

SLAM-BASED MAPPING FOR OBJECT RECOGNITION

LOH WAN YING

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Bachelor of Engineering (Hons) Electronic Engineering

Faculty of Engineering and Green Technology

Universiti Tunku Abdul Rahman

May 2018

ii

DECLARATION

I hereby declare that this project report is based on my original work except for citations

and quotations which have been duly acknowledged. I also declare that it has not been

previously and concurrently submitted for any other degree or award at UTAR or other

institutions.

Signature : _________________________

Name : _________________________

ID No. : _________________________

Date : _________________________

LOH WAN YING

13AGB01857

04 May 2018

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “SLAM-BASED MAPPING FOR OBJECT

RECOGNITION” was prepared by LOH WAN YING has met the required standard for

submission in partial fulfilment of the requirements for the award of Bachelor of

Engineering (Hons) Electronic Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature : _________________________

Supervisor : _________________________

Date : _________________________

Signature : _________________________

Co-Supervisor : _________________________

Date : _________________________

Dr. YAP VOOI VOON

Dr. HUMAIRA NISAR

iv

The copyright of this report belongs to the author under the terms of the copyright

Act 1987 as qualified by Intellectual Property Policy of University Tunku Abdul Rahman.

Due acknowledgement shall always be made of the use of any material contained in, or

derived from, this report.

© 2018, Loh Wan Ying. All right reserved.

v

Specially dedicated to

my beloved supervisor, co-supervisor, mother and father

vi

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion of this

project. First and foremost, I would like to express my gratitude to my research supervisor,

Dr. Yap Vooi Voon for his invaluable advice, guidance and his enormous patience

throughout the development of the research.

 In addition, I would also like to express my gratitude to my research co-supervisor,

Dr. Humaira Nisar for her guidance and care throughout the FYP. She has been motivating

and encouraging by constantly sharing insightful comments and thoughts from time to

time.

Furthermore, I would also like to express my gratitude to my loving parent and

friends who had helped and given me encouragement.

vii

SLAM-BASED MAPPING FOR OBJECT RECOGNITION

ABSTRACT

The aim of this project is to map an unknown environment, autonomously navigate to the

2D navigation goal set by user and recognize object placed in object database by using a

custom made differential-drive mobile robot that works under the Robot Operating

System (ROS) framework. The concept of deploying the robot in search and rescue

mission, is being implemented so that the efficiency of search and rescue mission can be

improved at a lower cost. The custom made robot is able to navigate in an unknown

environment and feedback sensory data from Kinect Xbox 360 and odometry data to PC.

Therefore, it is important for the robot to feedback a reliable and accurate odometry data

efficiently so that the robot is able to localize itself in the unknown environment. The

project architecture includes a personal laptop, a Kinect Xbox 360 sensor, the custom

made robot and Arduino Mega 2560. The personal laptop acts as the command center

where the Simultaneous Localization and Mapping (SLAM) algorithm are run by

receiving odometry data from Arduino on the custom made robot. A USB connection is

established between the Arduino, custom made robot and PC. After a map of the unknown

environment is built, the Adaptive Monte Carlo Localization (AMCL) is used to localize

the robot and Dijkstra’s algorithm is deployed to compute the shortest path to the

destination goal. The SIFT (Scale-Invariant Feature Transform) is used to extract features

from the current frame and match with the object database to identify and recognize the

object whenever the robot come across the object. The location of object can also be

obtained in respect to the location of Kinect sensor by using 3x3 Homography matrix.

Implementation of project has been carried out successfully and the custom made robot is

able to map and recognize object accurately.

viii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS vi

ABSTRACT vii

TABLE OF CONTENTS viii

LIST OF TABLES xiv

LIST OF FIGURES xvii

LIST OF SYMBOLS / ABBREVIATIONS xxiii

LIST OF APPENDICES xxv

CHAPTER

1 INTRODUCTION 1

 1.1 Project Overview 1

 1.2 Problem Statements 2

 1.3 Aims and Objectives 3

2 LITERATURE REVIEW 4

 2.1 Mobile Robot Navigation 4

 2.1.1 Localization and Mapping 5

ix

 2.1.1.1 Dead Reckoning 5

 2.1.1.2 Simultaneous Localization and

Mapping (SLAM)

7

 2.1.1.3 Monte Carlo Localization

(MCL)

14

 2.1.2 Path Planning 17

 2.1.2.1 Dijkstra’s Shortest Path

Algorithm

17

 2.1.2.2 A Star (A*) Algorithm 19

 2.2 GMapping Algorithm 21

 2.3 RGB-D Simultaneous Localization and Mapping

(SLAM)

23

 2.4 Robot Operating System (ROS) 25

 2.5 Object Detection and Recognition 26

 2.5.1 SURF (Speeded Up Robust Features)

Algorithm

27

 2.5.2 SIFT (Scale-Invariant Feature Transform)

Algorithm

29

 2.6 Summary for Robot Navigation (Localization and

Mapping)

31

 2.7 Summary of Robot Navigation (Path Planning) 32

 2.8 Summary of Object Recognition 33

x

3 METHODOLOGY 34

 3.1 Design Specifications 34

 3.2 Hardware Specifications 36

 3.3 Software Requirements 37

 3.4 Robot Design 38

 3.5 Indoor Mapping 41

 3.5.1 Simultaneous Localization and Mapping

GMapping (SLAM-GMapping)

Algorithm

42

 3.5.2 ORB SLAM2 Algorithm 43

 3.6 Practical Implementation of SLAM-GMapping

using Custom-made Differential Drive Robot

44

 3.6.1 Control of Custom-made Robot 45

 3.6.2 Implementation of Simultaneous

Localization and Mapping (SLAM)

48

 3.6.3 Autonomous Navigation and 2D

Navigation Goal

52

 3.7 Implement of SLAM-GMapping Algorithm by

using ROS Simulation

54

 3.7.1 Simulation of Robot Model and Gazebo

Environment for ROS

55

 3.7.2 Simulation of Sensors in Gazebo 55

 3.7.3 Simulation of ROS Navigation Stack 56

xi

 3.8 Implementation of RGBD SLAM 56

 3.9 Implementation of Find Object 2D Algorithm for

Object Detection and Recognition

57

 3.10 Camera Calibration on Intrinsic Parameters and

Lens of Kinect Sensor

59

 3.11 Practical Implementation of ORB SLAM2

(Oriented FAST and Rotated BRIEF Simultaneous

Localization and Mapping)

60

 3.11.1 Setting up Environment for Raspberry Pi

3 and ORB-SLAM2

61

 3.11.2 Interfacing ROS across Two Machines 62

 3.11.3 Implementation of ORB-SLAM2 for

Indoor Mapping

63

 3.12 Cost Analysis 65

 3.13 Project’s Sustainability 66

 3.14 Gantt Chart 67

 3.14.1 Gantt Chart FYP I 67

 3.14.2 Gantt Chart FYP II 68

4 RESULTS AND DISCUSSIONS 69

 4.1 Preliminary Work 69

 4.1.1 Robot’s Specifications 69

xii

 4.1.2 Range Detection towards Flat Surface

(Wall) by using Kinect Xbox 360 sensor

76

 4.1.3 Range Detection towards Curved Surface

(Bag) by using Kinect Xbox 360 sensor

78

 4.1.4 Range Detection towards Distance

between Objects by using Kinect Xbox

360 sensor

80

 4.1.5 Intrinsic Calibration of Kinect Xbox 360

sensor

81

 4.2 Practical Implementation of SLAM-GMapping

using Custom-made Differential Drive Robot

87

4.3 Implement of SLAM-GMapping Algorithm by

using ROS Simulation

101

4.4 Relationship between Practical Implementation

and ROS Simulation of SLAM-GMapping

Algorithm

108

4.5 Implementation of RGBD-SLAM 115

4.6 Implementation of Find Object 2D Algorithm for

Object Detection and Recognition

117

4.7 Practical Implementation of ORB SLAM2

(Oriented FAST and Rotated BRIEF Simultaneous

Localization and Mapping)

126

xiii

5 CONCLUSION AND FUTURE WORKS

ENHANCEMENT

132

 5.1 Introduction 132

 5.2 Review 132

 5.2.1 Design of Robot 133

 5.2.2 SLAM Algorithm 133

 5.2.3 Object Recognition 133

 5.3 Conclusion 134

 5.4 Future Works 135

REFERENCES

136

APPENDICES 146

xiv

LIST OF TABLES

 TABLE TITLE PAGE

2.1 Summary for Robot Navigation in Localization and

Mapping

31

2.2 Summary for Robot Navigation in Path Planning

32

2.3 Summary for Robot Navigation in Object Recognition

33

3.1 Relationship between Key Buttons on Keyboard and

Direction of Movement

46

3.2 Output of Swap Space of SD Card Connected to

Raspberry Pi 3

61

3.3 Cost analysis of the equipment and materials used

65

3.4 Project’s sustainability analysis in terms on hardware

and software

66

4.1 Relationship between the motor’s setting and the

movement of the robot

70

4.2 Total angle of rotation of robot when wheel’s diameter

and track width are set at 8 cm and 23.7 cm

respectively

72

4.3 Total distance travelled of robot when wheel’s

diameter and track width are set at 8 cm and 23.7 cm

respectively

73

4.4 Total angle of rotation of robot when wheel’s diameter

and track width are set at 8 cm and 24.7 cm

respectively

74

xv

4.5 Total distance travelled of robot when wheel’s

diameter and track width are set at 8 cm and 24.7 cm

respectively

75

4.6 The relationship between the actual distance of the wall

from the robot and the range measured by Kinect Xbox

360 sensor towards the wall from the robot (cm)

77

4.7 The relationship between the actual distance of the

curved object from the robot and the range measured

by Kinect Xbox 360 sensor towards the curved object

from the robot (cm)

79

4.8 The relationship between the actual distance between

objects and Kinect sensor reading for the distance

between

objects (cm)

80

4.9 The relationship between the default intrinsic

parameters and calibrated intrinsic parameters of RGB

camera and IR camera

86

4.10 Specifications of robot and other parameters used

89

4.11 Relationship between equations used and data from

ROS

topics

91

4.12 Specifications of joints and links of Kinect Xbox 360

sensor

103

4.13 Relationship of parent link and child link of specific

joints and links

103

4.14 ROS topics to be published by using plugin of

Kinect_camera_controller

103

4.15 Distortion model specified for camera lens of Kinect

sensor

104

4.16 Relationship between time taken to map for practical

implementation and ROS simulation

109

4.17 Results that show the relationship between the actual

number of objects and error of root mean square in both

practical implementation and simulation

112

xvi

4.18 Results that show the relationship between the actual

distance to the 2D navigation goal and error of root

mean square in both practical implementation and

simulation

114

4.19 Results that show the relationship between the actual

number of objects and error of root mean square in both

RTAB-Map and RVIZ

117

4.20 Number of features that can be extracted from the

groundtruth image and image of object detected

119

4.21 Position of four corners of object 10, 12, 13 and 18

detected in the image in terms of image pixels

122

4.22 Relationship between height and weight of

groundtruth and object detected

124

4.23 Relationship and setup of ROS across host machine

and slave machine

126

4.24 Relationship between default and calibrated intrinsic

parameters for USB camera

127

4.25 Single pose of camera and its format 131

xvii

LIST OF FIGURES

 FIGURE TITLE PAGE

2.1 Dead Reckoning of the Robot (Zhenjun, Nisar and Malik,

2014)

6

2.2 An overview of SLAM process integrated with Extended

Kalman Filter, EKF (Riisgaard and Blas, 2004)

9

2.3 The triangle is a representation of robot. The stars are

representation of landmarks. The lightning are

representation of location of landmarks based on

measurement of sensors (Riisgaard and Blas, 2004)

9

2.4 The robot estimates its current position and odometry

provides distance travelled by robot (Riisgaard and Blas,

2004)

10

2.5 Sensors are used to measure the location of landmark

relative to position of robot but it does not match with the

location provided odometry data. Thus, the robot is not

located at where it thinks it is (Riisgaard and Blas, 2004)

10

2.6 Generally, the robot relies more on sensors than its

odometry. Location of landmarks are used to determine the

current position of the robot. Dashed triangle represents the

position of robot originally it thought it was (Riisgaard and

Blas, 2004)

11

2.7 Straight line triangle represents the actual location of robot

(Riisgaard and Blas, 2004)

11

2.8 Map constructed by mobile robot through repeating

observations of environment and landmark in an unknown

environment (Riisgaard and Blas, 2004)

12

xviii

2.9 Distribution of the importance weights of particles p(z|x)

assigned when a door need to be sensed in the environment

(Zhenjun, Nisar and Malik, 2014)

16

2.10 (a) The distance from source node to adjacent node is

calculated and the shortest distance is chosen

(b): The shortest path is found from node a to b to c to f and

finally to node e (Abhishek et al., 2014)

18

2.11 Assume green square represents the starting point and red

point represents the goal point and the blue squares

represent the obstacles that separates the two points

(Abishek et al., 2014)

20

2.12 Search of 8-neighbouring nodes from the starting point

(Abhishek et al., 2014)

20

2.13 The Heuristics of 8-adjacent neighbouring nodes have been

calculated by following f(n) = g(n) + h(n) (Abhishek et al.,

2014)

20

2.14 The nodes that are closer to the goal point from the starting

point are chosen and shaded with blue border box. Then the

nodes that have smallest value of f(n) will be the path

chosen (Abhishek et al., 2014)

21

2.15 The red dots represent the path chosen with the smallest

value of f(n). This shows the shortest path computed by

using A* algorithm (Abhishek et al., 2014)

21

2.16 Schematic Overview of RGB-D SLAM (Endres et al.,

2012)

24

2.17 Relationship between ROS master, nodes and topics

26

2.18 Flow of SURF Algorithm (Bhosale Swapnali, Kayastha

Vijay and Harpale Varsha, 2014)

28

2.19 (a) Haar wavelet filters to compute responses in x

direction (b) Haar wavelet filters to compute responses in

y direction

28

2.20 4 x 4 Computed Orientation Histogram Arrays in 128

Dimension SIFT (Modified from Khan, McCane and

Wyvill, 2011)

30

xix

3.1 The interfaces between PC, mobile robot, Arduino Mega

2560 and Kinect Xbox 360

35

3.2 Different Movement of Differential Drive Robot

39

3.3 Dimension of Robot Chassis

40

3.4 Connection of DC Geared Motor with Plastic Wheel

40

3.5 Connection of DC Geared Motor with DC Geared Motor

Bracket

41

3.6 Placement of caster wheels and plastic wheels on robot

base

41

3.7 Flow of Map Building Steps in an unknown environment

44

3.8 Overview of ROS Network for Practical Implementation

(Modified from Cha, 2015)

45

3.9 Relationship between base_link coordinate system and

camera coordinate system (Wiki.ros.org, 2017)

51

3.10 Overview of Setup and Configuration of Navigation Stack

on Robot (Ken, 2016)

54

3.11 System Architecture of Implementation of ORB-SLAM2

64

4.1 Track width and wheel’s width of differential steering of

robot

70

4.2 Wheel’s diameter of differential steering of robot

71

4.3 A 8x6 Checkerboard with Dimension of 0.108m

81

4.4 Successful Calibration of RGB Camera in terms of X-bar,

Y-bar, Size and Skew Bar

82

4.5 Successful calibration of IR Camera (with IR speckle

projector covered)

83

4.6 (a) No Distortion

(b) Barrel Distortion

(c) Pincushion Distortion

85

xx

4.7 (a) Zero Tangential Distortion when the lens and sensor are

parallel

(b) Tangential Distortion when the lens and sensor are not

parallel

85

4.8 Ubuntu Linux terminal designed and used for manual

control of robot

87

4.9 Device name of Arduino Mega 2560 connected to ROS

under rosserial node

88

4.10 (a) RPM of robot when move in linear direction published

under rpm topic

(b) RPM of robot when move in angular direction

published under rpm topic

89

4.11 (a) Odometry of robot when move in linear direction

published under odom topic

(b) Odometry of robot when move in angular direction

published under odom topic

90

4.12 (a) Transformation of data from map topic to odometry

topic (map to odom)

(b) Transformation of data from odometry topic to

base_link topic (odom to base_link)

90

4.13 Robot model designed and used in RVIZ

92

4.14 TF tree of the system designed (Part 1)

95

4.15 TF tree of the system designed (Part 2)

96

4.16 (a) Map built by implementation of SLAM-GMapping in

room E108

(b) Map built by implementation of SLAM-GMapping in

Lab E211

97

4.17 (a) AMCL particles scattered around the robot at initial

position of robot

(b) AMCL particles start to converge when the robot move

towards navigation goal

98

4.18 (a) Cost cloud formed around the robot when a navigation

goal is specified

(b) Shortest path planned using Dijkstra’s algorithm

towards the navigation goal

100

xxi

4.19 Gazebo Environment designed for Simulation based on

office room E108

101

4.20 Robot model designed by using URDF file

102

4.21 Map built in RVIZ (right) and the environment used (left)

104

4.22 Map built by using simulation in .pgm format based on

office room E108

105

4.23 AMCL particles scattered around the robot at the robot’s

initial position

105

4.24 Refined AMCL particles as the robot navigates

autonomously towards the navigation goal

106

4.25 Rainbow cost cloud formed around the robot

106

4.26 Full path and global path planned for the robot to navigate

107

4.27 The robot stop at a distance (inflation radius) away from

the obstacle

108

4.28 (a) Map built by using practical implementation of SLAM-

GMapping algorithm

(b) Map built by using ROS simulation of SLAM-

GMapping algorithm

111

4.29 (a) Top view of 3D map of office room E108 built by using

RGBD-SLAM

(b) Side view of 3D map built of office room E108 by using

RGBD-SLAM

115

4.30 RTAB-Map Frame and the 3D Map built

116

4.31 (a) Detection and labelling of Object 10 (Book)

(b) Detection and labelling of Object 12 (Book)

(c) Detection and labelling of Object 13 (Human-like doll)

(d) Detection and labelling of Object 18 (Human-like doll)

120

4.32 The direction of x-axis and y axis of image defined

122

4.33 (a) Red bouncing box shown around the Object 10

(b) Blue bouncing box shown around the Object 18

124

4.34 Information obtained for object 10 under the topic /object 125

xxii

4.35 Transformation data obtained for object 10 under the topic

/tf

125

4.36 Failure in initializing the track of camera position for ORB-

SLAM2

128

4.37 SLAM Mode has been initialized by extracting 112 points

from the current frame

129

4.38 Current and past pointcloud points and keyframes inserted

by using tracking thread and mapping thread

130

4.39 The map built by using ORB-SLAM2 algorithm 130

xxiii

LIST OF SYMBOLS / ABBREVIATIONS

AMCL Adaptive Monte Carlo Localization

BoW Bag of Words

BRIEF Binary Robust Independent Elementary Features

CCW Counterclockwise

CW Clockwise

DoG Difference of Gaussians

EKF Extended Kalman Filter

FAST Feature from Accelerated Segment Test

GUI Graphical User Interface

MCL Monte Carlo Localization

ORB Oriented FAST and Rotated BRIEF

PC Personal computer

PCL Point Cloud Library

PDF Probability Density Function

PVC Polyvinyl Chloride

RANSAC Random Sample Consensus

RMSE Root Mean Square Error

ROS Robot Operating System

RPM Revolution per minute

RTAB-Map Real-Time Appearance-Based Mapping

RVIZ ROS Visualization

SIFT Scale Invariant Feature Transform

SIR Sampling Importance Resampling

SLAM Simultaneous Localization and Mapping

xxiv

SURF Speeded Up Robust Features

TF Transformation

URDF Unified Robot Description Format

USAR Urban Search and Rescue

2D Two dimensional

2WD 2 wheel drive

3D Three dimensional

A* A star algorithm

𝑈 History of control inputs

𝑋 History of vehicle locations

𝑍 Set of all landmark observations

𝑚 Set of all landmarks

𝑤𝑡 Importance weight of Rao-Blackwellized particles

𝑥𝑘 Current state of robot

𝑥𝑘−1 Previous state of robot

cx Principal point

f(v) Sum of heuristic distance and length of path

fps Frame per second

fx Focal length

g(v) Length of path chosen

h(x) Heuristic approximation

k1 Radial distortion

Lxx Convolution of input image with Gaussian differential operators

odom Odometry

P(𝑧|𝑥) Importance weight of the robot

p1 Tangential distortion

qx Quaternion

xxv

LIST OF APPENDICES

 APPENDIX TITLE PAGE

A Parts and Components for Robot Design 146

B Programming Code (C++) for Motor Control 149

 C Programming Code (XML) for URDF of Robot Model 153

26

CHAPTER 1

1 INTRODUCTION

1.1 Project Overview

During disasters, it is critical to rescue the survivors who get trapped in the natural disaster such

as earthquake, fire or flood, accident in manufacturing plant or manmade such as wars and terrorist

attacks within the shortest period of time. According to the field of Urban Search and Rescue

(USAR), there is a higher probability to rescue a victim within the golden 48 hours of rescue

operation. Robots can be deployed in search rescue operating in recent years. Robots are also

achieving a remarkable milestone in various fields which are manufacturing, education, medicine,

military and industry.

A robot is a programmable mechanical device that is capable of performing tasks

respectively. Therefore, robots can aid human in search and rescue activity. Robots are deployed

to assist human tasks in order to reduce fatigue, improve efficiency, precision and quality of

product as a robot can work for 24/7 (Khatib et al., 1999). Therefore, rescue robotics is one of the

motivation in creating a truly autonomous system. Autonomous robot needs to have the

capabilities of navigating around the dynamic environments, able to avoid obstacles, able to handle

unpredictable situations and perform tasks and interact with its environment without the

interference from human (Birk and Carpin, 2006).

27

Robots are widely used in the field of medicine such as telepresence, surgical assistants,

medical transportation robots and even robotic prescription dispensing systems. Robots are also

used to transport medicine and necessary aids among the patient and the medical team to reduce

the burden of medical team. There is also application of robot which helps in increasing precision

of surgery and even automated medicine dispensing systems as the biggest accuracy of robots are

speed and accuracy.

From the above it is observed that robots are also expected to play an important role in

search and rescue field. Rescue robots are equipped with hardware and able to communicate to

computer to act as a life-saving tool. The objective of rescue robot is to cover a large area as fast

as possible to provide information about the environment to the human rescue team. Robot can

also be able to generate map of the environment and detect the victim to be saved. Rescue robots

serve the purposes to enter those environment that is too small or too dangerous for human rescue

team (Lafih and Meer, 2015).

1.2 Problem Statements

During the occurrence of disaster such as accident in manufacturing plant, it is difficult to rescue

the human beings under the debris or rubble. However, in search and rescue activity, time is very

critical as a large unknown area need to be covered by human rescue team within a short period of

time. Detection of human in appropriate time is very important in such situations. In order to rescue

victim within the first 48 hours of the rescue operation as fast as possible, a robot can be deployed

to send the detected victims’ location to a laptop PC as robot can operate 24/7. Then, these

locations were marked and saved so that human rescue team can get to the location more accurately

and thus saves time of searching the victim.

 Furthermore, the robot designed is also meant to aid the search and rescue activity in an

unknown environment. Therefore, the ability of robot to navigate and build a map in an unknown

28

environment is very important. Rescue robots should also be able to sense the environments by

using sensors to avoid obstacle. Performance of rescue robots should be stable enough to aid the

search and rescue activity. The accuracy and stability of sensory data greatly affects the

performance and accuracy of navigation of robot and also directly affect the path planning process.

Location identification process also greatly depends on navigation process.

 In order to identify the location of an object, the object must first be recognized by

extracting features from the object. Once there is enough features extracted, the object can be

detected and recognized, the object’s position and orientation with respect to the pose of camera

can be displayed in terms of image pixels.

1.3 Aims and Objectives

The objectives of the thesis are shown as following:

1) To implement SLAM on custom-made robot working under ROS framework in simulation

and practical implementation.

2) To generate a 2D map about the unknown environment using SLAM-GMapping algorithm

and 3D map using RGBD-SLAM algorithm.

3) To incorporate navigation stack into the robot for autonomous navigation and 2D

navigation goal.

4) To identify, recognize and localize object without repeating and missing.

29

CHAPTER 2

1 LITERATURE REVIEW

2.1 Mobile Robot Navigation

Mobile robot navigation is a process of first acquiring the location and orientation of self-

localization and then plan a path or route to allow the robot to reach its targeted destination by

taking into account both sensor data and environment data. According to Leonard and Durrant-

Whyte, the issue in handling navigation can be concluded into three questions which are “Where

Am I?”, “Where am I going?” and “How should I get there?” (Leonard and Durrant-Whyte, 1991).

Robot navigation basically consists of three prime elements which are mapping, localization and

path planning. Mapping is a process of generating a map based on sensory odometer data and

environmental exploration. Localization is a process of identifying robot’s own location based on

the map build. Path planning is the process of navigating to the targeted location by using the

shortest path distance between the robot’s own location and the desired location (Pala et al., 2013).

Robot need to run computations and calculations based on the sensory data collected to obtain the

shortest path to the targeted location based on mapping and localization results as well.

2.1.1 Localization and Mapping

Navigation is a fundamental ability of a robot to localize itself based on robot orientation and

location. The consistency and accuracy of sensor data play an important role to determine the best

30

path to get to the targeted location (Tang, 2008). The past location of the robot and the future

location it desired based on map making also determines the path calculated.

2.1.1.1 Dead Reckoning

Dead reckoning which is derived from “deduced reckoning” of sailing days is a simple

mathematical procedure (Borenstein et al., 1997). Dead reckoning computes the present location

by taking consideration of past locations and information from velocity and angular motion over

a known period of time (Shufeldt, Dunlap and Bauer, 1999). Dead reckoning is the fundamental

element of navigation skills (Borenstein et al., 1997).

 Dead reckoning plays an important role in mobile robot navigation and will simplify the

navigation process if accuracy of this method can be enhanced (Xu, Tan and Chen, 2002). Dead

reckoning obtains orientation (direction), position linear and angular velocity of robot by

computing basic trigonometry calculations. Dead reckoning is widely used in Autonomous Mobile

Robot (AMR) due to the nature of simplicity and easy to debug (Park, Chung and Lee, 1998).

Figure 2.1 shows the location of robot is computed by using dead reckoning.

Figure 2.1: Dead Reckoning of the Robot (Zhenjun, Nisar and Malik, 2014)

31

 Inertial sensors provide the robot with velocity and yaw angles which is measured by

sensors integrated to the wheels of robot. Dead reckoning estimates the present location by using

information relative to robot’s starting points. Dead reckoning does not rely on external signals.

Therefore, dead reckoning is known to have the features of cheap, simple and fast estimating time

in current position of the robot (Cho et al., 2011). Although dead reckoning is the backbone of

robot localization system but the accuracy is not obviously improved to obtain an accurate and

reliable location estimation over a long period of time (Lee et al., 2008). Besides easy

implementation and fast speed, dead reckoning results in accumulated errors unless error

correction algorithm is integrated to eliminate any accumulated errors (Varveropoulos, 2005).

 Odometry data alone is insufficient to provide a consistent and accurate position localized

by the robot in using dead reckoning method (Von Der Hardt, Wolf and Husson, 1996).

Accumulation of small errors due to robot’s slippage in linear or rotational acceleration might lead

to serious error in the process of self-localization of robot (Kanayama et al., 1990). Since dead

reckoning is based on odometry data from the wheels, wheel slippage or mechanical rubber

deformation and terrain roughness may lead to inability of the robot to keep track of its belief of

its position over a long distance in a considerable amount of time (Tsai, 1998). The distance

travelled is proportional to the accumulated error in estimating position of robot. As the distance

travelled increases, the percentage error in position of robot also increases. Since the area of

environment of experiments is expected to be large, dead reckoning is clearly not a suitable

implementation to be used.

2.1.1.2 Simultaneous Localization and Mapping (SLAM)

SLAM is derived from a question raised from the robotics community which is whether it is

possible to perform self-localization when placing a mobile robot in an unknown environment by

building a reliable map of the environment. Therefore, a SLAM problem has been known as a

“holy grail” for making the dream of fully autonomous mobile robot to come true (Bailey and

Durrant-Whyte, 2006). An autonomous robot is known as a mobile robot with the capability of

32

react to responses and perform designated specific task by itself without intervention from human

or user. Autonomous robot can also be known as an artificial intelligence robot which is capable

of “thinking” and “acting” based on the results of computations and decision making (Hadjia et

al., 2015).

 SLAM technique is meant to solve the problem of employing a mobile robot to construct

a map of an unknown environment and thus enabling it to navigate the environment based on the

map constructed (Riisgaard and Blas, 2004). Figure 2.8 shows the map constructed by mobile

robot through repeating observations of environment and landmark in an unknown environment.

Mobile robot does not need to have a prior knowledge about the location of itself and environment.

Both the process of building map and computing robot’s location should be done in real-time

implementation (Bailey and Durrant-Whyte, 2006). Optimization of performance of mobile robot

in terms of landmark extraction and estimation, robot previous and current estimation of position,

efficient path planning and reduction of localization error are the objectives of introducing SLAM

algorithm (Leonard and Durrant-Whyte, 1991). SLAM algorithm is built up with multiple sections

which are extracting and updating of landmark, associating of data, estimating and updating of

state (Riisgaard and Blas, 2004).

 An autonomous vehicle or mobile robot is equipped with a set of sensors such as

accelerometer and gyrometer which are capable of measuring the rotation of wheels and camera

to act as a vision sensor which is capable of extracting landmarks from the environment relative

to the vehicle. The landmarks may be static or dynamic (Dissanayake et al., 2001). A group of

landmarks is known as priori in applications of robotics (Cadena et al., 2016). The mobile robot is

placed at a starting point in an unknown environment with no knowledge about the position of

landmarks relative to the mobile robot. Observations of location of landmarks have been recorded

and computed as the mobile robot roams around to compute the accurate position of the robot

(Dissanayake et al., 2001). However, the presence of dynamic landmarks can lead to inaccuracy

of building of map and error in SLAM algorithms. This is a matter that cannot be underestimated

as most mobile robot applications are meant to work in a non-static environment (Wolf and

Sukhatme, 2005).

33

Extended Kalman Filter (EKF) is the main component in SLAM algorithm (Riisgaard and

Blas, 2004). Corners and edges of wall are also been considered as landmarks to improve the

accuracy of SLAM method. EKF is used to estimate the accurate position of the robot and

landmarks present in the unknown environment (Wolf and Sukhatme, 2005). The overview of

SLAM process integrated with Extended Kalman Filter (EKF) is shown in Figure 2.2. Figure 2.3

to Figure 2.7 show the relationship between robot, sensor and odometry data and the compensation

between the calculation of sensor and odometry data.

Figure 2.2: An overview of SLAM process integrated with Extended Kalman Filter, EKF

(Riisgaard and Blas, 2004)

34

Figure 2.3: The triangle is a representation of robot. The stars are representation of

landmarks. The lightning are representation of location of landmarks based on measurement

of sensors (Riisgaard and Blas, 2004).

Figure 2.4: The robot estimates its current position and odometry provides distance travelled

by robot (Riisgaard and Blas, 2004).

Figure 2.5: Sensors are used to measure the location of landmark relative to position of robot

but it does not match with the location provided odometry data. Thus, the robot is not located

at where it thinks it is (Riisgaard and Blas, 2004).

35

Figure 2.6: Generally, the robot relies more on sensors than its odometry. Location of

landmarks are used to determine the current position of the robot. Dashed triangle

represents the position of robot originally it thought it was (Riisgaard and Blas, 2004).

Figure 2.7: Straight line triangle represents the actual location of robot. Inaccuracy of

sensors leads to inability of robot to know its precise location. However, the estimation is

better when consider both odometry and sensor data. The dotted triangle is the

representation of robot where it think it is. The dashed triangle tells where it was and last

straight line triangle tells where it actually is (Riisgaard and Blas, 2004).

36

Figure 2.8: Map constructed by mobile robot through repeating observations of environment

and landmark in an unknown environment (Riisgaard and Blas, 2004).

 SLAM problem is solved by using a probability distribution which describes the past

landmark locations and vehicle locations at certain time by given the control inputs and

observations of vehicle towards landmarks. The probability distribution is shown below (Bailey

and Durrant-Whyte, 2006):

𝑃(𝒙𝑘, 𝒎|𝒁0:𝑘, 𝑼0:𝑘, 𝒙0) (2.01)

Given that:

𝑿0:𝑘 = {𝑥0, 𝑥1, … , 𝑥𝑘} = {𝑋0:𝑘−1, 𝑥𝑘} (2.02)

 𝑼0:𝑘 = {𝑢1, 𝑢2, … , 𝑢𝑘} = {𝑈0:𝑘−1, 𝑢𝑘} (2.03)

𝒎 = {𝑚1, 𝑚2, … , 𝑚𝑛} (2.04)

𝒁0:𝑘 = {𝑧1, 𝑧2, … , 𝑧𝑘} = {𝑍0:𝑘−1, 𝑧𝑘} (2.05)

where

𝑿0:𝑘 = the history of vehicle locations

𝑼0:𝑘 = the history of control inputs

𝒎 = the set of all landmarks

𝒁0:𝑘 = the set of all landmark observations

By using the observation model, the probability of obtaining the landmark observations, zk

given the location of landmark, m and location of robot, xk. Assumption is made when the location

37

of landmark and robot are obtained, the landmark observation is conditionally independent of map

of surrounding unknown environment and the current position of robot. The observation model

used in SLAM algorithm is shown below (Bailey and Durrant-Whyte, 2006):

 𝑷(𝒛𝑘|𝒙𝑘, 𝒎) (2.06)

where

𝒛𝑘 = landmark observations

𝒙𝑘 = location of robot

𝒎 = location of landmark / map

By using the motion model, the probability distribution of state of robot can be determined.

Markov process is used to predict the state transition of robot where the current position 𝒙𝑘

depends on the previous position of robot 𝒙𝑘−1 whereas the input to control the movement of robot

is conditionally independent of both the landmark observations and the map of surrounding

environment. The motion model used in SLAM algorithm is shown below (Bailey and Durrant-

Whyte, 2006):

 𝑷(𝒙𝑘|𝒙𝑘−1, 𝒖𝑘) (2.07)

where

𝒙𝑘 = current state of robot

𝒙𝑘−1 = previous state of robot

𝒖𝑘 = control input of robot

A major obstacle in overcoming the SLAM problem is associating data between previous

observations of landmark and current observations of landmark. Inaccuracy in associating data

may lead to serious failure of the SLAM algorithm (Bailey and Durrant-Whyte, 2006). Therefore,

EKF which is a probabilistic method is used to limit the effect of inaccurate reading of sensor and

38

the accuracy of map constructed by mobile robot. This is known as EKF-SLAM (Naminski, 2013).

FastSLAM is introduced by integrating both Particle Filter and Extended Kalman Filter which

leads to higher data accuracy. FastSLAM employs modified particle filter to estimate the posterior

along the path of robot by breaking down SLAM problem into problems of collecting landmark

estimation and problem of robot self-localization (Montemerlo et al., 2002). Particle filters were

also used for multi-robot SLAM. Without prior knowledge of initial poses of robots, multi-robot

SLAM is able to combine all data from all robots to construct a single map. When a Robot 1

encounter with another Robot 2, they measure their relative location and fed the measurements

into a filter and then combines into a common map (Howard, 2006).

 Despite of the high accuracy of SLAM algorithm, the computations are complex and

intensive as robot constructs the map by every move of robot along the map (Zhang and Martin,

2013). Even though computational complexity can be deal with an advanced algorithm, there are

still limitations to SLAM applications such as limitation to constructing map in outdoor

environments (Thrun et al., 2004) and limitation to specific conditions and environments (Cheein

et al., 2010). However, the performance of SLAM algorithm is good for the mobile robot to obtain

information of the unknown environment to navigate and localize in unknown environment

(Dissanayake et al., 2011).

2.1.1.3 Monte Carlo Localization (MCL)

Monte Carlo localization (MCL) is a combination of Kalman filter and particle filter algorithm

(Chen et al., 2011). In order to navigate in a known indoor environment, a mobile robot must has

knowledge about its position on the map. Monte Carlo localization is used to estimate the position

of robot and orientation by employing particle filter (Naveed and Ko, 2014). MCL which is a

probabilistic approaches is known as one of the reliable solution to provide real-time estimation of

position in localizing robot (Dellaert et al., 2000).

39

 There are two phases in computing the global position of mobile robot by using MCL

which are prediction phase and update phase. Global position can be used to navigate and planning

of path in a complicated known environment. Prediction phase is the first phase in which a motion

model is used in predicting the current position of robot by using predictive Probability Density

Function (PDF) in Bayes filter. Update phase is the second phase in which a measurement model

is used to obtain readings from sensors and then compute to obtain a posterior PDF (Dellaert et al.,

2000).

 Fundamental idea of MCL algorithm is to collect a group of samples which is also known

as particles. The samples represents the possible location of robot currently located in the known

environment. Firstly, the samples are evenly distributed over a few possible location where the

robot might be and every sample is given the same importance of weight. However, as the robot

moves and times passes, those samples which are nearer to the current exact location will have

more weightage than those who is further than the exact location (Fox et al., 1999). Figure 2.9

shows the distribution of the importance weights of particles p(z|x) assigned when a door need to

be sensed in the environment (Zhenjun, Nisar and Malik, 2014).

The overview of MCL is as follows:

1. A set of samples is initialized by evenly distributing it over the possible locations with the same

importance weightage.

2. The process is repeated until a spike of importance weight of samples is obtained:

i. The robot is moved over a constant distance and readings from sensors have been

taken.

ii. Movement model is used to update the distribution of each samples

iii. Sensor model is used to reassign the importance weightage of each sample based

on their likelihood of new locations by using sensor readings.

iv. A new set of samples is created based on the updated importance weightage of each

sample.

v. This new set of samples has been assigned to be the current set of samples.

40

 The accuracy of the computation results of MCL can be improved by increasing the total

number of samples. However, there is a tradeoff between computational accuracy and efficiency

as larger number of particles leads to lower computation efficiency in real-time applications

(Naveed and Ko, 2014). Particle filters are easy to implement and it can be fused with various

types of sensors, motion dynamics and it focus on the areas which has highest likelihood, therefore

MCL has been used to solve many localization problems (Thrun et al., 2001). However, the

performance and accuracy of MCL algorithm relies greatly on the symmetry of map and different

configurations of maps might affect the result and number of iterations need to be computed to get

the exact location of robot. MCL requires a relatively large amount of iterations to get accurate

results and measurements from the same orientation. However, there is one problem faced in using

MCL algorithm in real world, that is, the presence of noise will leads to uncertainties in the map

built (Lee and Buitrago, 2015).

Figure 2.9: Distribution of the importance weights of particles p(z|x) assigned when a door

need to be sensed in the environment (Zhenjun, Nisar and Malik, 2014).

2.1.2 Path Planning

In the field of autonomous robotics, path planning is an important element in order to enable a

robot to move from one point to another targeted destination by using the shortest path. By using

the shortest path, many undesirable turning and braking can be avoided and this leads to less

computations time and lower cost.

41

 Path planning also helps to determine a path to avoid obstacle from a starting point to a

targeted goal which in turns also enhances the performance of autonomous navigation in terms of

time consumed, energy consumed and distance travelled (Raja and Pugazhenthi, 2012). In order

to navigate optimally in an environment, the robot must be able to avoid obstacle and have a precise

information about the map. Path planning involves a series of decision sequence (Duchoň et al.,

2014). By dividing the map into nodes that are connected by edges, the shortest path would enable

the robot to move from node to node as shown in Figure 2.7.

2.1.2.1 Dijkstra’s Shortest Path Algorithm

Dijkstra’s shortest path algorithm works on a basis of repeatedly computing the shortest distance

from one source node to another vertices node and computes the nearest vertices node from the

source node. For Dijkstra’s algorithm to work correctly, the edges of the directed-weighted graph

must not be negative.

 Initially, the source node is chosen and the distance to source node itself is zero. Next, the

distances to all other vertices are set to infinity to indicate that these vertices have not been

processed yet. Then, the distance to nearest adjacent nodes are computed and the shortest distance

path will be chosen. At this stage, the adjacent node will become the source nodes and the

computation will be repeated until there is no outgoing edges from the vertices anymore. When

there are no more vertices, the algorithm will be terminated. After terminating the algorithm, a

shortest distance from one source node to another vertex is obtained (Abhishek et al., 2014). For

example as shown in Figure 2.10, the node a is the source node. The adjacent nodes from the

source node is node b, node c and node f. After computing the distance, the distance from node a

to node b is the shortest path which is a weightage of 7. Next, node c now become the source node

and the adjacent nodes are node f and node d. Node c to node f has the least weightage of 2. Then

from node f, the targeted node has been reached which is node e. Since we have set node e as the

targeted node, there should be no outgoing edges from node e. Thus, the Dijkstra’s shortest path

42

algorithm terminates and gives the shortest path from node a to node b to node c to node f and

finally node e. Figure 2.10(b) shows the shortest path found.

 (a) (b)

Figure 2.10: (a): The distance from source node to adjacent node is calculated and the

shortest distance is chosen. (b): The shortest path is found from node a to b to c to f and

finally to node e (Abhishek et al., 2014).

 However, there is a disadvantage in Dijkstra’s shortest path algorithm that it is computation

intensive as it undergoes a blind search and it is time consuming and waste of resources (Abhishek

et al., 2014).

2.1.2.2 A Star (A*) Algorithm

A* algorithm which is also known as A star algorithm is fundamentally the same as Dijkstra’s but

it also includes a heuristic approach. A* algorithm employs a heuristic approximation, h(x) which

gives the estimation of the optimal route that goes through the starting point to the ending point

(Abhishek et al., 2014). A star algorithm is also known as best first search approach as it visits the

nodes by following the order of heuristic approximation and each cell in the map uses the equation

below to compute their value:

43

 f(v) = h(v) + g(v) (2.08)

where

h(v) = heuristic distance between the cell to the goal state

g(v) = length of path chosen from the initial state to the desired goal state

via the chosen sequence of cells

f(v) = sum of heuristic distance and length of path chosen

 The cell which has the lowest value of f(v) will be the next sequence in the path. The reason

A* algorithm has better advantage than Dijkstra’s algorithm is because it starts with the favouring

vertices that are near to the initial point and used Best First-Search method to find those favouring

vertices that are near to the target point (Duchoň et al., 2014). Figures below illustrate more about

the process of A* algorithm.

Figure 2.11: Assume green square represents the starting point and red point represents the

goal point and the blue squares represent the obstacles that separates the two points (Abishek

et al., 2014).

44

Figure 2.12: Search of 8-neighbouring nodes from the starting point (Abhishek et al., 2014).

Figure 2.13: The Heuristics of 8-adjacent neighbouring nodes have been calculated by

following f(n) = g(n) + h(n) (Abhishek et al., 2014).

Figure 2.14: The nodes that are closer to the goal point from the starting point are chosen

and shaded with blue border box. Then the nodes that have smallest value of f(n) will be the

path chosen (Abhishek et al., 2014).

45

Figure 2.15: The red dots represent the path chosen with the smallest value of f(n). This

shows the shortest path computed by using A* algorithm (Abhishek et al., 2014).

2.2 GMapping Algorithm

Gmapping algorithm make use of Rao-Blackwellized particle filter to solve grid map SLAM

problem by estimating the location of robot and landmark observations by using the map and past

trajectory of robot. Another characteristics of Rao-Blackwellized particle filter in SLAM algorithm

is the use of factorization where the path of robot is first estimated to compute the surrounding

environment based on the path of robot. By estimating the path of robot, a map which relies greatly

on the estimation of pose of robot can be generated in an efficient way. The factorization equation

used in Rao-Blackwellized particle filter is shown below (Grisetti, Stachniss and Burgard, 2007):

 𝑃(𝑥1:𝑡, 𝑚 | 𝑧1:𝑡, 𝑢1:𝑡−1) = 𝑃(𝑚 | 𝑥1:𝑡, 𝑧1:𝑡) ∙ 𝑃(𝑥1:𝑡 | 𝑧1:𝑡, 𝑢1:𝑡−1) (2.09)

where

𝑥1:𝑡 = trajectory of robot

 𝑧1:𝑡 = landmark observations

𝑢1:𝑡−1 = odometry measurement

𝑚 = map

 Particle filter used in Rao-Blackwellized is the sampling importance resampling (SIR) filter.

There are four steps in building a map by using the sensor and odometry information and also Rao-

46

Blackwellized SIR filter which are sampling, importance weighting, resampling and map

estimation. Sampling is the process to obtain the next set of particles with information from the

previous set of particles. Motion model is used to sample the probability distribution by a factor

of 𝜋 stated in equation 2.10. Then each particle is assigned with an importance weight, wt

computed by using the equation below (Grisetti, Stachniss and Burgard, 2007):

 𝑤𝑡
(i)

 =
𝑃(𝑥1:𝑡

(𝑖)
 | 𝑧1:𝑡,𝑢1:𝑡−1)

𝜋(𝑥1:𝑡
(𝑖)

 | 𝑧1:𝑡,𝑢1:𝑡−1)
 (2.10)

where

𝑤𝑡 = importance weight

𝑥1:𝑡 = trajectory of robot

 𝑧1:𝑡 = landmark observations

𝑢1:𝑡−1 = odometry measurement

 Then resampling is done by thresholding the number of particles for continuous

distribution according to the importance weight of each particle. After resampling, all the particles

will have the same value of importance weight. Finally, by taking into account both the past history

of landmark observation and path of robot, an estimation of the map of surrounding environment

can be generated (Grisetti, Stachniss and Burgard, 2007). Scan matching algorithm which is the

matching of the previous laser scan input and current laser scan input is used to obtain the landmark

observation. The laser scan input data is used in estimation of the pose of robot (Balasuriya et al.,

2016).

2.3 RGB-D Simultaneous Localization and Mapping (SLAM)

47

In robotics application, it is important for a robot to know its location in respect with the world so

that the robot can navigate around the world. In order to achieve this objective, the 3D models of

the surrounding environment and the localization of pose of camera need to be estimated in parallel.

The input datas will be from Kinect camera as Kinect is able to provide both depth images and

colour images at 30 frame per second.

There are four stages in RGB-D SLAM which are features extraction, features matching,

transformation estimation and lastly Octomap generation. Features extraction is done on the input

colour images, then these features are matched with the previous images. The position of feature

points on the depth images are used to compute the transformations between any two frames by

using RANSAC (Random Sample Consensus). Finally, an Octomap library is used to generate a

voxel occupancy map of the environment. The trajectory of robot can also be estimated by

estimating the trajectory of pose of camera mounted on the robot (Endres et al., 2012). Trajectory

estimated is divided into SLAM front-end and back-end as shown in Figure 2.16.

Figure 2.16: Schematic Overview of RGB-D SLAM (Endres et al., 2012)

 In the front-end stage, keypoints are detected from the RGB images and descriptors are

then extracted from the images by using various features descriptors such as SURF (Speeded Up

Robust Features), SIFT (Scale-Invariant Feature Transform) and ORB (Oriented FAST and

48

Rotated BRIEF). The locations of features are then projected to 3D coordinates by using the depth

measurements obtained from depth images of RGB-D camera. The transformation between current

frame and previous frame is obtained through the transformation of pose of camera. Then

RANSAC algorithm is used to eliminate the outliers and unstable data. This is done by eliminating

those feature points that are less than the Euclidean distances. Those feature points that match with

the pairwise Euclidean distances are consider as inliers and the inliers are used for computation of

refined transformation of pose of camera. The transformation between camera poses is then used

to form the edges of global pose graph (Endres et al., 2012).

 In the back-end stage, the global pose graph is optimized by using g2o framework which is

a graph optimizer that is widely used in SLAM algorithm. By minimizing the non-linear error

function presents in the pose graph, the pose graph can be optimized and loop closures can be

formed. The non-linear error function is shown below (Endres et al., 2012):

𝐹(𝑥) = ∑ 𝑒(𝑥𝑖, 𝑥𝑗 , 𝑧𝑖𝑗)
𝑇

Ω𝑖𝑗𝑒(𝑥𝑖, 𝑥𝑗 , 𝑧𝑖𝑗)<𝑖,𝑗>∈𝑐 (2.11)

𝑥∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥𝐹(𝑥) (2.12)

where

x = vector of pose representations

xi = mean of poses

zij = information matrix

2.4 Robot Operating System (ROS)

Robot Operating System (ROS) is a framework that provides tools and libraries and is widely used

in robotics field. ROS is fully compatible to Linux (Ubuntu) distributions and ROS usually are

matched with respective Ubuntu distributions such as ROS Kinetic is compatible for Ubuntu

16.04.4 LTS. ROS fully supported some of the popular robot nowadays which are Turtlebot,

49

Publish Messages

Pepper and Robonaut. The ROS is an open source and free to use framework for research purpose

and the functionalities of ROS can be expanded by contributing packages to ROS by developers.

ROS also supports various programming languages such as Python, C++ and Libs (Joseph, 2017).

 Programs created on ROS are known as nodes where communication between nodes are

through topics by defining subscribers and publishers connections within the nodes. Then the

programs is launched together with the executables created by using a launch file and the command

roslaunch. In order for all the nodes to communicate with each other, a master node named roscore

is used. Without running roscore while executing ROS programs, the nodes will not be able to

find each other to exchange messages. To start using ROS, a ROS package which encompasses all

the programs (ROS nodes), executable files and CMake text files for compiling are created under

a workspace (Tawil, 2017). The relationship between ROS master, nodes and topics is shown in

Figure 2.17.

Figure 2.17: Relationship between ROS master, nodes and topics

2.5 Object Detection and Recognition

Object detection is important in the robotics field as during the process of mapping and executing

tasks, a robot needs to have information about the surrounding environment and location of objects.

The working principle of object recognition is to identify objects in the real world from input image

Publish Messages Subscribe Messages

Subscribe Messages

ROS Master

ROS

Node 1

ROS

Node 2

ROS

Topic

ss

50

of the world with prior information about the object models in object database. The ability of robot

to recognize a known object which is placed in object database from different point of view will

be helpful in assisting the search and rescue activity in locating the position of a victim or certain

objects (Ekvall, Kragic and Jensfelt, 2007).

 Features can be extract from the object to identify a match from the object database. There

are usually two phase in object recognition process which are training phase and testing phase.

Training phase is the stage where a set of interest points are selected by using feature descriptors

algorithm whereas testing phase is the stage where the images in the current frame are compared

to the database set by determining the matches of interest points (Bhosale Swapnali, Kayastha

Vijay and Harpale Varsha, 2014). There are a few image processing algorithm that can be used

such as SURF (Speeded Up Robust Features) and SIFT (Scale-Invariant Feature Transform)

(Rublee et al., 2011).

2.5.1 SURF (Speeded Up Robust Features) Algorithm

SURF algorithm is a feature descriptor algorithm which focus on the number of feature pairs

generated between the input image and image database. There are four steps in SURF algorithm

which is shown in Figure 2.18. First step is interest point detection and then generate descriptor of

the interest points in second step based on first and second order derivatives. Following step is to

match the feature points descriptors are used to match with the input image where only inlier points

within the object are considered. With interest point detection, local maxima of Fast-Hessian-like

operator is used to determine the potential significant points which are located at the corners and

junctions. The Hessian equation is shown as below (Matas and Mikolajczyk, 2012):

 𝐻(𝑥, 𝑦) = [
𝐿𝑥𝑥 𝐿𝑥𝑦

𝐿𝑥𝑦 𝐿𝑦𝑦
] (2.13)

where

51

Lxx (x,y,σ) = Convolution of input image with Gaussian second order differential

 operators

Figure 2.18: Flow of SURF Algorithm (Bhosale Swapnali, Kayastha Vijay and

Harpale Varsha, 2014)

 Then each of the keypoint in the neighbourhood is represented by distinctive feature

descriptors which are invariant to orientation. This is done by calculating a set of pixels within a

radius of 6σ in the neighbourhood by using the Haar wavelet in (x,y) directions. The σ stands for

the scale of identified interest points. Haar wavelet filters is shown in Figure 2.19 where the dark

side carries a weightage of -1 and the bright side carries a weightage of +1 (Mistry and Banerjee,

2017).

 (a) (b)

Figure 2.19: (a) Haar wavelet filters to compute responses in x direction

 (b) Haar wavelet filters to compute responses in y direction

Input

Image

Interest Point

Detection

Feature

Description

Feature

Matching

Object

Detected

52

2.5.2 SIFT (Scale-Invariant Feature Transform) Algorithm

SIFT algorithm is an algorithm used to detect local features and generate descriptors of objects.

SIFT algorithm is invariant to rotation, orientation and also changes in scales. SIFT algorithm is

divided into four stages which are detection of extrema of scale-space by using Difference of

Gaussians (DoG), localization of potential keypoints, computation of orientation of each keypoint

and lastly extraction of descriptor of each keypoint. Difference of Gaussians (DoG) is used to

determine the candidate interest points by computing the scale space extrema of the input images

using the equations below (Hamid et al., 2012):

𝐷(𝑥, 𝑦, 𝜎) = (𝐺(𝑥, 𝑦, 𝑘𝜎) − 𝐺(𝑥, 𝑦, 𝜎)) ∗ 𝐼(𝑥, 𝑦) (2.14)

𝐷(𝑥, 𝑦, 𝜎) = 𝐿(𝑥, 𝑦, 𝑘𝜎) − 𝐿(𝑥, 𝑦, 𝜎) (2.15)

where

𝐼(𝑥, 𝑦) = Digital Image

𝐿(𝑥, 𝑦, 𝜎) = Scale-space Representation

𝐺(𝑥, 𝑦, 𝜎) = Variable-scale Gaussian kernel with standard deviation σ

 Then the points with low contrast values and unstable edge responses are eliminated in the

process of localization of keypoints. A threshold has been set by computing the ratio of eigenvalues

of Hessian matrix. By using the threshold value, those interest points that has an unstable spatial

value will be eliminated as high ratio of eigenvalues of Hessian matrix represents unstable corner

interest points whereas low ratio represents stable corner interest points. Extrapolation across the

DoG images were done to localise the remaining interest points. Then orientation of each keypoint

are computed and assigned to respective interest point. In the final phase, feature descriptors for

each keypoint are computed. An array of 4x4 histogram was created with eight orientation bins for

53

each region as shown in Figure 2.20. Therefore, feature descriptors for SIFT algorithm is using a

dimension of 128 (4 x 4 x 8 =128) (Khan, McCane and Wyvill, 2011).

 X

Figure 2.20: 4 x 4 Computed Orientation Histogram Arrays in 128 Dimension SIFT

(Modified from Khan, McCane and Wyvill, 2011)

8 Orientation

Bins per Region

54

2.6 Summary for Robot Navigation (Localization and Mapping)

Table 2.1: Summary for Robot Navigation in Localization and Mapping

Author/Year Data

Collection

Techniques

Advantages Disadvantages Accuracy Algorithm

Used

Park, Chung

and Lee

(1998)

Uses basic

trigonometr

y operations

and

odometry

datas.

Cheap,

simple and

fast process.

Accumulates

error and short

term accuracy.

Low Dead

Reckoning

Dissanayake

et al. (2001)

Uses

acceleromet

er,

gyrometer,

odometry

data and

EKF.

High

accuracy

and works in

unknown

environment

.

Computational

intensive and

complicated

algorithm.

Very high

accuracy.

Simultaneo

us

Localizatio

n and

Mapping

(SLAM)

Naveed and

Ko (2014)

Uses

odometry

data, sensors

and

randomized

particles.

Fast,

reliable

accuracy

and less

memory

intensive.

Only works in

unknown map.

Higher

accuracy

compared

to dead

reckoning.

Monte

Carlo

Localizatio

n (MCL)

55

2.7 Summary of Robot Navigation (Path Planning)

Table 2.2: Summary for Robot Navigation in Path Planning

Author/Year Data

Collection

Techniques

Advantages Disadvantages Accuracy Algorithm

Used

Abhishek,

Prateek,

Rishabh and

Neeti (2014)

Shortest

path

between

nodes.

Fast,

accurate and

easy.

Slightly

computational

intensive.

Accurate Dijkstra’s

Algorithm

Abhishek,

Prateek,

Rishabh and

Neeti (2014)

Shortest

path

between

nodes by

using

Heuristic

approach

Fast,

accurate,

and less

computation

than

Dijkstra’s

algorithm.

Does not

mention.

Accurate A*

algorithm

56

2.8 Summary of Object Recognition

Table 2.3: Summary for Robot Navigation in Object Recognition

Author/Year Data

Collection

Techniques

Advantages Disadvantages Accuracy Algorithm

Used

Mistry and

Banerjee

(2017)

Determine

keypoints

with

Hessian

matrix and

non-maxima

suppression.

Fast,

invariant to

blur.

Not stable to

rotation and

scale changes

Accurate SURF

Algorithm

Mistry and

Banerjee

(2017)

Use local

extrema

detection,

non-maxima

suppression

and

eliminate

edge

response

with

Hessian

matrix.

Invariant to

rotation,

scale

changes and

blur.

Computational

intensive and

not good at

illumination

changes.

Accurate SIFT

algorithm

57

CHAPTER 3

1 METHODOLOGY

3.1 Design Specifications

In this project, a framework that uses a mobile robot to generate a map in unknown environment

and which is used to localize the victim is designed. The project interfaces include the use of a

personal computer (PC) to transmit commands and receive signals from Kinect Xbox 360 (images,

depth information and pointcloud) and Arduino Mega 2560 Robot (sensory and odometry data) as

shown in Figure 3.1. PC is the command center for mobile robot and Kinect module. Wired

connection is set up between PC and mobile robot using a common A to B Male/Male type

peripheral USB 2.0 cable is used to receive and transmit signal from Arduino.

 The robot navigation process starts with mapping. The starting point is set arbitrarily and

the ending point is the point when the SLAM Gmapping algorithm done loop closing thread.

However, the movement of wheel’s rotations, distance covered by wheels and encoder odometry

data are used in computing the location of the robot. Once the robot is localized, the robot will

detect the depth of the object in the map built and will navigate to the destination set by user

through the path planned by the PC.

 Next, RGBD SLAM is also launched to build a 3D map of the environment and also

detecting the object desired by the user. Object counting and localization is carried out after

58

detecting the object that matches with the database. If robot recognized the landscape as object,

the location of object will be computed after obtaining a 3x3 Homography Matrix from Kinect

module.

Figure 3.1: The interfaces between PC, mobile robot, Arduino Mega 2560 and Kinect Xbox

360

59

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Preliminary Work

In this project, there are a few preliminary work was carried out to ensure that the project’s

objectives are met and verify the design methodology as stated in previous chapter.

4.1.1 Robot’s Specification

As mentioned in Section 3.4, the robot is constructed using differential steering to turn right or left

and also to move forward and backward. By setting the DC motor with encoder (left motor and

right motor) to rotate at same speed but different direction, the direction of spinning of robot can

be controlled. Table 4.1 below shows the relationship between the motor’s setting and the

movement of robot.

60

Table 4.1: Relationship between the motor’s setting and the movement of the robot.

Movement

of Robot

 Setting of Motor

(CW = clockwise ; CCW = counter clockwise)

Right Motor Left Motor

Forward CW CW

Backward CCW CCW

Turn to Right CCW CW

Turn to Left CW CCW

In this project, the process of building of map in an unknown environment and navigation

rely greatly on the robot’s ability to navigate accurately. Therefore, robot’s specification plays a

very important role in determining the accuracy of the map build and also in navigating around

without colliding into obstacles. Hence, a few experiments had to be carried out in order to

calibrate the robot’s specifications which involves the wheel diameter, wheel width and also track

width. Determining the correct set of robot’s specifications will ensure the robot is able to move

and the wheels will rotate accurately when a command signal is sent from PC to the robot.

Figure 4.1: Track width and wheel’s width of differential steering of robot

Track Width

Wheel’s Width

61

Figure 4.2: Wheel’s diameter of differential steering of robot

The calibrating experiment is carried out with two different sets of wheel diameter and

track width. Wheel width will remain constant in both sets of experiment. The results are shown

in Table 4.2 and Table 4.3. Table 4.2 demonstrates the case when wheel’s diameter and track width

are set at 8 cm and 23.7 cm respectively. For Table 4.3, wheel’s diameter and track width are set

at 8 cm and 24.7cm respectively.

Wheel’s Diameter

62

Table 4.2: Total angle of rotation of robot when wheel’s diameter and track width are set at

8 cm and 23.7 cm respectively.

Angle of

Rotation of

Robot in PC (°)

Actual Robot’s Rotation

Made (°)

Average Actual

Robot’s Rotation

Made (°)

Error (°)

1 2 3

10 9.0 11.4 11.5 10.7 0.7

30 32.6 32.9 30.6 32.0 2.0

60 58.4 58.8 64.0 60.4 0.4

90 90.8 88.4 90.1 89.8 0.2

150 156.8 154.7 153.0 154.8 4.8

180 172.8 178.5 180.3 177.2 2.8

270 260.0 268.3 267.7 265.3 4.7

300 299.6 297.2 298.6 298.5 1.5

330 337.2 334.6 334.8 335.3 5.3

360 367.0 356.0 361.0 361.3 1.3

Average Actual Robot’s Rotation Error (°) 2.4

63

Table 4.3: Total distance travelled of robot when wheel’s diameter and track width are set

at 8 cm and 23.7 cm respectively.

Distance

Travelled by

Robot in PC

(cm)

Actual Robot’s Distance

Travelled (cm)

Average Actual

Robot’s Distance

Travelled (cm)

Error

(cm)

1 2 3

5 5.0 5.0 5.0 5.0 0.0

10 10.0 10.0 9.7 9.9 0.1

13 12.9 13.2 13.3 13.1 0.1

17 17.4 17.3 16.8 17.2 0.2

20 20.5 20.4 19.7 20.2 0.2

25 24.6 24.7 24.5 24.6 0.4

30 28.6 28.6 28.4 28.5 1.5

45 40.0 41.0 40.5 40.5 4.5

60 52.0 55.0 55.1 54.0 6.0

Average Actual Distance Travelled Error (cm) 1.4

64

Table 4.4: Total angle of rotation of robot when wheel’s diameter and track width are set at

8 cm and 24.7 cm respectively.

Angle of

Rotation of

Robot in PC (°)

Actual Robot’s Rotation

Made (°)

Average Actual

Robot’s Rotation

Made (°)

Error (°)

1 2 3

10 13.4 12.6 12.1 12.7 2.7

30 42.9 37.5 42.5 41.0 11.0

60 69.3 68.7 73.3 70.4 10.4

90 91.7 93.6 99.5 94.9 4.9

150 153.8 161.1 167.6 160.8 10.8

180 185.8 191.0 193.1 190.0 10.0

270 286.1 287.7 287.7 287.2 17.2

300 316.9 315.1 316.0 316.0 16.0

330 357.9 355.7 369.6 361.1 31.1

360 377.8 373.6 396.8 382.7 22.7

Average Actual Robot’s Rotation Error (°) 13.7

65

Table 4.5: Total distance travelled of robot when wheel’s diameter and track width are set

at 8 cm and 24.7 cm respectively.

Distance

Travelled by

Robot in PC

(cm)

Actual Robot’s Distance

Travelled (cm)

Average Actual

Robot’s Distance

Travelled (cm)

Error

(cm)

1 2 3

5 5.0 5.0 5.0 5.0 0.0

10 10.0 10.0 10.0 10.0 0.0

13 13.0 13.2 13.1 13.1 0.1

17 16.5 16.7 17.0 16.7 0.3

20 19.5 20.3 20.5 20.1 0.1

25 22.0 21.7 22.7 22.1 2.9

30 28.6 28.0 28.8 28.5 1.5

45 40.0 41.0 39.5 40.2 4.8

60 48.0 47.1 52.0 49.0 11.0

Average Actual Distance Travelled Error (cm) 2.3

From the results shown above, the wheel’s diameter and track width should be set to 8 cm

and 23.7 cm respectively in order to get a minimum average robot’s rotation error of 2.4° from

Table 4.2 and distance travelled error of 1.4 cm from Table 4.3. By using this set of robot’s

specification, the robot can move and rotate more accurately based on command given from PC.

The actual rotation angle of robot is measured by using a measurement lever from Beckhoff

with the range from 0° to 225°. The angle of rotation of robot in PC is observed by using RVIZ

(ROS visualization) tool which is a 3D visualizer that display the joint rotation and state

information of base_link based on the virtual robot model. The Quaternions angle (x, y, z, w) was

then converted into axis angle in radian. Both position and orientation of virtual robot model can

be obtained from the RVIZ (Lehman, 2015). Two equations are used, Equation 4.1 is used to

change Quaternion angle to axis angle in radian and Equation 4.2 is used to change the axis angle

in radian to axis angle in degree.

66

 𝑎𝑛𝑔𝑙𝑒(𝑟𝑎𝑑) = 2𝑐𝑜𝑠−1(𝑤) (4.1)

 𝑎𝑛𝑔𝑙𝑒(𝑑𝑒𝑔𝑟𝑒𝑒) =
𝑎𝑛𝑔𝑙𝑒(𝑟𝑎𝑑𝑖𝑎𝑛)

𝜋
 × 180° (4.2)

4.1.2 Range Detection towards Flat Surface (Wall) by using Kinect Xbox 360 sensor

In this project, Kinect Xbox 360 sensor will be used for object detection in both map building

process and also object recognition in Section 4.6. In order to build a map of an unknown

environment, the robot should be able to detect the objects in the environment and the laser scan

towards the object will be used as one of the input of SLAM-GMapping algorithm in Section 4.2.

Therefore it is important to test the accuracy of Kinect Xbox 360 sensor towards flat surface such

as wall of room. From the results shown below in Table 4.6, the average error is 3.7cm where the

error increases when the distance of wall from the robot exceed 180cm. The minimum range of

Kinect sensor towards an object is set at 45cm so any object that is placed at a range less than

45cm, the robot will not be able to detect the object.

67

Table 4.6: The relationship between the actual distance of the wall from the robot and the

range measured by Kinect Xbox 360 sensor towards the wall from the robot (cm)

Actual Distance

of Wall from

the Robot (cm)

Range Measured by

Kinect Xbox 360 Sensor

towards the wall from the

robot (cm)

Average Range

Measured by Kinect

Xbox 360 Sensor

towards the Wall

from the Robot (cm)

Error

(cm)

1 2 3

40 - - - - -

45 45.0 46.5 47.0 46.2 1.2

50 50.5 50.6 49.5 50.2 0.2

55 55.5 55.0 56.0 55.3 0.3

60 61.0 61.5 59.5 60.7 0.7

70 69.0 71.0 71.0 70.3 0.3

90 91.0 89.0 90.0 90.0 0.0

100 100.5 99.0 100.0 99.8 0.2

120 120.0 119.0 119.0 119.3 0.7

150 149.0 145.0 146.0 146.7 3.3

180 175.0 174.0 173.0 174.0 6.0

220 211.0 208.0 207.0 208.7 11.3

250 230.0 230.0 231.0 230.3 19.7

Average Range Measured by Kinect Xbox 360 Sensor towards the

Wall from the Robot Error (cm)

3.7

68

4.1.3 Range Detection towards Curved Surface (Bag) by using Kinect Xbox 360 Sensor

In an unknown environment, there might be presence of curved object such as chairs, bags and so

on. Therefore, range detection towards curved surface must also be measured by using Kinect

Xbox 360 sensor. From the results shown in Table 4.7, the range error is 6.7cm. This shows that

the accuracy and reliability of Kinect sensor is reduced when measuring the range towards curved

object due to irregular surface reflection (Manap et al., 2015).

69

Table 4.7: The relationship between the actual distance of the curved object from the robot

and the range measured by Kinect Xbox 360 sensor towards the curved object from the robot

(cm).

Actual Distance of

Curved Object

from the Robot

(cm)

Range Measured by

Kinect Xbox 360 Sensor

towards the Curved

Object from the Robot

(cm)

Average Range

Measured by Kinect

Xbox 360 Sensor

towards the Curved

Object from the

Robot (cm)

Error

(cm)

1 2 3

45 47.0 48.0 48.0 47.7 2.7

50 48.0 49.0 50.0 49.0 1.0

55 54.0 53.5 54.3 53.9 1.1

60 59.0 60.5 59.5 59.7 0.3

70 65.0 66.0 65.7 65.2 4.8

90 79.5 80.0 80.3 79.9 10.1

100 103.0 102.0 102.5 102.5 2.5

120 119.0 116.4 117.0 117.5 2.5

150 147.5 146.0 144.0 145.8 4.2

180 174.5 176.0 175.5 175.3 4.7

220 204.0 204.6 207.0 205.2 14.8

250 218.7 218.0 219.1 218.6 31.4

Average Range Measured by Kinect Xbox 360 Sensor towards the

Curved Object from the Robot Error (cm)

6.7

70

4.1.4 Range Detection towards Distance between Objects by using Kinect Xbox 360 sensor

In order for the robot to accurately navigate in an unknown environment with different type of

objects, the robot must be able to estimate the distance between objects. This can help the robot in

determining whether robot can go through the two objects or need to bypass the object.

Table 4.8: The relationship between the actual distance between objects and Kinect sensor

reading for the distance between objects (cm).

Actual Distance

between

Objects (cm)

Kinect Sensor Reading for

the Distance between

objects (cm)

Average Kinect

Sensor Reading for

the Distance between

objects (cm)

Error

(cm)

1 2 3

2 3.8 2.3 2.4 2.8 0.8

4 5.0 4.2 4.4 4.5 0.5

6 5.2 5.2 5.7 5.4 0.6

8 7.7 7.7 7.5 7.6 0.4

10 9.2 9.7 9.4 9.4 0.6

12 11.6 11.8 12.1 11.8 0.2

14 13.2 13.9 13.5 13.5 0.5

20 19.2 19.6 19.3 19.4 0.6

30 29.4 30.6 30.5 30.2 0.2

40 40.6 40.2 41.4 40.7 0.7

Average Distance between Objects Error (cm) 0.5

71

CHAPTER 5

CONCLUSION AND FUTURE WORKS ENHANCEMENT

5.1 Introduction

The aim of this project is to give the rescuers in search and rescue activity an edge about the

unknown environment by deploying SLAM algorithm to build a map of the unknown environment.

Therefore, a custom-made robot is designed and constructed for SLAM algorithm to be

implemented on the custom-made robot working under ROS framework for both practical

implementation and simulation. The robot is then used to generate a 2D map about the unknown

environment using SLAM-GMapping algorithm and 3D map using RGBD-SLAM algorithm.

After the 2D map is built, navigation stack is incorporated into the robot for autonomous navigation

to the 2D navigation goal set by user within the map built. Lastly, by running RGBD-SLAM

algorithm and find_object_2D algorithm in parallel, the robot is able to identify, recognize and

localize the object without repeating and missing whenever the robot come across the objects saved

in the object database.

5.2 Review

This section will review how the project was carried out.

72

5.2.1 Design of Robot

In section 3.4, the process of designing and constructing a mobile robot is discussed. The mobile

robot based on a differential drive structure with a two layer chassis to accommodate all the

components and devices needed. The robot is successfully built and it is able to navigate around

and feedback accurate sensory and odometry data for building of map, localizing itself in the

unknown environment, detecting and recognizing of objects desired.

5.2.2 SLAM Algorithm

SLAM algorithm is used in this project to build map of unknown environment in practical

implementation and simulation. Two types of SLAM algorithm have been successfully

implemented in this project which are SLAM-GMapping algorithm for 2D map and RGBD-SLAM

algorithm for 3D map. A Kinect Xbox 360 sensor is used to input depth images and RGB images

into the RGBD-SLAM algorithm. A ROS node named depthimage_to_laserscan is used to convert

the depth images into laser scan to be input into the SLAM-GMapping algorithm. In short, the

robot is able to navigate autonomously to the 2D navigation goal set by user within the map built

by using SLAM algorithm.

5.2.3 Object Recognition

In this project, SIFT algorithm is used to extract the features from the current frame of Kinect

sensor while building the 3D map of the unknown environment. Two flat objects which are books

and two curved objects which are human like dolls are saved into the object database. Therefore,

whenever the robot come across the objects saved in the database while navigating around the

unknown environment, the robot is able to detect, recognize and localize the objects. The objects

are successfully being detected, recognized and localized without repeating and missing.

73

5.3 Conclusion

The objectives of this project are achieved by building a map of an unknown environment using

SLAM algorithm and using the map for object recognition. A 2D occupancy grid map of office

room E108 is built by using a custom-made robot which works under the Robot Operating System

(ROS) framework. The SLAM-GMapping algorithm is being implemented on both practical

implementation and simulation. A simulation environment which is similar to the office room

E108 is designed by using Gazebo. Both practical implementation and simulation generate a

similar 2D map of the environment of office room E108. Navigation stack is then incorporated

into the robot for autonomous navigation and 2D navigation goal. After the map is built, the robot

is able to localize itself by using Adaptive Monte Carlo Localization (AMCL) and navigate

autonomously to the 2D navigation goal set by user. Dijkstra’s algorithm is used to compute the

shortest path which is the path with lowest cost values between the current positon of robot to the

destination point. In a search and rescue area, the robot should has the ability to identify, recognize

and localize the victim. Therefore, RGBD-SLAM algorithm is used to construct a 3D map of the

surrounding environment and by implementing find_object_2D algorithm in parallel, the robot is

able to identify and recognize the object in the object database when the robot come across the

objects when navigating around. The location of object with respect to the pose of camera can also

be obtained in terms of location of image pixels.

5.4 Future Works

In future, deep learning algorithm can be applied to SLAM algorithm so that loop closure detection

and estimation of the position of robot can completed more accurately and efficiently. However,

74

implementation of deep learning algorithm is much more complicated and it cannot be

accomplished within the given period of time. Deep learning algorithm can be used to construct a

dense-depth point cloud with the depth measurements obtained from Kinect sensor. By using

convolutional neural network in deep learning algorithm, the depth prediction of points in image

can be obtained and can be input into the SLAM algorithm.

Furthermore, image processing algorithm can also be implemented to detect human being

instead of a flat object such as book or curved object such as human-like doll in this project. By

detecting human being directly, it will be more convincing that the robot is able to localize the

victim in the disaster area.

Lastly, the range of distance that can be travelled by the robot can be increased by powering

the Kinect sensor with a 11.1V Lipo battery instead of a wall adapter. A replacement of Kinect

sensor with Hokuyo laser scanner can also generate a higher accuracy map because a wider range

laser scan input will be obtained.

 In conclusion, this project has demonstrated that it is feasible to implement SLAM

algorithm on the custom-made robot working under ROS framework in practical implementation

and simulation. 2D map about the unknown environment using SLAM-GMapping algorithm and

3D map using RGBD-SLAM algorithm have also been successfully generated. Navigation stack

has successfully been incorporated into the robot for autonomous navigation to 2D navigation goal

set by user within the map built. Lastly, the robot is able to identify, recognize and localize objects

saved in object database without repeating and missing.

75

REFERENCES

Abdelrasoul, Y., Saman, A.B.S.H. and Sebastian, P., 2016. A quantitative study of tuning ROS

Gmapping parameters and their effect on performing indoor 2D SLAM. 2016 2nd IEEE

International Symposium on Robotics and Manufacturing Automation (ROMA), pp. 1-6.

Abhishek, G., Prateek, M., Rishabh, L. and Neeti, S., 2014. PATH FINDING: A* OR

DIJKSTRA’S?. International Journal in IT and Engineering, 2(1).

Allevato, A., 2017. camera_calibration/Tutorials/MonocularCalibration - ROS Wiki. [online]

Available at: <http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration>

[Accessed 20 March 2018].

Bailey, T. and Durrant-Whyte, H., 2006. Simultaneous localization and mapping (SLAM): Part

II. IEEE Robotics & Automation Magazine, 13(3), pp. 108-117.

Balasuriya, B.L.E.A., Chathuranga, B.A.H., Jayasundara, B.H.M.D., Napagoda, N.R.A.C.,

Kumarawadu, S.P., Chandima, D.P. and Jayasekara, A.G.B.P., 2016. Outdoor robot

navigation using Gmapping based SLAM algorithm. Moratuwa Engineering Research

Conference (MERCon), pp. 403-408.

Bhosale Swapnali, B., Kayastha Vijay, S. and Harpale Varsha, K., 2014. Feature extraction using

surf algorithm for object recognition. International Journal of Technical Research and

Applications, 2(4), pp. 197-199.

Birk, A. and Carpin, S., 2006. Rescue robotics—a crucial milestone on the road to autonomous

systems. Advanced Robotics, 20(5), pp. 595-605.

Blanco, J., n.d.. Computer Vision Group - File Formats. [online] Available at:

<https://vision.in.tum.de/data/datasets/rgbd-dataset/file_formats> [Accessed 4 April 2018].

76

Borenstein, J., Everett, H.R., Feng, L. and Wehe, D., 1997. Mobile robot positioning-sensors and

techniques. Journal of Robotic Systems, 14(4), pp. 231-249.

Brownlee, J., 2017. A Gentle Introduction to the Bag-of-Words Model - Machine Learning

Mastery. [online] Available at: <https://machinelearningmastery.com/gentle-introduction-

bag-words-model/> [Accessed 26 March 2018].

Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I. and Leonard,

J.J., 2016. Past, present, and future of simultaneous localization and mapping: Toward the

robust-perception age. IEEE Transactions on Robotics, 32(6), pp. 1309-1332.

Cha, S., 2015. My Personal Robotic Companion. [online] Available at:

<https://sungjik.wordpress.com/> [Accessed 25 March 2018].

Cheein, F.A.A., Lopez, N., Soria, C.M., di Sciascio, F.A., Pereira, F.L. and Carelli, R., 2010.

SLAM algorithm applied to robotics assistance for navigation in unknown

environments. Journal of neuroengineering and rehabilitation, 7(1), p. 10.

Chen, L., Sun, P., Zhang, G., Niu, J. and Zhang, X., 2011. Fast Monte Carlo Localization for

Mobile Robot. Advanced Research on Electronic Commerce, Web Application, and

Communication, pp. 207-211.

Cho, B.S., Moon, W.S., Seo, W.J. and Baek, K.R., 2011. A dead reckoning localization system

for mobile robots using inertial sensors and wheel revolution encoding. Journal of

mechanical science and technology, 25(11), pp. 2907-2917.

Clearpathrobotics.com., 2015. ROS Navigation Basics — ROS Tutorials 0.5.1 documentation.

[online] Available at:

<http://www.clearpathrobotics.com/assets/guides/ros/ROS%20Navigation%20Basics.html>

[Accessed 31 March 2018].

