BNG 101 - Engineering Graphics

Slide Set 3 - Orthographic Projection II Isometric Projection

ISOMETRIC VIEW
(Read Planchard 2-1 to 2-10)

Projections

Types of axonometric projections

Dimetric

Two of the three axes have equal angles (usually around 105°)

*Dimetric
DIMETRIC VIEW

Types of axonometric projections

Trimetric
There are no equal angles between the coordinate axes

*Trimetric
TRIMETRIC VIEW

Types of axonometric projections

Isometric

All the angles between the coordinate axes are equal (120°)

ISOMETRIC VIEW

Comparing axonometric views

Isometric projection - a closer look

What is the true angle between the axes?
Do the sides shown represent the true lengths of the cube sides?

Isometric projection - a closer look

What is the true length of the cube sides?

Isometric projection versus drawing

isometric projection
82% of ful scale

Full scale Isometric drawing

Circles in isometric drawings

- Circles cannot be transferred directly to the isometric drawing. As the object is rotated to view it as isometric, holes and cylindrical features also rotate and appear as ellipses rather than true circles

Exercise 1

Draw the isometric view of a cube with side lengths 25 mm (spacing between lines on your isometric paper is 5 mm). The "front" face is drawn for you below:

Isometric drawing orientation

How do we know which octant the cube goes in?

Exercise 2

Draw the isometric view for the following object (spacing is 5 mm). Use point "O" for orientation:

Exercise 3

Draw the isometric view for the following object (spacing is 5 mm). Use point " O " for orientation:

(final shape)

Let's see how we got the answer using subtractive steps

1. Lightly draw the overall dimensions of the box

2. Draw the irregular features relative to the sides of the box

3. Darken the final lines

Exercise 4

Draw the isometric view for the following object (spacing is 5 mm). Use point "O" for orientation:

Isometric drawing - inclined surfaces

- The object represented at right will be drawn as an isometric drawing using the following steps
- Note the orientation of the inclined surface and the measurements

Isometric drawing - step 1

- Step 1 - Sketching the object as if it were a complete cube without any cuts.
- The measurements of overall Width (A), Height (B) and Depth (C) are transferred from the orthographic to the isometric by counting grid spaces

Step 1

Isometric drawing - step 2

- Step 2 - The angle of the inclined surface cannot be transferred directly. Locate the corners of the inclined surface and then draw lines to connect the corners
- Notice that edges that are parallel in the orthographic views will also be parallel in the isometric drawing

Step 2

Isometric drawing - step 3

- Step 3 - Add the rectangular cut across the left top edge. Notice that the rear of the edge of the cut disappears behind the raised portion of the block.

Step 3

Isometric drawing - step 4

- Step 4 - Add the rectangular cut across the left top edge. Notice that the rear of the edge of the cut disappears behind the raised portion of the block.

Exercise 5

Draw the isometric view for the following object (grid spacing shown is 5 mm). Use point " O " for orientation:

Exercise 6

Draw the isometric view for the following object (grid spacing shown is 5 mm). Use point " O " for orientation:

