Object-Oriented and
Classical Software
Engineering

Fifth Edition, WCB/McGraw-Hill, 2002

Stephen R. Schach

srs@vuse.vanderbilt.edu

CHAPTER 13

Slide 13.2

DESIGN PHASE

© The McGraw-Hill Companies, 2002

Overview

Slide 13.3

Design and abstraction

Action-oriented design

Data flow analysis

Transaction analysis

Data-oriented design

Object-oriented design

Elevator problem: object-oriented design

© The McGraw-Hill Companies, 2002

Overview (contd) e 13.4

Formal techniques for detailed design
Real-time design techniques

Testing during the design phase
CASE tools for the design phase

Metrics for the design phase
Air Gourmet Case Study: object-oriented design

Challenges of the design phase

© The McGraw-Hill Companies, 2002

Data and Actions

Slide 13.5

Two aspects of a product
Actions that operate on data
Data on which actions operate

The two basic ways of designing a product
Action-oriented design
Data-oriented design

Third way
Hybrid methods
For example, object-oriented design

© The McGraw-Hill Companies, 2002

Design Activities

Slide 13.6

Architectural design
Detailed design
Design testing

© The McGraw-Hill Companies, 2002

Architectural Design

Slide 13.7

Input: Specifications
Output: Modular decomposition
Abstraction

© The McGraw-Hill Companies, 2002

Detailed Design

Slide 13.8

Each module is designed
Specific algorithms
Data structures

© The McGraw-Hill Companies, 2002

Action-Oriented Design Methods

Data flow analysis

When to use it
With most specification methods (Structured Systems
Analysis here)
Key point: We have detailed action information
from the DFD

Output

Input
g e) 0 e 0 e O s O s O i O

© The McGraw-Hill Companies, 2002

Data Flow Analysis

Slide 13.10

Product transforms input into output

Determine
“Point of highest abstraction of input”
“Point of highest abstract of output”

input transform output

module ' module module

Point of Point of
highest abstraction highest abstraction
of input of output

© The McGraw-Hill Companies, 2002

Data Flow Analysis (contd)

Slide 13.11

Decompose into three modules

Repeat stepwise until each module has high
cohesion

Minor modifications may be needed to lower the coupling

© The McGraw-Hill Companies, 2002

Data Flow Analysis (contd)
Example

Design a product which takes as input a file name, and
returns the number of words in that file (like UNIX wc)

file , validated word formatted , desired
name read validate |fjjq name | count count format word display | oy tput
file file number of word word

name name words count count count

Input to here : Output from here

Point of Point of
highest abstraction highest abstraction
of input of output

© The McGraw-Hill Companies, 2002

Data Flow Analysis Example (contd)

Slide 13.13

First refinement

perform

word
status count

flag

validated word
file name , count
validated word
file name count -

read and count format

validate number of and display
file name words word count

(O—— Data
®—— Control

Now refine the two modules of communicational
cohesion

© The McGraw-Hill Companies, 2002

Data Flow Analysis Example (contd)

Slide 13.14

Second refinement

perform
word

status count

flag

validated word
file name validated word count
file name count

count
number of
words

status o formatted
file flag count formatted wm{i
name word s
count

validate format display
file word word
name count count

produce
output

(O—— Data
®—— Control

All eight modules now have functional cohesion

© The McGraw-Hill Companies, 2002

Multiple Input and Output Streams

Slide 13.15

Point of highest abstraction for each stream

Continue until each module has high cohesion
Adjust the coupling if needed

© The McGraw-Hill Companies, 2002

Transaction Analysis

Slide 13.16

DFA poor for transaction processing products
Example: ATM (automated teller machine)

edit
transaction

edit

transaction Trans. 12

determine edit write to
transaction transaction audit
i3 trail

edit

transaction
14 trans. t4

edit - up;faie
transtssictmn e ﬂlze
Poor design

Logical cohesion, control coupling

© The McGraw-Hill Companies, 2002

Corrected Design Using Transaction Analysi

Slide 13.17

Software i

reuse / \

oneric s =]
. analyzer dispatcher

generic edit

module, one

g e n e rl C u pd ate process process process process process
d I transaction t1 transaction t2 transaction t3 transaction t4 transaction t5

Instantiate

=

edit update

them 5 times

transaction file

© The McGraw-Hill Companies, 2002

Data-Oriented Design e 1318
Basic principle

The structure of a product must conform to the structure
of its data

Three very similar methods
Warnier
Orr
Jackson

Data-oriented design

Has never been as popular as action-oriented design

With the rise of OOD, data-oriented design has largely
fallen out of fashion

© The McGraw-Hill Companies, 2002

Object-Oriented Design (OOD)

Aim
Design the product in terms of the classes
extracted during OOA

If we are using a language without inheritance
(C, Ada 83)

Use abstract data type design

If we are using a language without a type
statement (FORTRAN, COBOL)

Use data encapsulation

© The McGraw-Hill Companies, 2002

Object-Oriented Design Steps e aa
OOD consists of four steps:
1. Construct interaction diagrams for each scenario
Construct the detailed class diagram

2.
3. Design the product in terms of clients of objects
4. Proceed to the detailed design

© The McGraw-Hill Companies, 2002

Elevator Problem: OOD

Slide 13.21

Step 1. Construct interaction diagrams for
each scenario

Sequence diagrams

Collaboration diagrams
Both show the same thing
Objects and messages passed between them
But in a different way

© The McGraw-Hill Companies, 2002

Elevator Problem: OOD (contd)

Slide 13.22

Normal scenario

User A presses the Up floor button at floor 3 to request an elevator. User A wishes to go
vor /.
oor button informs the elevator controller that the floor button has been pushed.
The elevator controller sends a message to the Up floor button to turn itself on.

The elevator controller sends a series of messages fo the elevator to move itself up to
oor 3. The elevator contains User B, who has entered the elevator at floor 1 and
pressed the elevator button for floor 9.

The elevator controller sends a message to the Up floor button to turn itself off.

The elevator controller sends a message to the elevator doors fo open themselves.

The elevator control starts the timer.

User A entfers the elevator.

User A presses elevator button for floor 7.

The elevator button informs the elevator controller that the elevator button has been
pushed.

The elevator controller sends a message to the elevator button for floor 7 to turn itself on.
The elevator controller sends a message to the elevator doors to close themselves after a
timeout.

The elevator controller sends a series of messages to the elevator to move itself up to
Hl;‘.n::l r7.

The elevator controller sends a message to the elevator button for floor 7 to turn itself off.
The elevator controller sends a message to the elevator doors to open themselves to
allow User A to exit from the elevator.

The elevator controller starts the timer.

User A exits from the elevator

The elevator controller sends a message fo the elevator doors fo close themselves after a
timeout.

The elevator controller sends a series of messages fo the elevator to move itself up to
Hoor @ with User B.

© The McGraw-Hill Companies, 2002

Elevator Problem: OOD (contd

Slide 13.23

Sequence diagram l

1. press floor
button

2. inform elevator
controller
11

3. turn button on

one floor
5. turn button

doors

timer

8. press elevator button

9. inform
elevator
controller

10. turn

button

on
11. close

12.* move up

one floor
13. turn

button
off 14. open

doors
17.” move up
one floor

© The McGraw-Hill Companies, 2002

Elevator Problem: OOD (contd)

Slide 13.24

elevator doors

Collaboration
d |ag ra m I 11. close doors T 16. close doors

16. open doors T 14. open doors

4. *move up one floor — =
elevator controller - elevator
12. *move up one floor —= -

17. *move up one floor —

3. turn button on / \ 10. turn button on

7. start timer
5. turn button of!/ 15. start timer \ 13. turn button off

2. inform elevator

/ controller \

0. inform elevator
controller

L prpjss S.prass elevator button
T e T floor / glevator| —— —————~

button button

- —

User A
© The McGraw-Hill Companies, 2002

Elevator Problem: OOD (contd)

Slide 13.25

Step 2. Construct the detailed class diagram

Do we assign an action to a class or to a client of
that class?
Criteria
Information hiding
Reducing number of copies of each action
Responsibility-driven design
Examples

close doors IS assigned to Elevator Doors
move one floor down IS a@ssigned to Elevator

© The McGraw-Hill Companies, 2002

Elevator Problem: OOD (contd)

Detailed
class
diagram

Elevator Application

Button

Elevator Utilities

Slide 13.26

illuminated : Boolean

furn button off (abstract)
turn button on (abstract)

I

Elevator Button

Floor Button

turn button on

turn button off

mn

turn button off
turn button on

Elevator Controller

requests: requestType

check requests
update requests
start timer

| 1
controls
| n

Elevator

move down one floor
move up one floor

© The McGraw-Hill Companies, 2002

2m-2

controls

1]

controls 1

Elevator Doors

doors open: Boolean

close doors
open doors

Elevator Problem: OOD (contd)

Slide 13.27

Step 3. Design the product in terms of clients of
objects

Draw an arrow from an object to a client of that
object

Objects that are not clients of any object have to
be initiated, probably by the main method

Additional methods may be needed

© The McGraw-Hill Companies, 2002

Elevator Problem: OOD (contd)

Slide 13.28

C++ client-object relations

|

elevator
controller

elevator ‘ elevator button \ ‘ floor button \ elevator doors

© The McGraw-Hill Companies, 2002

Elevator Problem: OOD (contd)

Slide 13.29

Java client-object relations

elevator application

elevator controller elevator utilities

© The McGraw-Hill Companies, 2002

Elevator Problem: OOD (contd)

Slide 13.30

elevator controler N€E€AS Method slevator control loop SO that
main (Or elevator application) can call it

© The McGraw-Hill Companies, 2002

Elevator Problem: OOD (contd)

Slide 13.31

void elevator event loop (void)

Step 4. Perform i

the detailed
design

Detailed design
of method elevator

controller loop

~ update requests;
butten::turn button on;
1
i
else if (elevator is moving up)
[
II: (there Y.
elevcllo move one floor
else
{
stop elevator by not s
elevator doors..open doors,
start timer;
if (elevator button /s on)
elevator button::turn button off;
update requests;

elevator doors: c|ose doors;

if (Floor button is

of next request;
elevaror :move one floor Up/ down;
}
else if (elevator is at rest and not (request is pending))
elevator doors::close doors;

else

the ts, elevator is st ith elevator doors ciose

© The McGraw-Hill Companies, 2002

Formal Techniques for Detailed Design

Slide 13.32

Implementing a complete product and then
proving it correct is hard

However, use of formal techniques during detailed
design can help
Correctness proving can be applied to module-sized
pieces

The design should have fewer faults if it is developed in
parallel with a correctness proof

If the same programmer does the detailed design and

Implementation

The programmer will have a positive attitude to the detailed
design

This should lead to fewer faults

© The McGraw-Hill Companies, 2002

Design of Real-Time Systems

Slide 13.33

Difficulties associated with real-time systems
Inputs come from the real world
Software has no control over the timing of the inputs

Frequently implemented on distributed software
Communications implications
Timing issues

Problems of synchronization

Race conditions
Deadlock (deadly embrace)

Maijor difficulty in the design of real-time systems

Determining whether the timing constraints are met by
the design

© The McGraw-Hill Companies, 2002

Real'Time DeSign MethOdS Slide 13.34

Usually, extensions of nonreal-time methods to
real-time

We have limited experience in use of any real-time
methods

The state-of-the-art is not where we would like it to
be

© The McGraw-Hill Companies, 2002

Testing during the Design Phase
Design reviews
The design must correctly reflect the specifications
The design itself must be correct
Transaction-driven inspections

© The McGraw-Hill Companies, 2002

CASE Tools for the Design Phase

Slide 13.36

UpperCASE tools

Built around a data dictionary
Consistency checker

Screen, report generators

Modern tools represent OOD using UML

Examples:

Software through Pictures
Rose

© The McGraw-Hill Companies, 2002

Metrics for the Design Phase

Slide 13.37

The five basic metrics

Cyclomatic complexity is problematic
Data complexity is ignored
Not used much with the object-oriented paradigm

© The McGraw-Hill Companies, 2002

Air Gourmet Case Study: Object-Oriented Design

OOD consists of four steps:

1.

2.
3.
4.

Construct interaction diagrams for each scenario
Construct the detailed class diagram

Design the product in terms of clients of objects
Proceed to the detailed design

© The McGraw-Hill Companies, 2002

Step 1. Interaction Diagrams

Slide 13.39

Extended scenario for making a reservation

O e b L Rl

J

Thii F'l.l:-.'*"'l;_;-.-: cathocks Tha Sbr Gooemed call carber Phorsa |::|.I-|-||l.||:.l| airel ennrassed b
dlesire to reserve a Fight

The Phore Operoior requests the name ond oddress of the Possenger

Ipesroior asks the Possenger the date of the flight ond the Hight number

ger prowides the requested informofion

The Phore :._:|F-=-'|:I|Tr C
T'||;| Air Geyrmed o |I::|::|_1-.|-I wyUEe T resss el e Iri i the Flone ';-:|I_:I-'IIT-':I
The Phare 5.-:l|'+'|1l-:_:| !_|i-.-u'- e raseraetion (0 Bt F|1'.'l|;l|'-_'_||-l| and irfarme B

F::ul-ll'!Jl;ll ikl the licksd will ba |n.'||||;l|'| BHI
Paossible Alternativas

|: :!.lll

[he Right thot the Pazssnger requested alrsady s b,

The I".:l:-_.i:-u'.Ei:-r qom on urosun meo request that Air Gourmel connod bl Bl
Thars o F.'.:.i:].}rn y with the credil cord Fomber providsd |:.'_.' the :'.:1.:.15-1?:-'_

© The McGraw-Hill Companies, 2002

Step 1. Interaction Diagrams (contd)

Slide 13.40

Sequence diagram for gl
making a reservation =

2. query name
and address

3. give name
and address

4. query flight
information

5. give flight
information

6. query special
meal

7. give meal

information

8. query seating
information

9. give seating
information

10. query payment
information
11. give payment
information
12. commit flight
reservation
13. issue
reservation ID

14. finalize
reservation

© The McGraw-Hill Companies, 2002

Step 1. Interaction Diagrams (contd)

Slide 13.41

Collaboration diagram for sending and returning
a postcard

1. send postcard ——

-+— 2 return postcard

Air Gourmet Staff Member

3. record meal quality

Air Gourmet database

© The McGraw-Hill Companies, 2002

Percentage Report

Step 2. Detailed Class Diagram

pssenger ID ¢

on i

Iligin number : string
Rlight dhates : stris

for report

dil

Low-Sodium Report r-Quality Report

port (]

Onboard Report erer Report

C++ version

© The McGraw-Hill Companies, 2002

Flight Record

Low-Sodium Report

Percentage Report
™ =

Not-Loaded Report Onboard Report

r-Guality Report

Slide 13.42

Caterer Report

Java version

Step 3. Client—Object Relations

Y

/disiam
e, play

ain menu >

Y

(display report menu)

Y

Y

Percentage
Report

Not-Loaded
Report

3

Air Gourmet

Application

Y

Air Gourmet
Utilities

Slide 13.43

Y

Y

Y

Percentage
Report

Not-Loaded
Report

Onboard
Report

Low-Sodium
Report

Y

Flight Record

Passenger

C++ version

3

Low-Sodium
Report

Y

Flight Record

Passenger ‘

Java version

© The McGraw-Hill Companies, 2002

Step 4. Detailed Design

Slide 13.44

The detailed design can be found in
Appendix H (for implementation in C++)
Appendix | (for implementation in Java)

© The McGraw-Hill Companies, 2002

Challenges of the Design Phase

Slide 13.45

The design team should not do too much
The detailed design should not become code

The design team should not do too little

It is essential for the design team to produce a
complete detailed design

We need to grow great designers

© The McGraw-Hill Companies, 2002

