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Slope-Deflection Method

* Previously we have discussed Force/Flexibility methods
of analysis of statically indeterminate structures.

* |[n force method, the unknown redundant forces are
determined first by solving the structure’s compatibility
equations; then other response characteristics of the
structure are evaluated by equilibrium equations or
superposition.

* An alternative approach can be used for analyzing is
termed the displacement or stiffness method.



N
Slope-Deflection Method

* In displacement method, the unknown displacements are
determined first by solving the structure’s equilibrium
equations; then the other response characteristics are
evaluated through compatibility considerations and
member force-deformation relationships.

* The displacement methods includes Slope-Deflection
Method and Moment-Distribution Method.

* The slope-deflection method was introduced by George
A. Maney in 1915.



N
Slope-Deflection Method

* This method takes into account only the bending
deformations.

* This method gives an understanding of the Matrix-
Stiffness Method, which forms the basis of most
computer software currently used for structural analysis.
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Slope-Deflection Equations

* When a continuous beam or a frame is subjected to external loads,
internal moments generally develop at the ends of its individual
members.

“The slope-deflection equations relate the moments at the ends of
the member to the rotations and displacements of its end and the
external loads applied to the member.”

* Let us consider an arbitrary member AB of the continuous beam.
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* When the beam is subjected to external loads and support
settlements, the member AB deforms as shown (exaggerated), and
internal moments are induced at its ends.
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* Double-subscript notation is used for member end moments, with
the first subscript identifying the member end at which the
moment acts and the second subscript indicating the other end of

the member.

M, denotes the moment at end A of the member AB.

M, denotes the moment at end B of the member AB.
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* 0, & B, denote, respectively, the rotations of end A and B with
respect to the un-deformed (horizontal) position of the member.
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* A denotes the relative translation between the two ends of the
member in the direction perpendicular to the un-deformed axis of
the member.
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« W denotes the rotation of the member’s chord (straight line
connecting the deformed positions of the member ends) due to
the relative translation A. 10
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* Since the deformations are assumed to be small, the chord
rotation can be expressed as A

V=" OO N



* The sign convention used in this chapter is as follows:

V{4 . .
The member end moments, end rotations, and chord rotation are
positive when counterclockwise.”

* Note that all the moments and rotations are shown in positive
sense in figure on previous slide.

 The slope deflection equations can be derived by relating the
member end moments to the end rotations and chord rotation by
applying the second moment-area theorem.
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* By substituting A/L=W into the preceding equation we have,

0,-y= Oy —y = 3)

Ag, is tangential deviation of end B from the tangent to the elastic
curve at end A and A,; is the tangential deviation of end A from
the tangent to the elastic curve at end B.

* According to the second-moment area theorem, the expressions
for the tangential deviations A,, and A,, can be obtained by
summing the moments about the ends A and B, respectively, of the
area under M/EIl diagram between the two ends.



* The bending moment diagrams for the member is constructed in

parts by applying M., M,, and the external loading separately on
the member with simply supported ends.

* The three simple-beam bending moment diagrams thus obtained
are shown in Figure.

M, diagram (simple beam
bending moment diagram
due to external loads)

Bending Moment Diagram



* Assuming that the member is prismatic (El is constant along the
length of the member) we sum the moments of the area under the

M/El diagram about the ends B and A, respectively, to determine
the tangential deviations.
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* In which g; and g, are the moments about the ends B and A,
respectively, of the area under the simple-beam bending moment
diagram due to external loading (M, diagram).

* The three terms in equations (4.a & 4.b) represent the tangential
deviations due to M,;, M;,, and the external loading, acting
separately on the member, with a negative term indicating that the
corresponding tangential deviation is in the direction opposite to
that shown on the elastic curve of the member.

Tangential deviation due to M,
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Tangential deviation due to M;,
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* By substituting the expressions for A;, and A, into Eqg. 3, we have

M, L M,L g
O —y=—A4B~ ""BL" _ SB 5,
V=58 TeEl EIL (5a)
QB_WZ_MABL+MBAL+ 84 (5b)

6FEI 3EI  EIL

* To express the member end moments in terms of the end
rotations, the chord rotation, and the external loading, we solve
Eq. 5 simultaneously for M ,; and M;,. Rewriting Eq. 5a as

My, L 2M L 2g,

~2(0 . —
3E] 3E]  EIL (6, ~v)




* By substituting this equation into Eq. 5b and solving the resulting
equation for M ,;, we have
2

2 (20,46, -3p)+ = (28, - 2,) (6a)

M
AB 7 e

and by substituting Eq. 6a into either Eqg. 5a or 5b, we have

2EI 2
= (0,+20, =3y )+ (2, -2¢.) (60)

MBA

* It indicates that the moments develop at the ends of a member
depend on the rotations and translations of member’s ends as well
as on the external loading applied between the ends.



* Now, suppose that the member under consideration, instead being
a part of a larger structure, was an isolated beam with both ends
completely fixed against rotations and translations, as shown.

0,=6,=W=0
Fixed-End Moments

* The moments that would develop at the ends of such a fixed beam
are referred to as fixed-end moments and their expression can be
obtained by setting 6, = 6; = W = 0; that is,

2
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* By comparing Egs. 6 & 7, we find that the second terms on the
right sides of Egs. 6 are equal to the fixed-end moments.

M, = zfl (26, +6, -3y )+ FEM ,, (8a)
M,, = 2? (6, +20, -3y )+ FEM,, (80)

* Equations (8a &8b), which express the moments at the ends of a
member in terms of its end rotations and translations for a
specified external loading, are called slope-deflections equations.

* These equations are valid for prismatic members, composed of
linearly elastic material and subjected to small deformations.

* The deformations due to axial and shear forces are neglected.
22



* The two slope-deflection equations have the same form and either
end of equations can be obtained from the other simply by
switching the subscript A and B.

V 2E]T (

=20, +6, 3y )+ FEM,, (9)

in which the subscript n refers to the near end of the member
where moment M . acts and the subscript f identifies the far
(other) end of the member.
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Members with One End Hinged

* The slope deflection equations derived previously are based on the
condition that the member is rigidly connected to joints at both
ends, so that the member end rotations 8, and 6; are equal to the
rotations of the adjacent joints.

* When one of the member’s ends is connected to the adjacent joint
by a hinged connection, the moment at the hinged end must be
Zero.

* The slope-deflections equations can be easily modified to reflect
this condition.



*  With reference to the previous Figure of member AB, if the end B
of the member AB is hinged, then the moment at B must be zero.
By substituting M, = 0 into Equation (8), we write

M, = 225] (26, +6, -3y )+ FEM , (10a)
M, =0= Zfl (6, +26, -3y )+ FEM,, (10p)

* Solving Eq. (10) for 6;, we obtain

0, 3 L
=4 ——(FEM 11
0 7 "‘2'7” 4E]( BA) ( )



* To determine 6; from the slope deflection equations, we substitute

Eqg. (11) into Eq. (10a), thus obtaining the modified slope-deflection
equations for member AB with a hinge at end B.

3EI
—(

MAB I

(12a)

(120)
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MBA =0

* Similarly, it can be shown that for a member AB with a hinge at end
A, the rotation of the hinged end is given by

0, 3 L
=5 ——(FEM 1
0, ) "'2'7” 4E]( AB) (3)



* And the modified slope-deflection equations can be expressed as

3EI FEM ,,
L (6,-w)s | Fo,, - B (14a)

M, =0 (14b)

MBA

* Because the modified slope-deflection equations given by Egs. (12)
and (14) are similar in form, they can be conveniently summarized

das

3EI
—

M, =0 (15p)

Mrh (1561)

FEM,
2
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In which the subscript r refers to the rigidly connected end of the
member where the moment M, acts and the subscript h identifies

the hinged end of the member.

* The rotation of the hinged end can now be written as

g 3 L
—— 4 " w———(FEM 1
‘9h ) "'ZW 4E]( hr) (6)



Basic Concept of the Slope-Deflection Method

* To illustrate the basic concept of the slope-deflection method,
consider the three-span continuous beam shown in Figure below.

30 k
1.5 k/ft
J/ J/ J/ J/ \J//i l El = constant
D E = 29,000 ksi
/7,7 | =500 in*
C
| 20 ft 10ft | 10ft | 15 ft |
|

Although the structure actually consists of a single continuous
beam between the fixed supports A and D, for the purpose of
analysis it is considered to be composed of three members, AB, BC,
and CD, rigidly connected at joints A, B, C, and D located at the
supports of the structure.



Degrees of Freedom

|dentify the unknown independent displacements (translations and
rotations) of the joints of the structure. These unknown joint
displacements are referred to as the degrees of freedom of the
structure.

From the qualitative deflected shape of the continuous beam
shown in Figure below, we can see that none of its joints can

translate.
30k
1.5 k/ft
— ]
eB
20 ft 10 ft 10ft 15 ft

The fixed joints A and D cannot rotate, whereas joints B and C are
free to rotate.



Degrees of Freedom

30 k
1.5 k/ft
e |
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This beam has two degrees of freedom, 6; and 8, which represent
the unknown rotations of joints B and C, respectively.

The number of degrees of freedom is sometimes called the degree
of kinematic indeterminacy of the structure. This beam is
kinematically indeterminate to the second degree.

A structure without any degrees of freedom is termed
kinematically determinate. 31




Equations of Equilibrium

The unknown joint rotations are determined by solving the
equations of equilibrium of the joints that are free to rotate. The
free body diagrams of the members and joints B and C of the
continuous beam are shown.
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Equations of Equilibrium

In addition to the external loads, each member is subjected to an
internal moment at each of its ends.

The correct senses of the member end moments are not yet
known, it is assumed that the moments at the ends of all the
members are positive (counterclockwise).

The free body diagrams of the joints show the member end
moments acting in an opposite (clockwise) direction in accordance
with Newton’s law of action and reaction.
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uations of Equilibrium

Because the entire structure is in equilibrium, each of its members
and joints must also be in equilibrium. By applying the moment
equilibrium equations >M; = 0 and >M. = O, respectively, to the
free bodies of joints B and C, we obtain the equilibrium equations

M, +M,.=0 (17a)
M, + M, =0 (17b)
1.5 k/ft 30k
TS C | % M& %
TA BTMB " TB CTM Tc DT

(. I -



Slope-Deflection Equations

The equilibrium equations Egs. (17) can be expressed in terms of
the unknown joint rotations, 6; and 6., by using slope-deflection
equations that relate member end moments to the unknown joint
rotations.

Before we can write the slope-deflection equations, we need to
compute the fixed-end moments due to the external loads acting
on the members of the continuous beam.

To calculate the fixed-end moments, we apply imaginary clamps at
joints B and C to prevent them from rotating.

Or we generally provide fixed-supports at the ends of each
member to prevent the joint rotations as shown.



Slope-Deflection Equations

30 k
1.5 k/ft l
A $ 4 - A 5
~~~~~~~~~ B
FEM g FEMg, B FEM.  FEMg
OR
1.5 k/ft
4 C| |> q B
C C D
FEM g FEMg, FEMg, FEM g FEMp FEMpc

The fixed-end moments that develop at the ends of the members
of this fully restrained or kinematically determinate structure can

easily be evaluated by using the fixed-end moment expressions

given inside the back cover of book.



Slope-Deflection Equations

30 k
1.5 k/ft l
A Vb N N D
~~~~~~~~~ L )N
50 k-ft 50 k-ft B FEMy.  FEMC
OR
1.5 k/ft
o e P C| |> q >
C C D
50 k-ft S0kt FEM,, FEMg FEMp FEM,.
For member AB: 2 2
wL>  1.5(20)
FEM ,, = = =50k — ft
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Slope-Deflection Equations

1.5 k/ft

| e TR |

50 k-ft 50 k-ft B 75 k-ft 75 k-ft C

OR
1.5 k/ft
B b
C C D
50 k-ft 50kt 75 K-t 75kft 0 0
For member BC:
FEM . = };L = 305320) — 75k—ﬁ)
FEM,, - PL _30(20) _ 755 ft)

8 38



Slope-Deflection Equations

The slope-deflection equations for the three members of the
continuous beam can now be written by using Eq. (9).

Since none of the supports of the continuous beam translates, the
chord rotations of the three members are zero (W,; = W, = W,
=0).

Also, supports A and D are fixed, the rotations 6, = 6, = 0. By
applying Eq. (9) for member AB, with A as the near end and B as
the far end, we obtain the slope-deflection equation

M, = 22—%](0 +6,-0)+50=0.1EI8, + 50 (184)
Next, by considering B as the near end and A as the far end, we
write

M,, = E(zeB +0-0)-50=0.2EI8, — 50 (18p)

20



Slope-Deflection Equations
Similarly, by applying Eg. (9) for member BC, we obtain

M,. = 25)] (26, +0,.)+75=02EI0, +0.1EI6, +75 (18¢)
2EI
My =3 ~— (26, +6,)-75=02EI8,. +0.1EIf, — 75 (184)

and for member CD,

M, = 2112] (26.)=0.267EI8, (18¢)
M,. = E(ec)z 0.133EI6, (181)

15



Joint Rotations

To determine the unknown joint rotations 6; & 6., we substitute
the slope-deflection equations Eqgs. (18) into the joint equilibrium
equations Eqgs. (17) and solve the resulting systems of equations
simultaneously for 6; & 6. By substituting Eqgs. (18b) and (18c) into
Eqg. (17a), we obtain

(0.2E16, —50)+(0.2EI6, + 0.1EI0,. +75)=0
or  04EIf, +01EIf, = 25 (19a)

and by substituting Eqgs. (18d) and (18e) into Eq. (17b), we get

(0.2EI0,. +0.1EI9, —75)+0.267EIf,. =0
or  0l1EIO, +0467EI0,. =75 (19p)



Joint Rotations

Solving Egs. (19a) & (19b) simultaneously for EIB; and EIB., we
obtain

EIf, =—108.46 k — fi’
EIf. =183.82k— ft’

By substituting the numerical values of E = 29,000 ksi = 29,000(12)?

ksf and | = 500 in.#, we determine the rotations of joints B and C to
be

0, =-0.011rad or 0.011rad )
6. =0.0018rad )



Member End Moments

The moments at the ends of the three members of the continuous
beam can now be determined by substituting the numerical values
of EI6; and EIB_ into the slope-deflection equations (Eqs. 18).

M ,; =01(-108.46)+50=39.2 k-ft )

M,, =02(-10846)-50=-71.7 k-ft or 717 k-ft)

M, =0.2(~108.46)+0.1(183.82)+ 75 =717 k-ft )

M, =02(183.82)+0.1(—108.46)-75=—49.1k-ft or 49.1 k-ft )
M., =0267(183.82)=49.1k-ft )

M . =0.133(183.82)=24.4 k-fi )



Member End Moments

To check that the solution of simultaneous equations (Egs. 19) has
been carried out correctly, the numerical values of member end
moments should be substituted into the joint equilibrium
equations (Egs. 17). If the solution is correct, then the equilibrium
equations should be satisfied.

M, +M,.=-T71.7+71.7=0 Checks
Mo+ M.,=-49.1+49.1=0 Checks

The member end moments just computed are shown on the free
body diagrams of the members and joints in Figure on next slide.



Member End Moments

30 k
1.5 k/ft 217 191 49.1 24.4

4l iH l
CT CP C DS[P

Sas = 13.38 k sBAC/l;;;ljl ZBC C%)SCD

T T

B, C,

Member End Shears
The shear forces at the ends of members can now be determined
by applying the equations of equilibrium to the free bodies of
members. For member AB,

+(XM,=0 392-5,(20)+1.5(20)10)-71.7=0
S.,=1338k7T

45



I
Member End Shears

1.5 k/ft

<uuu¢

30, 2T
Sga = 16.62 k
S5 = 13.38 k

For member AB,

+TXF, =0

71.7

Cy

T

B

y

7

1.

7
S

30 k
l 491 49.1 24.4

BC

-5 G
RS>
T

C

y

13.38-1.5(20)+S,, =0
S, =16.62k7T
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Member End Shears

30 k
L5 k/ft 71.7 l 491 49.1 24.4

<H¢¢ iH CT) C DT,)

39. ZT 71. 7

= 13381 k(/l;g;l) s =1603k° k(/l’;lvsw
! T

Bv Cy

For member BC,
+(ZM. =0 71.7-8,.(20)+30(10)-49.1=0
S..=1613k7T

+TXF, =0 16.13-30+ S5 = 0
Sz =13.87k 7T

47



Member End Shears

30 k
1.5 k/ft 71.7 l 491 49.1 24.4

<H¢¢ iH CT) C Dl<>

39. ZT 71. 7

sBA—1662k<l l) S _1387k<l l)sw—wk Sy,c=4.9k
Snp = 1338 k 8 “s,.=1613k X

By Cy
For member CD,
+H(ZM,=0 49.1-8,,(15)+24.4=0
S, =49k7
+TXF, =0 49+, =0

S, =49k

48



Support Reactions

1.5 k/ft 71.7 l 491 49.1 24.4

C*iiiiii C T> C Dl‘)

39.2 1662k1613'717
sBA—lsszkclBlD S, _1387k<l l)sw—wk Soc = 4.9 k
Spe = 13.38k /;,/; Sgc =16.13 k /;,/;
B, =32.75k G

From the free body diagram of joint B, we can see that the vertical
reaction at the roller support B is equal to the sum of the shears at
ends B of member AB and BC; that is

B, =8,,+8,-=16.62+16.13=3275k T

49



Support Reactions

1.5 k/ft 71.7 l 491 49.1 24.4

Wil 4y
CT 1662k1613'71<7 1387k49§ Dl‘>

39.2

sBA—lsszkclBlD S, -1387k<l )CD-49k Soc = 4.9 k
Sas = 13.38 k /;,/; Sgc =16.13 k /;,/;

B, = 32.75 k C,=18.77k

The vertical reaction at the roller support C equals the sum of
shears at ends C of members BC and CD.

C,=Scs+S, =1387+4.9=18.77k T

50



Support Reactions

1.5 k/ft l
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Support Reactions

1.5 k/ft 10 :
< I Liddl o - I ;
39.2 k-ftT B T T C
13.38 k 32.75k 18.77 k

The reactions at the fixed support A are equal to the shear and
moment at the end A of member AB.

A =8,=1338k7T
M,=M,_, =392k ft)



Support Reactions

1.5 k/ft l 24.4 k-ft
<A|¢ Lidd - |D>
39.2 k-ft T B T T C l
13.38 k 32.75k 18.77 k 4.9k

The reactions at the fixed support D equal the shear and moment
at end D of the member CD.

D, =S, =49k
M,=M,.=244k—ft)



Equilibrium Check

1.5 k/ft T : 24.4 k-ft
<A|¢ Lidd - |D>
39.2 k-ft T B T T C l
13.38 k 32.75k 18.77 k 4.9k

To check out computations of member end shears and support

reactions, we apply the equations of equilibrium to the free body
of the entire structure.

+TXF, =0
13.38-1.5(20)+32.75-30+18.77-4.9=0 Checks
+(2XM,=0

39.2-13.38(55)+1.5(20)(45)-32.75(35)+ 30(25)
~18.77(15)+24.4=-0.1~ 0 Checks



Shear Diagram

1.5 k/ft Slo : 24.4 k-ft
<A|¢ Lidd - |D>
39.2 k-ft T B T T C l
13.38 k 32.75k 18.77 k 4.9k

Using General sign conventions

16.13
13.38
N 25
A F B E C D
D
8.92 ft
-13.87

-16.62

55



Moment Diagram

30 k
1.5 k/ft l 24.4 k-ft
N PFRRER D)
C 2, 2,
39.2 k-ftT B T T C l
32.75k .
13.38 k 18.77k 4.9 k
Using General sign conventions

89.7

20-5 24.4

| D

-39.2 v 491

-71.7

56



1.5 k/ft l 24.4 k-ft

<A|¢ Lidd - |D>
T e

32.75k 18.77 k

13, .
3.38 k 1613 4.9 k
13.38
N
A F B E C D
<>
8.92 ft
-13.87
1662 gg

20.5 /\ 24.4
A VAN B C | D

-71.7

57
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Analysis of Continuous Beam

N s wWwDNE

8.
9.

Based on the discussion above, the procedure for the analysis of
continuous beams can be summarized as follows:

Identify the degrees of freedom of structure.

Compute fixed-end moments.

In case of support settlements, determine the chord rotations W.
Write slope deflection equations.

Write equilibrium equations for each joint.

Determine the unknown joint rotations.

Calculate member end moments by substituting the numerical values of joint
rotations determined in step 6 into the slope deflection equations.

Satisfy the equilibrium equations for joints in step 5.
Compute member end shears.

10. Determine the support reactions by considering the equilibrium of joints.
11. Satisfy the equilibrium equations for end shears and support reactions.
12. Draw shear and bending moment diagrams using the beam sign convention.
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Structures with Cantilever Overhangs

Consider a continuous beam with a cantilever overhang, as shown
in the figure.

AIHH%HH%HH% Actual Bearn
B C

I d I
I !

MCD = Waz/z W
Statically Determinate Cantilever Portion C l’ l’ l’ l’ l’ llD
¢
Scp=Wa
wa

wa?/2
Actual Beam

C
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Example 1

* Determine the reactions and draw the shear and bending moment
diagrams for the two-span continuous beam shown in Figure.

18 k
l 2 k/ft

iil”””lc

El = constant



Solution

1. Degree of Freedom

We can see that only joint B of the beam is free to rotate. Thus, the
structure has only one degree of freedom, which is the unknown

joint rotation, 6;.

El = constant

61
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2. Fixed-End Moments

By using the fixed-end moment expressions given inside the back
cover of the book, we evaluate the fixed-end moments due to the
external loads for each member.

_ Pab® _18(10)15)°

FEM 5 == o= 048k - ft) or +648 k-ft
2 2

FEM ,, = Pzzb - 18(1;)5)2(15) —432k— fi ) or —648 k-fi
2 2

FEMBC:MI}g =2(f§) —150k— ft ) or +150 k-t

FEM ., =150k — fi ) or —150 k-ft

Counterclockwise FEM are positive, whereas clockwise FEM are negative.
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3. Chord Rotations

Since no support settlements occur, the chord rotations of both
members are zero; thatis, W,; = W, = 0.

4. Slope-Deflection Equations

To relate the member end moments to the unknown joint rotation,
0, we write the slope deflection equation for the two members of
the structure by applying Eqg. (9).

2FET
M

v =" =22 (26, +6, -3y )+ FEM,, (9)

since the supports A and C are fixed, the rotations 6, = 6. =0.



4. Slope-Deflection Equations

Slope-Deflection Equation for Member AB

M, = 22—E51(93 )+ 64.8 =0.08EI0, + 64.8 (1)
M,, = 2221 (26,)-43.2=0.16E18, —43.2 (2)

Slope-Deflection Equation for Member BC

2EI
Sl

M, = 26,)+150=0.133E16, +150 (3)

2EI
Sl

M. =
CB 30

6,)-150=0.0667E18, —150 (4)



5. Equilibrium Equations
The free body diagram of joint B is shown in Figure.

18 k
2 k/ft

AI | /illiiilil

2 k/ft

! g AN
MCABTA BP ( T ) ( ]

Member end moments, which are assumed
counterclockwise direction on the ends of members, must be

applied in (opposite) clockwise direction on the free body of the
joint in accordance with Newton’s Third Law.

to be in



5. Equilibrium Equations

The free body diagram of joint B is shown in Figure.

18 k
2 k/ft

! g LLllyy=e
ST CTDM TR

By applying the moment equilibrium equation M, = O to the free
body of the joint B, we obtain

M, +M,.=0 (5)



6. Joint Rotations

To determine the unknown joint rotations, 6, substitute the slope
deflection equations (Eqgs. 2 & 3) into the equilibrium equation (Eq.

5).
(0.16E168, —43.2)+(0.133E16, +150)=0
or
0.293E16, =—106.8
from which

EIQ, =-364.5k— ft
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7. Member End Moments

The member end moments can now be computed by substituting

the numerical value of EIB; back into the slope-deflection equation
(Egs. 1 to 4).

M 5 =0.08(—364.5)+64.8=35.6 k— fi )

M,, =0.16(—364.5)-43.2=-101.5k - fi or 1015 k-ft)
M. =0.133(-364.5)+150=101.5k - ft )
M, =0.0667(-364.5)-150=-1743 k — ft or 1743 k-ft )

Positive answer for an end moment indicates that its sense is
counterclockwise, whereas a negative answer implies a clockwise
sense. As My, and M. are equal in magnitude but opposite in
sense, the equilibrium equation My, + My = 0 is satisfied.



l 2 k/ft

CTA ) (ls )1015 qsu L4y

101 5 101 5 2 1015

174 3

8. Member End Shears

The member end shears, obtained by considering the equilibrium
of each member, are shown in figure below

18 k
2 k/ft
C l ) ( N Cbeda ¢ ¢
35.6 TA 101 5 101 5 T 1015 101, ST ° 174 3
8.16 9.84 27.57 32.43

69



9. Support Reactions

The reactions at the fixed support A and C are equal to the forces
and moments at the ends of the members connected to these
joints. To determine the reaction at roller support B, consider the
equilibrium of the free body of joint B in the vertical direction.

B, =S8y, +S, =9.84+27.57=3741k T ANS
18 k
l 984 27 57 2 k/ft

CT ) ( D <u¢uu

1015 1015 T 101> 01, STB 1743

8.16 9.84 27.57 32.43
37.41
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9. Support Reactions

The support reactions are shown in figure below.

18 k
l 2 k/ft

ﬂwuuul

37 41 k
8.16 k 32 43 k

<|

35.6 k-ft 174.3 k-ft
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10. Equilibrium Check

To check our calculations of member end shears and support
reactions, we apply the equations of equilibrium to the free body
of the entire structure.

18 k

l 2 k/ft
35.6 k- ft

ﬂwuuul

3741k
816k 3243k

174.3 k-ft

+TXF, =0
8.16—18+37.41-2(30)+32.43=0 Checks
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10. Equilibrium Check

To check our calculations of member end shears and support
reactions, we apply the equations of equilibrium to the free body
of the entire structure.

18 k
l 2 k/ft
< I ﬂw byblyl I
35.6 k-ft 174.3 k-ft
3741k
8.16k 3243k
L 10ft | 15 ft | 30 ft |

| | | |
+(2M_.=0

35.6—8.16(55)+18(45)—37.41(30)+2(30)(15)-174.3=0.2 ~ 0 Checks



11. Shear Force Diagram

18 k
l 2 k/ft
< I ﬂ;U Lyl I
35.6 k-ft 174.3 k-ft
816k 3741k 3243k
27.57
8.16 16.2 ft
A D B -
E

-9.84

-32.43

74
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11. Bending Moment Diagram

18 k
l 2 k/ft
< I ﬂ;U Lyl I
35.6 k-ft 174.3 k-ft
816k 3741k 3243k
88.7
46
A B C

| D E
-35.6
-101.5

-174.3

75
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Example 2

* Determine the reactions and draw the shear and bending moment
diagrams for the continuous beam shown in Figure.

60 kN
15 kN/m

Ajyiiiiiiiﬂilll}lllﬁb

I 21 21

El =200 GPa
| =700 (10°) mm?*



Solution

* From figure we can see that all three joints of the beam are free to
rotate. Thus the beam have 3 degrees of freedom, 6,, 6;, 6.

* The end supports A and D of the beam are simple supports at
which no external moment is applied, the moments at the end A of

the member AB and at the end D of the member BD must be zero.

60 kN
15 kN/m

S -

-
~ -~ -

M —
BA g Mpg=0

) C PR

Mg =0 Mgp



Solution

* The ends A and D can be considered as hinged ends and the
modified slope-deflection equations can be used.

Mrh = 3£(0}” _W)—i_(FEMVh _ FE;W}W] (lsa)

L
M, =0 (15p)

The modified SDE do not contain the rotations of the hinged ends,
by using these equations the rotations 6,, and 6, of the simple

supports can be eliminated, which will then involve only one
unknown joint rotation, 6;.

60 kN
15 kN/m

S

-
~ -~ -



1. Degree of Freedom

eB
2. Fixed-End Moments
FEM ,, _15(10)° =125kN —m ) or +125 kN-m
FEM,, =125kN—m) or —125 kN-m
FEM ,, = 6Oglo)+ 15 ?20)2 =200 kN —m ) or +200 kN-m
FEM ,, =200 kN —m ) or —200 kN-m

60 kN
15 kN/m

S -

~ -~ -



3. Slope-Deflection Equations

Since both members of the beam have one end hinged, we use
Egs. 15 to obtain the slope-deflection equations for both members.

M, =0 ANS
M,, = ﬂ(93)+ (— 125 1253 0.3E18, —187.5 (1)
10 2 )
M, = 3E( )(eB)+(200+@\ = 0.6E16, +300 (2)
10 2 )
M,, =0 ANS
60 kN

15 kN/m

S -

-
~ -~ -



4. Equilibrium Equations

By considering the moment equilibrium of the free body of joint B,
we obtain the equilibrium equation

IVIBA B
(2 )
I\/IBD
M, +M, =0 3)
5. Joint Rotation

To determine the unknown joint rotation 6; we substitute the SDE
(Egs. 1 &2) into the equilibrium equations Eq. 3 to obtain



6. Joint Rotation

(0.3E10, —187.5)+(0.6EI&, +300)=0

or

0.9E10, =—112.5

from which

EIf, =—125kN —m®

7. Member End Moments

The member end moments can now be computed by substituting

the numerical value of EIB; into the slope-deflection equations
(Egs. 1 & 2).
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8. Member End Moments

M,, =03(-125)-187.5=-225kN —m or  225kN-m ) ANS
M g, = 0.6(~125)+300 =225 kN —m ) ANS
9. Member End Shears and Support reactions
60 kN
15 kN/m 97. 5 127-5 15 kN/m
H¢¢¢¢¢ C ) Clllliil
T 225 225 T 2 s TB CT
52.5 97.5 127.5 82.5
B, = 225
60 kN

15 kN/m

Oii iiLi"l“‘iﬂil lllllli

52.5 kN 225 kN 82 5 kN 83
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10. Equilibrium Checks

60 kN
15 kN/m

add | i}fi"‘i‘“&;&;l l ll Vo

% “““ A ”%

52.5kN 225 kN 82.5 kN
+TXF, =0
52.5-15(20)+225-60+82.5=0 Checks
+(2M,.=0

—52.5(20)+15(20)10)—225(10)+60(5) =0 Checks



11. Shear Force & Bending Moment Diagrams

60 kN
15 kN/m

: %u uu%iu Cl o %

52.5 kN 225 kN 82.5 kN
127.5
52.5
52.5
16.2 ft
A E B D
< > C
3.5m -7.5
-82.5

-97.5

85



11. Shear Force & Bending Moment Diagrams

60 kN
15 kN/m

: %u uu%iu Cl o %

52.5 kN 225 kN 82.5 kN

225 86



Example 3

Determine the member end moments and reactions for the three-
span continuous beam shown, due to the uniformly distributed
load and due to the support settlements of 5/8 in. at B, and 1.5 in.

at C, and % in. at D.

2 k/ft

Aiiiiiﬂiiilli,}cllllﬂb

El = 29,000 ksi
| =7800in.*



Solution

1. Degree of Freedom

Four joints of the beam are free to rotate, we will eliminate the
rotations of simple supports at ends A and D and use the modified

SDE for member AB and CD respectively.

The analysis will involve only two unknown joint rotations, 6; and
ec.

2 k/ft

Aﬂii$$iﬁt$lliﬂcllllﬁb’




2. Fixed End Moments

2
FEM ,, = FEM ,. = FEM ., = @ =66.7k—ft ) or +66.7 k-fi
FEM ,, = FEM ., = FEM . =66.7k— ft ) or —66.7 k-ft

3. Chord Rotations

The specified support settlements are shown on a exaggerated

scale. 2 /it

Aﬁiiiiiﬁiiiiii,?iciiiiﬂb

A B C D
\~~\“~§‘lw éin. ISin.
‘§‘~A~B~~ 5 l%in. _ 4
Bl \\§\‘*¢\\LI§JBC _ f””’ D’
-l ,djco
7
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3. Chord Rotations

2 k/ft

kb bl Llilybidliig,
B 9 c D,
—28 20ft ). 20ft
| | |
A B C 5
\\\\\-~\~\l~}|:}\Al3§ gin. . Iiin'
\B’\\\‘}\LPBC 2 ) *”’///D’
Tl ,/_’ﬁJCD
CI
W 4 :_0.0521 =-0.0026
WECZZ—KIO729=:—{LOO365
Wep = 15075 =0.00313

(12)20



4. Slope-deflection Equations

M, =0 ANS
3EI
My == (8, +0.0026)—100 = 0.15EI6, +0.00039 EI —100 (1)
M, = 213[ 26, +6,. —3(~0.00365)]+66.7
=0.2EI0, +0.1EI6,. +0.0011EI + 66.7 (2)
M, = 22E01 26, +6, —3(~0.00365)]-66.7
=0.1E16, +0.2EI8,. +0.0011EI — 66.7 (3)
3EI

M, = 2—0(9C ~0.00313)+100 = 0.15EI8,. —0.00047El +100  (4)

M, =0 ANS



5. Equilibrium Equations

Mo 8 M, +M,. =0 C (5)
/;,/; BA BC /;,/;
< ?\/IBC M+M. =0 < ?\/ICD (6)

6. Joint Rotations

By substituting the slope-deflection equations (Egs. 1 — 4) into the
equilibrium equations (Egs. 5 & 6), we obtain

0.35E16, +0.1E160,. =-0.00149E7 +33.3
0.1E10, +0.35E16,. =—-0.00063E7 —33.3

substituting EI = (29,000)(7,800)/(12)? k-ft? into the right sides of
the above equations yields



6. Joint Rotations

0.35E16, +0.1E16, = —2,307.24 (7)
0.1E16, +0.35E16, = —1,022.93 (8)

By solving Eqgs. (7) and (8) simultaneously, we determine the values
of EIB; and EIB; to be

EIO, =—6,268.81k — f¢’

EIf. =-1131.57.81k - fi’
7. Member End Moments

To compute the member end moments, substitute the numerical

values of EIB; and EIB. back into the slope-deflection equations
(Egs. 1 —4) to obtain
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7. Member End Moments

M,, =-427.7k— ft or 427 k-ft ) ANS
M, =42T7k—ft ) ANS
M, =808k—fi ) ANS
M, =—808k— fi ) or 808 k-fi ANS

8. Member End Shears and Support Reactions

Wl ¢>( C“ i Q( )8°8u U ¢
l 427.7 T 4277

B, =123.17 ¢ = 62 19

94
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8. Member End Shears and Support Reactions

41 38 81 79 41. 79 20 4
2 k/ft 2 k/ft 208 808 2 k/ft

Widddidl HiHli Hiiiii
I )C C )C 3(1

427.7 T 427. 7
1.38 41 38 81.79 41 79
B, = 123.17

C, = 62 19

2 k/ft

Ai¢¢¢¢ﬂi¢3¢iii9}ciiiijﬂ

l T | T

1.38 k 123.17 k 62.19 k 60.4 k

95



9. Shear and Bending Moment Diagrams
2 k/ft

Aﬁiiiiiﬁ%ilib}ciiilﬂb

l T | T

1.38 k 123.17 k 62.19 k 60.4 k

81.79
A D
B C
-1.38
-20.4
-41.38

-60.4 &



9. Shear and Bending Moment Diagrams
2 k/ft
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1.38 k 123.17 k 62.19 k 60.4 k
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