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ARIMA models

• Auto-Regressive Integrated Moving Average

• Are an adaptation of discrete-time filtering methods 
developed in 1930’s-1940’s by electrical engineers 
(Norbert Wiener et al.)

• Statisticians George Box and Gwilym Jenkins 
developed systematic methods for applying them to 
business & economic data in the 1970’s (hence the 
name “Box-Jenkins models”)
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What ARIMA stands for
• A series which needs to be differenced to be made 

stationary is an “integrated” (I) series

• Lags of the stationarized series are called “auto-
regressive” (AR) terms

• Lags of the forecast errors are called “moving 
average” (MA) terms

• We’ve already studied these time series tools 
separately: differencing, moving averages, lagged 
values of the dependent variable in regression

ARIMA models put it all together
• Generalized random walk models fine-tuned to 

eliminate all residual autocorrelation

• Generalized exponential smoothing models that can 
incorporate long-term trends and seasonality

• Stationarized regression models that use lags of the 
dependent variables and/or lags of the forecast errors 
as regressors

• The most general class of forecasting models for time 
series that can be stationarized* by transformations 
such as differencing, logging, and or deflating

* A time series is “stationary” if all of its statistical properties—mean, 
variance, autocorrelations, etc.—are constant in time.  Thus, it has no 
trend, no heteroscedasticity, and a constant degree of “wiggliness.”



3

Construction of an ARIMA model
1. Stationarize the series, if necessary, by differencing (& 

perhaps also logging, deflating, etc.)

2. Study the pattern of autocorrelations and partial 
autocorrelations to determine if lags of the stationarized 
series and/or lags of the forecast errors should be included 
in the forecasting equation

3. Fit the model that is suggested and check its residual 
diagnostics, particularly the residual ACF and  PACF plots, 
to see if all coefficients are significant and all of the pattern 
has been explained.

4. Patterns that remain in the ACF and PACF may suggest the 
need for additional AR or MA terms

ARIMA terminology

• A non-seasonal ARIMA model can be (almost) 
completely summarized by three numbers:

p = the number of autoregressive terms

d = the number of nonseasonal differences

q = the number of moving-average terms

• This is called an “ARIMA(p,d,q)” model

• The model may also include a constant term (or not)
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The ARIMA “filtering box”
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ARIMA models we’ve already met

• ARIMA(0,0,0)+c = mean (constant) model

• ARIMA(0,1,0)     = RW model

• ARIMA(0,1,0)+c = RW with drift model

• ARIMA(1,0,0)+c = regress Y on Y_LAG1

• ARIMA(1,1,0)+c = regr. Y_DIFF1 on Y_DIFF1_LAG1

• ARIMA(2,1,0)+c =  ”  ”  plus Y_DIFF_LAG2 as well

• ARIMA(0,1,1)     = SES model

• ARIMA(0,1,1)+c = SES + constant linear trend

• ARIMA(1,1,2)    = LES w/ damped trend (leveling off)

• ARIMA(0,2,2)    = generalized LES (including Holt’s)

ARIMA forecasting equation
• Let Y denote the original series

• Let y denote the differenced (stationarized) series

No difference         (d=0):     yt  = Yt

First difference (d=1):     yt  = Yt  Yt-1

Second difference (d=2):     yt  = (Yt  Yt-1)  (Yt-1  Yt-2)

= Yt  2Yt-1 +  Yt-2

Note that the second difference is not just the change relative to two 
periods ago, i.e., it is not Yt – Yt-2 .  Rather, it is the change-in-the-change, 
which is a measure of local “acceleration” rather than trend.
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Forecasting equation for y

Not as bad as it looks!  Usually p+q  2 and 
either p=0 or q=0 (pure AR or pure MA model)

ptptt yyy    ...ˆ 11

qtqt ee    ...11

constant AR terms (lagged values of y)

MA terms (lagged errors)

By convention, the 
AR terms are + and 
the MA terms are 

Undifferencing the forecast

tt yYd ˆˆ:0If 

1ˆˆ:1If  ttt YyYd

212ˆˆ:2If   tttt YYyYd

The differencing (if any) must be reversed
to obtain a forecast for the original series:

Fortunately, your software will do all of this 
automatically!
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Do you need both AR and MA terms?
• In general, you don’t:  usually it suffices to use only 

one type or the other.

• Some series are better fitted by AR terms, others 
are better fitted by MA terms (at a given level of 
differencing).

• Rough rules of thumb:

– If the stationarized series has positive autocorrelation at lag 1, 
AR terms often work best.  If it has negative autocorrelation at lag 1,
MA terms often work best. 

– An MA(1) term often works well to fine-tune the effect of a 
nonseasonal difference, while an AR(1) term often works well to 
compensate for the lack of a nonseasonal difference, so the choice 
between them may depend on whether a difference has been used.

Interpretation of AR terms

• A series displays autoregressive (AR) behavior if it 
apparently feels a “restoring force” that tends to pull it 
back toward its mean.

• In an AR(1) model, the AR(1) coefficient determines how 
fast the series tends to return to its mean.  If the coefficient is 
near zero, the series returns to its mean quickly; if the 
coefficient is near 1, the series returns to its mean slowly. 

• In a model with 2 or more AR coefficients, the sum of the 
coefficients determines the speed of mean reversion, and 
the series may also show an oscillatory pattern.
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Interpretation of MA terms

• A series displays moving-average (MA) behavior if 
it apparently undergoes random “shocks” whose 
effects are felt in two or more consecutive periods.

– The MA(1) coefficient is (minus) the fraction of last 
period’s shock that is still felt in the current period.  

– The MA(2) coefficient, if any, is (minus) the fraction of 
the shock two periods ago that is still felt in the current 
period, and so on.

Tools for identifying ARIMA models:   
ACF and PACF plots

• The autocorrelation function (ACF) plot shows the 
correlation of the series with itself at different lags

– The autocorrelation of Y at lag k is the correlation between 
Y and LAG(Y,k)

• The partial autocorrelation function (PACF) plot 
shows the amount of autocorrelation at lag k that is 
not explained by lower-order autocorrelations

– The partial autocorrelation at lag k is the coefficient of 
LAG(Y,k) in an AR(k) model, i.e., in a regression of Y on 
LAG(Y, 1), LAG(Y,2), … up to LAG(Y,k)
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AR and MA “signatures”
• ACF that dies out gradually and PACF that cuts off 

sharply after a few lags  AR signature

– An AR series is usually positively autocorrelated at lag 1
(or even borderline nonstationary)

• ACF that cuts off sharply after a few lags and PACF 
that dies out more gradually  MA signature

– An MA series is usually negatively autcorrelated at lag 1
(or even mildly overdifferenced)

AR signature:  mean-reverting 
behavior, slow decay in ACF 

(usually positive at lag 1), 
sharp cutoff after a few lags in 

PACF.

Here the signature is 
AR(2) because of 2 

spikes in PACF.
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MA signature:  noisy 
pattern, sharp cutoff 

in ACF (usually 
negative at lag 1), 
gradual decay in 

PACF.

Here the signature is 
MA(1) because of 1 

spike in ACF.

AR or MA?  It depends!
• Whether a series displays AR or MA behavior often 

depends on the extent to which it has been 
differenced.

• An “underdifferenced” series has an AR signature 
(positive autocorrelation)

• After one or more orders of differencing, the 
autocorrelation will become more negative and an MA 
signature will emerge

• Don’t go too far:  if series already has zero or negative 
autocorrelation at lag 1, don’t difference again
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The autocorrelation spectrum

Nonstationary   Auto-Regressive      White Noise         Moving-Average   Overdifferenced

Positive autocorrelation          No autocorrelation         Negative autocorrelation

add ARadd DIFF add MA

add DIFF

remove DIFF

Model-fitting steps

1. Determine the order of differencing

2. Determine the numbers of AR & MA terms

3. Fit the model—check to see if residuals are 
“white noise,” highest-order coefficients are 
significant (w/ no “unit “roots”), and forecasts 
look reasonable.  If not, return to step 1 or 2.

In other words, move right or left in the “autocorrelation 
spectrum” by appropriate choices of differencing and 
AR/MA terms, until you reach the center (white noise)
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“Units” example

Original series: nonstationary   1st difference: AR signature    2nd difference: MA signature   

With one order of 
differencing, AR(1) or AR(2) 
is suggested, leading to 
ARIMA(1,1,0)+c or (2,1,0)+c
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With two orders of 
differencing, MA(1) is 
suggested, leading to 
ARIMA(0,2,1)

For comparison, here is 
Holt’s model:  similar to 
ARIMA(0,1,2), but narrower 
confidence limits in this 
particular case
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ARIMA(1,1,2) = LES with 
“damped trend” 

ARIMA(1,1,2)

All models that involve at 
least one order of 
differencing (a trend factor 
of some kind) are better 
than SES (which assumes 
no trend).  ARIMA(1,1,2) is 
the winner over the others 
by a small margin.
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Technical issues
• Backforecasting

– Estimation algorithm begins by forecasting 
backward into the past to get start-up values

• Unit roots
– Look at sum of AR coefficients and sum of MA 

coefficients—if they are too close to 1 you may 
want to consider higher or lower of differencing

• Overdifferencing
– A series that has been differenced one too many 

times will show very strong negative 
autocorrelation and a strong MA signature, 
probably with a unit root in MA coefficients

Seasonal ARIMA models
• We’ve previously studied three methods for 

modeling seasonality:

– Seasonal adjustment

– Seasonal dummy variables

– Seasonally lagged dependent variable in 
regression

• A 4th approach is to use a seasonal ARIMA model

– Seasonal ARIMA models rely on seasonal lags 
and differences to fit the seasonal pattern

– Generalizes the regression approach
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Seasonal ARIMA terminology

• The seasonal part of an ARIMA model is 
summarized by three additional numbers:

P = # of seasonal autoregressive terms

D = # of seasonal differences

Q = # of seasonal moving-average terms

• The complete model is called an 
“ARIMA(p,d,q)(P,D,Q)” model

The “filtering box” now has 6 
knobs:
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In Statgraphics:

P Q

D

Seasonal 
ARIMA options 
are available 
when model 

type = ARIMA 
and a number 

has been 
specified for 
“seasonality” 
on the data 
input panel.

Seasonal differences 
How non-seasonal & seasonal differences are 

combined to stationarize the series:

If d=0, D=1: yt = Yt  Yt-s

If d=1, D=1: yt = (Yt  Yt-1)  (Yt-s  Yt-s-1)

= Yt  Yt-1  Yt-s +  Yt-s-1

D should never be more than 1, and d+D
should never be more than 2.  Also, if d+D =2, 

the constant term should be suppressed.

s is the seasonal 
period, e.g., s=12 for 

monthly data
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SAR and SMA terms 

How SAR and SMA terms add coefficients to the 
model:

• Setting P =1 (i.e., SAR=1) adds a multiple of
yt-s to the forecast for  yt

• Setting Q =1 (i.e., SMA=1) adds a multiple of 
et-s to the forecast for  yt

Total number of SAR and SMA factors usually should not 
be more than 1 (i.e., either SAR=1 or SMA=1, not both)

Model-fitting steps

• Start by trying various combinations of one seasonal 
difference and/or one non-seasonal difference to 
stationarize the series and remove gross features of 
seasonal pattern.

• If the seasonal pattern is strong and stable, you 
MUST use a seasonal difference (otherwise it will 
“die out” in long-term forecasts)
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Model-fitting steps, continued
• After differencing, inspect the ACF and PACF at 

multiples of the seasonal period (s):

– Positive spikes in ACF at lag s, 2s, 3s…, single 
positive spike in PACF at lag s  SAR=1

– Negative spike in ACF at lag s, negative spikes 
in PACF at lags s, 2s, 3s,…  SMA=1

– SMA=1 often works well in conjunction with a 
seasonal difference.

Same principles as for non-seasonal models, except focused 
on what happens at multiples of lag s in ACF and PACF.

Original series: nonstationary      Seas. diff: need AR(1) & SMA(1)   Both diff:  need MA(1) & SMA(1)   
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A common seasonal ARIMA model

• Often you find that the “correct” order of differencing is 
d=1 and D=1.

• With one difference of each type, the autocorr. is often 
negative at both lag 1 and lag s.

• This suggests an ARIMA(0,1,1)(0,1,1) model, a 
common seasonal ARIMA model.

• Similar to Winters’ model in estimating time-varying 
trend and time-varying seasonal pattern

Another common seasonal ARIMA model

• Often with D=1 (only) you see a borderline 
nonstationary pattern with AR(p) signature, where p=1 
or 2, sometimes 3

• After adding AR=1, 2, or 3, you may find negative 
autocorrelation at lag s ( SMA=1)

• This suggests ARIMA(p,0,0)(0,1,1)+c, 
another common seasonal ARIMA model.

• Key difference from previous model:  assumes a 
constant annual trend
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Bottom-line suggestion
• When fitting a time series with a strong seasonal 

pattern, you generally should try

ARIMA(0,1,q)(0,1,1) model (q=1 or 2)

ARIMA(p,0,0)(0,1,1)+c model (p=1, 2 or 3)

… in addition to other models (e.g., RW, SES or 
LES with seasonal adjustment; or Winters)

• If there is a significant trend and/or the seasonal 
pattern is multiplicative, you should also try a natural 
log transformation.

Take-aways
• Seasonal ARIMA models (especially the 

(0,1,q)x(0,1,1) and (p,0,0)x(0,1,1)+c models) 
compare favorably with other seasonal models and 
often yield better short-term forecasts.

• Advantages:  solid underlying theory, stable 
estimation of time-varying trends and seasonal 
patterns, relatively few parameters.

• Drawbacks: no explicit seasonal indices, hard to 
interpret coefficients or explain “how the model 
works”, danger of overfitting or mis-identification if 
not used with care.


