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Abstract
This paper describes Skills-ML, an open source Python software library for applying natural 
language processing and machine learning algorithms to labor market problems such as 
automation. Skills-ML allows the user to take unstructured and semistructured text, such as job 
postings, and perform relevant tasks such as competency extraction and occupation 
classification using existing or custom competency ontologies. Skills-ML is designed to have no 
infrastructural dependencies, allowing the user to easily run these tasks on their laptop or an 
available computing cluster.  Skills-ML has been used to produce large open research datasets 
from a raw job posting dataset, without needing to spend a long time transforming data and 
interfacing with generic ML and NLP libraries. This paper describes the capabilities and general 
interface of Skills-ML and includes descriptive statistics for applying the library to a job posting 
sample. Skills-ML is available at https://www.github.com/workforce-data-initiative/skills-ml

Introduction
Artificial Intelligence (AI), machine learning, and large-scale data analytic technologies are being
used to automate routine tasks, improve decision-making, and redesign the customer 
experience in a wide variety of business processes in both the public and private sectors. The 
relatively recent dramatic increase in both the algorithmic performance and public awareness of 
AI has fueled both an active public debate, as well as a pressing research agenda among 
academic economists and public policy researchers about the future of work. Central to this 
debate is the need to better understand how automation increases the value of some skills while
making others partially or entirely obsolete.

Autor, Levy, and Murnane (2003) set the stage for assessing the exposure of economic 
activities to the emergence of information technology, but no such framework exists for AI, 
which  goes  beyond merely the execution of instructions. Advances in cloud computing, 
computing power, and data availability have allowed deep learning algorithms to make 
remarkable progress in executing tasks under ambiguity. However, measurement of these 
advances has been challenging. Acemoglu and Restrepo (2018) look at the expansion of 
industrial robots, but these measures are tracked by industry and year and primarily 
representative of manufacturing industries. Finally, and perhaps most important, Acemoglu and 
Restrepo (2018) state how wages and the incentives for automation and the creation of new 
tasks respond to policies, factor prices, and supplies. Frey and Osborne (2017) look at all 
occupations, but their assessment of exposure is highly subjective.

At the same time, educational institutions and employers are increasingly instrumenting their 
education, training, and hiring processing and using data to change the way that labor supply 
and demand line up. On the demand side, employers and their HR vendors are using these 
technologies to revamp the end-to-end talent sourcing process. These technologies are 
increasingly being used in performance analytics to determine which skills, educational, and 
career backgrounds are most important in job performance and how this information can be 
used to predict which job candidates would be good hires. These technologies are also being 
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used to improve outreach and recruitment in the employer’s talent network and improve 
decision-making and connections in the talent screening and hiring process.  On the supply 
side, universities and colleges are exploring how to use these technologies to improve 
connections with current and future students and improve outreach, enrollment, education, and 
student services. Governments are also using these technologies to improve services.

A common thread across each of these needs, as well as the needs of other labor market 
research areas such as policy changes, is the ability to identify, relate, and translate 
competencies. This is what Skills-ML attempts to address.

Applications of Skills-ML
Skills-ML can be used to build applications for many uses in diverse research areas and 
industries helping many use cases across different audience types. Several examples are 
detailed below.

Underemployed Job Seeker
This type of job seeker may be helped by an application that can take his current occupation, 
current location, and a dream job to build a “roadmap” to that dream job. An application  
developer can use Skills-ML to classify occupations and extract competencies from local job 
postings. With this information, the application can find the competencies that the job seeker 
should acquire that are not covered by his current occupation, and connect him with local 
opportunities to gain those competencies.

Military Spouse
Military spouses often suffer from geographical skills mismatch, in which they have lived in 
many different places and held different jobs in each of those places. Similar job titles may 
consist of different competencies depending on location so when looking for jobs in a new 
place, the spouse may not know what to search for. An application that could help them is an 
occupation suggestion engine based on their resume data and local job postings from the 
locations that they have worked in. Similar to the underemployed job seeker use case, local job 
postings from those places would be used to classify occupations and extract competencies to 
build a competency profile. Where this differs from the underemployed job seeker use case is 
that instead of targeting a specific occupation in the new location, it would compare all 
occupations in the new location in competency space to the user’s competency profile to 
suggest occupations that most closely match their current competency profile.
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Community College
To succeed, community colleges and other training providers would like to keep their course 
offerings relevant from both a time and geographic standpoint. They want to know which 
occupations and competencies will likely be relevant in their area on an intermediate to long-
term scale (e.g. a year). They can feed both the local job postings and their own course syllabi 
into Skills-ML to extract competencies from each to understand the overlap in  competencies, 
which will identify what is relevant in their courses. They can use this information to modify their 
curriculum by creating or modifying courses for in-demand competencies or cancel courses for 
competencies found to be irrelevant.

Economics Research
Economists may want to understand the production function for hiring. They can use Skills-ML 
to classify occupations and extract competencies from nationwide job postings to analyze firm 
recruitment efforts alongside other economic data to estimate the production function.

Tasks Available in Skills-ML
The applications described above feature a large amount of overlap in terms of the tasks that 
are necessary to complete them.

Occupation Classification
The process of taking a document (such as a job posting) and inferring the occupation 
described by the document is common. A lot of external data (e.g. from labor surveys) is 
collected at the occupation level, so being able to classify an occupation from a document 
enables a lot of analyses.
 
Without Skills-ML, assembling an occupation classification pipeline involves writing a significant 
amount of “glue code” (code that transforms data between formats needed by different off-the-
shelf libraries) to interface with:

- NLP library like NLTK for parsing text
- Embedding library like word2vec for vectorizing text
- ML library like scikit-learn for training and evaluating models

With Skills-ML, a user can import a pipeline that works with JSON documents as input and 
handles all of the vectorization, training and testing tasks. It allows the user to define groups of 
occupations as the unit of evaluation without writing extra code. In addition, the pipeline 
enforces the use of metadata describing each phase which helps the user manage the results of
their experimentation.

Competency Extraction 
The process of taking document text and finding the competencies described within it is 
important to many analyses. Competencies are a common component in many documents 
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related to the labor market (job postings, course descriptions, resumes) and extracting 
competencies allows us to compare these documents in a common language. 

There are a variety of methods to extract competencies, each with their own positives and 
negatives. Some are simple NLP methods which would require working directly with an NLP 
library without Skills-ML. Others are based on matching words or phrases from a known list of 
competencies, which would require acquiring and formatting the known competencies in a 
specific way, which is not necessary using Skills-ML’s prebuilt ontologies. By implementing a 
variety of these methods using the same common input and output formats, Skills-ML allows the
user to try different methods and evaluate them without writing glue code.

In addition, since both Occupation Classification and Competency Extraction use the same 
document input format, analyses that require both tasks are much easier to get off the ground 
using Skills-ML.

Skills-ML Concept Overview
This section describes a few general concepts used by the Skills-ML library, including how they 
are used outside of Skills-ML, as well as what they mean within the library. These concepts are 
referenced heavily in the rest of the paper. Terms formatted with Italics are used throughout this
section to denote specific classes or functions within Skills-ML.

Skills and Competencies
The terms ‘skill’ and ‘competency’ are used interchangeably in many contexts, and they are 
similar but differ in important ways.

A competency is any expertise or talent that is useful for a job. Examples of competencies can 
vary widely but include developed capacities (e.g. active listening), proficiency with tools or 
technology (e.g. lancets, Microsoft Word), innate abilities (e.g. originality), and academic 
knowledge (e.g. medicine).

Referring to something as a skill, depending on the audience, may denote different subsets of 
competencies, or just as a shorthand for any competency. O*NET (https://www.onetonline.org/),
for instance, uses ‘skill’ to refer to developed capacities (e.g. active listening). ESCO 
(https://ec.europa.eu/esco/portal) uses the terms ‘skill’ and ‘competence’ interchangeably. Other
audiences may understand ‘skill’ to refer to some other subset of competencies.
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The Skills-ML library is aimed at working with all types of competencies, as all of these are 
useful pieces of information about the labor market. Competency will be used throughout the 
rest of this paper for simplicity and clarity.

Occupation
An occupation is a normalized job title (e.g. Nurse Practitioner) defined in a competency 
framework. Normally, each occupation is assigned to an ID. The occupation ID is sometimes, 
but not necessarily structured in a hierarchical way. For instance, the coding structure of O*NET
occupation is the Standard Occupational Classification (SOC) system which is a federal 
statistical standard used by federal statistical agencies to classify workers and jobs into 
occupational categories. In O*NET, occupations are categorized into different major groups as 
illustrated in the graph below. For example, Nurse Practitioner and Civil Engineer are 
occupations, but belong to Healthcare Practitioners and Architecture and Engineering, 
respectively. 

Skill and Competency Contexts 
A skill/competency context describes the occurrence of a competency in some unstructured 
piece of text, such as a job posting or course description. Finding these occurrences is useful 
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for many tasks, such as analyzing the demand for competencies in job postings or the available 
opportunities to learn competencies in college courses.

Finding these occurrences is not easy, as there are numerous pieces of metadata regarding 
these occurrences that are important to track for a proper analysis.

Most important is the context (e.g. the sentence or paragraph in which the occurrence resides). 
It enables a human or an algorithm to determine if an occurrence is a true reference to a 
competency. For example, job postings routinely include links to social media pages such as 
Facebook, Twitter, or LinkedIn associated with the hiring company. If the context of these social 
media links were not taken into consideration, then it would appear that all job postings would 
require Facebook, Twitter, and LinkedIn as competencies. However, managing company 
content on social media is itself a competency for some occupations such as a Social Media 
Manager. The context can help disambiguate these from true references to competencies.

There are other useful pieces of metadata to attach to these occurrences, such as a reference 
to the matched competency in the reference ontology (if any), a reference to the method of 
extraction, and the original document. This metadata for each occurrence is contained in an 
object that Skills-ML calls a CandidateSkill.

Ontologies
Essentially, an ontology is a knowledge graph to limit complexity and organize information into 
data and knowledge, encompassing a representation, formal naming, and definition of the 
categories, properties, and relations for certain domain knowledge. It is a concept that can be 
implemented in different ways. An ontology in Skills-ML specifically represents a collection of 
competencies, occupations, and all relationships between competencies and occupations. 

There are a couple of different competency framework resources that have their own defined skills, 
abilities, knowledge and tools for each occupation, but they are not necessarily ontological, nor do 
they have their own ontological structures. For example, O*NET itself is not ontological and ESCO 
has its own defined ontology. One task in Skills-ML is to map the non-ontological or pre-defined 
ontological structure to the Skills-ML’s CompetencyOntology structure which is implemented by 
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JSON-LD, and based on Credential Engine's CTDL-ASN format for Competencies, which is more 
flexible and can be used commonly throughout the Skills-ML library. 

Implementation
This section details the capabilities that Skills-ML gives to researchers. The methodology and 
options for use are discussed heavily. For code examples and user instructions, refer to the 
library documentation. Terms formatted with italics are used throughout this section to denote 
specific classes or functions within Skills-ML. 

Open Standards for Input and Output
Open standards are used as input and output as often as possible to serve the greater goal of 
interoperability between Skills-ML and other work in the workforce data space.

Input
Skills-ML makes use of schema.org’s JobPosting standard. As it has been in use for a long 
time, some open sources are already using this standard, which is easy to import. Other job 
posting data sources are converted into the schema.org Schema and all work on job postings is 
done using this standard schema.

Users of Skills-ML who convert any job posting source they have access to into this schema can
use any related functionality within the library whether it is stored locally, in the cloud, or in 
memory.

Output
When possible, JSON is used as an output format. Ontologies can be stored and retrieved as 
JSON-LD with a particular goal of interoperability by using the emerging CTDL-ASN standard 
for competencies. Candidate skills and evaluation metrics are returned as very simple data 
structures than can be easily serialized, in addition to convenience utilities that store them as 
JSON.

Modeling outputs that would be too complex to store with a simple format such as JSON are 
stored in the native format used by the underlying libraries. Word embeddings are stored as 
Gensim models and classifiers are stored as scikit-learn pickles.
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Tabular output is also utilized when beneficial for the audience. The convenience functions for 
running document collections through various Skills-ML algorithms and aggregating their output 
data into CSV format to be easily used by researchers in the social sciences.

Generating Ontologies
Basic Structure
The structure of ontologies borrows a lot from graph theory, and in this section we’ll use 
terminology from graph theory such as ‘nodes’ and ‘edges’. For instance, when considering 
competencies, each competency is a ‘node’ and each relationship between competencies is an 
‘edge’. Ontologies are represented as undirected graphs, and in the library are known as 
CompetencyOntology objects. Each node in a CompetencyOntology can be either a 
Competency or Occupation (and in the future could be expanded to include other types of 
nodes), and edges represent relationships between two competencies, two occupations, or an 
occupation and a competency.

In keeping with the CTDL-ASN standard, the nodes themselves store the edges to other nodes 
of the same type. This is so the collection of nodes of a single type (say, all Competencies) is an
independent framework usable in its own right, with all of the relations between different 
competencies intact.

The CompetencyOntology object itself contains the edges between nodes of different types. 
The existence of an edge between a Competency and an Occupation node signals that the 
Competency is relevant to the Occupation. 

Hierarchies
Nodes of the same type have some special semantics for defining parent/child relationships as 
this is a very common relationship necessary to express existing competency and occupation 
frameworks. A node defined as a parent generally is a broader version of all of its children, 
having many shared attributes. For instance, ESCO defines an ‘advanced nurse practitioner’ 
and ‘specialist nurse’ as both being children of ‘nursing professionals’. These occupations 
understandably share many competencies, and it is easy to imagine experience in any type of 
nursing professional occupation as being broadly applicable to other nursing professional 
occupations.
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The same hierarchy is expressible in competencies; ‘proficiency with object-oriented 
programming software’ can be a competency that has many children, such as ‘proficiency with 
programming in Python’ and ‘proficiency with programming in Java’. Although they are distinct 
competencies, experience with one object-oriented programming language typically lessens the 
burden of learning another object-oriented programming language.

This parent/child hierarchy is necessary, but not itself sufficient for defining rich ontologies 
capable of expressing the relationships competencies can share. It can be useful to define 
relationships between competencies with different parents, or more rich relationships between 
competencies of the same parent. For this reason, it is possible to add other edge attributes. 
CTDL-ASN defines a number of ways to align concepts with each other, and each Competency 
node can be used to store these alignments as well as any other desired alignments.
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Generation
CompetencyOntology objects can be generated programmatically by users of the Skills-ML 
library, either by iteratively calling methods to add nodes and edges, or by importing a JSON-LD
file that defines the ontology. The semantics assumed by the CompetencyOntology JSON-LD 
importer are aimed at compatibility with other competency frameworks that follow the CTDL-
ASN format. Although CTDL-ASN is only scoped for competencies and thus is not 1-1 
compatible with a CompetencyOntology object, the competency portion of the 
CompetencyOntology is encapsulated by an object known as a CompetencyFramework, which 
can be used whenever competencies are the only node type needed.

A CompetencyOntology can also be produced algorithmically, from a list of CandidateSkills. If a 
competency extraction method, or ensemble of methods, is trusted enough to produce an 
ontology, this can be done automatically. Each competency name represented by the list of 
CandidateSkills is assumed to be a competency, and if there are occupations present in the 
source documents, those occupations will be added to the CompetencyOntology linked to the 
competencies they co-occur with.

Intrinsic Occupation Clustering
Clustering
Unlike competency, an occupation is defined as a leaf in a disjoint tree, which is less complex, 
but it still has the hierarchy structure. All the non-leaf nodes are some kind of classification 
determined by domain experts in different levels. For example, O*NET has 23 trees where each
tree is a major group. It starts from the top node as a major group and splits into minor groups. 
Each minor group is broken into broad occupations, which is broken into detailed occupations. 
Finally, the leaves are the final SOC codes representing occupations with no children. A cluster 
here can be defined as leaves collapsed in different levels of a tree. In other words, those 
occupations who share the same parent or ancestor are in the same cluster. Therefore, an 
occupation tree is a cluster and there are clusters within clusters. Note that the tree structure of 
ESCO is very similar to O*NET, but it is deeper and denser.

Skills-ML has predefined two intrinsic clusterings for the O*NET ontology model. 

1. MajorGroup - Occupation: Cluster concepts are major groups and cluster members are 
the occupation leaves of each major group tree.

2. MajorGroup - Competency: With the same major group clustering, one can collect the 
competencies associated to member occupations of a cluster. Therefore, cluster 
concepts are major groups and cluster members are the competencies collected from all
the occupations leaves of each major group.

Hierarchical Distance
Since each digit in the SOC code in O*NET or the occupation code in ESCO means some kind 
of split in an occupation tree, a distance metric can be defined between two occupations as the 
total number of steps to the common ancestor. For example, the occupation tree in O*NET has 
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5 layers. Within the same tree, the maximum distance of two occupations is 4 steps. Since each
occupation tree does not have a link with other occupation trees, two occupations from different 
trees will have a distance of 5. The caveat of this distance is its lack of taking inter-class 
information into account. In other words, if two occupations are in different occupation trees, the 
distance is the maximum distance no matter how the occupations may be related to each other. 
For example, the distance between Physicists (19-2012) and Computer and Information 
Research Scientists (15-1221) is the same as the distance between Physicists (19-2012) and 
Graphic Designers(27-1024), which does not really capture the true relationship between each 
occupation pairing. Therefore, a more well-defined distance metric is needed to better describe 
the relationship between the occupations. 

Mixing Occupation and Competency Data for Clustering
One metric to determine the similarity of two occupations is to look at the common 
competencies shared by them. If two occupations shared a lot of competencies, even though 
the names of two occupations are very different or their locations in the occupation tree are very
far from each other, they will be viewed as similar occupations. Therefore, the distance metric 
will be defined as the complementary of the similarity metric. The jaccard distance will be used 
as our distance metric, which is equal to 1 -  jaccard similarity. In terms of the occupation and 
competency, the jaccard similarity of two occupations is defined as the number of common 
competencies divided by the number of total distinct competencies from two occupations. Since 
there exists a distance between any two occupations, a distance matrix for any ontology can be 
generated which can then be used to find the occupation clusters. This distance matrix can be 
used with any number of different clustering algorithms. 

Labeling and Dictionary-Based Matching
Overview
There are multiple existing ontologies available for use, and there are many types of analyses 
involving matching terms from these ontologies within large amounts of unstructured text, such 
as job postings. A community college may want to see which set of competencies is the most in 
demand within their metropolitan area in order to create new courses. An economist studying 
automation may want to see which competencies have been declining in importance over time. 
A researcher looking for emerging competencies may want to use an existing ontology as a 
base to add new terms.  Skills-ML aims to make it as easy as possible for researchers to find 
occurrences of these terms within unstructured text in an efficient manner.

Matching
Skills-ML uses different methods for finding occurrences of known terms in unstructured text.

● Exact matching finds an exact occurrence of a term in a CompetencyFramework

● Fuzzy matching finds occurrences of CompetencyFramework terms within a reasonable 
(and configurable) edit distance1, in order to catch misspellings or similar forms of these 
terms within the text. To make this procedure manageable for a large set of documents, 

1https://en.wikipedia.org/wiki/Edit_distance
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the symspell algorithm is used with a sliding window of n-grams, which comes up with 
different results than exact matching if searched terms do not match up with word 
boundaries in the text (e.g. searching for ‘sledding’ in a document that contains the string
‘skating/sledding’).

● Occupation-scoped exact matching applies prior knowledge of competency/occupation 
matches encoded in CompetencyOntology to scope its search for terms that are known 
to be relevant for the occupation associated with the text. This provides a high-precision 
approach to implement exact matching, at the expense of a good amount of recall.

Evaluation
It is important to have a way to compare the results from different matching strategies. Expert-
labeled ground truth data, or a ‘gold standard’ dataset, are always the ideal goal, to verify 
whether some CandidateSkill produced by an algorithm truly represents a competency in that 
context. Although precision in this sense is important, it is not the only useful metric, and it can 
be useful to generate metrics on bodies of text that are too large to reasonably produce gold 
standard labels. For this reason, Skills-ML implements a variety of metrics, some that only 
require a collection of CandidateSkills in order to compute.

● TotalOccurrences simply counts how many candidate skills were generated for the 
sample. This is a basic ‘sanity check’ metric and is most useful in conjunction with other 
metrics.

● TotalVocabularySize counts how many distinct competencies were found. This gives the
researcher an idea of the breadth of the extraction results.  If the number is too close to 
TotalOccurrences, the extractor may be producing matches that are too detailed and do 
not repeat. If the number is too small, the extractor may only be successful on a small, 
biased sample of desired terms.

● PercentageNoSkillDocuments computes the percentage of documents that failed to 
produce a candidate skill. If the researcher’s goal is to apply an extraction method that is
useful for most documents, a high value for this metric would be concerning. When 
comparing this value across many different skill extractors, a high minimum value may 
indicate a problem with the document sample more than a problem with the skill 
extractors.

● MedianSkillsPerDocument computes the median number of candidate skills per 
document, which aims to measure skill density.

● SkillsPerDocumentHistogram is a more detailed version of 
PercentageNoSkillDocuments and MedianSkillsPerDocument. Using a fixed number of 
bins, this function computes the number of skills per document for each percentile bin 
and shows an even more detailed picture of skill density. 

● OntologyCompetencyRecall takes an ontology and the candidate skills to compute the 
percentage of competencies in the ontology that were present at least once in the 
sample. If a sample appears to be skill-dense, a low value here may indicate some 
problems with the ontology, or a competency bias on the part of the skill extraction 
method.
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● OntologyOccupationRecall takes an ontology in addition to the candidate skills and 
computes the percentage of occupations in the ontology that have a candidate skill 
present. This is only useful for documents that include an occupation. It is important to 
note that this is different than just looking at the occupations in the sample. This function 
takes into consideration the occupations with skills in the sample. This can provide a 
view into whether or not the skill extraction method is biased against different 
occupations.

● GoldStandardPrecision takes two sets of candidate skills from the same sample: one to 
interpret as ground truth, the other to evaluate against the ground truth. The function 
calculates the percentage of candidate skills in the evaluation list that are also present in
the gold standard list.

● GoldStandardRecall takes two sets of candidate skills from the same sample: one to 
interpret as ground truth, the other to evaluate against the ground truth.  The function 
calculates the percentage of candidate skills in the gold standard list also present in the 
evaluation list.

Labeling
CandidateSkills have thus far been discussed in the context of algorithms, but can also be 
produced by humans. Skills-ML does not include any interface for human labeling, but does 
include import and export utilities for interfacing with BRAT labeling software.

Representation Learning
Overview
Labor market data tends to be large in scale, but represented as raw text. Consequently, an 
important early step for most tasks is to transform texts into a mathematical form that can be 
used in the downstream tasks. Representation learning is good for this purpose. Representation
learning is a general term for techniques that allow a system to automatically discover the 
representations needed for feature detection or classification from raw data. In Natural 
Language Processing (NLP), it is also recognized as vector space model (VSM) or word 
embedding. Word embeddings or vector space models are a more informative way of 
representing words, sentences or documents in a vector form, compared to one-hot encodings. 
VSMs have a long, rich history in NLP, but all methods depend in some way or another on the 
Distributional Hypothesis, which states that words that appear in the same contexts share 
semantic meaning. 

Why Embedding?
Embeddings that are pre-trained on a large corpus can be plugged into a variety of downstream 
task models (e.g. sentiment analysis, classification) to automatically improve their performance 
by incorporating some general word/sentence representations learned on the larger dataset. In 
the context of skills and jobs, an embedding model trained on large amount of job posting data 
is able to map a skill or a job title into a high dimensional space as well as preserving the 
contextual and semantic relationship. Ideally, a good embedding model will cluster similar skills 
and jobs.  
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Embedding Model Pool
Many word embedding techniques have been developed since word2vec, the most impactful 
embedding algorithm, was published in 2013. Currently, Skills-ML includes word2vec, doc2vec 
and fastext and may include more in the future. For more details of how each model works, 
please see each paper’s link.

● Word2VecModel is able to look up a word vector and infer a sentence/paragraph vector 
by averaging each word in a sentence/paragraph. It supports online learning. For out-of-
vocabulary word handling of sentence/paragraph inference, a random vector will be 
assigned with the same dimension.

● Doc2VecModel is able to look up a word vector and infer a sentence/paragraph vector 
by gradient descending on the fly, so it is non-deterministic. It does not support online 
learning. 

● FastTextModel is able to look up a word vector and infer a sentence/paragraph vector by
averaging each word in a sentence/paragraph. It supports online learning. For out-of-
vocabulary word handling of sentence/paragraph inference, it sums all vectors of the 
unseen word’s char-ngrams. If none of the char-ngrams of the unseen word is present, a
random vector will be assigned with the same dimension.

Embedding Training
Skills-ML includes online learning for training an embedding model if the selected model allows. 
The EmbeddingTrainer is able to specify the corpus, the model and the batch size to train an 
embedding model. A lookup dictionary of training documents could be saved by toggling the 
input argument lookup of the method train(). 

Embedding Model Evaluation
Although there is an emerging trend toward generating embeddings for structured and 
unstructured data, there is not yet a systematic suite for measuring the quality of embeddings.
We generally follow one of the few works in embedding evaluation [Concept2vec: Metrics for 
Evaluating Quality of Embeddings for Ontological Concepts] to create metrics for evaluating 
embedding against the gold standard ontology dataset. The gold standard ontology is curated 
by domain experts like O*NET, so a good embedding should replicate the structure of the 
entities in the gold standard taxonomy. In other words, it is useful to see how an embedding 
reflects the clustering structure. Currently, Skills-ML only implements the most straightforward 
clustering approach: occupation major groups. 

● CategorizationMetric: The cosine similarity between the embedding of the concept and 
the mean vector of embeddings of all the entities within that concept cluster. This metric 
aligns a clustering of entities into different categories, reflecting how well the embedding 
of a concept cluster performs as the background concept of the entities typed by it. 

● IntraClusterCohesion: The sum of squared error of the embedding of the centroid of the 
concept cluster and the embedding of each entity within that cluster. It measures how 
near the data points in a cluster are to the cluster centroid.
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● MajorGroupRecall: For a major group, calculate the cosine similarity against all the 
occupations and find the top n closest occupations. The recall is defined as the number 
of true positives from top n closest occupations divided by the total number of 
occupation within the major group.

● MajorGroupPrecision: Similarly to MajorGroupRecall which is called Coherence Score in
the paper, start by finding the top n closest occupations. The precision is defined as the 
number of true positives from top n closest occupations divided by n

Each metric is calculated for each cluster  to understand which cluster is reflected well by the 
embedding. The mean, variance, max, and min of each metric across all clusters give a global 
view of the embedding performance. 

Classification
Overview
A common issue with job posting data is incomplete, incorrect, and inconsistent occupation 
classification. The majority of job postings in the US use the O*NET SOC classification system, 
but many are either missing or poorly classified. This can be improved by using machine 
learning. 

SOC Codes
Most of the job posting data collected are aligned with the O*NET SOC system. The 
occupations in the SOC are classified at four levels of aggregation: major group, minor group,
broad occupation, and detailed occupation. Each lower level of detail identifies a more 
specific group of occupations. Each item in the SOC is designated by a six-digit code. The first 
two digits represent the major group, the third digit represents the minor group, the fourth and 
fifth digits represent the broad occupation, and the sixth digit represents the detailed occupation.

● Major group codes end with 0000 (e.g., 29-0000 Healthcare Practitioners and Technical
Occupations —the exceptions are minor groups 15-1200 Computer Occupations, 31- 
1100 Home Health and Personal Care Aides; and Nursing Assistants, Orderlies, and 
Psychiatric Aides, and 51-5100 Printing Workers, which end with 00). 

● Minor groups generally end with 000 (e.g., 29-1000 Health Diagnosing or Treating 
Practitioners).

● Broad occupations end with 0 (e.g., 29-1020 Dentists).

● Detailed occupations end with a number other than 0 (e.g., 29-1022 Oral and 
Maxillofacial Surgeons).

Classification
The classification task consists of inferring a SOC code from a job posting and is accomplished 
through several stages: preprocessing, filtering, training, and testing. Skills-ML allows the user 
to train multiple models and tune hyperparameters in an experiment by configuring them in a 
grid. The following Python classes help the user accomplish this task. 

17



● IterablePipeline helps compose a sequence of operations or processing and can be 
passed around between stages. 

● SocEncoder converts a 6-digit SOC code to a class number.

● SOCMajorGroup specifies the target variable to be the major group which is inherited 
from the TargetVariable class that specifies what target variable we want to 
predict/optimize for the model. It also filters the job posting based on the criteria it takes 
in. 

● FullSOC is similar to SOCMajorGroup, but specifies the target variable to be the full 
SOC code.  

● DesignMatrix takes in a data source, a pipeline for training data, a pipeline for target 
variable, and a specified target variable as a container to be fed into the trainer. 

● OccupationClassifierTrainer trains classifiers with cross validation and picks the best 
classifier with a grid search based on the metric. It takes in a dictionary for the grid 
search, a DesignMatrix specifies the x and y, and the number of folds for cross-
validation. 

● CombinedClassifier is a classifier that takes in an embedding model and a classifier as a
combined classifier.

● KNNDoc2VecClassifier is a KNN classifier based on Doc2Vec embedding model.

Evaluation
Once we have trained a group of classifiers, we want to evaluate the performance of each 
classifier on the test dataset. Accuracy, recall, precision, and f1 are the metrics taken into 
consideration. Since it is a multi-class classification problem, an overall performance is 
evaluated by looking at the micro-average and macro-average for the metrics. A macro-average
will compute the metric independently for each class and then take the average, whereas a 
micro-average will aggregate the contributions of all classes and then compute the average. In 
other words, a macro-average is treating all classes equally. If the test dataset appears to be 
class imbalanced, then the micro-average of metrics will be used.

Experiments and Results
This section describes the results from applying various Skills-ML algorithms to public and 
private data sources. 

Job postings used for Skills-ML span the time period of 2006-2018 with most postings occuring 
in the last few years in the United States. These postings were provided by the National 
Association of State Workforce Boards. Different sample sizes were used in different contexts, 
the details of which are covered in specific sections. Although the source data is not publicly 
available, there are no comparable public datasets to use at the time of publication. All public 
alternative datasets are either too small or too geographically limited in scope to effectively 
serve as an example. Users wishing to run these algorithms can do so with any public or private
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job posting datasets they have available. 

The source data to create the O*NET and ESCO ontologies were downloaded from their 
respective public web sites, and the code to download and create them is available through the 
Skills-ML module.

Ontology Generation
Several ontologies were created using a mixture of pre-existing survey-produced standards and 
derived lists from a sample of job postings across the United States.

The job posting sample consisted of 100,000 postings from 2006-2018, heavily biased towards 
2015-2017. The job postings were tagged with 863 unique O*NET SOC codes out of  a possible
1,133.

ONET - KSA consists of O*NET Knowledge, Skills, and Abilities. This list represents a more 
general list of high-quality competencies that are heavily transferable between occupations.

‘Nurse Practitioners’ O*NET Knowledge, Skills, and Abilities sample competencies: ‘Active 
Listening’, ‘Medicine and Dentistry’, ‘Oral Comprehension’

ONET - T2 consists of O*NET Tools and Technology. The large Tools and Technology lists 
make this into a somewhat sparse ontology, as there are many such Tools and Technology 
competencies that are only associated with one occupation and/or are badly outdated. 

‘Nurse Practitioners’ O*NET Tools and Technology sample competencies: ‘Office suite 
software’, ‘Eye Charts or Vision Cards’

ONET - DWA consists of O*NET Detailed Work Activities. These detailed work activities differ 
from the other O*NET definitions in that they are slightly more specific and phrased as verb 
phrases rather than noun phrases.

‘Nurse Practitioners’ O*NET Detailed Work Activities sample competencies: ‘Treat Medical 
Emergencies’, ‘Order medical diagnostic or clinical tests’

ONET - ALL consists of O*NET Knowledge, Skills, Abilities, Tools, Technology, and Detailed 
Work Activities. This flat list of differently-phrased and collected O*NET competencies is the 
only version of O*NET that matches ESCO in scope, and as such is the best candidate for 
evaluation directly against ESCO. 

‘Nurse Practitioners’ O*NET All sample competencies: ‘Office suite software’, ‘Active Listening’, 
‘Medicine and Dentistry’, ‘Oral Comprehension’, ‘Eye Charts or Vision Cards’, ‘Treat Medical 
Emergencies’, ‘Order medical diagnostic or clinical tests’
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ESCO - ALL consists of the entirety of the ESCO (European Skills, Competences, Occupations)
ontology. It includes the scope of ONET - ALL, combining academic knowledge, soft skills, 
tools, and tasks, but the list is more highly curated than O*NET’s version so there are far fewer 
singular and outdated competencies. In addition, the phrasing of these competencies is often 
done using verb phrases instead of noun phrases. This may provide some differences in 
matching results depending on how authors phrase competency requirements in job postings.

‘Advanced nurse practitioner’ ESCO All sample competencies: ‘advise on healthy lifestyles’, 
‘have computer literacy’, ‘listen actively’

Derived - skill phrases consists of competencies generated from scanning the sample of job 
postings and extracting all noun phrases ending with ‘skill’, ‘skills’, ‘ability’, or ‘abilities’. These 
competencies are associated in the ontology with the given O*NET SOC code for the job 
posting if it exists. The scope of this is highly dependent on the size of the sample. The sample 
itself contained 863 unique occupations, but only 560 occupations had any skill phrases 
successfully extracted so it represents a very incomplete picture of the occupation space. 
However, because of the fairly tight filter around what gets returned as a potential competency, 
the results appear to be highly relevant.

‘Registered Nurse’ Derived Skill Phrase sample competencies: ‘analytical ability’, ‘dialysis skills’,
‘excellent communication skills’, ‘basic arrhythmia recognition skills’, ‘communication skills’

Derived - skill section consists of competencies generated from the ‘skills’ section of job 
postings. The procedure for computing this involves making inferences about the structure of a 
job posting and dividing it into sections based on lines that look like headers.  Sections are 
filtered down to those tagged by a few common headers that imply competencies (such as 
‘skills’, ‘competencies’, ‘abilities’), and each sentence contained in the section is returned as a 
potential competency. The goal is to remove the vast amount of information about the hiring 
organization and other irrelevant information that often clutters job postings and focus on the 
sections discussing requirements for the job.

‘Registered Nurse’ Skill Section sample competencies: ‘organizational competencies: 
recognizes the impact of systems on health care delivery.’, ‘ability to function effectively in a 
fluid, dynamic, and rapidly changing environment.’, ‘on off-shifts intervenes immediately with 
any employee sustaining an exposure to a bloodborne pathogen.’

Ontology # of 
Competencies

# of 
Occupations

# of 
Competency-
Occupation 
Relationships

Median 
Occupations 
Per 
Competency

Median 
Competencies 
Per 
Occupation

ONET - ALL 34,100 1,133 124,584 1 107

ONET - DWA 2,070 974 17,279 6 17
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ONET - T2 31,909 974 68,689 1 55

ONET - KSA 120 966 38,616 231 41

ESCO - ALL 12,215 2,127 66,762 2 31

Derived - Skill
Phrases

4,498 560 15,773 1 8

Derived - Skill
Section

143,318 548 161,100 1 49

Matching
Various ontologies and matching algorithms are performed against a set of 24,000 job postings. 
The results are grouped by a matching algorithm. The dataset does not have labels so a reliable
precision calculation is not available.

Below are some important points illustrated by the results. The full matching results tables are 
contained in Appendix B.

Fuzzy matching does not offer vast improvements over exact matching for any ontologies. The 
closest is the experimental Derived - Skill Phrases ontology, whose recall increased from 0.37 
to 0.43. This change might reflect the messy nature of the ontology, whose results are gleaned 
from the job posting data and not heavily cleaned. As noted in the Implementation section, the 
fuzzy matcher uses word tokenization, which means that the exact matcher recalls some 
examples that cross tokenization boundaries that the fuzzy matcher will not (e.g. 
‘business/systems analysis’ if the term being searched for is ‘systems analysis’), which 
surprisingly makes the results for exact matching slightly higher than fuzzy matching in some 
cases.

The impact of occupation-scoping the matcher is most heavily observed in the ONET - T2 and 
Derived - Skill Section competency frameworks. In the case of ONET - T2, this illustrates a 
problem seen often by the team, in that tools or technology with short names (e.g. the old 
programming language ‘forth’) that frequently show up in plain English, may not necessarily 
indicate a skill listed in the job posting. Social media websites such as Facebook and Twitter 
show up as legitimate competencies for a handful of occupations, but show up in a large 
proportion of job postings as company metadata. Occupation-scoping the matcher is aimed at 
fixing this problem, and it decimates the recall of ONET - T2 and thus ONET - All. ONET - 
KSA’s recall is reduced, but much less drastically so. The Derived - Skill Section framework, as 
one may guess with 300,000 matches on a 24,000 document dataset, is likely inundated with 
low-quality matches representing generic sentences. Derived - Skill Phrases actually receives 
the smallest reduction in occurrences from this change. Occupation-scoping the matcher for 
ESCO - ALL is not possible with this dataset as the job postings are not labeled with ESCO 
occupations. 
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The ONET - DWA competency framework is nearly useless when matched using any of the 
available algorithms. Although at first glance its competencies are phrased similarly to those in 
ESCO, the phrases used in ESCO are far more likely to show up in job postings. It’s not 
immediately clear why this is the case, but ESCO phrases may be slightly more concise or 
simply phrased in a manner more likely to mirror the writing style of job postings.

The ONET - KSA competency framework is well-recalled in the dataset. This is not terribly 
surprising given the small size of the framework and relatively large size of the dataset.

The ONET - All and ESCO - All competency frameworks performed similarly, excepting 
occupation recall.  The occupation recall for O*NET was almost twice that of ESCO. This may 
indicate some type of bias on ESCO’s part, but could also reflect the fact that about twice as 
many occupations are available in ESCO as in O*NET, requiring a larger (or at least more 
diverse) sample size of job postings to reproduce.

The poor competency recall of Derived - Skill Section given the high number of occurrences is 
worthy of note, even if this behavior is not shocking given the size of the ontology or its method 
of production. There are a lot of competencies in this ontology that look highly relevant in 
isolation but are unique to their source job posting and don’t transfer well to a new sample. This 
indicates that effort to clean and consolidate the results of the skill section extraction into a form 
more commonly transferable to other postings would be useful.

Word Embedding
To demonstrate the experiments of word embedding, we include 6 types of embedding models -
Doc2Vec-Distributed Memory, Doc2Vec-Distributed Bag of Words, Word2Vec-SkipGram, 
Word2Vec-Continuous Bag of Words, FastText-SkipGram, and FastText-Continuous Bag of 
Words for training. The only hyperparameter tuning here is the window size, (range of 5, 7, or 
13), which controls how wide the gap between two items in a sequence can be so that they are 
still considered in the same context. The rest of the hyperparameters are the same: vector 
size=300, number of epoch=10, number of negative sample=5, and initial learning rate=0.025. 
All of the embeddings were trained on 2014 job posting data from the National Labor Exchange,
which includes 330,000 job postings with the major group distribution in the graph below. We 
then evaluate embedding models by looking at how well they reflect the structure of the major 
group occupation clusters. Each cluster is a major group and each entity is an occupation. We 
represent the major group name in the embedding space as a cluster concept and represent the
occupation name and description in the embedding space as a cluster member. 
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The goal is to choose an embedding model by looking at all 4 metrics and use that embedding 
model in the occupation classification later. We found that the Doc2Vec models are generally 
worse than the rest in CategorizationMetric. FastText-CBOW and Word2Vec-CBOW are the 
best for CategorizationMetric. For IntraClusterCohesion, it is only reasonable to compare the 
same model with different window sizes. The smaller the value, the better the clustering 
capability. Only two types of models have a huge difference in the window size in the 
IntraClusterCohesionby.  FastText-CBOW with a window size of 13 is better than a window size 
of 5 and 7. Word2Vec-CBOW model with a window size of 5 is better than a window size of 7 
and 13. For PrecisionTop30 and RecallTop30, all models are generally bad. The best model is 
the Word2Vec-CBOW with a window size of 5. By taking all of the metrics into account, the 
Word2Vec-CBOW model with a window size of 5 was the best embedding model.

Occupation Classification 
The next task is occupation classification, or classifying a job posting with a predicted O*NET 
SOC Code by using the context of job postings. The data used in this task is a curated job 
posting dataset that has a similar amount of job postings from each major group. Since this is a 
multi-class supervised machine learning problem, the label is the O*NET SOC Code for each 
job posting and there are 690 different labels in this case. By choosing the best embedding 
model as a job posting vectorizer from the previous experiment, we trained 4 types of classifiers
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on top of it, ExtraTrees, RandomForest (RF), Multi-Layer Perceptron (MLP), and Support Vector
Machine (SVM). Note that the best embedding model doesn’t mean it would be the best 
candidate vectorizer for classification. With grid search and 3-fold cross-validation, we obtained 
the best classifiers for each type.

The table below shows the comparison of different classifiers with tuned hyperparameters. Note
that micro-precision is higher than macro-metrics in general, this is because of the high variance
of performance of each class. Even though the curated job posting dataset is fairly balanced 
across all major groups, we found the full O*NET SOC Code is still imbalanced. The best 
classifier is MLP with the micro-averaging precision 0.6451, hidden layer size 500 and logistic 
function as activation function. In general, the performance suffers due to the large number of 
classes and imbalanced O*NET SOC code labels in the training data that results in poor 
performance in several classes. However, if we only look at the major group (first 2 digits) in the 
predicted O*NET SOC code, the accuracy is boosted for each type and for MLP is 0.7951.

ExtraTrees RF MLP SVM

micro-precision 0.4870 0.4970 0.6451 0.6329

macro-precision 0.3067 0.3007 0.3678 0.3497

macro-recall 0.1764 0.1772 0.3284 0.3200

macro-f1 0.1987 0.1972 0.3289 0.3192

micro-precision major group 0.6132 0.6316 0.7951 0.7775

Case Studies: Economic White Papers
There are two in-progress economic white papers based on the job posting data processed 
through Skills-ML.

‘The Costs of Occupation Switching’, by Nayoung Rim at the United States Naval Academy and 
Nuno Paixao at the Bank of Canada, uses job posting data processed through Skills-ML to 
analyze the possible reasons for occupation switching. Competencies extracted from the job 
postings in specific geographic areas are used as an indicator of demand for those 
competencies. Lack of demand for these competencies is used as one possible reason for 
switching occupations.

‘The Effect of Additional Authority on Job Postings: The Case for Nurse Practitioners’, by Sarah 
Bana at University of California - Santa Barbara, uses job posting data processed through 
Skills-ML to analyze how demand for Nurse Practitioners is related to state-level policy changes
regarding the authority of Nurse Practitioners. Counts of Nurse Practitioner job postings in 
specific states over particular time periods are used as an indicator of demand for Nurse 
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Practitioners. Any correlations between large changes in demand for Nurse Practitioners around
the times of policy changes are analyzed. 

Architecture
Skills-ML design philosophy builds on dataflow programming or so-called data streaming to 
process very large datasets (larger than RAM; potentially infinite). Data points are processed 
one at a time, in constant RAM. This places some requirements on the algorithms and methods 
used like generator, online learning, reservoir sampling, and single pass methods to allow 
people to use it not only on the cloud, but also locally without huge infrastructure requirements.

Generator
One technique that is used throughout Skills-ML for data streaming is generator. A generator, in
a nutshell, is a function or object which produces a stream of values over the course of its 
lifetime. The advantage of a generator is to avoid the memory problem, which means inability to 
store data in one variable. The lazy evaluation of generator gives a value only when it is asked, 
which means only that single value takes up memory and makes it a perfect candidate for 
reading and using “Big Data” files very memory-efficient. In Skills-ML, normally any data source 
or collection is a generator for propagating into different components. For example, 
JobPostingCollectionFromS3 is a generator that streams one job posting at a time from the s3 
bucket.

In addition to the data source and collection, most of the processing and transformation are 
meant to build upon generators in Skills-ML. When users want to apply some transformation on 
a data collection, they can chain many of these transformations together. For example, when 
you train a word2vec embedding model, it also expects to see the training data as a generator. 
Also, JobSampler is used to randomize a sample from a data stream using reservoir sampling 
algorithm.   

Storage
The storage object in Skills-ML allows code to refer to a large object without storing it in system 
memory. Most of the classes have an argument for storage object, especially models and 
classifiers. It is common to combine two classifiers into one and store it as the final model, or to 
store the whole pipeline with models and classifiers in the experiment. A complicated 
embedding model trained on a very large corpus could take a couple of gigabytes to store so if 
we want to reuse the model and store it somewhere else, we do not want to actually store the 
model again. The storage object refers to the original model instead of saving a copy. 
Therefore, it is resource-efficient and compact. To benefit both cloud-based and local usage, 
storage class was created for both usages. 

Aggregator and Computer
Working with large amounts of data often requires a fair amount of aggregation by the 
researcher to gain any sort of insights. Aggregation is hard to perform online, row-by-row 
without resorting to custom code or heavy map-reduce frameworks that require a tremendous 
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amount of setup, administration, and hardware. To allow researchers with a laptop and teams 
with the ability to set up computing clusters to perform aggregation in roughly the same way, 
Skills-ML provides the Computer and Aggregator classes, which can be used as a basic 
storage-backed map-reduce framework for collections of documents such as job postings. The 
framework allows the researcher or team to:

1. Partition the document collection according to deterministic document attribute, such as 
a posting date or a certain number of digits of the document’s unique identifier

2. Compute some number of properties of each document (such as the skills produced by 
a specific skill extractor, or the occupation produced by a specific occupation classifier), 
serializing each document’s properties to storage (e.g. local filesystem or Amazon S3) 
according to the partition

3. Assemble different tabular aggregations of these serialized computed properties without 
needing to recompute the properties

This process can be parallelized based on the user’s preference. This enables a team with 
access to a computing cluster to heavily parallelize the computation of large datasets and 
serialize to cloud storage, or a researcher with access to only a laptop to run it on one or a 
handful of processes on their laptop serialized to a local disk using no extra libraries.

Related Toolkits and Platforms
Skills-ML relates to a number of similar or complementary efforts to automate various aspects of
skill and competency ontology generation happening in other research groups as well as the 
private sector. Efforts such as Skillscape (Science, 2018) out of the MIT Media Lab are involved
in analyzing competency relationships to explore skill transferability, and complement the work 
done in Skills-ML.

Future Work
Skills-ML can be improved in many ways. This section details next steps for any researcher 
looking to immediately build on the work in Skills-ML to make it more useful in a variety of areas.

Ontology Updating
Competency ontologies require an extensive amount of human labor to update. Being able to 
update an existing ontology using data extracted from a large, frequently updated text corpus 
such as job postings would help immensely. Recent research such as from Alsuhaibani, et al2 
explores methods for using both an ontology and a text corpus to dynamically expand the 
ontology. This approach could be utilized to mutate an ontology using new data over time.

Matching

2https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0193094
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Competency statements in documents and survey-based ontologies can vary greatly in terms of
how they are phrased. Noun and verb phrases of varying specificity are encountered. As the 
length of competency statements increases, the user might expect the probability of that full 
phrase being present in the document text to decrease. Additionally, the fuzzy matching present
in Skills-ML was not built to handle this. It was built to handle misspellings and other cases 
where an occurrence may only vary by a few characters. This is insufficient and a more 
advanced approach to matching based on word/phrase embedding similarity may be utilized to 
provide a matching algorithm more resilient to phrasing, or even tokenization (e.g. the ‘business/
systems analysis’ problem discussed earlier in the paper).

Section Extraction
The procedure of filtering out all sections of a document that don’t match a whitelisted header 
(e.g. ‘skills’, ‘competencies’) is explored in the paper, but only for the purpose of raw ontology 
creation, a task which it performs poorly. A more suitable use may be for training higher-quality 
word embeddings that ignore company information, or in conjunction with NLP techniques that 
produce less unique matches.

Gold Standard Creation
A large-scale effort to create a gold standard competency labeling would enable better 
evaluation of matching algorithms. In addition, the labels can be used to train a model such as 
that described by Huang, et al3. The label import functionality described in Skills-ML can be 
used to utilize such labels in the library, but the human effort to label a large enough sample of 
documents with competencies would be a huge undertaking.

Clustering
In the current version of Skills-ML, we provide some generic and explicit clusterings in the 
ontology, such as major groups. However, there are much more complicated ways to uncover 
underlying structures in the ontology, which means there are many possible ways to segment 
the occupations and competencies. By defining different distance metrics between nodes in 
ontology, we might be able to cluster the nodes differently. A huge benefit for having different 
clusterings is to provide a complete test to evaluate embedding models, in order to pick the 
embedding model that can reveal the structures of ontology from different angles.  

Conclusion
Filling this gap in open, translatable competency data has been the focus of multi-year efforts by
Credential Engine, University Professional and Continuing Education Association (UPCEA), the 
Academic Genome Project, IMS Global, the Open Skills Project, and others. Education and 
training providers now have many of the foundational components and standards they need to 
begin creating and publishing educational competencies within a curriculum in a standards-
based machine-actionable way. Yet, individual faculty and course creators lack a clear and 

3https://arxiv.org/abs/1508.01991
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practical solution for implementation. Recent advancements in AI, natural language processing, 
and machine translation provide a new way forward that can build on past and current 
competency framework efforts to dramatically accelerate their adoption and use in education. 
New AI-assisted processes embedded in instructional design workflows can help automate 
competency identification and normalization, creating rich, structured competency data that 
aligns with existing standards -- ultimately with little manual intervention. Skills-ML provides a 
framework using algorithms and standards to help fill the gap of open competency data. 
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Appendix A: Glossary
Competency - Any expertise or talent that is useful for a job.

Skill - Any expertise or talent that is useful for a job.

Occupation - A normalized job title.

CandidateSkill - An instance of a Skill/Competency found in some document (e.g. a job 
posting), with surrounding context

CompetencyFramework - A collection of Competencies and their relationships with each other

CompetencyOntology - A collection of Competencies and Occupations and their relationships 
with each other

O*NET - Short for Occupational Information Network, O*NET is a database of occupations and 
metadata (including skills, but also tasks and many others) about those occupations maintained 
by the US Department of Labor. The data is produced by surveys and partially updated every 
quarter.

SOC Code - Short for Standard Occupational Classification Code. An eight-digit code for an 
occupation, maintained by O*NET.

Major group - An occupation major group in the O*NET SOC system, represented by the first 
two digits of the occupation’s SOC code.

ESCO - Short for European Skills, Competences and Occupations, ESCO is a database and 
classification system covering skills, competencies, qualifications, and occupations, maintained 
by the European Commission.
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Appendix B: Matching Results Tables

Exact Matching

Ontology Total 
Occurrences

Total 
Vocab. 
Size

Percentage
No Skill 
Documents

Median 
Skills per 
Document

Ontology 
Competency
Recall

Ontology 
Occupation
Recall

ONET - All 101,185 2,105 18.4 2 .06 .59

ONET - T2 63,522 2,010 28.9 1 .06 .67

ONET - 
DWA

8 8 99.9 0 .003 .008

ONET - 
KSA

37,793 87 44.4 1 .73 .62

ESCO - All 85,217 1,230 18.6 2 .10 .31

Derived - 
Skill 
Phrases

34,362 1,703 43.1 1 .37 1.0

Derived - 
Skill 
Section

302,686 9,230 3.5 10 .06 1.0

Fuzzy Matching

Ontology Total 
Occurrences

Total 
Vocab.
Size

Percentage 
No Skill 
Documents

Median 
Skills per 
Document

Ontology 
Competenc
y Recall

Ontology 
Occupation 
Recall

ONET - All 90,419 2,711 21.6 2 .06 .59

ONET - T2 54,758 2,520 34.2 1 .06 .65

ONET - 
DWA

180 51 99.2 0 .02 .07

ONET - 
KSA

35,481 140 45.8 1 .75 .62

ESCO - All 85,112 2,148 19.4 2 .12 .31
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Derived - 
Skill 
Phrases

108,087 3,477 42.9 1 .43 1.0

Derived - 
Skill 
Section

421,199 10,660 4.05 11 .03 1.0

Occupation-Scoped Exact Matching

Ontology Total 
Occurrences

Total 
Vocab. 
Size

Percentage 
No Skill 
Documents

Median 
Skills per 
Document

Ontology 
Competency
Recall

Ontology 
Occupation
Recall

ONET - All 24,464 465 63.0 0 .01 .37

ONET - T2 5,506 393 85.7 0 .01 .28

ONET - 
DWA

2 2 99.9 0 .001 .002

ONET - 
KSA

18,958 70 69.6 0 .59 .41

Derived - 
Skill 
Phrases

20,539 690 57.8 0 .15 .63

Derived - 
Skill 
Section

32,070 4,510 57.9 0 .03 .48
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Appendix C: Embedding Evaluation Tables
Categorization Metric

Model Window Mean Std. 
Dev.

Max Max Cluster Min Min Cluster

Doc2vec 
- DM

5 0.3936 0.0984 0.6440 Military
Specific

Occupations

0.2161 Food Preparation
and Serving

Related
Occupations

Doc2vec 
- DM

7 0.3020 0.1006 0.6412 Military
Specific

Occupations

0.1547 Construction and
Extraction

Occupations

Doc2vec 
- DM

13 0.1537 0.0829 0.4416 Military
Specific

Occupations

0.0537 Installation,
Maintenance, and

Repair
Occupations

Doc2vec 
- DBOW

5 0.3581 0.0556 0.5050 Military
Specific

Occupations

0.2561 Food Preparation
and Serving

Related
Occupations

Doc2vec 
- DBOW

7 0.3534 0.0544 0.5075 Military
Specific

Occupations

0.2630 Installation,
Maintenance, and

Repair
Occupations

Doc2vec 
- DBOW

13 0.3562 0.0534 0.4835 Production
Occupations

0.2669 Food Preparation
and Serving

Related
Occupations

Word2ve
c - SG

5 0.3759 0.0938 0.5889 Production
Occupations

0.2552
53

Building and
Grounds

Cleaning and
Maintenance

Word2ve
c - SG

7 0.3682 0.0949 0.5746 Production
Occupations

0.2361 Food Preparation
and Serving

Related
Occupations

Word2ve
c - SG

13 0.3645 0.0954 0.5607 Production
Occupations

0.2392 Building and
Grounds
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Cleaning and
Maintenance

Word2ve
c - 
CBOW

5 0.6279 0.1487 0.8728 Healthcare
Support

Occupations

0.3152 Installation,
Maintenance, and

Repair
Occupations

Word2ve
c - 
CBOW

7 0.6197 0.1547 0.8561 Management
Occupations

0.2983 Installation,
Maintenance, and

Repair
Occupations

Word2ve
c -CBOW

13 0.6308 0.1592 0.9027 Healthcare
Support

Occupations

0.3167 Installation,
Maintenance, and

Repair
Occupations

Fasttext - 
SG

5 0.3308 0.0866 0.5136 Production
Occupations

0.2008 Food Preparation
and Serving

Related
Occupations

Fasttext - 
SG

7 0.3180 0.0796 0.4874 Production
Occupations

0.3180 Food Preparation
and Serving

Related
Occupations

Fasttext - 
SG

13 0.2887 0.0759 0.4613 Management
Occupations

0.1833 Building and
Grounds

Cleaning and
Maintenance

Fasttext - 
CBOW

5 0.6535 0.1464 0.8870 Protective
Service

Occupations

0.3584 Installation,
Maintenance, and

Repair
Occupations

Fasttext - 
CBOW

7 0.6761 0.1388 0.8936 Protective
Service

Occupations

0.3608 Installation,
Maintenance, and

Repair
Occupations

Fasttext - 
CBOW

13 0.6968 0.1454 0.9027 Healthcare
Support

Occupations

0.3167 Installation,
Maintenance, and

Repair
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Occupations

Intra-Cluster Cohesion

Model Window Mean Std. 
Dev.

Max Max Cluster Min Min Cluster

Doc2vec 
- DM

5 274.37 160.74 562.47 Office and
Administrative

Support
Occupations

52.60 Building and
Grounds

Cleaning and
Maintenance

Doc2vec 
- DM

7 257.26 151.96 533.87 Office and
Administrative

Support
Occupations

0.1547 Legal
Occupations

Doc2vec 
- DM

13 246.73 147.22 528.11 Production
Occupations

46.69 Legal
Occupations

Doc2vec 
- DBOW

5 154.29 90.64 316.80 Production
Occupations

25.12 Legal
Occupations

Doc2vec 
- DBOW

7 154.44 90.72 317.5 Production
Occupations

25.14 Legal
Occupations

Doc2vec 
- DBOW

13 154.96 90.97 318.75 Production
Occupations

25.03 Legal
Occupations

Word2ve
c - SG

5 83.84 53.48 231.6 Production
Occupations

13.10 Legal
Occupations

Word2ve
c - SG

7 79.83 51.53 224.00 Production
Occupations

12.36 Legal
Occupations

Word2ve
c - SG

13 74.08 47.89 208.32 Production
Occupations

11.57 Legal
Occupations

Word2ve
c - 
CBOW

5 7100.5
1

4164.4
4

16298.7 Production
Occupations

1223.8
3

Legal
Occupations

Word2ve
c - 
CBOW

7 16419.
1

9565.0
5

37113.3 Production
Occupations

2910.3
2

Legal
Occupations

Word2ve
c -CBOW

13 43978.
5

25315.
9

98805.3 Production
Occupations

7716.2
3

Legal
Occupations
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Fasttext - 
SG

5 78.68 51.22 225.40 Production
Occupations

11.91 Legal
Occupations

Fasttext - 
SG

7 76.15 49.93 222.43 Production
Occupations

11.84 Legal
Occupations

Fasttext - 
SG

13 70.36 47.24 213.36 Production
Occupations

11.35 Legal
Occupations

Fasttext - 
CBOW

5 35989.
1

21477.
5

89178.1 Production
Occupations

21477.
5

Military Specific
Occupations

Fasttext - 
CBOW

7 64812.
9

38815 161705 Production
Occupations

11736.
3

Military Specific
Occupations

Fasttext - 
CBOW

13 14989
5

89901.
8

373883 Production
Occupations

26673.
5

Military Specific
Occupations

Precision Top 30

Model Window Mean Std. 
Dev.

Max Max Cluster Min Min Cluster

aDoc2vec
- DM

5 0.0608 0.0648 0.2000 Installation,
Maintenance,

and Repair
Occupations

0 Community and
Social Service
Occupations

Doc2vec 
- DM

7 0.0478 0.0687 0.2666 Installation,
Maintenance,

and Repair
Occupations

0 Community and
Social Service
Occupations

Doc2vec 
- DM

13 0.0550 0.0693 0.2000 Healthcare
Practitioners

and Technical
Occupation

0 Community and
Social Service
Occupations

Doc2vec 
- DBOW

5 0.3406 0.2222 0.8333 Healthcare
Practitioners

and Technical
Occupation

0.0333 Military Specific
Occupations

Doc2vec 
- DBOW

7 0.3348 0.2306 0.8000 Healthcare
Practitioners

and Technical

0.0333 Military Specific
Occupations
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Occupation

Doc2vec 
- DBOW

13 0.3333 0.2387 0.8333 Healthcare
Practitioners

and Technical
Occupation

0.0333 Military Specific
Occupations

Word2ve
c - SG

5 0.2608 0.1369 0.6333 Architecture
and

Engineering
Occupations

0.0667 Healthcare
Support

Occupations

Word2ve
c - SG

7 0.2478 0.1298 0.6 Architecture
and

Engineering
Occupations

0.0667 Healthcare
Support

Occupations

Word2ve
c - SG

13 0.2348 0.1427 0.5333 Architecture
and

Engineering
Occupations

0.0333 Management
Occupations

Word2ve
c - 
CBOW

5 0.3231 0.1848 0.8333 Architecture
and

Engineering
Occupations

0.0333 Healthcare
Support

Occupations

Word2ve
c - 
CBOW

7 0.2928 0.1801 0.7667 Architecture
and

Engineering
Occupations

0.0333 Healthcare
Support

Occupations

Word2ve
c -CBOW

13 0.3173 0.1914 0.8 Architecture
and

Engineering
Occupations

0.0333 Management
Occupations

Fasttext - 
SG

5 0.2536 0.1681 0.6333 Architecture
and

Engineering
Occupations

0.0333 Construction and
Extraction

Occupations

Fasttext - 
SG

7 0.2362 0.1623 0.6333 Architecture
and

Engineering
Occupations

0.0333 Management
Occupations

Fasttext - 
SG

13 0.2391 0.1598 0.6333 Architecture
and

Engineering
Occupations

0.0333 Sales and
Related

Occupations
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Fasttext - 
CBOW

5 0.2435 0.1662 0.7333 Installation,
Maintenance,

and Repair
Occupations

0.0333 Construction and
Extraction

Occupations

Fasttext - 
CBOW

7 0.2435 0.1628 0.7 Installation,
Maintenance,

and Repair
Occupations

0 Construction and
Extraction

Occupations

Fasttext - 
CBOW

13 0.2522 0.1632 0.7333 Installation,
Maintenance,

and Repair
Occupations

0.0333 Healthcare
Support

Occupations

Recall Top 30

Model Window Mean Std. 
Dev.

Max Max Cluster Min Min Cluster

Doc2vec 
- DM

5 0.0379 0.050 0.1852 Sales and
Related

Occupations

0 Community and
Social Service
Occupations

Doc2vec 
- DM

7 0.0249 0.0305 0.1111 Sales and
Related

Occupations

0 Community and
Social Service
Occupations

Doc2vec 
- DM

13 0.0254 0.0234 0.0741 Sales and
Related

Occupations

0 Community and
Social Service
Occupations

Doc2vec 
- DBOW

5 0.2477 0.1949 0.8947 Food
Preparation
and Serving

Related
Occupations

0.0328 Production
Occupations

Doc2vec 
- DBOW

7 0.2552 0.1917 0.8421 Food
Preparation
and Serving

Related
Occupations

0.0409 Production
Occupations

Doc2vec 
- DBOW

13 0.2424 0.1678 0.7895 Food
Preparation
and Serving

Related
Occupations

0.0328 Production
Occupations
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Word2ve
c - SG

5 0.2386 0.1984 0.6333 Food
Preparation
and Serving

Related
Occupations

0.0409 Healthcare
Support

Occupations

Word2ve
c - SG

7 0.2227 0.1827 0.7368 Food
Preparation
and Serving

Related
Occupations

0.0298 Construction
and Extraction
Occupations

Word2ve
c - SG

13 0.2072 0.1659 0.6 Building and
Grounds

Cleaning and
Maintenance

0.0156 Management
Occupations

Word2ve
c - 
CBOW

5 0.2620 0.1777 0.7368 Food
Preparation
and Serving

Related
Occupations

0.0491 Production
Occupations

Word2ve
c - 
CBOW

7 0.2482 0.1902 0.7368 Food
Preparation
and Serving

Related
Occupations

0.0435 Healthcare
Practitioners and

Technical
Occupations

Word2ve
c -CBOW

13 0.2511 0.1799 0.6842 Food
Preparation
and Serving

Related
Occupations

0.0476 Farming,
Fishing, and

Forestry
Occupations

Fasttext - 
SG

5 0.2264 0.1818 0.6842 Food
Preparation
and Serving

Related
Occupations

0.0149 Construction
and Extraction

Occupations

Fasttext - 
SG

7 0.2151 0.1710 0.5556 Legal
Occupations

0.008 Production
Occupations

Fasttext - 
SG

13 0.2125 0.1664 0.5556 Legal
Occupations

0.0149 Production
Occupations

Fasttext - 
CBOW

5 0.2095 0.1736 0.6316 Food
Preparation
and Serving

Related

0.0149 Construction
and Extraction
Occupations
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Occupations

Fasttext - 
CBOW

7 0.2052 0.1677 0.6316 Food
Preparation
and Serving

Related
Occupations

0 Construction
and Extraction
Occupations

Fasttext - 
CBOW

13 0.2055 0.1636 0.6316 Food
Preparation
and Serving

Related
Occupations

0.0298 Construction
and Extraction
Occupations
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