
Slide 13.1

© The McGraw-Hill Companies, 2002

Object-Oriented and
Classical Software

Engineering

Fifth Edition, WCB/McGraw-Hill, 2002

Stephen R. Schach
srs@vuse.vanderbilt.edu

Slide 13.2

© The McGraw-Hill Companies, 2002

CHAPTER 13

DESIGN PHASE

Slide 13.3

© The McGraw-Hill Companies, 2002

Overview

Design and abstraction
Action-oriented design
Data flow analysis
Transaction analysis
Data-oriented design
Object-oriented design
Elevator problem: object-oriented design

Slide 13.4

© The McGraw-Hill Companies, 2002

Overview (contd)

Formal techniques for detailed design
Real-time design techniques
Testing during the design phase
CASE tools for the design phase
Metrics for the design phase
Air Gourmet Case Study: object-oriented design
Challenges of the design phase

Slide 13.5

© The McGraw-Hill Companies, 2002

Data and Actions

Two aspects of a product
– Actions that operate on data
– Data on which actions operate

The two basic ways of designing a product
– Action-oriented design
– Data-oriented design

Third way
– Hybrid methods
– For example, object-oriented design

Slide 13.6

© The McGraw-Hill Companies, 2002

Design Activities

Architectural design
Detailed design
Design testing

Slide 13.7

© The McGraw-Hill Companies, 2002

Architectural Design

Input: Specifications
Output: Modular decomposition
Abstraction

Slide 13.8

© The McGraw-Hill Companies, 2002

Detailed Design

Each module is designed
– Specific algorithms
– Data structures

Slide 13.9

© The McGraw-Hill Companies, 2002

Action-Oriented Design Methods

Data flow analysis
When to use it
– With most specification methods (Structured Systems

Analysis here)
Key point: We have detailed action information
from the DFD

Slide 13.10

© The McGraw-Hill Companies, 2002

Data Flow Analysis

Product transforms input into output
Determine
– “Point of highest abstraction of input”
– “Point of highest abstract of output”

Slide 13.11

© The McGraw-Hill Companies, 2002

Data Flow Analysis (contd)

Decompose into three modules
Repeat stepwise until each module has high
cohesion
– Minor modifications may be needed to lower the coupling

Slide 13.12

© The McGraw-Hill Companies, 2002

Data Flow Analysis (contd)

Example
Design a product which takes as input a file name, and
returns the number of words in that file (like UNIX wc)

Slide 13.13

© The McGraw-Hill Companies, 2002

Data Flow Analysis Example (contd)

First refinement

Now refine the two modules of communicational
cohesion

Slide 13.14

© The McGraw-Hill Companies, 2002

Data Flow Analysis Example (contd)

Second refinement

All eight modules now have functional cohesion

Slide 13.15

© The McGraw-Hill Companies, 2002

Multiple Input and Output Streams

Point of highest abstraction for each stream

Continue until each module has high cohesion
– Adjust the coupling if needed

Slide 13.16

© The McGraw-Hill Companies, 2002

Transaction Analysis

DFA poor for transaction processing products
– Example: ATM (automated teller machine)

Poor design
– Logical cohesion, control coupling

Slide 13.17

© The McGraw-Hill Companies, 2002

Corrected Design Using Transaction Analysis

Software
reuse
Have one
generic edit

module, one
generic update

module
Instantiate
them 5 times

Slide 13.18

© The McGraw-Hill Companies, 2002

Data-Oriented Design

Basic principle
– The structure of a product must conform to the structure

of its data
Three very similar methods
– Warnier
– Orr
– Jackson

Data-oriented design
– Has never been as popular as action-oriented design
– With the rise of OOD, data-oriented design has largely

fallen out of fashion

Slide 13.19

© The McGraw-Hill Companies, 2002

Object-Oriented Design (OOD)

Aim
– Design the product in terms of the classes

extracted during OOA
If we are using a language without inheritance
(C, Ada 83)
– Use abstract data type design

If we are using a language without a type
statement (FORTRAN, COBOL)
– Use data encapsulation

Slide 13.20

© The McGraw-Hill Companies, 2002

Object-Oriented Design Steps

OOD consists of four steps:
– 1. Construct interaction diagrams for each scenario
– 2. Construct the detailed class diagram
– 3. Design the product in terms of clients of objects
– 4. Proceed to the detailed design

Slide 13.21

© The McGraw-Hill Companies, 2002

Elevator Problem: OOD

Step 1. Construct interaction diagrams for
each scenario
Sequence diagrams
Collaboration diagrams
– Both show the same thing
– Objects and messages passed between them
– But in a different way

Slide 13.22

© The McGraw-Hill Companies, 2002

Elevator Problem: OOD (contd)

Normal scenario

Slide 13.23

© The McGraw-Hill Companies, 2002

Elevator Problem: OOD (contd)

Sequence diagram

Slide 13.24

© The McGraw-Hill Companies, 2002

Elevator Problem: OOD (contd)

Collaboration
diagram

Slide 13.25

© The McGraw-Hill Companies, 2002

Elevator Problem: OOD (contd)

Step 2. Construct the detailed class diagram
Do we assign an action to a class or to a client of
that class?
Criteria
– Information hiding
– Reducing number of copies of each action
– Responsibility-driven design

Examples
close doors is assigned to Elevator Doors

move one floor down is assigned to Elevator

Slide 13.26

© The McGraw-Hill Companies, 2002

Elevator Problem: OOD (contd)

Detailed
class
diagram

Slide 13.27

© The McGraw-Hill Companies, 2002

Elevator Problem: OOD (contd)

Step 3. Design the product in terms of clients of
objects
Draw an arrow from an object to a client of that
object
Objects that are not clients of any object have to
be initiated, probably by the main method
– Additional methods may be needed

Slide 13.28

© The McGraw-Hill Companies, 2002

Elevator Problem: OOD (contd)

C++ client-object relations

Slide 13.29

© The McGraw-Hill Companies, 2002

Elevator Problem: OOD (contd)

Java client-object relations

Slide 13.30

© The McGraw-Hill Companies, 2002

Elevator Problem: OOD (contd)

elevator controller needs method elevator control loop so that
main (or elevator application) can call it

Slide 13.31

© The McGraw-Hill Companies, 2002

Elevator Problem: OOD (contd)

Step 4. Perform
the detailed
design
Detailed design
of method elevator
controller loop

Slide 13.32

© The McGraw-Hill Companies, 2002

Formal Techniques for Detailed Design

Implementing a complete product and then
proving it correct is hard
However, use of formal techniques during detailed
design can help
– Correctness proving can be applied to module-sized

pieces
– The design should have fewer faults if it is developed in

parallel with a correctness proof
– If the same programmer does the detailed design and

implementation
» The programmer will have a positive attitude to the detailed

design
» This should lead to fewer faults

Slide 13.33

© The McGraw-Hill Companies, 2002

Design of Real-Time Systems

Difficulties associated with real-time systems
– Inputs come from the real world

» Software has no control over the timing of the inputs

– Frequently implemented on distributed software
» Communications implications
» Timing issues

– Problems of synchronization
» Race conditions
» Deadlock (deadly embrace)

Major difficulty in the design of real-time systems
– Determining whether the timing constraints are met by

the design

Slide 13.34

© The McGraw-Hill Companies, 2002

Real-Time Design Methods

Usually, extensions of nonreal-time methods to
real-time
We have limited experience in use of any real-time
methods
The state-of-the-art is not where we would like it to
be

Slide 13.35

© The McGraw-Hill Companies, 2002

Testing during the Design Phase

Design reviews
– The design must correctly reflect the specifications
– The design itself must be correct
– Transaction-driven inspections

Slide 13.36

© The McGraw-Hill Companies, 2002

CASE Tools for the Design Phase

UpperCASE tools
– Built around a data dictionary
– Consistency checker
– Screen, report generators
– Modern tools represent OOD using UML
– Examples:

» Software through Pictures
» Rose

Slide 13.37

© The McGraw-Hill Companies, 2002

Metrics for the Design Phase

The five basic metrics
Cyclomatic complexity is problematic
– Data complexity is ignored
– Not used much with the object-oriented paradigm

Slide 13.38

© The McGraw-Hill Companies, 2002

Air Gourmet Case Study: Object-Oriented Design

OOD consists of four steps:
– 1. Construct interaction diagrams for each scenario
– 2. Construct the detailed class diagram
– 3. Design the product in terms of clients of objects
– 4. Proceed to the detailed design

Slide 13.39

© The McGraw-Hill Companies, 2002

Step 1. Interaction Diagrams

Extended scenario for making a reservation

Slide 13.40

© The McGraw-Hill Companies, 2002

Step 1. Interaction Diagrams (contd)

Sequence diagram for
making a reservation

Slide 13.41

© The McGraw-Hill Companies, 2002

Step 1. Interaction Diagrams (contd)

Collaboration diagram for sending and returning
a postcard

Slide 13.42

© The McGraw-Hill Companies, 2002

Step 2. Detailed Class Diagram

C++ version Java version

Slide 13.43

© The McGraw-Hill Companies, 2002

Step 3. Client–Object Relations

C++ version Java version

Slide 13.44

© The McGraw-Hill Companies, 2002

Step 4. Detailed Design

The detailed design can be found in
– Appendix H (for implementation in C++)
– Appendix I (for implementation in Java)

Slide 13.45

© The McGraw-Hill Companies, 2002

Challenges of the Design Phase

The design team should not do too much
– The detailed design should not become code

The design team should not do too little
– It is essential for the design team to produce a

complete detailed design
We need to grow great designers

