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ARIMA models

Auto-Regressive Integrated Moving Average

Are an adaptation of discrete-time filtering methods
developed in 1930’s-1940’s by electrical engineers
(Norbert Wiener et al.)

Statisticians George Box and Gwilym Jenkins
developed systematic methods for applying them to
business & economic data in the 1970’s (hence the
name “Box-Jenkins models”)




What ARIMA stands for

* A series which needs to be differenced to be made
stationary is an “integrated” (I) series

» Lags of the stationarized series are called “auto-
regressive” (AR) terms

» Lags of the forecast errors are called “moving
average” (MA) terms

» We've already studied these time series tools
separately: differencing, moving averages, lagged
values of the dependent variable in regression

ARIMA models put it all together

Generalized random walk models fine-tuned to
eliminate all residual autocorrelation

Generalized exponential smoothing models that can
incorporate long-term trends and seasonality

Stationarized regression models that use lags of the
dependent variables and/or lags of the forecast errors
as regressors

The most general class of forecasting models for time
series that can be stationarized* by transformations
such as differencing, logging, and or deflating

* A time series is “stationary” if all of its statistical properties—mean,

variance, autocorrelations, etc.—are constant in time. Thus, it has no
trend, no heteroscedasticity, and a constant degree of “wiggliness.”




Construction of an ARIMA model

1. Stationarize the series, if necessary, by differencing (&
perhaps also logging, deflating, etc.)

2. Study the pattern of autocorrelations and partial
autocorrelations to determine if lags of the stationarized
series and/or lags of the forecast errors should be included
in the forecasting equation

3. Fit the model that is suggested and check its residual
diagnostics, particularly the residual ACF and PACF plots,
to see if all coefficients are significant and all of the pattern
has been explained.

4. Patterns that remain in the ACF and PACF may suggest the
need for additional AR or MA terms

ARIMA terminology

* A non-seasonal ARIMA model can be (almost)
completely summarized by three numbers:

p =the number of autoregressive terms
d = the number of nonseasonal differences
q = the number of moving-average terms

* This is called an “ARIMA(p,d,q)” model

* The model may also include a constant term (or not)




The ARIMA “filtering box”

time series

1 1 1
p d q

—_—
“signal”
(forecasts)

constant?

Objective: adjust the knobs until the

residuals are “white noise” (uncorrelated)

“noise”
(residuals)
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ARIMA models we’ve already met

ARIMA(0,0,0)+c = mean (constant) model
ARIMA(0,1,0) =RW model

ARIMA(0,1,0)+c = RW with drift model
ARIMA(1,0,0)+c =regress Y on Y_LAG1
ARIMA(1,1,0)+c =regr. Y_DIFF1 on Y_DIFF1_LAG1
ARIMA(2,1,0)+c = " ” plus Y_DIFF_LAG2 as well
ARIMA(0,1,1) = SES model

ARIMA(0,1,1)+c = SES + constant linear trend
ARIMA(1,1,2) =LES w/ damped trend (leveling off)
ARIMA(0,2,2) = generalized LES (including Holt’s)

ARIMA forecasting equation
» Let Y denote the original series

» Lety denote the differenced (stationarized) series

No difference (d=0): vy, =Y,
First difference  (d=1): vy, =Y,— Yy
Second difference (d=2): vy, = (Y;— Y1) = (Y1 — Yi)

= Y= 2+ Yoo

Note that the second difference is not just the change relative to two
periods ago, i.e., it is not Y,— Y, . Rather, it is the change-in-the-change,
which is a measure of local “acceleration” rather than trend.




Forecasting equation for y

constant AR terms (lagged values of y)

N
Yi :/J+¢1yt—1 ...t ¢p Yiop
By convention, the - 9 e e 9 e
AR terms are + and 17t-1 q-t-q
the MA terms are — ~ ~— _/

MA terms (lagged errors)

Not as bad as it looks! Usually p+q < 2 and
either p=0 or g=0 (pure AR or pure MA model)

Undifferencing the forecast

The differencing (if any) must be reversed
to obtain a forecast for the original series:

Ifd=0: Y=
Ifd=1: Y= +Yy
Ifd=2: YAt = yt +2Yt—1_Yt—2

Fortunately, your software will do all of this
automatically!




Do you need both AR and MA terms?

* In general, you don’t: usually it suffices to use only
one type or the other.

» Some series are better fitted by AR terms, others
are better fitted by MA terms (at a given level of
differencing).

* Rough rules of thumb:

— If the stationarized series has positive autocorrelation at lag 1,
AR terms often work best. If it has negative autocorrelation at lag 1,
MA terms often work best.

— An MA(1) term often works well to fine-tune the effect of a
nonseasonal difference, while an AR(1) term often works well to
compensate for the lack of a nonseasonal difference, so the choice
between them may depend on whether a difference has been used.

Interpretation of AR terms

» A series displays autoregressive (AR) behavior if it
apparently feels a “restoring force” that tends to pull it
back toward its mean.

* In an AR(1) model, the AR(1) coefficient determines how
fast the series tends to return to its mean. If the coefficient is
near zero, the series returns to its mean quickly; if the
coefficient is near 1, the series returns to its mean slowly.

* In a model with 2 or more AR coefficients, the sum of the
coefficients determines the speed of mean reversion, and
the series may also show an oscillatory pattern.




Interpretation of MA terms

» A series displays moving-average (MA) behavior if
it apparently undergoes random “shocks” whose
effects are felt in two or more consecutive periods.

— The MA(1) coefficient is (minus) the fraction of last
period’s shock that is still felt in the current period.

— The MA(2) coefficient, if any, is (minus) the fraction of
the shock two periods ago that is still felt in the current
period, and so on.

Tools for identifying ARIMA models:
ACF and PACF plots

The autocorrelation function (ACF) plot shows the
correlation of the series with itself at different lags

— The autocorrelation of Y at lag k is the correlation between
Y and LAG(Y,k)

The partial autocorrelation function (PACF) plot
shows the amount of autocorrelation at lag k that is
not explained by lower-order autocorrelations

— The partial autocorrelation at lag k is the coefficient of

LAG(Y,k) in an AR(k) model, i.e., in a regression of Y on
LAG(Y, 1), LAG(Y,2), ... up to LAG(Y,k)




AR and MA “signatures”
» ACF that dies out gradually and PACF that cuts off
sharply after a few lags = AR signature

— An AR series is usually positively autocorrelated at lag 1
(or even borderline nonstationary)

» ACF that cuts off sharply after a few lags and PACF
that dies out more gradually = MA signature

— An MA series is usually negatively autcorrelated at lag 1
(or even mildly overdifferenced)
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negative at lag 1),
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PACF.

Here the signature is
MA(1) because of 1
spike in ACF.

AR or MA? It depends!

Whether a series displays AR or MA behavior often
depends on the extent to which it has been
differenced.

An “underdifferenced” series has an AR signature
(positive autocorrelation)

After one or more orders of differencing, the
autocorrelation will become more negative and an MA
signature will emerge

Don’t go too far: if series already has zero or negative
autocorrelation at lag 1, don’t difference again
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«Positive autocorrelation No autocorrelation

The autocorrelation spectrum

Negative autocorrelation—
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Model-fitting steps

In other words, move right or left in the “autocorrelation
spectrum” by appropriate choices of differencing and
AR/MA terms, until you reach the center (white noise)

Determine the order of differencing
Determine the numbers of AR & MA terms

Fit the model—check to see if residuals are
“white noise,” highest-order coefficients are
significant (w/ no “unit “roots”), and forecasts
look reasonable. If not, return to step 1 or 2.
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“Units” example
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Original series: nonstationary 1%t difference: AR signature

2nd difference: MA signature

Time Sequence Plot for units
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Time Sequence Plot for units
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Time Sequence Plot for units

It's linear exp. smoothing with alpha = 0.9999 and beta = 0.1135
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Time Sequence Plot for units
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Aodel Comparison

Data variable: units

Nuraher of ohservations = 150
Start index=1.0

Sarpling interval = 1.0

Models

(&) ARINVIACL 100 with constant

(By &RINALD,2,1)

{C) ARINALLLD)

(D} Siraple exponential smoothing with alpha = 0.9905

(E} Holt's Lirear exp. stooothing with alpha = 09999 and beta = 0.1135

Estimation Period

Model | RMSE MAE MAPE ME MFE

(&) 137619 |105058 |0.462858  [0.00208321 -0.0011386

(B) 136987 |1076865 |0.473588 [0.0133783 00105393

(%] 134551 |104936 |0.462074 [0.143321 00639647
iy} 145927 |1.15338 |0.507076  [0.417375 0.17929
(E) 139 107169 0471833  |0.000867136 | 0.00544249
Model | RMSE RUNS |RUNM |AUTO | MEAN  [VAR

(&) 137619 |* QK DK QK OF

(B) 136987 |OK QK DK QK *

() 134551 QK QK DK QK *

(D 145927 |CK * bk ek OF

(E) 139 QK * DK DK QK

All models that involve at
least one order of
differencing (a trend factor
of some kind) are better
than SES (which assumes
no trend). ARIMA(1,1,2) is
the winner over the others
by a small margin.
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Technical iIssues

» Backforecasting

— Estimation algorithm begins by forecasting
backward into the past to get start-up values

e Unit roots

— Look at sum of AR coefficients and sum of MA
coefficients—if they are too close to 1 you may
want to consider higher or lower of differencing

» Overdifferencing

— A series that has been differenced one too many
times will show very strong negative
autocorrelation and a strong MA signature,
probably with a unit root in MA coefficients

Seasonal ARIMA models

» We've previously studied three methods for
modeling seasonality:

— Seasonal adjustment
— Seasonal dummy variables

— Seasonally lagged dependent variable in
regression

e A 4™ approach is to use a seasonal ARIMA model

— Seasonal ARIMA models rely on seasonal lags
and differences to fit the seasonal pattern

— Generalizes the regression approach
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Seasonal ARIMA terminology

* The seasonal part of an ARIMA model is
summarized by three additional numbers:

P = # of seasonal autoregressive terms
D = # of seasonal differences
Q = # of seasonal moving-average terms

* The complete model is called an
“ARIMA(p,d,q)x(P,D,Q)” model

The “filtering box” now has 6

knobs:
1 1 1
p d q
time “signal”

series 0 \‘/ 1 0 \‘/ 10 \‘/ 1 Qecasts)
P D Q

constant? “noise”

Note that P, D, and Q should never (residuals)
be larger than 1 !!
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In Statgraphics:
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Seasonal differences

How non-seasonal & seasonal differences are
combined to stationarize the series:
s is the seasonal

period, e.g., s=12 for
If d=0, D=1 Vi= Y=Y monthly data

fd=1,D=1: Y= (Yi— Ye1) = (Yis — Yisa)
=Yi— Y1 Yist Yisa
D should never be more than 1, and d+D

should never be more than 2. Also, if d+D =2,
the constant term should be suppressed.
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SAR and SMA terms

How SAR and SMA terms add coefficients to the
model:

» Setting P =1 (i.e., SAR=1) adds a multiple of
Y to the forecast for Y,

» Setting Q =1 (i.e., SMA=1) adds a multiple of
€. to the forecast for Yy,

Total number of SAR and SMA factors usually should not
be more than 1 (i.e., either SAR=1 or SMA=1, not both)

Model-fitting steps

 Start by trying various combinations of one seasonal
difference and/or one non-seasonal difference to
stationarize the series and remove gross features of
seasonal pattern.

* If the seasonal pattern is strong and stable, you
MUST use a seasonal difference (otherwise it will
“die out” in long-term forecasts)
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Model-fitting steps, continued
« After differencing, inspect the ACF and PACF at

multiples of the seasonal period (s):

— Positive spikes in ACF at lag s, 2s, 3s..., single
positive spike in PACF at lag s = SAR=1

— Negative spike in ACF at lag s, negative spikes
in PACF at lags s, 2s, 3s,... = SMA=1

— SMA=1 often works well in conjunction with a

seasonal difference.

Same principles as for non-seasonal models, except focused
on what happens at multiples of lag s in ACF and PACF.

Time Series Plot for adusted NCgas

rfocorrelal

ST
:i
Sha

105 08
“ 05
% 8 H]
B & 5
g < g
= H =
= R H
& g ]
3 z ]
LY ki =
65 , o
18 04 15 04 3 T4 7 I
Estimated Aocomelations for adlusted NCgas Estimatad Atocors! st Estimated Anscomelations for adusted NCgas
1P 3 1 1
o q us q X
g 5 g
02l B B oozl 9 § oz J
© L - o= £ = —— = ca__ o T = e =
] = 4 SEN—— R
3 2 ozl 3 g [ |
2 i X

lag

Estimated Partial Autocomeations for adjusted Ngas

Partial &tocorrelat
——
[

Partial 2tocorrelations

Partial Autocorrelations

Original series: nonstationary

Seas. diff: need AR(1) & SMA(1)

Both diff: need MA(1) & SMA(1)
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A common seasonal ARIMA model

Often you find that the “correct” order of differencing is
d=1 and D=1.

With one difference of each type, the autocorr. is often
negative at both lag 1 and lag s.

This suggests an ARIMA(0,1,1)x(0,1,1) model, a
common seasonal ARIMA model.

Similar to Winters’ model in estimating time-varying
trend and time-varying seasonal pattern

Another common seasonal ARIMA model

Often with D=1 (only) you see a borderline
nonstationary pattern with AR(p) signature, where p=1
or 2, sometimes 3

After adding AR=1, 2, or 3, you may find negative
autocorrelation at lag s (= SMA=1)

This suggests ARIMA(p,0,0)x(0,1,1)+c,
another common seasonal ARIMA model.

Key difference from previous model: assumes a
constant annual trend
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Bottom-line suggestion

* When fitting a time series with a strong seasonal
pattern, you generally should try

ARIMA(0,1,9)x(0,1,1) model (g=1 or 2)
ARIMA(p,0,0)x(0,1,1)+c model (p=1, 2 or 3)

... In addition to other models (e.g., RW, SES or
LES with seasonal adjustment; or Winters)

If there is a significant trend and/or the seasonal
pattern is multiplicative, you should also try a natural
log transformation.

Take-aways

Seasonal ARIMA models (especially the
(0,1,9)x(0,1,1) and (p,0,0)x(0,1,1)+c models)
compare favorably with other seasonal models and
often yield better short-term forecasts.

Advantages: solid underlying theory, stable
estimation of time-varying trends and seasonal
patterns, relatively few parameters.

Drawbacks: no explicit seasonal indices, hard to
interpret coefficients or explain “how the model
works”, danger of overfitting or mis-identification if
not used with care.
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