let((llxList llyList

urxList uryList
maxllx maxlly
minurx minury)
llxList = foreach(mapcar bBox bBoxList

xCoord(lowerLeft(bBox)))
llyList = foreach(mapcar bBox bBoxList

yCoord(lowerLeft(bBox)))
urxList = foreach(mapcar bBox bBoxList

xCoord(upperRight(bBox)))
uryList = foreach(mapcar bBox bBoxList

yCoord(upperRight(bBox)))
minurx = apply('min urxList)
minury = apply('min uryList)
maxllx = apply('max llxList)
maxlly = apply('max llyList)
cond(

(maxllx >= minurx nil)
(maxlly >= minury nil)
(t

list(maxllx:maxlly minurx:minury))
) ; cond

) ; let
) ; procedure

trBBoxIntersection(list(list(0:0 100:100) list(50:50 150:150))) =>
((50 50) (100 100))

Prime Factorizations

A prime factorization of an integer is a list of pairs and is an example of an association list.
The first element of each pair is a prime number that divides the number and the second
element is the exponent to which the prime is to be raised. Each such pair is termed a prime-
exponent pair.

pf1 = '((2 3) (3 5))
pf2 = '((3 2) (5 2) (7 3))

pf3 = '((3 2) (5 4) (7 2))
pf4 = '((3 6) (7 3) (11 2) (5 1))

The assoc function is used to determine whether a prime number occurs in a prime
factorization. It returns either the prime-exponent pair or nil. For example:

assoc(2 pf1) => (2 3)
assoc(7 pf2) => (7 3)

Evaluating a Prime Factorization

To evaluate the prime factorization means to perform the arithmetic operations implied:
January 2007 349 Product Version 06.70

SKILL Language User Guide
Programming Examples
■ For each prime-exponent pair, raise the prime to the corresponding exponent

■ Multiply the resulting list of integers together

For example, evaluating the prime factorization

((3 2) (5 2) (7 3))

is equivalent to evaluating

3**2 * 5**2 * 7**3

The trTimes functions multiplies a list of numbers together. It handles two cases that the
times function does not handle.

The trTimes function illustrates

■ Using an @rest argument to collect an arbitrary number of arguments into a list.

■ Using the apply function. In the general case, we use the apply function to invoke the
normal times function

■ Using the cond function

■ The null function tests for an empty list. The onep function tests whether a number is
one

procedure(trTimes(@rest args)
cond(

(null(args) 1)
(onep(length(args)) car(args))
(t apply('times args))

) ; cond
) ; procedure

The trEvalPF function evaluates the prime factorizations. For example:

pf1 = '((2 3) (3 5))
pf2 = '((3 2) (5 2) (7 3))
trEvalPF(pf1) => 1944
trEvalPF(pf2) => 77175

The trEvalPF function illustrates

■ Using the apply function with the trTimes function above

■ Using the foreach(mapcar …)

■ Using the car and cadr functions

procedure(trEvalPF(pf)
apply('trTimes

foreach(mapcar pePair pf
car(pePair)**cadr(pePair)

) ; foreach
January 2007 350 Product Version 06.70

SKILL Language User Guide
Programming Examples
) ; apply
) ; procedure

Computing the Prime Factorization

The trLargestExp function returns the largest x such that divisor ** x <= number and
illustrates

■ Documenting at the function level

■ Using the preincrement operator

■ Using the let expression to initialize a local variable to a non-nil value

■ Using the while function

procedure(trLargestExp(number divisor)
let(((exp 0))

while(zerop(mod(number divisor))
++exp
number = number / divisor
) ; while

exp
) ; let

) ; procedure

The trPF function returns the prime factorization a number. For example:

trPF(1003) => ((59 1) (17 1))
trPF(10003) => ((1429 1) (7 1))
trPF(100003) => ((100003 1))
trPF(123456) => ((643 1) (3 1) (2 6))

The trPF function illustrates

■ Documenting at the function level

■ Using the postincrement operator

■ Using the let expression to initialize a local variable to a non-nil value

■ Using the while function

■ Using parentheses to control operator precedence

■ Using let to initialize a local variables to non-nil values

■ Using a while loop

■ Using when with an embedded assignment expression

■ Using trLargestExp
January 2007 351 Product Version 06.70

SKILL Language User Guide
Programming Examples
procedure(trPF(aNumber)
let((; locals

(divisor 2)
result
exp
(num aNumber)
)
while(num > 1

when((exp = trLargestExp(num divisor)) > 0
result = cons(list(divisor exp) result)
num = num / divisor ** exp
) ; when

divisor++ ;;; try next divisor
) ; while

result
) ; let

) ; procedure

Multiplying Two Prime Factorizations

The trPFMult function returns the prime factorization of the product of two prime
factorizations, pf1 and pf2. The trPFMult function uses the following algorithm to
construct the resultant prime factorization.

1. Those prime-exponent pairs whose primes occur in only one of the prime factorizations
lists are carried across unaltered into the resultant prime factorization.

2. For those primes that have entries in both prime factorizations, a prime-exponent pair
using the prime is included with an exponent equal to the sum of prime’s exponent in
either prime factorization.

The trPFMult function illustrates

■ Using the setof function and the assoc function to build two prime factorizations

The list pf1Notpf2 contains all the prime-exponent pairs in pf1 whose prime does not
occur in pf2.

The list pf2Notpf1 contains all the prime-exponent pairs in pf2 whose prime does not
occur in pf1.

■ Using foreach(mapcan …) to manage the lists of primes found in both lists

The list bothpf1Andpf2 contains prime-exponent pairs whose primes are found in
both pf1 and pf2. The exponent is the sum of the exponent for the prime in pf1 and
pf2.

■ Using the backquote (‘) and comma (,) operators

■ Using the nconc function to destructively append the three lists pf1Notpf2,
pf2Notpf1, and bothpf1Andpf2
January 2007 352 Product Version 06.70

SKILL Language User Guide
Programming Examples
trPFMult(pf1 pf2) => ((2 3) (5 2) (7 3) (3 7))
procedure(trPFMult(pf1 pf2)

let((pf1Notpf2 pf2Notpf1 bothpf1Andpf2 pePair2)
pf1Notpf2 = setof(pePair1 pf1

!assoc(car(pePair1) pf2)
)

pf2Notpf1 = setof(pePair2 pf2
!assoc(car(pePair2) pf1)
)

bothpf1Andpf2 = foreach(mapcan pePair1 pf1
when(pePair2 = assoc(car(pePair1) pf2)

;; build a list containing a single prime-exponent pair.
;; The mapcan option to the foreach function
;; destructively appends these lists together.
‘((

,car(pePair1)
,(cadr(pePair1)+cadr(pePair2))

))
) ; when

) ; foreach
;; destructively append the three lists together.
nconc(pf1Notpf2 pf2Notpf1 bothpf1Andpf2)

) ; let
) ; procedure

Using Prime Factorizations to Compute the GCD

The trPFGCD function returns the prime factorization of the greatest common denominator
(GCD) of two prime factorizations. This function illustrates

■ Using foreach(mapcan …) to merge two association lists.

Primes found in both association lists are given an exponent equal to the minimum of the
exponents in both the association lists.

■ Using the backquote (‘) and comma (,) operators.

procedure(trPFGCD(pf1 pf2)
let((pePair2)

foreach(mapcan pePair1 pf1
pePair2 = assoc(car(pePair1) pf2)
when(pePair2

;; build a list containing a single prime-exponent pair.
;; The mapcan option to the foreach function
;; destructively appends these lists together.
‘((

,car(pePair1)
,min(cadr(pePair1) cadr(pePair2))

))
) ; when

) ; foreach
) ; let

) ; procedure
January 2007 353 Product Version 06.70

SKILL Language User Guide
Programming Examples
The trGCD function illustrates finding the greatest common denominator (GCD) of two
numbers by

■ Finding their prime factorizations

■ Manipulating the prime factorizations to find the prime factorization of the GCD

■ Evaluating the prime factorization

procedure(trGCD(num1 num2)
trEvalPF(trPFGCD(trPF(num1) trPF(num2)))
) ; procedure

Fibonacci Function

This example illustrates a recursive implementation of the Fibonacci function, implemented
directly from the mathematical definition.

procedure(fibonacci(n)
if((n == 1 || n == 2) then 1
else fibonacci(n-1) + fibonacci(n-2)
))

fibonacci(3) => 2

fibonacci(6) => 8

The same example implemented in SKILL using LISP syntax looks like the following:

(defun fibonacci (n)

(cond
((or (equal n 1) (equal n 2)) 1)
(t (plus (fibonacci (difference n 1))

 (fibonacci (difference n 2))))
)

)

Factorial Function

This is the recursive implementation of the factorial function

procedure(factorial(n)
if(zerop(n) then

1
else

n*factorial(n-1)
) ; if

) ; procedure

This is an iterative implementation

procedure(factorial(n)
let(((f 1))

for(i 1 n
January 2007 354 Product Version 06.70

SKILL Language User Guide
Programming Examples
f = f*i
) ; for

f ;;; return the value of f
) ; let

) ; procedure

Exponential Function

This function computes e to the power x by summing terms of the power series expansion of
the mathematical function. It uses the factorial function.

procedure(e(x)
let(((sum 1.0))

for(n 1 10
sum = sum + (1.0/factorial(n)) * x**n
) ; for

sum ;;; return the value of sum.
) ; let

) ; procedure

To get a sense of the accuracy of this implementation of the e function, observe

e(log(10)) => 9.999702 ;; should be 10.0

Counting Values in a List

The trCountValues function tallies the number of times each distinct value occurs as a top-
level element of a list. It prints a report and returns an association list that pairs each unique
value with it’s count. Two implementations are presented. The results are equivalent except
for ordering.

■ The first implementation of trCountValues produces

trCountValues('(1 2 a b 2 b 3)) =>
((a 1) (b 2) (3 1) (2 2) (1 1))

and prints

1 occurred 1 times.
2 occurred 2 times.
3 occurred 1 times.
b occurred 2 times.
a occurred 1 times.

■ The second implementation of trCountValues produces

trCountValues('(1 2 a b 2 b 3)) =>
((3 1) (b 2) (a 1) (2 2) (1 1))

and prints

3 occurred 1 times.
b occurred 2 times.
a occurred 1 times.
January 2007 355 Product Version 06.70

SKILL Language User Guide
Programming Examples
2 occurred 2 times.
1 occurred 1 times.

The first implementation of the trCountValues function illustrates

■ Using an association table to maintain the counts

Each element in the list is used as an index into the table.

■ Using the tableToList function to build an association list for an association table

procedure(trCountValues(aList)
let(((countTable makeTable("ValueTable" 0)))

foreach(element aList
countTable[element] = countTable[element] + 1
) ; foreach

foreach(key countTable
printf(" %L occurred %d times.\n"

key countTable[key])
) ; foreach

tableToList(countTable) ;; convert to assoc list
) ; let

) ; procedure

The second implementation of the trCountValues function illustrates

■ Using an association list to maintain the counts

■ Using the assoc function to retrieve an entry, if any, for an element

■ Using the rplaca function to update the count for an entry

procedure(trCountValues(aList)
let((countAssocList countEntry count)

foreach(element aList
countEntry = assoc(element countAssocList)
if(countEntry

then ;; update the count for this element
count = cadr(countEntry)
rplaca(cdr(countEntry) ++count)

else ;; add an new entry for this element
countAssocList = cons(

list(element 1) ;; new entry
countAssocList)

) ; if
) ; foreach

foreach(entry countAssocList
printf(" %L occurred %d times.\n"

car(entry) ;; the element
cadr(entry) ;; the count
)

) ; foreach

countAssocList ;; return value
January 2007 356 Product Version 06.70

SKILL Language User Guide
Programming Examples
) ; let
) ; procedure

Counting Characters in a String

The trCountCharacters function counts the occurrences of characters in a string.

The trCountCharacters illustrates

■ Using the parseString function to construct a list of characters that occur in a string

■ Using either implementation of the trCountValues function to count the occurrences
of the single-character strings

procedure(trCountCharacters(aString)
trCountValues(parseString(aString ""))
) ; procedure

Regular Expression Pattern Matching

The following functions take the regular expression pattern matching functions rexMatchp
and rexMatchList provided by SKILL and build two new functions shMatchp and
shMatchList, which provide a simple shell-filename-like pattern matching facility.

The rules:

■ Target strings should be single words

■ A pattern is to match the entire target words

■ Special characters in a pattern:

The function sh2ed is used to build a regular expression that is passed to the rex functions.

(defun sh2ed (s)
(let ((sh_chars (parseString s ""))

(ed_chars (tconc nil "^")))
(while sh_chars

(case (car sh_chars)
("*" (tconc ed_chars ".") (tconc ed_chars "*"))

* Matches any string, including the null string

? Matches any single character

[…] Same as in the original rex package

. Matches . literally
January 2007 357 Product Version 06.70

SKILL Language User Guide
Programming Examples
("?" (tconc ed_chars "."))
("." (tconc ed_chars "\\") (tconc ed_chars "."))
(t (tconc ed_chars (car sh_chars))))

(setq sh_chars (cdr sh_chars)))
(tconc ed_chars "$")
(buildString (car ed_chars) "")))

(defun shMatchp (pattern target)
(rexMatchp (sh2ed pattern) target))

(defun shMatchList (pattern targets)
(rexMatchList (sh2ed pattern) targets))

shMatchp("*.out" "a.out") => t
shMatchp("test.??" "test.il") => t
shMatchp("*.??" "test.out") => nil

shMatchList("*test.?" '("ALUtest.1" "data.in" "MEMtest.13" "test.5"))=>
("ALUtest.1" "test.5")

Geometric Constructions

Here is an extensive example of a SKILL++ Object Layer application.

Application Domain

A geometric construction is a collection of points and lines you build up from an initial
collection of points. The initial collection of points are called free points. You can add points
and lines to the collection through various familiar constraints. You can constrain

■ A point to lie on two interesecting lines

■ A line to pass through two points

■ A line to pass through a point and to be parallel to another line

■ A line to pass through a point and to be perpendicular to another line

When you move any one of the free points, the application propagates the change to all the
constrained points and lines

Example

1. You specify the free points P and Q.

2. You construct the line PQ passing through P and Q.

3. You specify the free points R and S.

4. You construct the line RS passing through R and S.
January 2007 358 Product Version 06.70

SKILL Language User Guide
Programming Examples
5. You construct the intersection point Z of the line PQ and the line RS.

When you move any of the points P, Q, R, or S the lines PQ and RS and the point Z move
accordingly.

Implementation

The implementation uses the SKILL++ Object System to define several classes and generic
functions. The following sections discuss

■ The class hierarchy

■ The generic functions

■ The source code

■ Several examples

To focus on SKILL++ language issues, the implementation does not address graphics.
Instead, you non-graphically

1. Call a SKILL function repeatedly to specify several free points.

2. Call other SKILL functions to construct the dependent points and lines.

3. Enter a SKILL expression to change the coordinates of one of the free points.

4. Call a SKILL function to propagate the change through the constrainted points and lines.

5. Call a SKILL function to describe one of the constrained points or lines.

P

Q
R

S

Z

January 2007 359 Product Version 06.70

SKILL Language User Guide
Programming Examples
Classes

The implementation uses the SKILL++ Object System to define several classes in the
following class hierarchy.

GeometricObject Class

The GeometricObject class represents all the objects in the construction. It defines the
constraints slot. This slot lists all the other objects which need to be notfied when the
object updates.

Point Class

The Point class represents a point with slots x and y.

Line Class

The Line class represents a line with the slots A, B, and C. These are the coefficients in the
line’s equation

Ax+By+C = 0

IntersectionTwoLines_Point Class

The IntersectionTwoLines_Point class is a subclass of the Point class and
represents a point that lies on two intersecting lines. It includes two slots that store the lines.

GeometricObject

Point

Line
TwoPoints_Line

ParallelLineThroughPoint_Line

IntersectionTwoLines_Point
January 2007 360 Product Version 06.70

SKILL Language User Guide
Programming Examples
TwoPoints_Line Class

The TwoPoints_Line class is a subclass of the Line class and represents a line passing
through two points. The class defines two slots to store the points.

ParallelLineThroughPoint_Line Class

The ParallelLineThroughPoint_Line class is a subclass of the Line class and
represents a line that passes through a point parallel to another line.

To specify a free point, you instantiate the Point class. To specify a constrained point or line,
you instantiate the associated subclass.

Generic Functions

The implementation uses several generic functions.

■ The Update function propagates changes. It updates the coordinates or equations of an
object and call itself recursively for each dependent object.

■ The Describe function prints a description of an object and calls itself recursively for
each dependent object.

■ The Validate function verifies that a point or line satisfies its constraints.

■ The Connect function adds an object to another object’s list of constraints.

The defgeneric declarations for these generic functions each a declare default method that
raises an error.
January 2007 361 Product Version 06.70

SKILL Language User Guide
Programming Examples
Describing the Methods by Class

The following tables describe, for each generic function, all the methods by class. In the
following tables,

■ Earlier rows are at the same level or higher in the class hierarchy.

■ The etc. rows refer to other constraint subclasses of Point or Line that you can add to
the implementation to extend its functionality.

Update Methods

Class Action

GeometricObject Call Update for each of the dependent objects.

Point No method for this class.

Line No method for this class.

IntersectionTwoLines_Point Based on the two lines, recompute the coordinate of the
point. Call the next Update method.

TwoPoints_Line Based on the two points, recompute the equation of the
line. Call the next Update method.

etc.

Describe Methods

Class Method description

GeometricObject Raise an error since there is no meaningful description
at level.

Point Print a description of the point’s coordinates.

Line Print a description of the line’s equation.

IntersectionTwoLines_Point Call the next Describe method to display the
coordinates. Then call Describe for each of the two
lines that define this point.

TwoPoints_Line Call the next Describe method to display the equation.
Then call Describe for each of the two point that define
this line.

etc.
January 2007 362 Product Version 06.70

SKILL Language User Guide
Programming Examples
Connect Methods

Source Code
;;; toplevel('ils)

defgeneric(Connect (obj constraint)
error("Connect is a subclass responsibility\n")
) ; defgeneric

defgeneric(Update (obj)
error("Update is a subclass responsibility\n")
) ; defgeneric

defgeneric(Validate (obj)

Validate Methods

Class Method description

GeometricObject Raise an error since there is no meaningful validation to
perfom at this level of an object.

Point No method for this class

Line No method for this class

IntersectionTwoLines_Point Verify that the point’s coordinates satisfy the equations of
the two lines.

TwoPoints_Line Verify that the two point’s coordinates satisfy the line’s
equation.

etc.

Connect generic Function

Class Method description

GeometricObject Add a dependent object to the list of dependent objects.

Point No method for this class.

Line No method for this class.

IntersectionTwoLines_Point No method for this class.

TwoPoints_Line No method for this class.

etc.
January 2007 363 Product Version 06.70

SKILL Language User Guide
Programming Examples
error("Validate is a subclass responsibility\n")
) ; defgeneric

defgeneric(Describe (obj)
error("Describe is a subclass responsibility\n")
) ; defgeneric

;;
;;;;; GeometricObject
;;;

defclass(GeometricObject
()
(

(constraints
@initform nil
)

)
) ; defclass

defmethod(Connect ((obj GeometricObject) constraint)
when(!member(constraint obj->constraints)

obj->constraints = cons(constraint obj->constraints)
) ; when

) ; defmethod

defmethod(Update ((obj GeometricObject))
printf("Updating constraints %L for %L\n"

obj->constraints obj)
Validate(obj)
foreach(constraint obj->constraints

Update(constraint)
) ; foreach

t
) ; defmethod

;;;
;;;;;;;;;;;;; Point
;;;

defclass(Point (GeometricObject)
(

(name @initarg name)
(x @initarg x);;; x-coordinate
(y @initarg y);;; y-coordinate
)

) ; defclass

defmethod(Describe ((obj Point))
printf("%s at %n:%n\n"

className(classOf(obj)) obj->x obj->y)
) ;defmethod

defmethod(Validate ((obj Point))
t
)

January 2007 364 Product Version 06.70

SKILL Language User Guide
Programming Examples
;;
;;;;;;;;;;;;; IntersectionTwoLines_Point
;;;
defclass(IntersectionTwoLines_Point (Point)

(
(L1 @initarg L1)
(L2 @initarg L2)
)

) ; defclass

defmethod(Describe ((obj IntersectionTwoLines_Point))
callNextMethod(obj);;; generic point description
printf("…intersection of\n")
Describe(obj->L1)
Describe(obj->L2)
) ;defmethod

procedure(make_IntersectionTwoLines_Point(line1 line2)
let((point)

point = makeInstance('IntersectionTwoLines_Point
?L1 line1
?L2 line2
)

Update(point)
Connect(line1 point)
Connect(line2 point)
point
) ; let

) ; procedure

defmethod(Validate ((obj IntersectionTwoLines_Point))
let((A1 B1 C1 A2 B2 C2 x y)

A1 = obj->L1->A
B1 = obj->L1->B
C1 = obj->L1->C
A2 = obj->L2->A
B2 = obj->L2->B
C2 = obj->L2->C
x = obj->x
y = obj->y
when(A1*x+B1*y+C1 != 0.0 || A2*x+B2*y+C2 != 0.0

error("Invalid IntersectionTwoLines_Point\n")
) ; when

t
) ; let

) ; defmethod

defmethod(Update ((obj IntersectionTwoLines_Point))
;; check to see if my two lines have values …
printf("Figure out my x & y from lines %L %L\n"

obj->L1 obj->L2)
let((A1 B1 C1 A2 B2 C2 det)

A1 = obj->L1->A
B1 = obj->L1->B
C1 = obj->L1->C
A2 = obj->L2->A
B2 = obj->L2->B
C2 = obj->L2->C
January 2007 365 Product Version 06.70

SKILL Language User Guide
Programming Examples
det = A1*B2-A2*B1
when(det == 0

error("Can not intersect two parallel lines\n")
)

obj->x = ((-C1)*B2-(-C2)*B1)*1.0/det
obj->y = (A1*(-C2)-A2*(-C1))*1.0/det
) ; let

callNextMethod(obj)
) ; defmethod

;;
;;;;;;;;;;;;; Line
;;;

defclass(Line (GeometricObject)
(;;;; Ax+By+C = 0

(A)
(B)
(C)
)

) ; defclass

defmethod(Describe ((obj Line))
printf("%s %nx+%ny+%n=0\n"

className(classOf(obj))
obj->A obj->B obj->C
)

) ; defmethod

;;
;;;;;;;;;;;;; TwoPoints_Line
;;

defclass(TwoPoints_Line (Line)
(

(P1 @initarg P1)
(P2 @initarg P2)
)

) ; defclass

defmethod(Describe ((obj TwoPoints_Line))
callNextMethod(obj)
printf("…containing\n")
Describe(obj->P1)
Describe(obj->P2)
) ; defmethod

procedure(make_TwoPoints_Line(p1 p2)
let((line)

line = makeInstance('TwoPoints_Line
?P1 p1 ?P2 p2)

Update(line)
Connect(p1 line)
Connect(p2 line)
line
) ; let

) ; procedure
January 2007 366 Product Version 06.70

SKILL Language User Guide
Programming Examples
defmethod(Validate ((obj TwoPoints_Line))
let((x1 y1 x2 y2 A B C)

x1 = obj->P1->x
x2 = obj->P2->x
y1 = obj->P1->y
y2 = obj->P2->y
A = obj->A
B = obj->B
C = obj->C
if(A*x1+B*y1+C != 0.0 then

error("Invalid TwoPoints_Line\n"))
if(A*x2+B*y2+C != 0.0 then

error("Invalid TwoPoints_Line\n"))
t
) ; let

) ; defmethod

defmethod(Update ((obj TwoPoints_Line))
let((x1 y1 x2 y2 m b)

x1 = obj->P1->x
x2 = obj->P2->x
y1 = obj->P1->y
y2 = obj->P2->y
if(x2-x1 != 0

then
m = (y2-y1)*1.0/(x2-x1)
b = y2-m*x2
obj->A = -m
obj->B = 1
obj->C = -b

else
obj->A = 1.0
obj->B = 0.0
obj->C = -x1

) ; if
) ; let

callNextMethod(obj)
) ; defmethod

;;;
;;;;;;;;;;;;; ParallelLineThroughPoint_Line
;;;

defclass(ParallelLineThroughPoint_Line (Line)
(

(P @initarg P)
(L @initarg L)
)

) ; defclass

defmethod(Validate ((obj ParallelLineThroughPoint_Line))
let((x1 y1 A B C LA LB LC)

x1 = obj->P->x
y1 = obj->P->y
LA = obj->L->A
LB = obj->L->B
January 2007 367 Product Version 06.70

SKILL Language User Guide
Programming Examples
LC = obj->L->C
A = obj->A
B = obj->B
C = obj->C
when(A*LB-LA*B != 0.0 || A*x1+B*y1+C != 0

error("Invalid ParallelLineThroughPoint_Line\n"))
t
) ; let

) ; defmethod

defmethod(Describe ((obj ParallelLineThroughPoint_Line))
callNextMethod(obj)
printf("…Containing\n")
Describe(obj->P)
printf("…Parallel to\n")
Describe(obj->L)
) ; defmethod

procedure(make_ParallelLineThroughPoint_Line(point line)
let((parallel_line)

parallel_line = makeInstance(
'ParallelLineThroughPoint_Line
?P point
?L line
)

Update(parallel_line)
Connect(point parallel_line)
Connect(line parallel_line)
parallel_line
) ; let

) ; procedure

defmethod(Update ((obj ParallelLineThroughPoint_Line))
let((A B C x1 y1)

A = obj->L->A
B = obj->L->B
C = obj->L->C
x1 = obj->P->x
y1 = obj->P->y
obj->A = A
obj->B = B
obj->C = -(A*x1+B*y1)
) ; let

callNextMethod(obj)
) ; defmethod

Example 1

This example

■ Creates a point P and describes it

■ Creates another point R and describes it

■ Constructs the line L that passes through the points P and R and describe it
January 2007 368 Product Version 06.70

SKILL Language User Guide
Programming Examples
■ Changes the x coordinate of P to 1 and calls the Update function to propagate the
changed coordinates of P

In this version of the application, it is your responsibility to call the Update function after
changing the coordinates of a free point. You should not use the -> operator to change
the coordinates of a non-free point.

■ Describes the line L to verify that it has been updated

P = makeInstance('Point ?x 0 ?y 4)
stdobj:0x36f018

Describe(P)
Point at 0:4
t

R = makeInstance('Point ?x 3 ?y 0)
stdobj:0x36f024

Describe(R)
Point at 3:0
t

L = make_TwoPoints_Line(P R)
Updating constraints nil for stdobj:0x36f030
stdobj:0x36f030

Describe(L)
TwoPoints_Line 1.333333x+1y+-4.000000=0
…containing
Point at 0:4
Point at 3:0
t

P->x = 1
1

Update(P)
Updating constraints (stdobj:0x36f030) for stdobj:0x36f018
Updating constraints nil for stdobj:0x36f030
t

Describe(L)
TwoPoints_Line 2.000000x+1y+-6.000000=0
…containing
Point at 1:4
Point at 3:0
t

Example 2

This example

■ Creates four points P, Q, S, and R

■ Constructs the line PQ that passes through the points P and Q
January 2007 369 Product Version 06.70

SKILL Language User Guide
Programming Examples
■ Constructs the line SR that passes through the points S and R

■ Constructs the point Z that is on both the lines PQ and SR and describes the point Z

■ Changes the y coordinate of the point S to 4 and updates the point S

■ Describes the point Z to verify that it has been updated

P = makeInstance('Point ?x 0 ?y 4)
stdobj:0x36f090

Q = makeInstance('Point ?x 0 ?y -4)
stdobj:0x36f09c

S = makeInstance('Point ?x -3 ?y 0)
stdobj:0x36f0a8

R = makeInstance('Point ?x 3 ?y 0)
stdobj:0x36f0b4

PQ = make_TwoPoints_Line(P Q)
Updating constraints nil for stdobj:0x36f0c0
stdobj:0x36f0c0

SR = make_TwoPoints_Line(S R)
Updating constraints nil for stdobj:0x36f0cc
stdobj:0x36f0cc

Z = make_IntersectionTwoLines_Point(PQ SR)
Figure out my x & y from lines stdobj:0x36f0c0 stdobj:0x36f0cc
Updating constraints nil for stdobj:0x36f0d8
stdobj:0x36f0d8

Describe(Z)
IntersectionTwoLines_Point at 0.000000:0.000000
TwoPoints_Line 1.000000x+0.000000y+0=0
…containing
Point at 0:4
Point at 0:-4
TwoPoints_Line -0.000000x+1y+-0.000000=0
…containing
Point at -3:0
Point at 3:0
t

S->y = 4
4

Update(S)
Updating constraints (stdobj:0x36f0cc) for stdobj:0x36f0a8
Updating constraints (stdobj:0x36f0d8) for stdobj:0x36f0cc
Figure out my x & y from lines stdobj:0x36f0c0 stdobj:0x36f0cc
Updating constraints nil for stdobj:0x36f0d8
t

Describe(Z)
IntersectionTwoLines_Point at 0.000000:2.000000
TwoPoints_Line 1.000000x+0.000000y+0=0
…containing
Point at 0:4
Point at 0:-4
TwoPoints_Line 0.666667x+1y+-2.000000=0
January 2007 370 Product Version 06.70

SKILL Language User Guide
Programming Examples
…containing
Point at -3:4
Point at 3:0
t

Extending the Implementation

Consider the following extensions:

■ Protecting the implementation from inconsistent access

You can use the -> operator to change coordinates of any point, even a constrained
point. You can extend the implementation to allow the user to change only coordinates
of free points.

■ Adding graphics

You can extend the implementation to associate a database object with each point or line
and update the database object at appropriate times. You should have to affect only the
Point and Line classes.
January 2007 371 Product Version 06.70

SKILL Language User Guide
Programming Examples
January 2007 372 Product Version 06.70

SKILL Language User Guide
Index
Symbols
#f 274
#t 273
&& (and) operator 46
-> operator 323
@key option 81, 347
@optional option 81
@rest option 78, 80
|| (or) operator 46

A
absolute path 150
access operators

array access syntax [] 90
arrow (->) 90
dot operator 94
slot access (->?) 110
slot access (->??) 110
squiggle arrow (~>) 90

algebraic notation 61
alphalessp function 100
alphaNumCmp function 100
alphanumeric characters 72, 91
append function 37, 114
append1 function 261
apply function 80, 183, 195, 206, 348
argument

definition 76
type template 83

arithmetic
integer-only 131
mixed-mode 128
operators 121
precision 129
predefined functions 125
predicate functions 133

arrays
accessing 90, 112
declaring 112
definition 111
pointers to 112
sparse 116
syntax statement 113

arrow operator 94, 310, 323
assignment operator (=) 72, 281
assoc function 117, 193, 356
association lists 113, 117, 199
association tables

caching with 255
definition 113
functions for 114
initializing 113
scanning the contents 114
traversing 116

atom function 134
autoload feature 168
autoload property 232

B
backquote (‘) 65, 262
begin function 298
binary minus operator 63
bindkeys 31
bitwise operators 126, 134
bounding boxes 40, 346
boundp function 85, 134, 323
bracket, super right 65, 218
break function 325
building a list 36
buildString function 99
byte-code 76, 204

C
C language comparison

arithmetic and logical syntax 133
brackets affecting evaluation 244
commas 246
common mistakes 248
defstructs 107
draining ports 161
escape characters 70
getc and getchar 171
getchar 102
handling variables 214
macros 210
January 2007 373 Product Version 06.70

SKILL Language User Guide
parentheses 64
string functions 99
strings 70
symbol property list 93
symbols 90, 92
true and false 132

caching results 255
cadr function 350
callInitProc function 236
car function 38, 350
case function 48, 142
caseq function 142
cdr function 38
cdsGetInstPath function 153
CFI Scheme, relationship to SKILL++ 273
changeWorkingDir function 159
characters, counting in a string 357
CIW 30
class data structure 328
class hierarchy

browsing 335
definition of 334

className function 336
classOf function 336
classp function 337
close function 161
closures 271

behavior of 284
examining 324
examples 284
in SKILL++ 283
relationship to free variables 283

coding 248
commenting 242
comparing execution times 265
layout 242
optimizing 253
serious errors 250
style 242
style mistakes 248

comma (,) 65
comma-at (,@) 65
Command Interpreter Window(CIW) 30
commenting code 63, 242
common questions 37
compareTime function 173
compilation 76, 204
compile time 76
complex numbers 131
compress function 238
compressing files 238

concat function 91
cond function 141, 345
conditional operators 134
cons cells 274
cons function 37, 38, 181, 261, 267
constants 119
containers, definition of 309
contexts

autoloading 237
creating directory structure for 226
creating utility functions for 228
customizing external 233
definition 224
difference from source files 224
functions for building 235
global function protection 240
how the process works 227
how to build 230
initializing 230
loading 231
potential problems 233
restrictions 224
when to use 225

control functions 140
conventions

naming 58
converting case 103
coordinates 39
copy function 186
copy_<name> function 109
copyDefstructDeep function 109
copying and pasting examples 23
createDir function 156
cross-calling guidelines 316
csh function 172

D
data sharing across languages 313
data structures 268
data types

supported 67
user-defined 117

declare function 112
defclass function 328, 329, 341
defgeneric function 328, 332
defining

functions 77
parameters 80

defInitProc function 230, 236
January 2007 374 Product Version 06.70

SKILL Language User Guide
defmacro
function 78, 211, 274
with @key 213
with @rest 212
with backquote 211

defmethod function 328, 332
defprop function 98
defstructp function 108
defstructs

alternatives to lists 265
definition 108
example 110

defUserInitProc function 237
deleteDir function 157
deleteFile function 157
deleting

directories 157
files 157

disembodied property lists 95, 113
displaying data 41
division, integer vs float 129
do function 299
documenting a function 83
dot (.) operator 94
drain function 161
draining

output buffer 161
ports 161

dynamic
globals 214
scoping 214, 278

E
encrypt function 238
encrypting files 238
environments

creating 287
definition 286
evaluating an expression in 323
first-class 271
for extension languages 276
in SKILL++ 286
inspecting 322
persistent 290
retrieving 323
retrieving active environment 322
testing variables in 323
top-level 287
using ->?? operator with 323

using arrow operator with 323
envobj function 323
eof object 274
eq function 135, 258, 265
equal (==) operator 132
equal function 123, 135, 258, 265
equals sign (=) operator 72
err function 216
error function 217
error handling 215
errset function 215
errsetstring function 168
escape sequences 71
eval function 205, 277, 323
evalstring function 167
evaluation 30

advanced 205
order of 132
preventing 121
process 204

evenp function 133
exists function 116, 186, 191, 200
exiting SKILL 221
exponentiation operator (**) 133
expressions, nested 121
extension language environment 276

F
false condition 132
Fibonacci function 354
fileLength function 155
files

compressing 238
encrypting 238

fileSeek function 156
fileTell function 156
findClass function 336
Finder quick reference tool 23
fix function 129
float function 129
floating-point

numbers 69
precision 129

for function 49, 142
forall function 116, 191
foreach function 50, 116, 192
form 166
forms, data entry 31
fprintf function 165
January 2007 375 Product Version 06.70

SKILL Language User Guide
free variable 283
fscanf function 44, 170
function body 76
function call 119
function objects 76, 207
functions. See SKILL functions
funobj function 320

G
garbage collection 219

manual allocation 221
process 219
summary statistics 220
write protection effect on 256

GC. See garbage collection
gcsummary function 220
generic functions 328
gensym function 91
get function 98, 281
get_pname function 91
getc function 171
getCurrentTime function 173
getd function 207, 281
getDirFiles function 158
getFnWriteProtect function 239
getInstallPath function 153
getqq function 94
gets function 170
getShellEnvVar function 173
getSkillPath function 53, 152
getVarWriteProtect function 240
getVersion function 173
getWarn function 217
getWorkingDir function 159
global variables

misusing 246
naming 85
reducing 86
sharing 318
testing 84

globals, dynamic 214

H
hash table. See association tables
hiding private functions 276, 304

I
IEEE Scheme, relationship to

SKILL++ 273
if function 47, 140
ilLoadIL option 230
importSkillVar function 319
include function 238
index function 102
indirection operator 134
infile function 43, 161
infix arithmetic operators 61
infix operators 64, 120
information hiding 304
input

form 166
functions 167
lines 66

inSkill function 320
installation instructions 23
instring function 171
integers 68
interactive loop

exiting 315
starting 315

interpreter
managing symbols 144
top level 218

isDir function 154
isExecutable function 155
isFile function 154
isFileName function 154
isReadable function 154
isWritable function 155

L
lambda function 77, 78, 191, 208, 268
languages

data sharing 313
interactive selection 315
partitioning source code 313, 316
redefining restriction 318

last function 181
length function 39
let function 83, 281, 294, 351
letrec function 296
letseq function 295
lexical scoping 214, 271, 278
January 2007 376 Product Version 06.70

SKILL Language User Guide
line continuation 66
lineread function 169, 274
linereadstring function 169
Lisp language comparison

brackets affecting evaluation 245
building lists 262
commas 246
data manipulation comparison 28
data type difference 29
lambda calculus 208
programming notation 28
to SKILL++ Object System 327

list cells 176
list function 37, 262
listp function 345
lists

accessing 38, 180, 261
altering 179
alternatives to 265
appending 183
association lists 199
building 36, 181, 261, 266
cells 176
commenting traversal code 202
containing sublists 177
containing symbols 177
copying hierarchically 187
copying the top-level 186
definition 35
destructive modification 178
element removal 264
filtering 187
flattening many levels 199
flattening with mapcan 198
how they are stored 176
input length 66
modifying 39
non-destructive modification 178
preventing evaluation of 121
removing elements from 188
reorganizing 184
searching 185, 264
sorting 264
substituting elements 189
summary of operations 178
transforming elements 190
traversing

checking part of a list 200
examples 197
summary 196
with mapping functions 191

validating 190
literal characters 24
load function 168, 238
loadContext function 236
loadi function 168, 238
loadstring function 168
local variables 83
logical operators 46, 121, 132
lowerCase function 103
lowerLeft function 346

M
macro function 77
macros

benefits 210
defining 211
expansion 210
optimizing usage 255
redefining 211

make_<name> function 109
makeContext function 240
makeInstance function 328, 331
makeTable function 113
makeTempFileName function 157
map function 193
map function, differing behavior of 274
mapc function 192
mapcan function 195, 198, 200
mapcar function 194, 197, 200
maplist function 194
mapping functions 267
mapping, performance gains 256
max function 348
measureTime function 254, 269
member function 39, 136, 185, 344
memory allocation 219
memory management. See garbage

collection
memory, optimizing usage 254, 257
memq function 136, 186
method dispatching 339
min function 348
minusp function 133
misusing conditionals 248
modulo operator 133
mprocedure function 79, 82, 211, 274
January 2007 377 Product Version 06.70

SKILL Language User Guide
N
named let 302
naming conventions

Cadence-private functions 59
functions 58
variables 59

nconc function 183, 196, 261, 344
ncons function 182
needNCells function 221
neq function 136
nequal (!=) operator 132
nequal function 123, 136
nesting

expressions 121
function calls 61

newline function 162
nindex function 102
nlambda function 77
nograph option 230
notation

algebraic 61
prefix 61

nprocedure function 78
nth function 38
nthcdr function 180
nthelem function 180
numbers

floating-point 69
integers 68
scaling factors 69

numOpenFiles function 155

O
object-oriented programming 327
oddp function 133
onep function 133
operators

— 123
& 123
<> 122
^ 123
| 123
|| 123, 133
and (&&) 123, 133
arithmetic 124
arrow (->) 90, 94, 122, 310, 323
assignment (=) 72, 281

backquote (‘) 65, 262
binary minus 63
bitwise 126, 134
bnot (~) 122
brackets [] 122
colon (:) 346
comma (,) 65
comma-at (,@) 65
conditional 134
difference (-) 123
dot (.) 94, 122
equal (==) 123, 132
equals sign (=) 72, 281
exponentiation (**) 122, 133
greater than (>) 123
greater than or equal (>=) 123
indirection 134
infix 61, 120, 125
introduction 33
leftshift (<<) 123
less than (<) 123
less than or equal (<=) 123
logical 46, 132
minus (–) 122
modulo 133
nand (~&) 123
nequal (!=) 132
nor (˜|) 123
not equal (!=) 123
null (!) 122
order of evaluation 132
plus (+) 122
postdecrement (s--) 124
postincrement (s++) 122, 124, 351
precedence 121, 124
predecrement (--s) 122, 124
preincrement (++s) 122, 124, 351
quote (’) 262
quotient (⁄) 122
range (:) 123
relational 45, 132
rightshift (>>) 123
slot access (->?) 110
slot access (->??) 110, 323
squiggle arrow (~>) 90, 122
times (*) 122
unary minus 63
xnor (˜^) 123

optimizing tips 258
order of evaluation 64, 132
outfile function 42, 161
January 2007 378 Product Version 06.70

SKILL Language User Guide
output
formatted 163
unformatted 162

P
package, definition of 304
parameters

defining 80
definition 76

parentheses 64, 121
parser, character limits 66
parseString function 102, 357
partitioning source code 313, 316
Pascal language comparison

handling variables 214
p-code 204
symbol property list 93
symbols 92

paths
absolute 150
relative 150
SKILL path 151

pattern matching
example 357
functions 105

plist function 93
plusp function 133
ports

closing 160
draining 161
opening 160
predefined 160

pp function 165, 321, 324
pprint function 166
precision, floating point 129
predicates

comparing functions 135
functions for testing 134
testing the data type of 134, 137

prefix notation 61
prependInstallPath function 153
pretty printing 165, 321, 324
preventing evaluation 121
prime factorization examples 349
primitives 119
print function 41, 162
printf function 41, 43, 164
printlev function 162
println function 41, 162

printstruct function 108, 116
private functions, hiding 276, 304
problems

common questions 37
data type mismatches 35
inappropriate space characters 35
most common 34
system doesn’t respond 34

procedure function 77, 281, 297
procedures

definition 76
returning from 249
See also SKILL functions

profiling 253
prog function 84, 144, 145, 249, 281
prog1 function 147
prog2 function 147
Prolog language comparison 262
property name/value pairs 93
putd function 208, 281
putprop function 97, 232, 281
putpropq function 94, 122
putpropqq function 122

Q
querying system status 172
quick reference for chapters 21
quick reference tool 23
quoting 121, 262

R
read-eval-print loop 204
reading UNIX text files 43
readTable function 115
regExitAfter function 221
regExitBefore function 221
relational operators 45, 132
relative path 150
remd function 189
remdq function 189
remove function 188
remprop function 98
remq function 188
reserved names 84
resume function 315
return function 144, 146
return value (=>) 32
January 2007 379 Product Version 06.70

SKILL Language User Guide
returning from a procedure 249
reverse function 184, 261, 267
rexCompile function 105
rexExecute function 106
rexMagic function 107
rexMatchAssocList function 106
rexMatchList function 106, 357
rexMatchp function 105, 357
rexReplace function 107
rindex function 102
rplaca function 117, 179, 193, 356
rplacd function 180
run time 76

S
saveContext function 224, 235
scaling factors 69
Scheme

bibliography 276
coexistence with SKILL 272
compliance disclaimer 275
functionality in SKILL 272
lexical scoping in 271
migration to 272
origins 272
run-time environment 272

scope of a variable 277, 278
scoping

dynamic 214, 278
examples 279
lexical 214
lexical in Scheme 271
lexical in SKILL++ 278

selecting a language 315
set function 92, 281, 318
setContext function 236
setFnWriteProtect function 239
setof function 116, 187, 344
setplist function 93
setq function 123
setShellEnvVar function 173
setSkillPath function 53, 152
setVarWriteProtect function 239
sh function 172
shell function 172
simplifyFilename function 158
single quote operator 37
SKILL

commenting code 63

compiler 30
evaluator 204, 205
exiting 221
expression 30
interpreter 30
Lisp background 272
path 54, 151
primitives 119
top level 218
white space characters in code 64
white space in code 63

SKILL Development Help 23
SKILL functions

arguments 76
calling syntax 32
conditional functions 140
constructs for defining 77
declaring 52
defining 77
defining parameters 52
definition 30, 76
developing 51
documenting 83
global protection 240
grouping statements 51, 145
hiding private functions 304
iteration functions 141
kinds of 76
making calls 61
overloading 131
parameters 76
physical limits 87
protecting 238
redefining 54, 86
redefining restriction 318
selecting prefixes for 52
selection functions 142
terminology 76
testing predicates 134
ways to submit 31

SKILL++
backward compatibility 271, 275
calling a function in 289
creating a function 289
creating environments 287
debugger commands, general 324
debugging applications 320
declaring local variables in 293
environments 286
function objects in variables 282
functions as arguments 282
January 2007 380 Product Version 06.70

SKILL Language User Guide
functions as data 282
inspecting environments 322
introducing 271
iteration functions 298
modules 307
no Scheme dotted pairs 275
packages 304
returning function behavior 289
semantic differences from Scheme 274
sequencing functions 298
special character restrictions 275
syntax differences from Scheme 273
syntax options 275

SKILL++ Object System
advanced concepts 338
browsing class hierarchy 335
class hierarchy 334
classes 328
defining a class 329
defining a method 332
generic functions 328, 332
getting a class name 336
getting subclasses 337
getting superclasses 336
getting the class of an instance 336
incremental development 340
instance slots 331
instances 328
instantiating a class 331
introduction 327
method dispatching 339
methods vs. slots 341
relationship to Lisp 327
sharing data 341
sharing private functions 341
SKILL functions in 328
subclasses 329
superclasses 329

sort function 185, 346
sortcar function 185
source code

loading 53
maintaining 53
partitioning 313, 316

specifying extension language
by file extension 277
interactively 277
using eval function 277
using toplevel function 277

sprintf function 165
sstatus function 131

stack
definition 307
object 308

stacktrace function 325
status function 131
storing programs as data 209
strcat function 99
strcmp function 100
strings

characters in 101
comparing 100
concatenating 99
converting case 103
creating substrings 102
definition 70
functions for 99
indexing 101
pattern matching 103
tail of 102

stringToFunction function 209
strlen function 101
strncat function 99
strncmp function 101
subclassp function 337
subst function 189
substring function 102
superclassesOf function 336
sxtd function 127
symbol names 72, 91
symbolp function 345
symbols

assigning values to 92
components of 90
creating 91
disembodied property lists 95
function slot 281
in SKILL 280
in SKILL++ 281
print name 91
property list 281
property lists 95
retrieving 92
using quote operator 92
value slots 280

symeval function 92, 205, 280, 281, 345
syntax 61

functions 77
syntax conventions 24
January 2007 381 Product Version 06.70

SKILL Language User Guide
T
tablep function 115
tableToList function 115
tailp function 137
tconc function 182, 184, 261, 267
text files

reading from 43
writing to 42

theEnvironment function 274, 322
toolbox for SKILL development 23
top level

of SKILL 218
specifying a language for 277

toplevel function 315
tracef function 324
true condition 132
type characters, composite 82
type checking 82
type template 83

U
unary minus operator 63
unbound variables 71, 72
UNIX

device 150
directory 150
directory paths 150
file system 150
reading text files 43
writing text files 42

unless function 48, 140
upperCase function 103
upperRight function 346

V
variables

advanced concepts 214
declaring locals with prog 144
defining local 83
definition 119
global 84
internal system 59
introduction 33
misusing globals 246
preventing evaluation of 121

protecting 238
reserved names 84
sharing globals 318
unbound 71, 72

virtual machine 76

W
warn function 217
What’s New 23
when function 48, 140, 351
while function 141, 200, 351
white space 63
white space characters 64
writeTable function 115
writing UNIX text files 42

X
xcons function 181
xCoord function 346

Y
yCoord function 346

Z
zerop function 133
January 2007 382 Product Version 06.70

	Contents
	Preface
	About the SKILL Language
	Quick Look at All the Chapters
	What’s New
	SKILL Development Helpful Hints
	SKILL API Documentation
	Document Conventions
	Syntax Conventions
	Data Types

	Getting Started
	SKILL’s Relationship to Lisp
	Programming Notation
	Data Manipulation
	Characters

	Cadence SKILL Language at a Glance
	Terms and Definitions
	Invoking a SKILL Function
	Return Value of a Function
	Simplest SKILL Data
	Calling a Function
	Operators Are SKILL Functions
	Using Variables
	Alternative Ways to Invoke a Function
	Solving Some Common Problems

	SKILL Lists
	Building Lists
	Accessing Lists
	Modifying Lists

	File Input/Output
	Displaying Data
	Writing Data to a File
	Reading Data from a File

	Flow of Control
	Relational Operators
	Logical Operators
	The if Function
	The when and unless Functions
	The case Function
	The for Function
	The foreach Function

	Developing a SKILL Function
	Grouping SKILL Statements
	Declaring a SKILL Function
	Defining Function Parameters
	Selecting Prefixes for Your Functions
	Maintaining SKILL Source Code
	Loading Your SKILL Source Code
	Redefining a SKILL Function

	Language Characteristics
	Naming Conventions
	Names of Functions
	Cadence-Private Functions
	Names of Variables

	Function Calls
	SKILL Syntax
	Special Characters
	Comments
	White Space
	White Space Characters
	Parentheses
	Super Right Bracket
	Backquote, Comma, and Comma-At
	Line Continuation
	Length of Input Lists

	Data Characteristics
	Data Types
	Numbers
	Strings
	Atoms
	Escape Sequences
	Symbols
	Characters

	Creating Functions in SKILL
	Terms and Definitions
	Kinds of Functions
	Syntax Functions for Defining Functions
	procedure
	lambda
	nprocedure
	defmacro
	mprocedures
	Summary of Syntax Functions

	Defining Parameters
	@rest Option
	@optional Option
	@key Option
	Combining Arguments

	Type Checking
	Local Variables
	Defining Local Variables Using the let Function
	Defining Local Variables Using the prog Function
	Initializing Local Variables to Non-nil Values

	Global Variables
	Testing Global Variables
	Avoiding Name Clashes
	Naming Scheme
	Reducing the Number of Global Variables

	Redefining Existing Functions
	Physical Limits for Functions

	Data Structures
	Access Operators
	Symbols
	Creating Symbols
	The Print Name of a Symbol
	The Value of a Symbol
	The Function Binding of a Symbol
	The Property List of a Symbol
	Important Symbol Property List Considerations

	Disembodied Property Lists
	Important Considerations
	Additional Property List Functions

	Strings
	Concatenating Strings
	Comparing Strings
	Getting Character Information in Strings
	Indexing with Character Pointers
	Creating Substrings
	Converting Case
	Pattern Matching of Regular Expressions
	Pattern Matching Functions

	Defstructs
	Behavior Is Similar to Disembodied Property Lists
	Additional Defstruct Functions
	Accessing Named Slots in SKILL Structures
	Extended defstruct Example

	Arrays
	Allocating an Array of a Given Size
	Accessing Arrays

	Association Tables
	Initializing Tables
	Manipulating Table Data
	Association Table Functions
	Traversing Association Tables
	Implementing Sparse Arrays

	Association Lists
	User-Defined Types

	Arithmetic and Logical Expressions
	Creating Arithmetic and Logical Expressions
	Role of Parentheses
	Quoting to Prevent Evaluation
	Arithmetic and Logical Operators
	Predefined Arithmetic Functions
	Bitwise Logical Operators
	Bit Field Operators
	Mixed-Mode Arithmetic
	Function Overloading
	Integer-Only Arithmetic
	True (non-nil) and False (nil) Conditions
	Controlling the Order of Evaluation
	Testing Arithmetic Conditions

	Differences Between SKILL and C Syntax
	SKILL Predicates
	The atom Function
	The boundp Function
	Using Predicates Efficiently
	The eq Function
	The equal Function
	The neq Function
	The nequal Function
	The member and memq Functions
	The tailp Function
	Type Predicates

	Control Structures
	Control Functions
	Conditional Functions
	Iteration Functions

	Selection Functions
	Declaring Local Variables with prog
	The prog Function
	The return Function

	Grouping Functions
	Using prog, return, and let
	Using the progn Function
	Using the prog1 and prog2 Functions

	I/O and File Handling
	File System Interface
	Files
	Directories
	Directory Paths
	The SKILL Path
	Working with the SKILL Path
	Working with the Installation Path
	Checking File Status
	Working with Directories

	Ports
	Predefined Ports
	Opening and Closing Ports

	Output
	Unformatted Output
	Formatted Output
	Pretty Printing

	Input
	Reading and Evaluating SKILL Formats
	Reading but Not Evaluating SKILL Formats
	Reading Application-Specific Formats
	Reading Application-Specific Formats from Strings

	System-Related Functions
	Executing UNIX Commands
	System Environment

	Advanced List Operations
	Conceptual Background
	How Lists Are Stored in Virtual Memory
	Destructive versus Non-Destructive Operations

	Summary of List Operations
	Altering List Cells
	The rplaca Function
	The rplacd Function

	Accessing Lists
	Selecting an Indexed Element from a List (nthelem)
	Applying cdr to a List a Given Number of Times (nthcdr)
	Getting the Last List Cell in a List (last)

	Building Lists Efficiently
	Adding Elements to the Front of a List (cons, xcons)
	Building a List with a Given Element (ncons)
	Adding Elements to the End of a List (tconc)
	Appending Lists

	Reorganizing a List
	Reversing a List
	Sorting Lists

	Searching Lists
	The member Function
	The memq Function
	The exists Function

	Copying Lists
	The copy Function
	Copying a List Hierarchically

	Filtering Lists
	Removing Elements from a List
	Non-Destructive Operations
	Destructive Operations

	Substituting Elements
	Transforming Elements of a Filtered List
	Validating Lists
	The forall Function
	The exists Function

	Using Mapping Functions to Traverse Lists
	Using lambda with the map* Functions
	Using the map* Functions with the foreach Function
	The mapc Function
	The map Function
	The mapcar Function
	The maplist Function
	The mapcan Function
	Summarizing the List Traversal Operations

	List Traversal Case Studies
	Handling a List of Strings
	Making Every List Element into a Sublist
	Using mapcan for List Flattening
	Flattening a List with Many Levels
	Manipulating an Association List
	Using the exists Function to Avoid Explicit List Traversal
	Commenting List Traversal Code

	Advanced Topics
	Cadence SKILL Language Architecture and Implementation
	Evaluation
	Evaluating an Expression (eval)
	Getting the Value of a Symbol (symeval)
	Applying a Function to an Argument List (apply)

	Function Objects
	Retrieving the Function Object for a Symbol (getd)
	Assigning a New Function Binding (putd)
	Declaring a Function Object (lambda)
	Evaluating a Function Object
	Efficiently Storing Programs as Data

	Macros
	Benefits of Macros
	Macro Expansion
	Redefining Macros
	defmacro
	mprocedure
	Using the Backquote (`) Operator with defmacro
	Using an @rest Argument with defmacro
	Using @key Arguments with defmacro

	Variables
	Lexical Scoping
	Dynamic Scoping
	Dynamic Globals

	Error Handling
	The errset Function
	Using err and errset Together
	The error Function
	The warn Function
	The getWarn Function

	Top Levels
	Memory Management (Garbage Collection)
	How to Work with Garbage Collection
	Printing Summary Statistics
	Allocating Space Manually

	Exiting SKILL

	Delivering Products
	Contexts
	Deciding When to Use Contexts
	Creating Contexts
	Creating Utility Functions
	Building the Contexts
	Initializing Contexts
	Loading Contexts
	Customizing External Contexts
	Potential Problems
	Context Building Functions

	Autoloading Your Functions
	Encrypting and Compressing Files
	Protecting Functions and Variables
	Explicitly Protecting Functions
	Protecting Variables
	Global Function Protection

	Writing Style
	Code Layout
	Comments and Documentation
	Function Calls and Brackets
	Commas

	Using Globals
	Coding Style Mistakes
	Inefficient Use of Conditionals
	Misusing prog and Conditionals

	Red Flags
	Any Use of eval or evalstring
	Excessive Use of reverse and append
	Excessive Use of gensym and concat
	Overuse of the Functions Combining car and cdr
	Use of eval Inside Macros
	Misuse of prog and return in SKILL++ mode

	Optimizing SKILL
	Optimizing Techniques
	Macros
	Caching
	Mapping and Qualifying
	Write Protection
	Minimizing Memory

	General Optimizing Tips
	Element Comparison
	List Accessing
	List Building
	List Searching
	List Sorting
	Element Removal and Replacing
	Alternatives to Lists

	Miscellaneous Comparative Timings
	Element Comparison
	List Building
	Mapping Functions
	Data Structures

	About SKILL++ and SKILL
	Background Information about SKILL and Scheme
	Relating SKILL++ to IEEE and CFI Standard Scheme
	Syntax Differences
	Semantic Differences
	Syntax Options
	Compliance Disclaimer
	References

	Extension Language Environment
	Contrasting Variable Scoping
	SKILL++ Uses Lexical Scoping
	SKILL Uses Dynamic Scoping
	Lexical versus Dynamic Scoping
	Example 1: Sometimes the Scoping Rules Agree
	Example 2: When Dynamic and Lexical Scoping Disagree
	Example 3: Calling Sequence Effects on Memory Location

	Contrasting Symbol Usage
	How SKILL Uses Symbols
	How SKILL++ Uses Symbols

	Contrasting the Use of Functions as Data
	Assigning a Function Object to a Variable
	Passing a Function as an Argument

	SKILL++ Closures
	Relationship to Free Variables
	How SKILL++ Closures Behave

	SKILL++ Environments
	The Active Environment
	The Top-Level Environment
	Creating Environments
	Functions and Environments
	Persistent Environments

	Using SKILL++
	Declaring Local Variables in SKILL++
	Using let
	Using letseq
	Using letrec
	Using procedure to Declare Local Functions

	Sequencing and Iteration
	Using begin
	Using do
	Using a Named let

	Software Engineering with SKILL++
	SKILL++ Packages
	The Stack Package
	Retrofitting a SKILL API as a SKILL++ Package
	SKILL++ Modules
	Stack Module Example
	The Container Module

	Using SKILL and SKILL++ Together
	Selecting an Interactive Language
	Starting an Interactive Loop (toplevel)
	Exiting the Interactive Loop (resume)

	Partitioning Your Source Code
	Cross-Calling Guidelines
	Avoid Calling SKILL Functions That Call eval, symeval, or evalstring
	Avoid Calling nlambda Functions
	Use the set Function with Care

	Redefining Functions
	Sharing Global Variables
	Using importSkillVar
	How importSkillVar Works
	Evaluating an Expression with SKILL Semantics

	Debugging SKILL++ Applications
	Retrieving a Function Object (funobj)
	Examining the Source Code for a Function Object
	Pretty-Printing Package Functions
	Inspecting Environments
	Retrieving the Active Environment
	Testing Variables in an Environment (boundp)
	Using the -> Operator with Environments
	Using the ->?? Operator with Environments
	Evaluating an Expression in an Environment (eval)
	Retrieving an Environment (envobj)
	Examining Closures
	General SKILL Debugger Commands

	SKILL++ Object System
	Basic Concepts
	Classes and Instances
	Generic Functions and Methods
	Subclasses and Superclasses
	Defining a Class (defclass)
	Instantiating a Class (makeInstance)
	Reading and Writing Instance Slots
	Defining a Generic Function (defgeneric)
	Defining a Method (defmethod)

	Class Hierarchy
	Browsing the Class Hierarchy
	Getting the Class Object from the Class Name
	Getting the Class Name from the Class Object
	Getting the Class of an Instance
	Getting the Superclasses of an Instance
	Checking if an Object Is an Instance of a Class
	Checking if One Class Is a Subclass of Another

	Advanced Concepts
	Method Argument Restrictions
	Applying a Generic Function
	Incremental Development
	Methods versus Slots
	Sharing Private Functions and Data Between Methods

	Programming Examples
	List Manipulation
	Symbol Manipulation
	Sorting a List of Points
	Computing the Center of a Bounding Box
	Computing the Area of a Bounding Box
	Computing a Bounding Box Centered at a Point
	Computing the Union of Several Bounding Boxes
	Computing the Intersection of Bounding Boxes
	Prime Factorizations
	Evaluating a Prime Factorization
	Computing the Prime Factorization
	Multiplying Two Prime Factorizations
	Using Prime Factorizations to Compute the GCD

	Fibonacci Function
	Factorial Function
	Exponential Function
	Counting Values in a List
	Counting Characters in a String
	Regular Expression Pattern Matching
	Geometric Constructions
	Application Domain
	Implementation
	Classes
	Generic Functions
	Describing the Methods by Class
	Source Code
	Extending the Implementation

	Index

