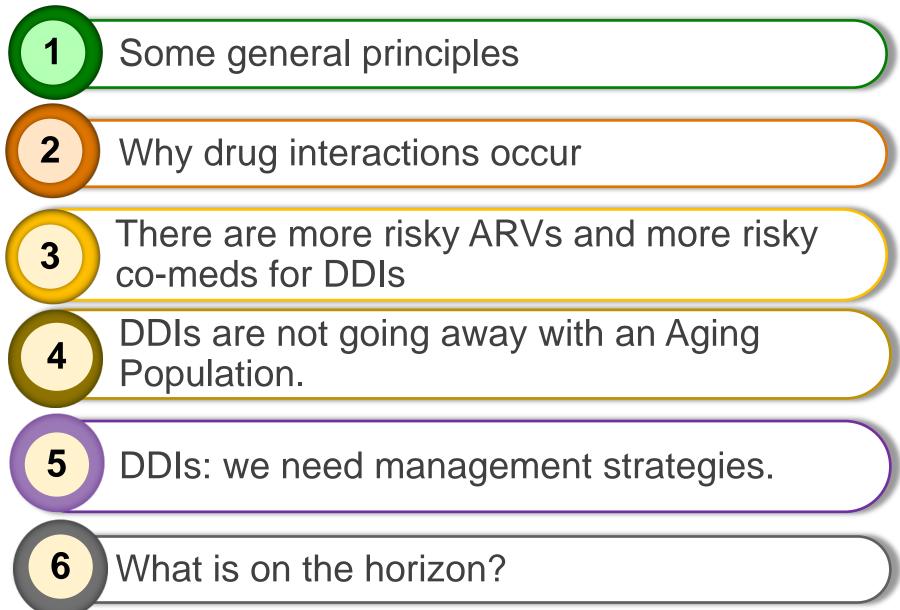
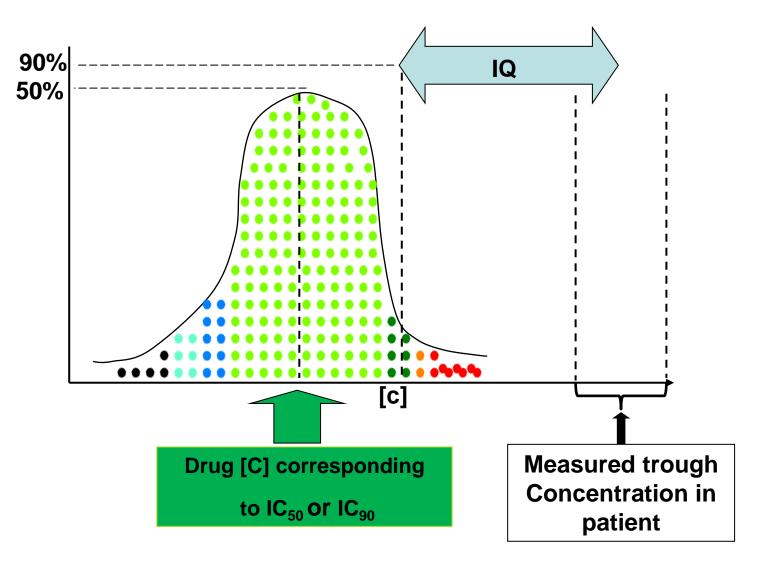

PL 6. Pharmacology of Antiretroviral Therapy.

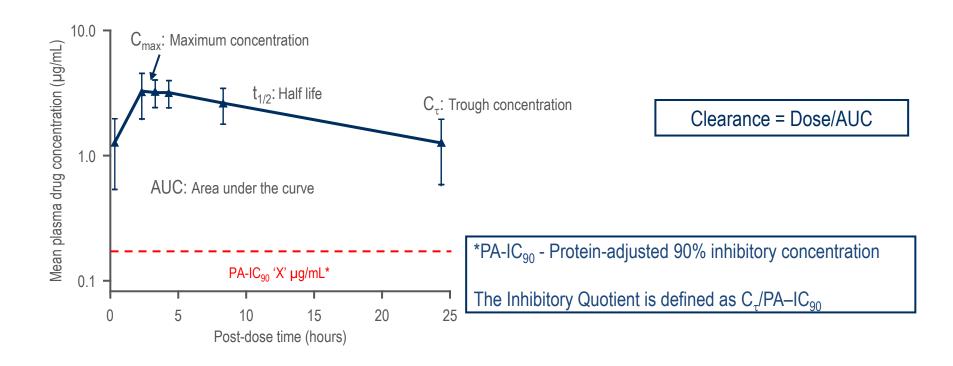
David Back

University of Liverpool


August 2014

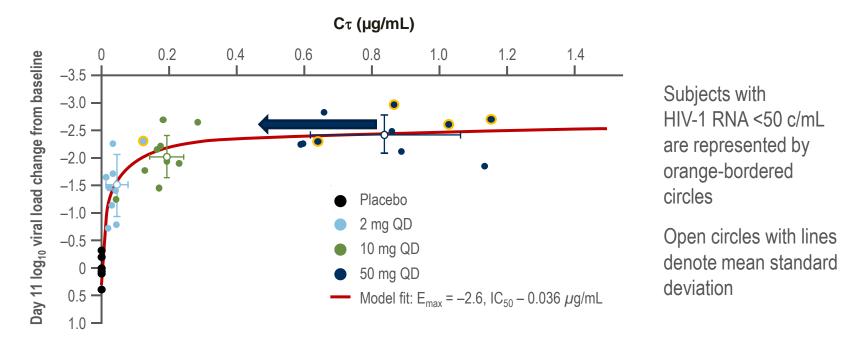

Slide 1

Overview



Durable suppression of HIV-1 replication requires delivery of drug to target cells at concentrations that exceed the susceptibility of the virus strain(s) infecting the patient

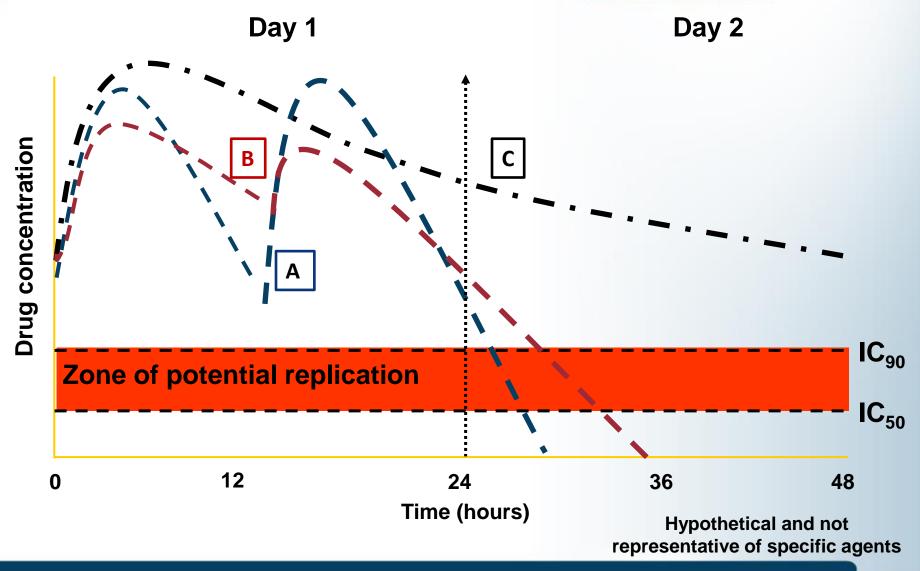
In vitro susceptibility and target trough concentrations


Pharmacological profile of a QD drug

- Drug concentrations in plasma over a dosing interval at steady state.
- All drug levels are well above the in-vitro PA-IC₉₀

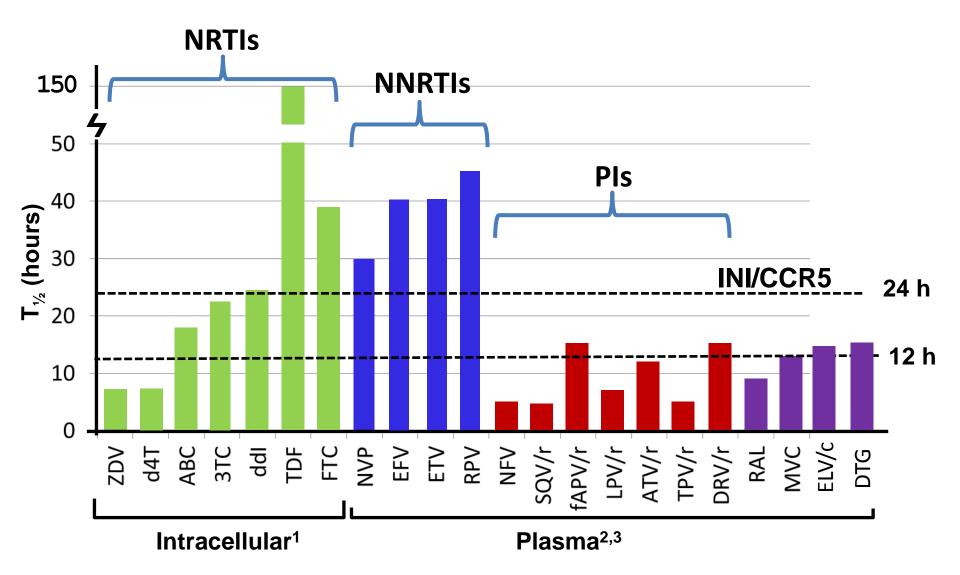
RELATIONSHIP BETWEEN DTG TROUGH CONCENTRATION & VIRAL LOAD REDUCTION

Phase IIa, dose-ranging, placebo-controlled, 10-day monotherapy study


DTG is associated with a well characterised exposure-response relationship

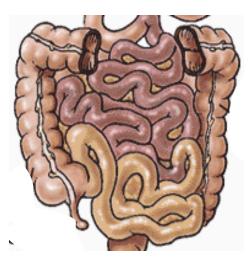
c/mL, copies/mL; Emax, maximum effect

Adapted from Min S, et al. AIDS 2011; 25:1737–45


Whether you give a drug once or twice/three times a day is largely governed by the Half Life: this parameter is the key to Forgiveness

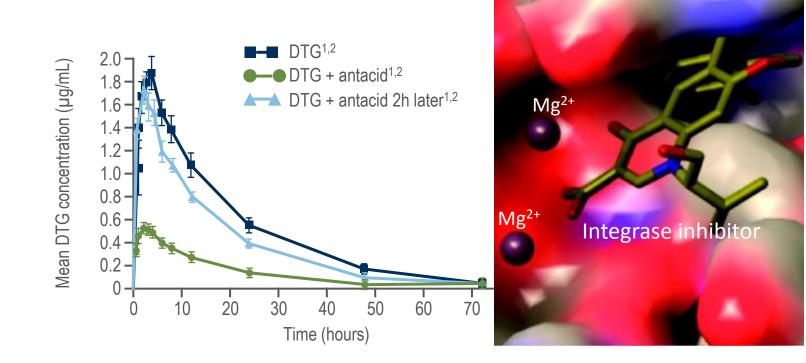
PK of HIV Drugs With Different Half-lives

Adapted from Taylor S et al AIDS 2007; 21: 1673-1682


Antiretroviral drug half-lives

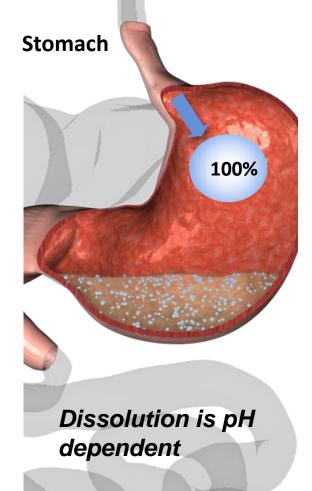
Created from 1. Anderson PL, et al. J Antimicrob Chemother. 2011:66:240–50. 2. Summary of Product Characteristics. Available at: http://www.medicines.org.uk/emc/. 3. Ford J, et al. Antimicrob Agents and Chemother. 2004;48:2388–93; www.hiv-druginteractions.org

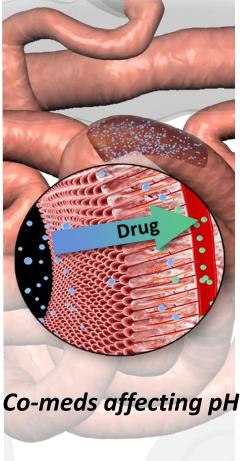
Why Drug-Drug Interactions (DDIs) occur


Mechanisms of DDIs: Absorption

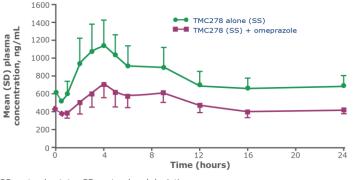
3 Distinct mechanisms

- Chelation with cations
- Change in gastric pH
- Altered enzymes or transporters in enterocyte


Chelation with Cations: Integrase Inhibitor and Antacids (polyvalent cations)

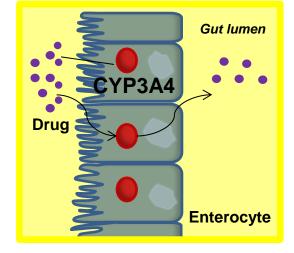

Dolutegravir should be taken 2 hours before or 6 hours after taking antacids containing polyvalent cations^{1,2}

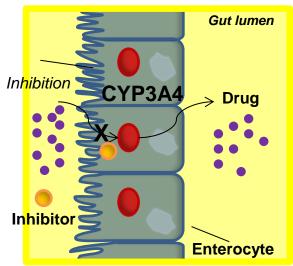
Values shown are GLS mean ratio (90% Cl) *DTG given as 50 mg QD in study 1. Adapted from Patel P, et al. J Antimicrob Chemother 2011;66:1567–72 2. Adapted from Song I, et al. ICAAC 2009. Abstract A1-1305

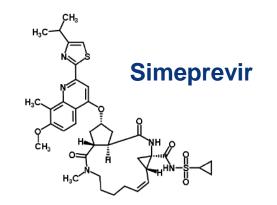

Change in Gastric pH: Rilpivirine & Proton Pump Inhibitors

Small Intestine

Omeprazole decreased TMC278 plasma concentrations

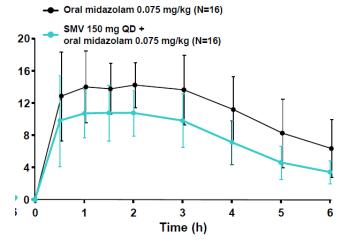



- Co-administration of Omeprazole 20 mg reduced rilpivirine exposure by 40%
- Combination of rilpivirine with PPIs is contraindicated¹


Altered Enzyme Activity: CYP3A4 inhibition

(A) Intestine – drug metabolized

(B) Intestine – inhibition

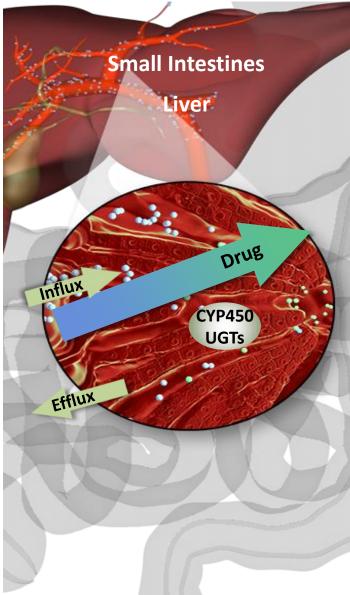


Simeprevir is a mild inhibitor of CYP3A4 in intestine but not in the liver.

So Simeprevir increases the exposure (AUC) of Oral Midazolam by 45%.

Oral

Ouwerkerk-Mahadevan S EASL 2014


Mechanisms of DDIs: Hepatic Clearance

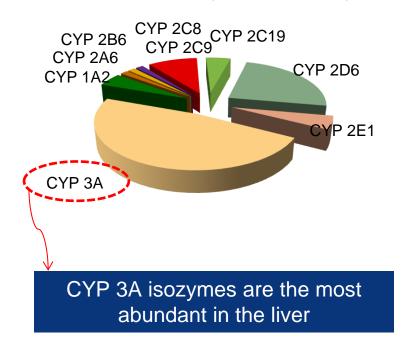
- Enzyme & transporter induction or inhibition
- Inducers:

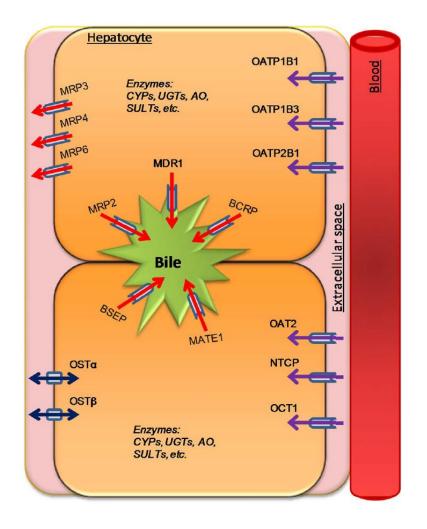
rifampicin, rifabutin, efavirenz, nevirapine, phenytoin, carbamazepine, SJW, dexamethasone,

Inhibitors:

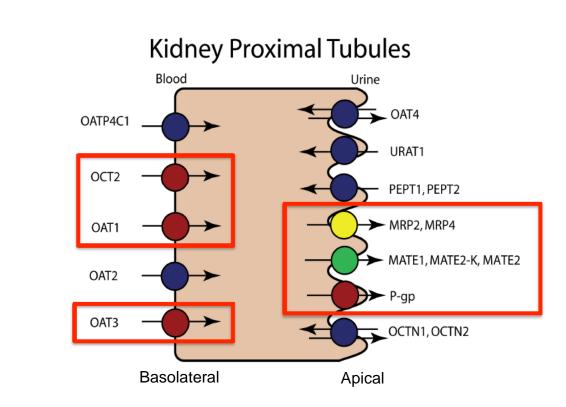
ritonavir, cobicistat, macrolide antibiotics, cimetidine, omeprazole, ketoconazole, GFJ, verapamil, sertraline, fluoxetine, cyclosporine, telaprevir, boceprevir.

Questions?


- Impact of Liver disease on a DDI (Healthy subjects v patients with HCV)
 - Impact of Pharmacogenetics on a DDI


CYP=cytochrome P450;

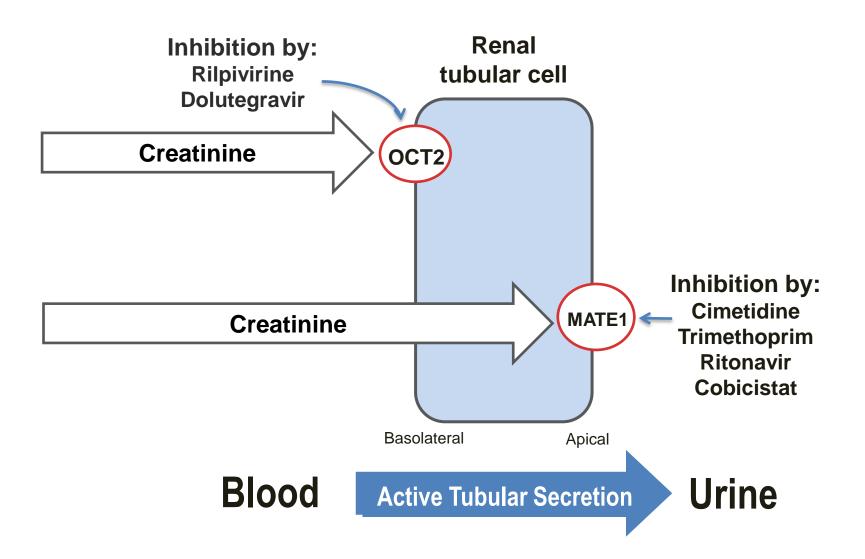
Images supplied by Vertex Pharmaceuticals Inc, February 2011.


The Importance of Hepatic Enzymes & Transporters

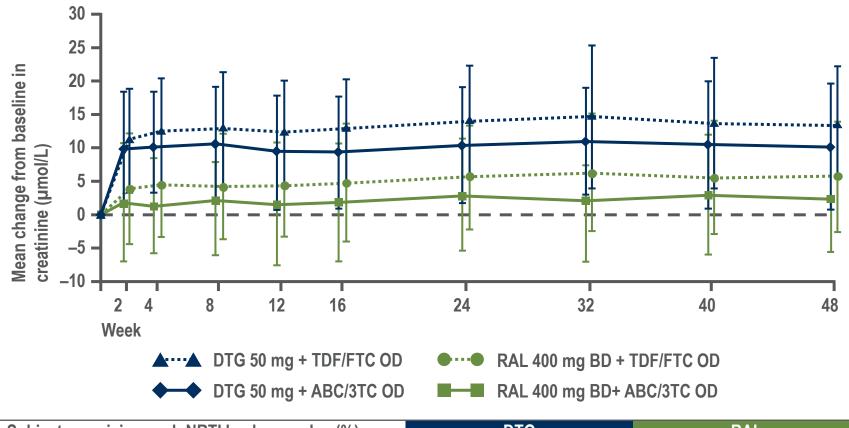
Proportion of drugs that are substrates for major CYP enzymes

Mechanisms of DDIs: Renal Clearance

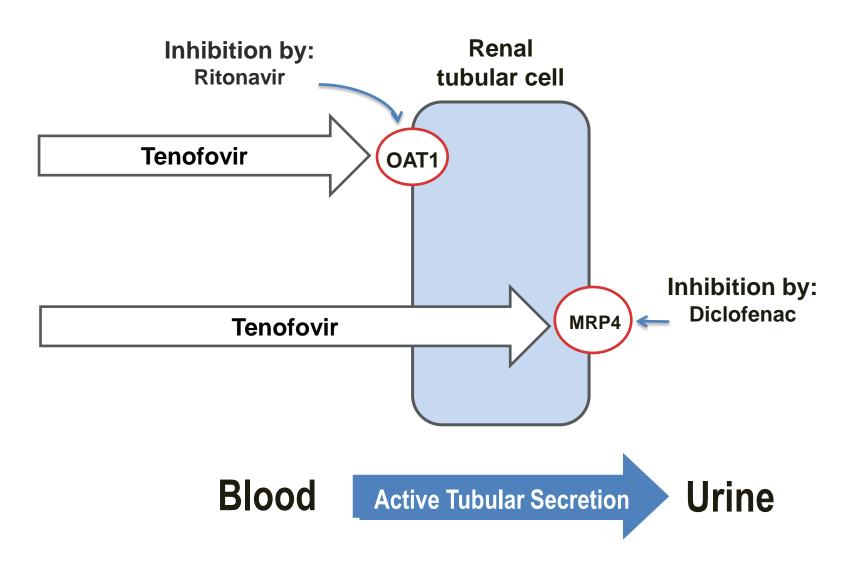



Giacomini KM, et al. Nat Rev Drug Discov. 2010 Mar;9(3):215-36. Zamek-Gliszczynski et al., Clin Pharmacol Ther 92: 553-556, 2012.

Active Tubular Secretion of Creatinine and Tenofovir


- A small percentage of creatinine is secreted via the proximal tubule.
- Some TFV is secreted via proximal tubule

Drugs interfering with Creatinine tubular transporters


SPRING 2: Change in serum creatinine levels to 48 weeks SPRING

Subjects receiving each NRTI background, n (%)	DTG	RAL
TDF/FTC	242 (59)	247 (60)
ABC/3TC	169 (41)	164 (40)

Adapted from Curtis LD, et al. IAS 2013. Poster TUPE282

Drugs interfering with Tenofovir tubular transport

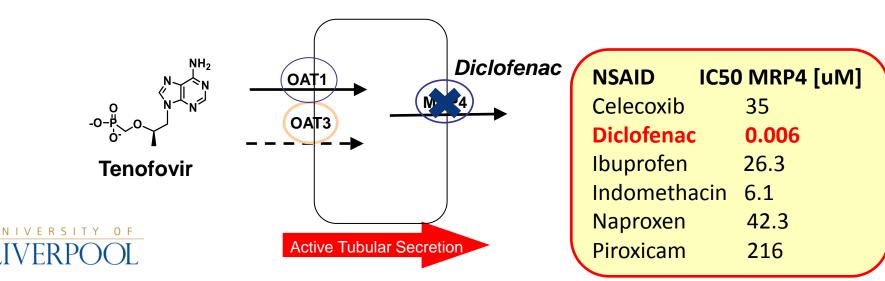
Adapted from Lepist EI, et al. 51st ICAAC 2011. Abstract A1-1724

Boosted PIs increase tenofovir exposure

Table 1: effects of protease inhibitors on tenofovir, Geometric mean ratio (90% confidence intervals)

Protease	Effect on	Tenofovir (GM	R; 90%CI)
Inhibitor	Cmax	AUC	Cmin
Lopinavir	1.15	1.32	1.51
(7)	(1.07-1.22)	(1.25-1.38)	(1.37-1.66)
Atazanavir	1.34	1.37	1.29
(8)	(1.20-1.51)	(1.30-1.45)	(1.21-1.36)
Darunavir	1.24	1.22	1.37
(9)	(1.08-1.42)	(1.10-1.35)	(1.19-1.57)

Should the dose of tenofovir be reduced to 200-250mg/day, when combined with protease inhibitors?.


Andrew Hill, Saye Khoo, David Back, Department of Molecular and Clinical Pharmacology, Liverpool University, UK Anton Pozniak, Marta Boffito, St Stephens Centre, Chelsea and Westminster Hospital, London, UK

International Workshop on HIV Clinical Pharmacology, Washington, USA, May 2014 [poster]

Acute kidney injury caused by tenofovir disoproxil fumarate and diclofenac co-administration

M Bickel,¹ P Khaykin,¹ C Stephan,¹K Schmidt,¹M Buettner,²K Amann,² T Lutz,³ P Gute,³ A Haberl,¹ H Geiger,⁴ HR Brodt¹ and O Jung⁴

- Retrospective analysis of 89 patients with diclofenac prescriptions
- 68.5% treated with TDF regimen
- 31.5% treated with TDF-sparing regimen
- 13 patients (14.6%) developed AKI after initiating diclofenac. ALL were TDF-treated patients.

Acute renal failure and liver toxicity in an HIV/hepatitis C coinfected patient receiving telaprevir and boosted atazanavir

AIDS 2014, 28:1537-1543

Eva Van den Eynde, Elena Ferrer and Daniel Podzamczer, HIV Unit, Infectious Diseases Service, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.

- HIV/HCV co-infected male patient on ATV/r + TDF/FTC started TVR and within 1 week experienced progressive deterioration in renal function. Note: ATV/r is only PI recommended for use with TVR.
- TDF/FTC switched to ABC/3TC and TVR stopped. Abnormal liver function tests.
- Mechanisms?
 - i) TVR inhibition of renal OCT2 increased serum creatinine
 - ii) TVR inhibition of tenofovir renal elimination increased serum tenofovir.
 - iii) TVR inhibition of ATV clearance increased atazanavir.

There are more risky ARVs and more risky co-meds for DDIs

Antiretrovirals and Interaction Potential

Highest potential	Moderate Potential	Low Potential
Boosted Pls <u>Perpetrators</u> – enzyme and transporter Inhibition	Rilpivirine <u>Victim</u> of enzyme inhibition and induction. Also absorption.	Raltegravir <u>Victim</u> of few induction and absorption interactions
EVG/cobi <u>Perpetrators</u> – enzyme and transporter inhibition	Maraviroc Victim of enzyme inhibition and induction.	Most NRTIs
Efavirenz, nevirapine, etravirine Perpetrators – enzyme and transporter induction	Dolutegra <u>Victim</u> of e inhibition a interaction	enzyme and absorption

www.hiv-druginteractions.org

Polypharmacy and Risk of Antiretroviral Drug Interactions Among the Aging HIV-Infected Population

Carol Holtzman, PharmD¹, Carl Armon, PhD², Ellen Tedaldi, MD³, Joan S. Chmiel, PhD⁴, Kate Buchacz, PhD⁵, Kathleen Wood, BSN², John T. Brooks, MD⁵, and the HOPS Investigators

¹Temple University School of Pharmacy, Philadelphia, PA, USA; ²Cerner Corporation, Vienna, VA, USA; ³Temple University School of Medicine, Philadelphia, PA, USA; ⁴Northwestern University, Feinberg School of Medicine, Chicago, IL, USA; ⁵Centers for Disease Control and Prevention, Atlanta, GA, USA.

≻ N = 3674

- ARV Non-ARV Interactions identified with the University of Liverpool web site <u>www.hiv-druginteractions.org</u>
- 261 (7%) prescribed at least 1 contraindicated ARV drug combination
 - Proton pump inhibitors with atazanavir
 - Simvastatin or lovastatin with boosted PI
 - Benzodiazepines and boosted PI
- 1239 (34%) prescribed at least one ARV-drug combination with moderate or high evidence of interaction.

Lipid-Lowering Treatment Selector

Charts reviewed February 2014. Full information available at www.hiv-druginteractions.org and www.hiv-druginteractionslite.org

		ATV/r	DRV/r	FPV/r	IDV/r	LPV/r	SQV/r	EFV	ETV	NVP	RPV	MVC	DTG	EVG/c	RAL	ABC	FTC	3TC	TDF	ZDV
	Atorvastatin	1	1	153%	î	<mark>↑490%</mark>	Ť	↓ 43%	↓37%	Ļ	\leftrightarrow	¢	\leftrightarrow	1	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
	Fluvastatin	\leftrightarrow	\leftrightarrow	\leftrightarrow	Ť	\leftrightarrow	î	Ť	î	\leftrightarrow										
atins	Lovastatin	î	î	î	Ť	î	î	Ļ	Ļ	Ļ	\leftrightarrow	\leftrightarrow	\leftrightarrow	î	↔	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
Stat	Pravastatin	\leftrightarrow	↑81%	↔	Ť	\leftrightarrow	↓50%	↓44%	Ļ	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	↔	\leftrightarrow	\leftrightarrow	\leftrightarrow	↔	\leftrightarrow
	Rosuvastatin	<mark>↑213%</mark>	<mark>↑48%</mark>	↑8%	Ť	<mark>↑107%</mark>	î	\leftrightarrow	î	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	↑ 48%	↔	\leftrightarrow	\leftrightarrow	\leftrightarrow	↔	\leftrightarrow
	Simvastatin	î	î	Î	Î	î	î	↓68%	Ļ	Ļ	\leftrightarrow	\leftrightarrow	¢	î	↔	↔	\leftrightarrow	\leftrightarrow	↔	\leftrightarrow
	Bezafibrate	\leftrightarrow	\leftrightarrow	↔	\leftrightarrow	\leftrightarrow	¢	\leftrightarrow	\leftrightarrow	\leftrightarrow	¢	¢	↔	¢	¢	↔	\leftrightarrow	\leftrightarrow	↔	¢
Fibrates	Clofibrate	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	↔	\leftrightarrow	\leftrightarrow	\leftrightarrow	<u>↑</u> îî	\leftrightarrow
Fibr	Fenofibrate	\leftrightarrow	¢	\$	¢	↔	↔	\leftrightarrow	\leftrightarrow	\leftrightarrow	↔	\leftrightarrow	\leftrightarrow	♦	¢	\leftrightarrow	\leftrightarrow	¢	¢	\leftrightarrow
	Gemfibrozil	↓	↓	↓	↓	↓ 41%	Ļ	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	ſ	♦	ſ	¢	\leftrightarrow	\leftrightarrow	↔	\leftrightarrow
	Ezetimibe	↑ª	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	¢	¢	\leftrightarrow	\leftrightarrow	¢	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow

Colour Legend

No clinically significant interaction expected

These drugs should not be coadministered.

Potential interaction which may require a dosage adjustment or close monitoring.

Potential interaction predicted to be of weak intensity (<2 fold ↑AUC or <50% ↓AUC). No a priori dosage adjustment is recommended.

Text Legend

- ↑ Potential increased exposure of the lipid-lowering drug
- ↓ Potential decreased exposure of the lipid-lowering drug
- ↔ No significant effect
- Potential increased exposure of HIV drug
- ↓ Potential decreased exposure of HIV drug

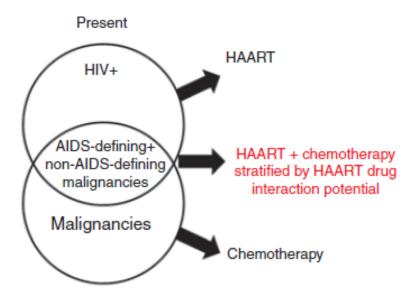
Drug-drug interactions between HIV drugs and non-HIV drugs (i)

	Non-HIV drugs	ATV	DRV	LPV	RTV (ii)	EFV	ETV	NVP	MVC	RAL
	atorvastatin	1	1	↑	↑ (Ļ	Ļ	↓ *	\leftrightarrow	\leftrightarrow
l S	fluvastatin	$\leftrightarrow *$	★ *	★ *	★ *		↑*		★ *	↔ *
DRUGS	pravastatin	\leftrightarrow *	1	\leftrightarrow	\leftrightarrow	Ļ	↓ *	↔ *	\leftrightarrow	\leftrightarrow
	rosuvastatin	1	↑*	1	1	\leftrightarrow	↑*	\leftrightarrow	\leftrightarrow	\leftrightarrow
	simvastatin	1	1	↑	↑	\downarrow	↓ *	↓ *	\leftrightarrow	\leftrightarrow
CARDIOVASCULAR	amlodipine	↑ * (iii)	↑*	↑*	↑ *	↓*	↓ *	↓ *	* ↔	\leftrightarrow
₹	diltiazem	↑ ⁽ⁱⁱⁱ⁾	↑*	1	1	\downarrow	↓ *	Ļ	E *	\leftrightarrow
SDIC	metoprolol	↑*	↑*	↑*	↑*	★ *	<→ *	★ *	★ *	* ↔
CAF	verapamil	↑ * (iii)	↑*	↑*	↑*	↓*	↓ *	↓ *	E *	★ *
	warfarin	1 or ↓ *	\downarrow	Ļ	Ļ	↑ or ↓ *	↑*	1 or ↓ *	* ↔	* ↔
	diazepam	↑*	↑*	↑*	↑*	↓*	↑*	↓ *	★ *	* ↔
	midazolam	1	1	↑	1	1			\leftrightarrow	\leftrightarrow
	triazolam	1	1	↑	↑	1			★ *	★ *
s s	citalopram	↑*	↑*	↑*	↑*	↓*	↑*	↓ *	★ *	★ *
DRUGS	mirtazapine	↑ *	↑*	↑*	↑ *	↓ *	↓ *	↓ *	★ *	* ↔
DR	paroxetine	↑*	Ļ	↑*	1	\leftrightarrow	\leftrightarrow	↔ *	\leftrightarrow *	↔ *
CNS	sertraline	↑*	Ļ	↑*	1	\downarrow	↓ *	↓ *	★ *	<→ *
	pimozide	1	1	↑	↑ (1			★ *	★ *
	carbamazepine	↑D	1	↑D	1	↓D	D	↓D	D	D
	lamotrigine	↔ * *	★ *	Ļ	\downarrow	★ *	★ *	★ *	★ *	★ *
	phenytoin	D	D	D	Ļ	↓D	D	↓D	D	D

EACS Guidelines 2012

www.hiv-druginteractions.org

Cytotoxic Treatment Selector


Charts revised February 2014. Full information available at www.hiv-druginteractions.org and www.hiv-druginteractionslite.org

		ATV/r	DRV/r	FPV/r	IDV/r	LPV/r	SQV/r	EFV	ETV	NVP	RPV	MVC	DTG	EVG/c	RAL	ABC	FTC	3TC	TDF	ZDV
ABT	Bleomycin	\leftrightarrow																		
our A	Daunorubicin	↔ ^a	\leftrightarrow	\leftrightarrow	\leftrightarrow	↔ ^a	↔ ^a	¢	\leftrightarrow	\leftrightarrow	↔ ^a	\leftrightarrow	¢	\leftrightarrow	\leftrightarrow	↔	\leftrightarrow	\leftrightarrow	\leftrightarrow	↔ ^b
tum	Doxorubicin	↔ ^a	\leftrightarrow	\leftrightarrow	\leftrightarrow	⇔ ^a	⇔ ^a	\leftrightarrow	\leftrightarrow	\leftrightarrow	↔ ^a	\leftrightarrow	↔ ^b							
Anti-	Epirubicin	Jª	↓	Ļ	Ļ	Jª	↓ ^a	↑	\leftrightarrow	\leftrightarrow	↔ ^a	\leftrightarrow	\leftrightarrow	↔	\leftrightarrow	↔	\leftrightarrow	\leftrightarrow	↔	↔ ^b
	Carboplatin	\leftrightarrow	↔ ^h	↔ ^h	↔ ^{ch}	↔ ^b														
	Chlorambucil	¢	↔	↔	\leftrightarrow	\leftrightarrow	\leftrightarrow	¢	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	¢	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	↔ ^b
ents	Cisplatin	\leftrightarrow	↑	↑	\leftrightarrow	\leftrightarrow	↑ ^h	↑ ^h	↔ ^{ch}	↔ ^b										
Age	Cyclophosphamide	\downarrow^{d}	↓ ^d	↓ ^d	↓d	\downarrow^{d}	\downarrow^{d}	↓ ^f	↓ ^f	\downarrow^{f}	\leftrightarrow	\leftrightarrow	\leftrightarrow	\downarrow^{d}	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	↔ ^b
ing	Dacarbazine	\downarrow^{d}	↓ ^d	↓ ^d	↓d	\downarrow^{d}	\downarrow^{d}	\leftrightarrow	↑	↔ ^b										
Alkylating	Dactinomycin	\leftrightarrow	\leftrightarrow^{b}																	
AIk	lfosfamide	↑ ^e	↓ ^f	↓ ^f	↓ ^f	↓	↓	\leftrightarrow	↑ ^e	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	↔°	↔ ^b					
	Oxaliplatin	\leftrightarrow	↑	\leftrightarrow	\leftrightarrow	\leftrightarrow	Î	↑ (↔°	\leftrightarrow^{b}										
	Procarbazine	\downarrow^{d}	↓ ^d	↓ ^d	↓ ^d	\uparrow_q	\downarrow^{d}	↓ ^d	\downarrow^{d}	\uparrow_q	\leftrightarrow	↔ ^b								
gents	Capecitabine	\leftrightarrow	¢	¢	\leftrightarrow	\leftrightarrow	\leftrightarrow	^?	_↑?	^?	¢									
Age	Cytarabine	\leftrightarrow	↔ ^b																	
lite	Fluorouracil	\leftrightarrow	^?	^?	^?	↔ ^b														
Antimetabolite	Gemcitabine	¢	¢	¢	\leftrightarrow	\leftrightarrow	\leftrightarrow	¢	\leftrightarrow	\leftrightarrow	¢	\leftrightarrow	\leftrightarrow	¢	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	¢	↔ ^b
ime	Mercaptopurine	¢	¢	¢	\leftrightarrow	\leftrightarrow	¢	¢	\leftrightarrow	\leftrightarrow	¢	\leftrightarrow	\leftrightarrow	¢	¢	\leftrightarrow	\leftrightarrow	↔	\leftrightarrow	¢
Ant	Methotrexate	⇔ ^g	⇔a	⇔a	⇔a	⇔ ^g	↔ ^g	⇔ ^g	⇔ ^g	⇔a	⇔ ^g	⇔ ^g	⇔ ^g	⇔a	↑°g	↔ ^{bg}				
	Docetaxel	↑	↑	1	1	Î	Î	↓	\downarrow	Ļ	^?		\leftrightarrow	↑	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	↔ ^b
oids	Etoposide	1	↑	1	1	Î	1	Ļ	Ļ	Ļ	\leftrightarrow	\leftrightarrow	\leftrightarrow	1	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	↔ ^b
kald	Irinotecan	↑	↑	î	Î	î	1	↓	\downarrow	Ļ	\leftrightarrow	\leftrightarrow	¢	↑	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	↔ ^b
nt Al	Paclitaxel	1	↑	Ť	1	1	1	↑	↓↓	\leftrightarrow	⇔	₽	₽	↑	⇔	↔	\leftrightarrow	\leftrightarrow	\leftrightarrow	¢b
Plar	Vinblastine	1	↑	1	1	Î	1	↓	↓↓	Ļ	↓	↓	↓	1	↓	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	↔ ^b
	Vincristine	↑	↑	1	↑	1	1	↓	\downarrow	Ļ	\leftrightarrow	\leftrightarrow	\leftrightarrow	↑	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow^{b}

Also Tyrosine Kinase Inhibitors (eg: dasatinib, everolimus, imatinib, lapatinib – have complex interaction profile)

Pharmacotherapy in Cancer Patients With HIV/AIDS

JH Beumer^{1,2}, R Venkataramanan^{2,3} and MA Rudek⁴

Newer antiretrovirals such as raltegravir may become standard of care in patients with multiple comorbidities due to their reduced interaction potential as compared with NNRTIs and PIs

Received 6 December 2013; accepted 7 January 2014; advance online publication 19 February 2014. doi:10.1038/clpt.2014.10

DDIs are not going away with an aging HIV population.

Considerations in Management of the Slide 36 Older HIV Patient

- Co-morbid conditions
 - eg., cardiovascular, hepatic, metabolic
 - may be exacerbated by effects of HIV or its treatment
- Greater medication use
 - overlapping side effects or potential interactions between ARVs and concomitant medications

Association of Age With Polypharmacy and Risk of Drug Interactions With Antiretroviral Medications in HIV-Positive Patients

Annals of Pharmacotherapy 47(11) 1429–1439 © The Author(s) 2013 Reprints and permissions: sagepub.com/journalsPermissions.nav DOI: 10.1177/1060028013504075 aop.sagepub.com

Alice Tseng, PharmD, FCSHP, AAHIVP^{1,3}, Leah Szadkowski, MSc², Sharon Walmsley, MD, MSc, FRCPC^{1,2,3}, Irving Salit, MD, FRCPC^{1,3}, and Janet Raboud, PhD^{2,3}

Medication	Age < 50 years (n=498)	Age > 50 years (n=416)
Cardiovascular	127 (26%)	271 (65%)
Antidepressants/ Psychotropics	199 (40%)	224(54%)
Gastrointestinal	243 (49%)	276 (66%)
Narcotics/Analgesics	113 (23%)	164 (39%)
Systemic hormonal	49 (10%)	67 (16%)

Summary of ARV PK studies in older subjects

- There is an increase in exposure (~20%) of RTV and some <u>boosted PIs (</u>DRV, LPV): This could increase the impact of a drug-drug interaction.
- No clear evidence of an age effect on exposure of <u>NNRTIS</u> <u>but</u> changes in protein binding could increase unbound concentration (<u>EFV & CNS</u>).
- There is an increase in <u>FTC</u> exposure (> 30%) in older patients; some data show altered <u>TFV</u> which could be further increased by an interaction at the renal level.

Crawford K et al AIDS Res Hum Retrovirus 2010; 26; Ahmed A et al EACS Belgrade 2011; Cevik M et al EACS Belgrade 2011; di Perri G et al IWCPHT Amsterdam 2013; Schoen JC et al, Expert Opin Drug Metab Toxico 2013; 9: 573-588

DDIs: we need management strategies.

Drug Interaction Resources Inivinsite.ucsf.edu.

Updated drug interaction database and interactive tool to assess DDIs

www.aidsinfo.nih.gov

DHHS guidelines for use of ARVs with updated interaction tables

www.hivclinic.ca.

Updated drug interaction tables. Downloadable.

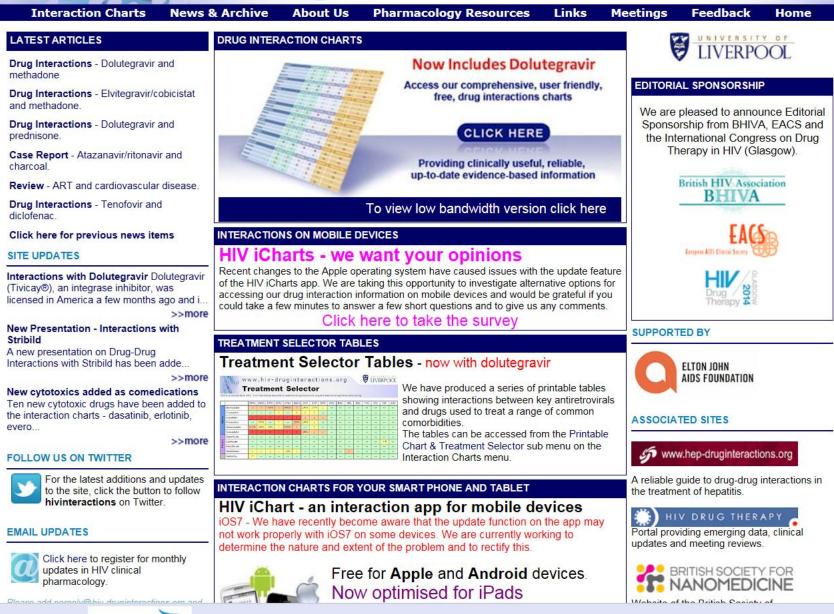
www.eacsociety.org

European guidelines including drug interaction tables.

www.hivmedicationguide.com

Updated interactive drug interaction database. Apps (iPhone; iPad)

□ Micromedex.com.


Comprehensive database (subscription required)

www.lexi.com

Lexi-interact database (subscription required)

- www.hiv-druginteraction.org;
- www.hep-druginteraction.org.

www.hiv-druginteractions.org

Major Sponsors



Other Sponsors Cookie Policy

Privacy

Statement

Terms and Conditions

The ide
Clinic letters should recommend clinicians consult www.hiv-druginteractions.org as the preferred source for identifying DDIs

Table 3: Outcomes against aurout standards

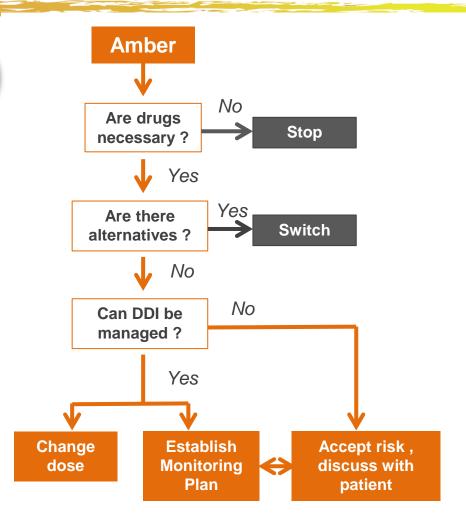
Audit standard	eBNF 66	SPC for ARV	SPC for nARV	Liverpool DDI website	Р
100% of potential, clinically significant DDIs will be identified by the medicines resource. (n=20).	60% (12)	75% (15)	70% (14)	100% (20)	0.010
Each medicines resource gives clear and appropriate advice on 100% of potential, clinically significant DDIs (category A and B from table 3).	20% (4)	60% (12)	65% (13)	100% (20)	<0.0001

BHIVA April 2014

A stepwise approach to DDI management

Note all co-medications (prescribed, OTC and herbal products)

Consult pharmacist and online resources


Consider the nature of any interaction and whether an alternative to an 'interacting drug' is possible.

Some interactions can be managed by dose adjustment with careful monitoring

A stepwise approach to DDI management

Ask key questions

- No clinically significant interaction or interaction not anticipated.
- Potential interaction that may require close monitoring, alteration of drug dosage or timing of administration.
- Interaction likely do not coadminister

What is on the horizon?

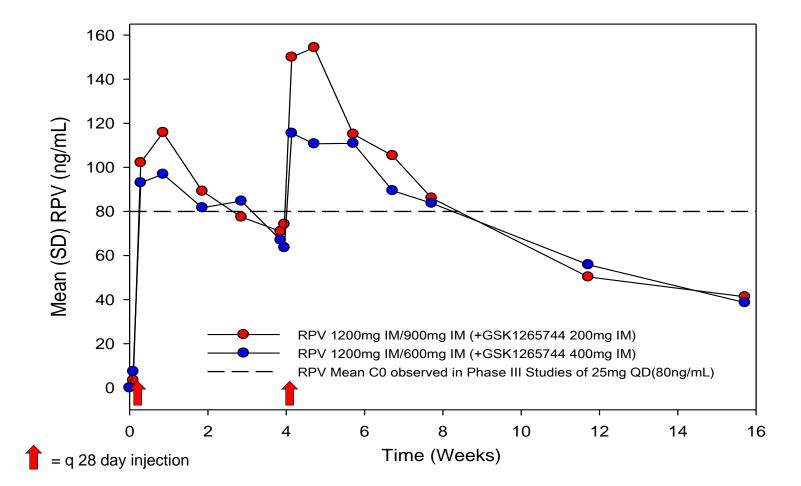
Long-acting formulations

- Have been used to improve adherence and prevent missed doses/treatment fatigue in several therapeutic areas
- Contraception: (Depo Provera)
- Schizophrenia: 6 long-acting antipsychotics available (e.g. risperidone, olanzapine, aripiprazole)
- Hypogonadism: (testosterone undecanoate)

New approaches to antiviral drug delivery

Drugs (2014) 74:7-13 DOI 10.1007/s40265-013-0163-7

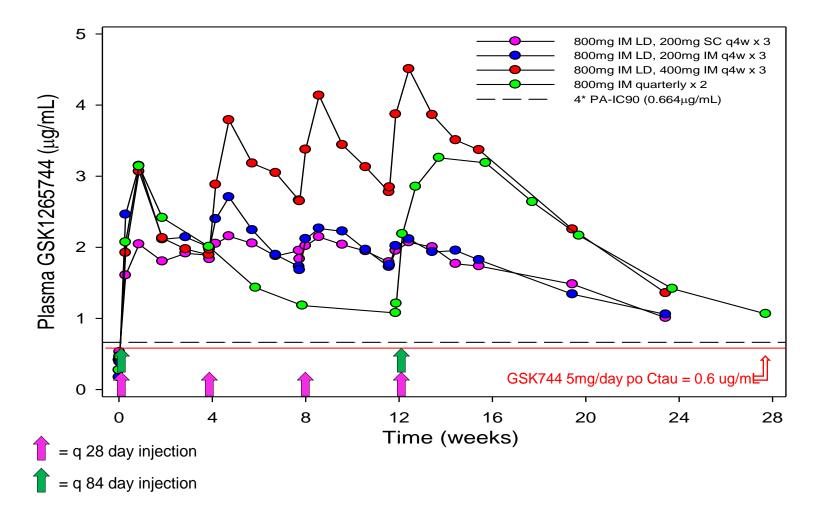
LEADING ARTICLE


New Approaches to Antiretroviral Drug Delivery: Challenges and Opportunities Associated with the Use of Long-Acting Injectable Agents

Marta Boffito • Akil Jackson • Andrew Owen • Stephen Becker

- Main focus on *prevention* but interest also in *treatment*
- 2 drugs in clinical trials (PK and PK-PD):
 - Rilpivirine
 - GSK-1265744 (Cabotegravir)

Mean rilpivirine plasma concentrations


• Rilpivirine plasma concentrations following long-acting injections are comparable to oral 25mg/day in HIV patients

Spreen W et al. 7th IAS 2013, Kuala Lumpur, Malaysia. Abstract WEAB0103

GSK1265744 LA every 4 weeks or 12 weeks Regimens achieve plasma concentrations >4 x PA-IC90

Mean GSK1265744 plasma concentration profiles

Efficacy of 400 mg efavirenz versus standard 600 mg dose in HIV-infected, antiretroviral-naive adults (ENCORE1): a randomised, double-blind, placebo-controlled, non-inferiority trial

	Efavirenz 400 mg		Efavirenz 600 mg		Difference (95% CI)	p value
	Ν	n (%)	Ν	n (%)		
Modified intention- to-treat analysis	302	94·1% (91·5 to 96·7)*	285	92·2% (89·2 to 95·2)*	1.8 (-2.1 to 5.8)	0.36
Stratified by baseline BMI (kg/m²)						
≤22	104	99 (95·2%)	113	101 (89.4%)	5·81% (-1·20 to 12·8)	
>22-25	111	103 (92.8%)	91	84 (92.3%)	0·49% (-6·80 to 7·78)	
>25	105	99 (94·3%)	105	100 (95·2%)	-0.95% (-6.98 to 5.07)	0.47
Stratified by ethnic origin						
African	118	107 (90.7%)	116	103 (88.8%)	1.88% (-5.90 to 9.70)	
Asian	106	103 (97-2%)	103	99 (96·1%)	1·05% (-3·83 to 5·94)	
Other	97	92 (94-8%)	90	83 (92·2%)	2.62% (-4.45 to 9.69)	0.82
BMI=body-mass index. *Data are % (95% CI). Other includes white and Aboriginal and Torres Strait Islander.						

Table 2: Primary endpoint stratified by baseline body-mass index and ethnic origin

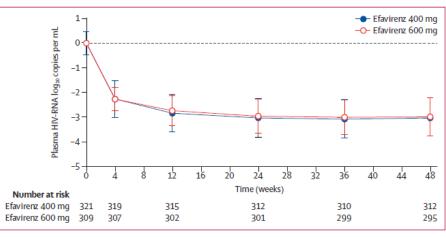


Figure 3: Mean change in HIV-RNA viral load from baseline to week 48 for the modified intention-totreat population

Data are presented as mean (SD) log10 copies per mL.

Research Spotlight | News & Analysis

Nanomedicines for HIV therapy

Heterogeneity in response to HIV treatments has been attributed to several causes including variability in pharmacokinetic exposure. Nanomedicine applications have a variety of advantages compared with traditional formulations, such as the potential to increase bioavailability and specifically target the site of action.

Studies ongoing with EFV and LPV

Grateful Thanks

Prof Saye Khoo

(Post-doctoral Research Associate)

Research Associate)

Research Associate)

Research Associate)

Dr Alessandro Schipani (Post-doctoral Research Associate)

Justin Chiong (Research Assistant)

[Bioanalytical Facility]

(3rd Year PhD Student)

Rajith Kumar Reddy Rajoli (2nd Year PhD

(1st Year PhD Student)

Sara Gibbons (Clinical Scientist)

Deirdre Egan Facility] (Research

Igbiks Tamuno (2nd Year PhD Student)

Sandra Fawcett [Bioanalytical Facility] Research Assistant

Paul Curley

(Post-doctoral (Post-doctoral Research Associate) Research Associate)

James Hobson (Final Year

Adeniyi Olagunju (2nd Year PhD Student)

PhD Student)

(2nd Year

PhD Student)

PhD Student)

Teresa Sanchez-

Tyrosine kinase Inhibitors & antiretrovirals

Protein Kinase Inhibitors	Considerations with Antiretrovirals
CYP3A4 Substrates eg: dasatinib, everolimus, imatinib, lapatinib	PIs may ↑ levels via CYP3A4 inhibition EFV, NVP may ↓levels via CYP3A4 induction
CYP3A4 Inhibitors eg: dasatinib, everolimus, imatinib, lapatinib	NNRTIs, MVC levels may ↑
UGT1A1 Inhibitors eg: erlotinib, nilotinib	Potential for ↑ bilirubin levels. RAL levels may ↑(unlikely clinically relevant)
QT Interval Prolongation eg: dasatinib, lapatinib, nilotinib, sunitinib	Increased risk for QT prolongation with PIs, rilpivirine
Myelosuppression eg: dasatinib, everolimus, imatinib, sunitinib	Increased risk for myelosuppression with ZDV
Nephrotoxicity eg: sunitinib	Increased risk for nephrotoxicity with TDF
Hepatotoxicity eg: imatinib, lapatinib, sunitinib	Increased risk for hepatotoxicity with some ARVs