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Cutting operations using blades can arise in a number of industries, for example, food processing industry, in which cheese, fruit
and vegetable, even meat, are involved. Certain questions will rise during these works, such as “why pressing-and-slicing cuts use
less force than pressing-only cuts” and “how is the influence of the blade cutting-edge on force”. To answer these questions, this
research developed a mathematical expression of the cutting stress tensor. Based on the analysis of the stress tensor on the contact
surface, the influence of the blade edge-shape and slicing angle on the resultant cutting force were formulated and discussed. These
formulations were further verified using experimental results by robotic cutting of potatoes. Through studying the change of the
cutting force, the optimal slicing angle can be obtained in terms of maximum feeding distance and minimum cutting force. Based
on the blade sharpness properties and the specific materials, the required cutting force can be predicted. These formulation and
experimental results explained the basic theory of blade cutting fracture and further provided the support to optimize the cutting
mechanism design and to develop the force control algorithms for the automation of blade cutting operations.

1. Introduction

Food cutting, such as potato or cheese cuts, is different from
metal cuts because of the material deformability and shape-
variability. Cutting mechanics formulation is constantly a
hot research topic since it can provide useful information
for cutting operations. In the literature, mainly two methods
have been documented, that is, energy formulation method
and stress tensor distribution method.

Metal cutting creates plastically deformed offcuts which
permanently store energy, while the food offcuts perma-
nently store almost no energy. Thus, many researchers have
formulated the food cutting problems using energy method,
most notably, using the fracture toughness concept [1, 2].
Using energy concepts, Atkins et al. [3, 4] have been able to
explain why the cutting fracture requires smaller force when
pressing and slicing compared to pressing only. Kamyab et
al. [5] formulated the stress and force distribution in cheese
cutting.

Stress distribution formulation can provide an alterna-
tive explanation. Two methods can be applied: potential
function method and superposition method. In the potential
function method [6, 7], the strain and stress tensor are ex-
pressed in terms of the space derivatives of certain airy func-
tions in the form of biharmonic equations. Using this meth-
od, the closed form expression of the stress distribution
generated by a point force acting in either normal or tan-
gential direction to the boundary of the semi-infinite body
was derived in [8], the solution to a load applied normal
to an infinite half-space was given by [9, 10], and the stress
distribution generated by a tangential force applied to a
surface was referred as Cerruti problems, and its solution
was obtained using reciprocal theorem as summarized in
[11–13]. Based on the derivation of the integral of the point
force airy functions, Love [14] provided the integral for a
rectangular area with constant normal pressure. Using the
same method, the solution for first-order polynomial load
applied to a rectangular surface has been completed by [15],



2 Modelling and Simulation in Engineering

to a triangular region has also been given by [16, 17], and to a
circular area by [18]. The second method is to formulate the
internal stress distribution, for example, using Hertz contact
mechanics [19]. Yoshihara and Matsumoto [20] studied the
shearing properties of wood using the stress analysis method.
Lucas used fracture mechanics to explain the function of
teeth in food cutting based on the detailed investigation of
dental structure [21].

Blade sharpness is another factor that affects the cutting
forces. Contact between the cutting object and the blade
is an area, which can be shown from the microstructure
of a knife [22]. Blade sharpness also directly influences the
cutting moments and the grip forces applied by an operator
such as the research performed by McGorry et al. [23].
Szabo et al. developed a procedure to establish knife-steeling
schedules based on increased force due to knife dullness from
repetitive use to minimize operator exertions and physical
stress associated with work-related musculoskeletal disorders
[24].

In this paper, mainly applied to the hard and crispy
materials such as cheeses and potatoes, we will focus on using
shear stresses at fracture to describe the cutting mechanism
and blade sharpness. Firstly, the distribution of the external
cutting force on the cutting-contact area is described in
Section 2.1. From Sections 2.2 to 2.3, cutting force influence
factors, such as the shape of the blade cutting edge, slicing
angle, and so forth, are discussed. In Section 2.4, the relative
sharpness factor concept built in [25] is generalized to be
applicable to the pressing and slicing cuts. In Section 3, com-
putation results are provided to illustrate the stress distribu-
tion during cutting. The computation results provide several
purposes: (1) to show the stress distribution and to verify
the analytical model; (2) to find out where the maximum
stress is and to use them to evaluate the fracture location;
(3) to understand the influence of the blade shape (cutting
force shape) and slicing angle to the fracture force; (4) to
figure out the fracture mode of blade cuts. Experimental
results were provided in Section 4 to verify the formulation.
Justification about the application of this algorithm on
nonlinear materials are provided in Section 5. Conclusions
were drawn in Section 6.

2. Modeling of the Cutting Interaction

2.1. Simplified Model of Pressing and Slicing Cuts on Hard-
Crispy Materials. The illustration of potato cutting is shown
in Figure 1. The modeling and experiments will focus on
using the blade shown in Figure 1(a) to realize the robot-
controlled cuts shown in Figure 1(b). The microstructure
photo of the edge of a blade is shown in Figure 2(a) with the
measured width of the blade cutting edge. For that particular
razor blade, the edge of this blade is 850 nm with flat surface.
The range of the edge width of a brand new blade is around
500 nm to 1250 nm with the shape shown in Figure 2(b).

The microstructure of potatoes showed that the homo-
geneity of the particles is 500 times bigger than the blade edge
width. Since the target problem is about cutting fracture,
the focused problem is the stress distribution at the contact

area at the moment just before the initiation of the cutting
fracture.

At that moment, enough pressure has been built up be-
neath the blade, and the blade has a firm and solid contact
with the target. Thus, the cutting interaction, such as the
potato cutting shown in Figure 1, is simplified as a belt-
area force acting on the surface of a semi-infinite body as
illustrated in Figure 3(b), where the interaction between the
blade and the target (Figure 3(a)) is simplified as a belt-
area force, and the target is simplified as a semi-infinite
body. Given the contact length between the blade and cutting
material is l and the width of the blade edge is 2a, the contact
area between the blade and the material is belt-like, that is,
(−l/2, l/2) in x direction and [−a, a] in y direction, where
point o in frame oxyz is at the center of the belt area, oxy
plane is on the contact surface, x-axis is the blade length
direction, and z-axis point into the material as shown in
Figure 3(b). Normally, the width of a brand new blade (2a)
ranges from 500 nm to 1250 nm, and the contact length is
normally bigger than one centimeter, roughly l/a > 104, that
is, the contact length in x direction is much bigger than that
in y direction. Thus, l can be considered as infinite compared
to a.

For the symbolic expression in this paper, capital P is
used to express a cutting force and small p is used to express
a pressure variable, while subscript and superscript p of
a variable is used to express the variable is either point-
force or point-pressure related. Subscript and superscript n
stands a variable in normal or z direction and subscript and
superscript t stands a variable in tangential or x direction.
For example, Pp is an ideal point force acting on the contact
surface of a semi-infinite body with normal component Ppn

and tangential component Ppt, while pn and pt are the
cutting pressure components in the z direction and x di-
rection, respectively. Subscript and superscript l is used to
express the variable is line-pressure related.

Force P has two components: normal force Pn and tan-
gential force Pt as shown in Figure 4. Then there are

Pn = P cosα, Pt = P sinα, (1)

where α is defined as the slicing angle. If we assume the pres-
sure does not change along a line parallel to the x-axis, the
line-pressures on a line parallel to y-axis are pln in normal
direction and plt in tangential direction, there are

Pn = plnl, Pt = pltl. (2)

The area pressures pn and pt can be used to calculate line
pressures pln and plt and total force Pn and Pt as follows:

Pn =
∫ l/2

−l/2

∫ a

−a
pn ds dv, Pt =

∫ l/2

−l/2

∫ a

−a
pt ds dv,

pln =
∫ a

−a
pn dv, plt =

∫ a

−a
pt dv.

(3)

Since the dimension of the blade edge is around 1000 nm
(1 um), there is no force sensor in such small size to measure
the stress distribution. According to the edge shape of a razor
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(a) Razor blade used in this research (b) Robotic potato cut

Figure 1: Razor blade cutting.

Edge width (2a) = 850 nm

15 kV ×4,000 5μm UMD SEM

(a) Microstructure of a blade cutting edge

35◦

(b) Shape of a blade cut-
ting edge

Figure 2: Microstructure of the edge of the razor blades used in the modeling and experiments.

blade, the cutting force distributions in both tangential and
normal direction to the cutting surface have to be assumed.
In this paper, they are assumed to be trapezoid as shown in
Figure 5 and their mathematical expressions are summarized
in Table 1.

There are

pln =
∫ a

−a
pn dv = qn(a + w),

plt =
∫ a

−a
pt dv = qt(a + w),

Pn = P cosα = plnl = qn(a + w)l,

Pt = P sinα = pltl = qt(a + w)l.

(4)

Then there are

qn = P cosα
(a + w)l

, qt = P sinα
(a + w)l

. (5)

Other simplifications in this paper are as follows. (1) Re-
laxation and creep are ignored since we consider the instan-
taneous cuts. (2) The cutting force intensity is zero at the
edge of the contact area. (3) The offcuts move away from the
knife and no friction force acts on the side of the blade; the
contact area between the blade edge and the material does
not change once full contact is established.

2.2. Modeling of the Stress Distribution in the Cutting Mate-
rials. The modeling starts from a stress field generated by
a point force on a semi-infinite solid body. Superposition
method is used to obtain the stress field generated by a belt-
shape area force on a semi-infinite solid body. The procedure
is Table 2. In the last row of Table 2, the functions f1, f2, f3,
f4, f5, and f6 can be explicitly expressed using (A.8) to (A.10)
and (A.12) to (A.14) using the variables y, z, a,w. The details
are shown in the appendix.

Although the modeling method uses a standard superpo-
sition which can be found in any material mechanics text-
book, it is first time in the literature that the stress dis-
tribution due to a belt-shaped area force was obtained in a
closed and manageable form.

Substituting qn and qt in (5) into (∗) in Table 2, the
stress tensor at point A(x, y, z) generated by cutting force P
is obtained as

[σ] =

⎡
⎢⎢⎢⎣
σx τxy τxz

τxy σy τyz

τxz τyz σz

⎤
⎥⎥⎥⎦

= P

l(a + w)

⎡
⎢⎢⎢⎣
f1 cosα f4 sinα f5 sinα

f4 sinα f2 cosα f6 cosα

f5 sinα f6 cosα f3 cosα

⎤
⎥⎥⎥⎦.

(6)
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Figure 3: Simplified cutting model.

The principle stresses σ1, σ2, σ3 can then be obtained
through solving

[σ]x = λx, (7)

where the solutions to λ are the principle stresses σ1, σ2, and
σ3; the solutions to x (3 by 1 vector) express the direction
of the principle stresses. The maximum shear stress (τi j) can
then be obtained as

τi j = 1
2

(
σi − σj

)
, (8)

where i and j are one of the numbers 1, 2, or 3.

2.3. Fracture and Initialization during Blade Cutting. Tresca’s
failure criterion [26] was adopted to identify fracture initial-
ization during blade cutting. This criterion can be expressed
as

τmax = Max(abs(τ12), abs(τ23), abs(τ13)) ≥ τu
Ks

, (9)

where τu is the ultimate shear strength, Ks is the ratio of the
fracture initialization force over continuous cutting force, the
function abs(#) returns the absolute value of the expression
#, and the function Max(x, y, z) returns the biggest value
among x, y, and z.

During the cutting process, there are two sets of fracture:
fracture initialization and postfracture. Prior to material
fracture, all of the stresses in the material are due to de-
formation. At the moment of fracture initialization, (9)
can be applied with Ks = 1. After the fracture initiation,
postfracture criterion will apply. During postfracture, the
initial failure criterion (Ks = 1) is no longer valid. The stress
concentration factor needs be determined experimentally
using

Ks = τu
τo
= Pu

Pc
, (10)

P

z

y

x
Pn

oPt

α

Figure 4: Cutting force acting on a semi-infinite body with slicing
angle α.

where τu and τo are the ultimate shear stress at fracture
initialization (material property) and the ultimate stress dur-
ing postfracture (determined experimentally), respectively,
and Pc is the cutting force during continuous cutting (post-
fracture), Pu is the cutting force at the moment of fracture
initiation. From (6)–(9), there is

τi j = P

l(a + w)
f7i j
(
y, z, a,w,α

)
, (11)

where function f7i j(#) expresses a function of variable #.
f7i j(#) can be explicitly expressed using (A.8) to (A.10) and
(A.12) to (A.14). At the moment of fracture initiation, the
required force is obtained by substituting (11) into (9),

Pu = τul(a + w)
Ks f8

(
yu, zu, a,w,α

) ,

Pnu = Pu cosα, Ptu = Pu sinα,

(12)

where Pu is the cutting force during cutting fracture and
(yu, zu) represents the y and z coordinates of the fracture
location, and function f8(#) can be explicitly expressed using
(9) and (11). Pnu is the normal cutting force and Ptu is the
tangential cutting force.
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Figure 5: Force distribution profile along y-axis at z = 0, that is on the contact surface.

Table 1: Pressure distribution along a line in y-axis direction.

Normal direction Tangential direction Locations on y-axis

pn = 0 pt = 0 y < −a,

pn = qn
a−w

(y + a) pt = qt
a−w

(y + a) −a ≤ y < −w,

pn = qn pt = qt −w ≤ y < w,

pn = qn
w − a

(y − a) pt = qt
w − a

(y − a) w ≤ y ≤ a,

pn = 0 pt = 0 y > a.

2.4. Shape of Blade Edge: Blade Relative Sharpness Factor. In
general, “sharpness of a blade” is an approximate measure-
ment of the magnitude of the applied force Pu in different
cuts by keeping the cutting material (τu) and cutting manners
(l and α) unchanged. It may be possible to explicitly express
the relationship between the cutting force and the factors, a,
w, l, α, and (yu, zu) using (12). However, since the magnitude
of w and a is in several hundred nanometers, it will not be
practical to put a microscope in a workshop to measure the
width for each blade in order to estimate its sharpness. So a
relative sharpness factor is defined as follows:

η = (a + w)
Ks f8

(
yu, zu, a,w,α

) . (13)

When setting Ku = lτu, there is

Pu = lτuη = Kuη. (14)

Let Pu0 be the cutting force of the sharpest knife, Pu f be the
cutting force of the dullest knife, and Pu be any other cutting
force. In the sharpest case, such as a brand new blade from
factory, the blade relative sharpness factor is defined as

η0 = Pu0

Ku
. (15)

The relative sharpness of certain blade can be expressed as

η = η0
Pu
Pu0

. (16)

In the dullest case (in which the maximum allowable force
has to be applied in order to realize cutting), there is

η f = η0
Pu f
Pu0

. (17)

Then for convenience, another parameter, knife relative
sharpness level, κ is defined as

κ = int

(
(n− 1)

(
η− η0

)
η f − η0

+ 1

)
, (18)

where n is a user-defined integer which is used to distinguish
the sharpness level of a blade and int(#) is a function to
round the number # to the nearest integer. The function
int(#) forces the knife sharpness level value to an integer.
Substituting (15)–(17) into (18), there is

κ = int

(
(n− 1)(Pu − Pu0)

Pu f − Pu0
+ 1

)
. (19)

It can be easily seen that the knife relative sharpness level
can be determined using the cutting forces at different
conditions. Since the cutting forces are measureable, a knife
can be categorized into n-level sharpness starting from level
1 by defining η0 = 1 in the sharpest case.

3. Simulation Analysis

In the computation, the change of the stresses with the pa-
rameters l (contact length), a (half width of the blade
cutting edge), w (load shape), y and z (different locations
in material) are discussed, and the stress distributions in
the material under different conditions have been visualized
for further parametric study. By changing the cutting force
profile, the influence from blade sharpness can be observed
and the fracture modes are obtained. In the calculation,
the coordinate values or distance data are normalized by
a (half width of the blade edge), the stresses generated by
normal and tangential forces are normalized by the maxi-
mum pressure qn and qt, respectively, (or set a = 1 mm, qn
= 1 pa, and qt = 1 pa).

3.1. Stress Variation with Depth. The results shown in this
section are to illustrate the change of the stress distribution
with the depth (z) in the material at different y locations. The
results were obtained using (∗) in Table 2 by assuming w =
0.8a, constant pressure, qn = 1 pa, and qt = 1 pa. The results
of the stresses σx, σy , σz, τyz, τyx, τxz have been calculated
and only the results for stress τyz are shown in Figure 7. In
Figure 7, each curve represents the stresses change with z
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Table 2: Area external force.

Normal force only Tangential force only

Slicing angle α

External force P

Components Pn = P cosα Pt = P sinα

Pressure pn where Pn =
∫ a
−a
∫∞
−∞ pn ds dv pt where Pt =

∫ a
−a
∫∞
−∞ pt ds dv

Stresses at point A(x, y, z)
[σn] =

[
σn
x σn

y σn
z τnxy τnyz τnxz

]
=∫ a

−a[σnl]dv
[σt] =

[
σt
x σt

y σt
z τtxy τtyz τtxz

]
= ∫ a

−a[σtl]dv

Its expression is shown in Appendix A.3 Its expression is shown in Appendix A.3

Stresses [σ] = [σn] + [σt]

Stress tensor expression

⎡
⎢⎢⎣
σx τxy τxz
τxy σy τyz
τxz τyz σz

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
qn f1(y, z, a,w) qt f4(y, z, a,w) qt f5(y, z, a,w)

qt f4(y, z, a,w) qn f2(y, z, a,w) qn f6(y, z, a,w)

qt f5(y, z, a,w) qn f6(y, z, a,w) qn f3(y, z, a,w)

⎤
⎥⎥⎦ ∗

(from 0 to 3a or 20a) on the same y coordinates (y from
−2a to 2a).

It is observed from the results of σx, σy , σz, τyz, τyx, τxz
that at the contact surface, the maximum stress may not
exceed the cutting stress from the blade and the stress will
decrease dramatically as z increases. At the location where
the z coordinate (depth) is about twice of the half width of
the cutting blade (at z = 2a), the force decreases roughly
to half of the maximum stress. In general, the magnitude
of the width of a sharp blade is about 1 um and the size
of the inhomogeneity in potatoes and cheese is bigger than
0.1 mm (100 um). This means that at the depth there are
inhomogeneity, the stress already reduced to very small
value.

Moreover, this paper is only interested in the stress to
generate the fracture. From the calculation, it is found when
slicing angle is smaller than 10◦, the fracture happens at the
depth of z = 0.37a or at about z = 0.06–0.32 um; when
slicing angle is bigger than 10◦, the fracture happens at the
contact surface or at the depth of z = 0 um. Thus, in the
microscale sense, the material can be considered as homoge-
nous although in macrosense, the cutting material may be
anisotropic or heterogeneous. When we only consider the
stress to generate the cutting fracture, the material can be
considered as homogenous.

Here we define the zone with at least tenth of the applied
maximum stress from the blade as the effective zone. Since
the depth of the effective zone in the cutting modeling is
much smaller than the size of the fiber, or inhomogeneous,
or anisotropic zone of the cutting materials, although the
material itself is inhomogeneous or anisotropic, only in
the cutting effective zone can the cutting modeling still be
approximated as homogenous material.

3.2. Change of the Stress Distribution with Cutting Width.
This calculation is to show the variation of the stresses with
different w. The results are shown in Figure 8 where the
abscissa is y coordinate with −2a ≤ y ≤ 2a and the ordinate
is the stress magnitude at different z. In Figure 8, each curve
represents the stress change with different z coordinates
between 0 and a with step size at 0.2a. The z values have

been marked on each curve. For clarity, the different stress
components are drawn with different line styles.

The subplots in Figure 8 show the stresses under three
different external force distribution profiles, w = a or
rectangle-shaped profile is shown in Figure 8(a), w = 0.85a
or a trapezoid shaped profile is in Figure 8(b) and w = 0
or a triangle-shaped profile is in Figure 8(c). It is observed
that all the stress components, except τyz, have the maximum
magnitude when z = 0. They then decrease as z increases.
The maximum τyz happens inside the material at z = 0.37a.
Since a is very small (in the magnitude of 10−9 m), the
location of maximum τyz is very close to the surface. The
maximum values of σy , σz and τxz are in the same magnitude
of qn or qt, respectively.

3.3. Fracture Force via Blade Shape. The knife shape can be
defined using the parameters l, a, and w. If l and a increase,
the maximum pressure will decrease when the total external
force keeps unchanged. The influence of the edge shape can
be roughly expressed using w (please refer to Figure 5).
Using the expression in (6), the stress distributions for the
different values of the w on the blade-material contact plane
oxy are obtained and shown in Figure 9. From Figure 9, it
is observed that by keeping the external force unchanged,
when the force distribution changes from constant intensity
to linear intensity, the maximum magnitude of all the stresses
increases. This leads to an increase in the magnitude of the
maximum shear stress. Thus, by assuming τu is constant, the
external force to realize cutting fracture will decrease. Or in
order to realize cutting on the same material with the same
constraints, the blade with the linear edge shape will use less
force than any other blades. It will be the sharpest one.

3.4. Fracture Force via Slicing Angle. In this section, the
knife shape and the external force intensity profile are fixed
with w = 0.85a. The obtained stress distribution is shown
in Figure 8(b). It is observed that there are four possible
locations with maximum stress, and they are summarized in
Table 3.

The changes of the corresponding stresses distribution,
the principle stresses and the maximum shear stress, with
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Figure 6: Stresses and external forces change with slicing angle at location (ii).

slicing angle, are shown in Figures 6(a), 6(b), and 6(c),
respectively. In Figure 6, only the stresses at location (ii)
(y/a, z/a) = (−.85, .00) are illustrated. Similar results at
locations (i), (iii), and (iv) can be obtained accordingly. The
results in Figure 6(a) are obtained using (6) by assuming
P/l = 1, that is, pln = 1 when α = 0◦ and plt = 1 when α = 90◦.
The results in Figures 6(b) and 6(c) are obtained using (7)
and (8), respectively. Using Tresca’s fracture criterion [26],
if τu is generated by (τ31)max, according to (9) by setting
Ks = 1, the cutting force Pu is obtained using (12) as
shown in Figure 6(d). Using the same method, the maximum
shear stresses and the corresponding external cutting forces

at locations (i), (iii), and (iv) can also be obtained. The results
are shown in Figure 10(a).

Since the external force Pu is obtained using the same
ultimate shear stress τu, the smallest one among all the Pu
at the four locations from (i) to (iv) will initiate cutting
fracture. For clarity, the largest maximum shear stress and its
required smallest external force are redrawn in Figure 10(b).
It can be observed from Figure 10(b) that when α is from 0◦

to 10◦, the shear stress at location (iv) will initialize fracture,
and when α is from 10◦ to 90◦, the shear stress at location (ii)
will initialize fracture.
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Table 3: Locations and values of the possible maximum stresses.

Location (y/a, z/a) σx/qn σy/qn σz/qn τxy/qt τyz/qn τxz/qt

(i) (.00, .00) −.324 −.541 −.541 0.00 0.00 .541

(ii) (−.85, .00) −.324 −.541 −.541 .596 0.00 .540

(iii) (−.93, .00) −.151 −.252 −.252 .724 0.00 .252

(iv) (−.93, .37) −.141 −.254 −.254 .280 −.163 .234

The total cutting force and its tangential and normal
components are shown in Figure 11. From Figure 11, it can
be seen that the fracture at slicing angle from 0◦ to 10◦ is due
to τyz which is just beneath the surface (z = 0.37a or roughly
z ≈ 370 nm). By considering the stress direction, it can be
seen that it is the mode II fracture, edge-sliding fracture [1].
The fracture from 10◦ to 90◦ is due to τxy and τxz which is
just on the surface (z = 0). It is the mode III fracture, out-
of-plane tearing [1]. From the external force profile shown
in Figure 11, the influence of the slicing angle can be clearly
seen. The required force to cut by pressing-only is far larger
than the force required by pressing-and-slicing cuts. Note
also is that force Ptu does not change a lot from 10◦ to 90◦

in the mode III fracture and its value is just the total force
when the slicing angle is 90◦.

4. Experimental Verification

Raw Russet Baking Potatoes, purchased from a local Kroger
Store in Atlanta Ga, USA, were selected as the testing materi-
als in the experiments. The potatoes were purchased in fresh.
They are firm and smooth without dark spots, green areas,
mold, or cuts. They are in the size of 125 mm–150 mm long
and about 75 mm in diameter. The moisture content is about
4 g water per 5 g fresh potato solid. Moisture content of the
sample was determined by drying thin potato slabs (10 mm

by 20 mm by 45 mm) at 70◦C under vacuum for 24 hours.
The experiments were carried out in an air conditioning
controlled room at temperature about 22◦C and moisture
about 70%. Once a fresh potato was peeled and cut to a
roughly 20 mm by 40 mm × 100 mm brick, the experiments
were performed without delay. The experimental setup is
shown in Figure 12. The system consists of an ABB robot
IRB 140 [27] for motion generation, speed control and
distance measurement, and an ATI Force/Torque sensor ISA
F/T-16 Mini40 [28] for force measurement. The robot is
commanded to move at speed of 0.5 mm/s for cutting. The
force data are saved on a central computer. The forces during
the cut of potatoes are shown in Figure 13.

4.1. Evaluating the Influence of Slicing Angle and Cutting
Fracture Modes. When changing the slicing angle, the same
shapes of the cutting force changing profiles have been
obtained. The average data with standard deviation less than
0.2 lb from 5 sets of cuts using different slicing angles on
potatoes are summarized in Figure 14. According to the
maximum external force when α is near 90◦, where the
tear mode dominates, the ultimate shear stress (τu) can be
estimated as 0.18 lb. Then, using this τu and the procedure
to obtain Ptu and Pnu in Figure 11, the theoretical fracture
forces can be estimated using (12) by assuming the same a,
w, Ks, yu, and zu since only the slicing angle (α) changed
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Figure 8: Comparison of the normalized tensor for different cutting force profiles.
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Figure 10: Maximum shear stresses and required minimum cutting force.

during different trails. Both of the experimental data and the
theoretically estimated data are shown in Figure 14. Good
match is observed.

4.2. Evaluating Relative Blade Sharpness Factor. These exper-
iments were used to demonstrate how to implement the
sharpness definition in this paper. In the experiments, blades

with different sharpness were used to cut the same material to
study the effect of blade sharpness. The materials (potatoes)
were in rectangular shape with the same width (13 mm)
and thickness (30 mm) to make sure the same contact
length of each cut. The blades were prepared such that the
sharpest blade and the dullest blade defined in (15)–(17)
were included.
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The procedure of the blade preparation is as follows.
(1) Choose a brand-new blade (industrial-grade single-edge
razor blade standard, 0.2286 mm thick) as the sharpest one
(Blade A), define its relative sharpness η0 = 1 and obtain
its potato cutting forces; (2) use the sharpest blade (Blade
A) to manually cut cardboard 30 times to form Blade B
and obtain its potato cutting forces; (3) use Blade B to cut
through a piece of pine wood 50 times to form Blade C
and obtain its potato cutting forces; (4) blade C is dulled on
aluminum by rubbing 30 times to form Blade D and obtain
its potato cutting forces; (5) the dullest knife is obtained
by dulling Blade D on sand paper (aluminum oxide cloth
sanding sheet 80 grit) by 10 times and then obtain its potato
cutting forces; (6) according to the cutting forces of the
sharpest blade (Blade A) and the dullest blade (Blade E) to
get η f ; (7) set sharpness level (n) of Blade E is 5 (n = 5) and
according to (18) to specify the sharpness level κ to which
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another blade belongs. Part of the obtained force results are
shown in Figure 15, and the blade sharpness level results
are summarized in Table 4, where the first 4 columns show
the fracture forces, Column 5 is the average fracture force,
relative blade sharpness level η and relative blade sharpness
level κ are calculated based on (13) and (18). From the last
column in Table 4, it can be seen that blades B, C, D are in
the 2nd, 3rd, and 4th sharpness levels, respectively.

By using this method, any blade can be assigned to a
certain sharpness level. When the cutting force reaches cer-
tain level by which the knife is decided to be dull, the knife
needs to be resharpened or disposed.

5. Justification

It can be seen that the computation results from the model
agree well with the potato cutting results. Noted is that the
results are from the cuts of hard-crispy material. The mod-
eling method should applicable.

Then the question is how about large deformation non-
linear materials. The mathematical model is clearly not ap-
plicable to nonlinear materials, such as meat. However, our
everyday experience told us that the cuts on meat follow
the rule: slicing is easier that pressing. Here, the author just
provides a weak explanation of the cuts on meat: Type II
fracture happens at the depth (z) about 0.37 times of half
of the blade width or about z = 185 nm if 2a = 1000 nm. It
is almost at the contact surface when you compare the whole
thickness of the cutting material. Type III fracture happens
at the contact surface, that is, z = 0. In this small distance
or on the contact surface, the inhomogeneity, inelasticity,
and anisotropy of the cutting material will not affect the
stress distribution since the react force/pressure will balance
the external force statically based on Newton’s third law of
motion. From Figure 8, it has been checked that the stress
distribution in these locations is balanced by the external
force. Thus, at the moment of cutting initialization, although
the model will not be valid at bigger z for big deformation
nonlinear materials, the model would be still valid at z = 0
and z ≤ 0.37a. Since we only care about the stresses to
generate the possible fracture (the results in Figure 7 are
just to visualize the stress distribution yielded by the model),
the stress when z > 0.37a is not within our consideration
and does not relate to our conclusion. Thus, the model
is applicable to large deformation nonlinear materials only
when z ≤ 0.37a. We further constrain our application range
for hard-crispy materials within z ≤ 0.37a, that is, not all z.

6. Conclusions

In order to understand the question: why pressing-and-slic-
ing cuts use less force than pressing-only cuts during food
cutting, such as potatoes, this paper formulated and studied
the change of the stress distribution with various influence
factors. The cutting interaction was modeled as a belt-area
force acting on the surface of a semi-infinite body. The
cutting force was assumed to be in certain profile based on
the observed shape of blade cutting edges. The closed form

expression of the cutting interaction has been developed
using the direct integration method. Compared to the
knowledge in the current literature, the improvements of the
modeling are twofolds: (1) this work originally expressed
the cutting force (force at cutting fracture) and its change
with slicing angle using mathematical equations. (2) for
the first time, this work mathematically expressed the blade
sharpness with blade parameters and used relative sharpness
concepts based on mathematical descriptions (not based on
experience) to describe blade sharpness.

The computation results were used to predict the maxi-
mum stress locations. The relationships between the applied
force and slicing angle, blade edge shape, blade edge width,
contact length, and the fracture force and material property
were discussed. Experiments have been performed to validate
the formulations. The following conclusions are drawn.

(1) The model is only applied to the moment of cutting
fracture initialization. For elastic, homogeneous and
isotropic material, the model is always valid. Since
we are only interested in the cutting fracture, even
for hard-crispy materials, the applicable range in ma-
terial is only z ≤ 0.37a.

(2) During the cut with slicing angle smaller than 10◦, or
pressing-only or mainly pressing cuts, blade cutting
is a type II fracture due to the shear stress τyz. With
slicing angle bigger than 10◦, or called pressing-and-
slicing cuts, blade cutting is a type III fracture due
to the shear stress τxy and τxz. Type III fracture uses
considerable less force than type II fracture. This
answered why pressing-and-slicing cuts use less force
than pressing-only cuts. However, cuts with bigger
slicing angle will make the cutting feeding less. In
order to keep work efficiency, an optimal slicing angle
should be selected to satisfy both minimum cutting
force and maximum cut feeding speed.

(3) The shape of blade cutting edge determines the dis-
tribution of the cutting force on the contact surface
between the blade and the cutting material. The cut-
ting force distribution profile determines the sharp-
ness of a blade. By using the relative sharpness factor
concept, blade sharpness can be quantified based on
the obtained forces from sharpest blades and dullest
blades.

(4) It can be observed from both the computation and
experimental results that the cutting force (Pu) is
proportional to the contact length (l). This obvious
observation agrees with those from everyday life.

(5) Edge shape and edge width have the combined in-
fluence on fracture force. For the same edge width,
external force is proportional to the maximum force
intensity, which the edge shape can generate.

(6) Based on material properties, the knife sharpness
properties and the interaction between the blade and
the material, the required force to realize certain cuts
can be predicted. This observation provides the prin-
ciple to optimize the cutting mechanism design and
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Table 4: Blade relative sharpness level.

Blade Force at fracture (N) Average force (N) η (relative sharpness factor) κ (relative sharpness level)

A 5.20 6.49 6.36 6.67 6.18 1 1

B 7.87 7.16 7.92 7.78 7.70 1.24 2

C 10.23 9.65 10.19 10.76 10.19 1.65 3

D 12.01 11.17 12.14 11.57 11.74 1.89 4

E 15.79 15.75 16.28 15.35 15.79 2.55 5

the force control algorithm design for the automation
of the cutting operations.

Regarding the future work, the stress intensity factors KII

and KIII will be analyzed and quantified. The influence of the
relative moving speed will also be investigated. On the long
term, the research work will try to understand and model
the behavior of interesting biomaterials or hybrid materials
during robot-controlled cuts. Then robots can be intelligent
to adapt themselves for any deformation of material and any
varieties of material’s structure.

Appendix

A. Derivation of Stress Distribution
dut to Various Forces

A.1. Stress Distribution due to Point Force

(1) Normal Point Force Only. When there is only normal
point force Ppt, for material with Poisson’s ratio μ, the normal
stress σ and the shear stress τ at point A(x, y, z) are given as
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The superscript np (stands for normal direction and on a
point) in (A.1a) to (A.1g) represents the stresses generated
by external force Ppn.

(2) Tangential Point Force Only. When there is only tangen-
tial point force Ppt, the stress distribution is known as the
Cerruti solution and is given in [8] as
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The superscript tp in (A.2a) to (A.2g) represents the stresses
generated by external force Ppt.

A.2. Stress Distribution due to Line Force

(1) Normal Line Force Only. The closed form solution of
the stresses at any point (x, y, z) in the semi-infinite body
generated by line force acting along (x1, x2) are shown in
(A.3).
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(2) Tangential Line Force Only. The closed-form expression
of the stress distribution by a tangential force on line segment
[x1, x2] is given in (A.5).
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]
s3+{

2u
[
2y4 + y2z2 − z4 + 6x2

(
y2 − z2

)]
+ z2

(
6x2 − y2 + z2

)}
s2

+
{−4μx

[
2y4 + y2z2 − z4 + 2x2

(
y2 − z2

)]− 2z2x2
(
2x2 − y2 + z2

)}
s

+z2
[
x4 + x2

(−y2 + z2
)− y2

(
2y2 + z2

)]
+2μ

[
x2
(
2y4 + y2z2 − z4

)
+ x4

(
y2 − z2

)
+ y2

(
y2 + z2

)2
]

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

f
(
τxy
)
= plt y

2π

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
(
2μ− 1

)
(s− x)z(

(x − s)2 + y2
)2 − R

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
(
2μ− 1

)
(x − s)(

(x − s)2 + y2
)2 −

(
4μ− 1

)
(x − s)(

(x − s)2 + y2
)
z2

+
x − s

R4
+

(
4μ− 1

)
(x − s)

R2z2

+
(x − s)

(
(x − s)2 + y2 − 2μ

(
y2 + z2

))
(

(x − s)2 + y2
)(

y2 + z2
)
R2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(A.6)
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As x1 and x2 go to −∞ and ∞, respectively, that is, a
line force acting on the boundary of a semi-infinite body, the
stress distribution changes to

[
σtl∞x σtl∞y σtl∞z τtl∞xy τtl∞yz τtl∞xz

]

= plt
π
(
y2 + z2

)[0 0 0 −y 0 z
]
.

(A.7)

A.3. Stress Distribution due to Area Force.

(1) Normal Area Force Only. The stresses generated by the
normal force intensity between [−a,−w] are

f11n = σn1
x =

{
−2μ

π

qn
a−w

((
y + a

)
T +

z

2
Γ
)}∣∣∣∣∣

v = −w,
v = −a,

f21n = σn1
y =

{
−1
π

qn
a−w

(
z
[
a
(
y − t

)
v +

(−ty + y2 + z2
)]

(
y − v

)2 + z2

+
(
a + y

)
T +

z

2
Γ

)}∣∣∣∣∣
v = −w,
v = −a,

f31n = σn1
z =

{
−1
π

qn
a−w

(
z
[
a
(
v − y

)
+
(−vy + y2 + z2

)]
(
y − v

)2 + z2

+
(
a + y

)
T

)}∣∣∣∣∣
v = −w,
v = −a,

f4n = τn1
xy = 0,

f51n = τn1
yz =

{
z

π

qv
a−w

[
z(a + v)(

v − y
)2 + z2

− T

]}∣∣∣∣∣
v = −w
v = −a ,

f61n = τn1
xz = 0,

(A.8)

where T = tan−1[(y − v)/z], Γ = ln((v − y)2 + z2) and
{ f (v)}∣∣ v=−w

v=−a = f (−w)− f (−a).
The stresses generated by the normal force intensity be-

tween (−w,w) are obtained as

f12n = σn2
x =

{
2qnμ
π

T
}∣∣∣∣∣

v = w,
v = −w,

f22n = σn2
y =

{−qn
π

( (
y − v

)
z(

y − v
)2 + z2

+ T

)}∣∣∣∣∣
v = w,
v = −w,

f32n = σn2
z =

{−qn
π

( (
v − y

)
z(

v − y
)2 + z2

+ T

)}∣∣∣∣∣
v = w,
v = −w,

f42n = τn2
xy = 0,

f52n = τn2
yz =

{
qnz2

π
(
v − y

)2 + z2

}∣∣∣∣∣
v = w,
v = −w,

f62n = τn2
xz = 0.

(A.9)

The stresses generated by the normal force intensity be-
tween [w, a] are obtained as

f13n = σn3
x =

{
−2μ

π

qn
w − a

((
y − a

)
T +

z

2
Γ
)}∣∣∣∣∣

v = a,
v = w,

f23n = σn3
y =

{
−1
π

qn
w − a

(
z
[
a
(
y − v

)
+
(−vy + y2 + z2

)]
(
y − v

)2 + z2

+
(
y − a

)
T +

z

2
Γ

)}∣∣∣∣∣
v = a,
v = w,

f33n = σn3
z =

{
−1
π

qn
w − a

(
z
[
a
(
v − y

)
+
(−vy + y2 + z2

)]
(
y − v

)2 + z2

+
(
y − a

)
T

)}∣∣∣∣∣
v = a,
v = w,

f43n = τn3
xy = 0,

f53n = τn3
yz =

{
z

π

qn
w − a

[
z(−a + v)(
v − y

)2 + z2
− T

]}∣∣∣∣∣
v = a,
v = w,

f63n = τn3
xz = 0.

(A.10)

The stress tensor generated by normal force can then be
expressed as

⎡
⎢⎢⎢⎣
σnx τnxy τnxz

τnxy σny τnyz

τnxz τnyz σnz

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3∑
i=1

σnix

3∑
i=1

τnixy

3∑
i=1

τnixz

3∑
i=1

τnixy

3∑
i=1

σniy

3∑
i=1

τniyz

3∑
i=1

τnixz

3∑
i=1

τniyz

3∑
i=1

σniy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3∑
i=1

f1in

3∑
i=1

f4in

3∑
i=1

f6in

3∑
i=1

f4in

3∑
i=1

f2in

3∑
i=1

f5in

3∑
i=1

f6in

3∑
i=1

f5in

3∑
i=1

f3in

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(A.11)

(2) Tangential Area Force Only. The stresses generated by the
tangential force intensity between [−a,−w] are obtained as

f11t = σtx = 0,

f21t = σty = 0,

f31t = σtz = 0,

f41t = τtxy =
{

1
π

qt

a−w
v

(
t − zT +

(
a + y

)
2

Γ

)}∣∣∣∣∣
v = −w,
v = −a,
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f51t = τtyz = 0,

f61t = τtxz =
{

1
π

qt
a−w

((
a + y

)
T +

z

2
Γ
)}∣∣∣∣∣

v = −w.
v = −a.

(A.12)

The stresses generated by the tangential force intensity
between (−w,w) are obtained as

f12t = σtx = 0,

f22t = σty = 0,

f32t = σtz = 0,

f42t = τtxy =
{
qt
2π

Γ
}∣∣∣∣∣

v = w,
v = −w,

f52t = τtyz = 0,

f62t = τtxz =
{
qt
π
T
}∣∣∣∣∣

v = w.
v = −w.

(A.13)

The stresses generated by the tangential force intensity
between [w, a] are obtained as

f13t = σtx = 0,

f23t = σty = 0,

f33t = σtz = 0,

f43t = τtxy =
{

1
π

qt
w − a

(
v − zT +

(−a + y
)

2
Γ

)}∣∣∣∣∣
v = a,
v = w,

f53t = τtyz = 0,

f63t = τtxz =
{

1
π

qt
w − a

((−a + y
)
T +

z

2
Γ
)}∣∣∣∣∣

v = a.
v = w.

(A.14)

The final stress tensor generated by tangential force can
then be expressed as

⎡
⎢⎢⎢⎣
σtx τtxy τtxz

τtxy σty τtyz

τtxz τtyz σtz

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3∑
i=1

σtix

3∑
i=1

τtixy

3∑
i=1

τtixz

3∑
i=1

τtixy

3∑
i=1

σtiy

3∑
i=1

τtiyz

3∑
i=1

τtixz

3∑
i=1

τtiyz

3∑
i=1

σtiy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3∑
i=1

f1it

3∑
i=1

f4it

3∑
i=1

f6it

3∑
i=1

f4it

3∑
i=1

f2it

3∑
i=1

f5it

3∑
i=1

f6it

3∑
i=1

f5it

3∑
i=1

f3it

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(A.15)

(3) Force with Both Normal and Tangential Components.
Using (A.11) and (A.15), the stress distribution generated by
both qn and qt is obtained as

⎡
⎢⎢⎢⎣
σx τxy τxz

τxy σy τyz

τxz τyz σz

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣
σnx τnxy τnxz

τnxy σny τnyz

τnxz τnyz σnz

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣
σtx τtxy τtxz

τtxy σty τtyz

τtxz τtyz σtz

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3∑
i=1

(
f1in + f1it

) 3∑
i=1

(
f4in + f4it

) 3∑
i=1

(
f6in + f6it

)
3∑
i=1

(
f4in + f4it

) 3∑
i=1

(
f2in + f2it

) 3∑
i=1

(
f5in + f5it

)
3∑
i=1

(
f6in + f6it

) 3∑
i=1

(
f5in + f5it

) 3∑
i=1

(
f3in + f3it

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(A.16)

Equation (A.16) can be rewritten as

⎡
⎢⎢⎢⎣
σx τxy τxz

τxy σy τyz

τxz τyz σz

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣
qn f1

(
y, z, a,w

)
qt f4

(
y, z, a,w

)
qt f5

(
y, z, a,w

)
qt f4

(
y, z, a,w

)
qn f2

(
y, z, a,w

)
qn f6

(
y, z, a,w

)
qt f5

(
y, z, a,w

)
qn f6

(
y, z, a,w

)
qn f3

(
y, z, a,w

)

⎤
⎥⎥⎥⎦,

(A.17)

where the functions f1, f2, f3, f4, f5, and f6 can be explicitly
expressed using (A.8) to (A.10) and (A.12) to (A.14) using
the variables y, z, a,w.

Symbols

a: Half of the width of the blade edge (see
Figure 3)

A(x, y, z): A point in the material with coordinate
(x, y, z) in frame oxyz (see Figure 3)

Ks: Ratio of the fracture initialization force over
continuous cutting force

l: Contact length between the blade and the
material (see Figure 3)

pn and pt: Cutting pressure components in the z
(normal) direction and x (tangential)
direction, respectively (see Table 2)

pln and plt: Normal and tangential components of line
distributed cutting force
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P: Total cutting force (see Figure 4 and Table 2)
Pc: Force during continuous cutting fracture
Pu: Required force to initialize cutting fracture
Pn and Pt: Normal and tangential component of total

applied external force, respectively
Pnu and Ptu: Normal and tangential component of total

cutting force during fracture, respectively
Ppn and Ppt: Normal and tangential component of a point

applied external force, respectively
qn and qt: Maximum of the area force intensity

between [−w,w] in the normal and
tangential direction, respectively

r: Distance between point o and point B (see
Figure 3(b))

R: Distance between point A and point B (see
Figure 3(b))

w: Width of the top side of the trapezoid profile
of force intensity distribution (see Figure 5)

α: Slicing angel, that is, the angle between P
and Pn (see Figures 3(b) and 2)

σ and τ: σ is the tensile stress or just an expression of
any of the stress components and τ is only
the shear stress

τi j : Maximum shear stress, i or j = 1, 2, or 3
τmax: Maximum of the maximum shear stresses

τi j , i or j = 1, 2, or 3
τu: Ultimate shear stress
μ: Poisson’s ratio
η: Blade relative sharpness factor
η0: Relative sharpness factor of the sharpest

blade
η f : Relative sharpness factor of the dullest blade
κ: Blade relative sharpness level.
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