
MS&E 226: “Small” Data
Lecture 2: Linear Regression (v2)

Ramesh Johari
rjohari@stanford.edu

September 26, 2016

1 / 36



Summarizing a sample
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A sample

Suppose Y = (Y1, . . . , Yn) is a sample of real-valued observations.

Simple statistics:

I Sample mean:

Y =
1

n

n∑
i=1

Yi.

I Sample median:
I Order Yi from lowest to highest.
I Median is average of n/2’th and (n/2 + 1)’st elements of this

list (if n is even)
or (n+ 1)/2’th element of this list (if n is odd)

I More robust to “outliers”
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A sample

Suppose Y = (Y1, . . . , Yn) is a sample of real-valued observations.

Simple statistics:

I Sample standard deviation:

σ̂Y =

√√√√ 1

n− 1

n∑
i=1

(Yi − Y )2.

Measures dispersion of the data.
(Why n− 1? See homework.)
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Example in R

Children’s IQ scores + mothers’ characteristics
from National Longitudinal Survey of Youth (via [DAR])

Download from course site; lives in child.iq/kidiq.dta

> library(foreign)

> kidiq = read.dta("ARM_Data/child.iq/kidiq.dta")

> mean(kidiq$kid_score)

[1] 86.79724

> median(kidiq$kid_score)

[1] 90

> sd(kidiq$kid_score)

[1] 20.41069
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Relationships
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Modeling relationships

We focus on a particular type of summarization:

Modeling the relationship between observations.

Formally:

I Let Yi, i = 1, . . . , n, be the i’th observed (real-valued)
outcome.
Let Y = (Y1, . . . , Yn)

I Let Xij , i = 1, . . . , n, j = 1, . . . , p be the i’th observation of
the j’th (real-valued) covariate.
Let Xi = (Xi1, . . . , Xip).
Let X be the matrix whose rows are Xi.
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Pictures and names

How to visualize Y and X?

Names for the Yi’s:
outcomes, response variables, target variables, dependent variables

Names for the Xij ’s:
covariates, features, regressors, predictors, explanatory variables,
independent variables

X is also called the design matrix.
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Example in R

The kidiq dataset loaded earlier contains the following columns:

kid_score Child’s score on IQ test
mom_hs Did mom complete high school?
mom_iq Mother’s score on IQ test
mom_work Working mother?
mom_age Mother’s age at birth of child

[ Note: Always question how variables are defined! ]

Reasonable question:

How is kid_score related to the other variables?

8 / 36



Example in R

> kidiq

kid_score mom_hs mom_iq mom_work mom_age

1 65 1 121.11753 4 27

2 98 1 89.36188 4 25

3 85 1 115.44316 4 27

4 83 1 99.44964 3 25

5 115 1 92.74571 4 27

6 98 0 107.90184 1 18

...

We will treat kid_score as our outcome variable.
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Continuous variables

Variables such as kid_score and mom_iq are continuous variables:
they are naturally real-valued.

For now we only consider outcome variables that are continuous
(like kid_score).
Note: even continuous variables can be constrained:

I Both kid_score and mom_iq must be positive.

I mom_age must be a positive integer.
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Categorical variables

Other variables take on only finitely many values, e.g.:

I mom_hs is 0 (resp., 1) if mom did (resp., did not) attend high
school

I mom_work is a code that ranges from 1 to 4:
I 1 = did not work in first three years of child’s life
I 2 = worked in 2nd or 3rd year of child’s life
I 3 = worked part-time in first year of child’s life
I 4 = worked full-time in first year of child’s life

These are categorical variables (or factors).
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Modeling relationships

Goal:

Find a functional relationship f such that:

Yi ≈ f(Xi)

This is our first example of a “model.”

We use models for lots of things:

I Associations and correlations

I Predictions

I Causal relationships
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Linear regression models
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Linear relationships

We first focus on modeling the relationship between outcomes and
covariates as linear.

In other words: find coefficients β̂0, . . . , β̂p such that: 1

Yi ≈ β̂0 + β̂1Xi1 + · · ·+ β̂pXip.

This is a linear regression model.

1We use “hats” on variables to denote quantities computed from data. In
this case, whatever the coefficients are, they will have to be computed from the
data we were given.
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Matrix notation

We can compactly represent a linear model using matrix notation:

I Let β̂ = [β̂0, β̂1, · · · β̂p]> be the (p+ 1)× 1 column vector of
coefficients

I Expand X to have p+ 1 columns, where the first column
(indexed j = 0) is Xi0 = 1 for all i.

I Then the linear regression model is that for each i:

Yi ≈ Xiβ̂,

or even more compactly

Y ≈ Xβ̂.
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Matrix notation

A picture of Y, X, and β̂:
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Example in R

Running pairs(kidiq) gives us this plot:

kid_score
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Looks like kid_score is positively correlated with mom_iq.
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Example in R

Let’s build a simple regression model of kid_score against
mom_iq.

> fm = lm(formula = kid_score ~ 1 + mom_iq, data = kidiq)

> display(fm)

lm(formula = kid_score ~ 1 + mom_iq, data = kidiq)

coef.est coef.se

(Intercept) 25.80 5.92

mom_iq 0.61 0.06

...

In other words: kid_score ≈ 25.80 + 0.61 × mom_iq.

Note: You can get the display function and other helpers by installing the

arm package in R (using install.packages(’arm’)).
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Example in R
Here is the model plotted against the data:
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> library(ggplot2)

> ggplot(data = kidiq, aes(x = mom_iq, y = kid_score)) +

geom_point() +

geom_smooth(method="lm", se=FALSE)

Note: Install the ggplot2 package using install.packages(’ggplot2’). 19 / 36



Example in R: Multiple regression

We can include multiple covariates in our linear model.

> fm = lm(data = kidiq,

formula = kid_score ~ 1 + mom_iq + mom_hs)

> display(fm)

lm(formula = kid_score ~ 1 + mom_iq + mom_hs, data = kidiq)

coef.est coef.se

(Intercept) 25.73 5.88

mom_iq 0.56 0.06

mom_hs 5.95 2.21

(Note that the coefficient on mom_iq is different now...we will
discuss why later.)
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How to choose β̂?

There are many ways to choose β̂.

We focus primarily on ordinary least squares (OLS):

Choose β̂ so that

SSE = sum of squared errors =
n∑

i=1

(Yi − Ŷi)2

is minimized, where

Ŷi = Xiβ̂ = β̂0 +

p∑
i=1

β̂jXij

is the fitted value of the i’th observation.

This is what R (typically) does when you call lm.
(Later in the course we develop one justification for this choice.)
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Questions to ask

Here are some important questions to be asking:

I Is the resulting model a good fit?

I Does it make sense to use a linear model?

I Is minimizing SSE the right objective?

We start down this road by working through
the algebra of linear regression.
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Ordinary least squares: Solution
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OLS solution

From here on out we assume that p < n and
X has full rank = p+ 1.

(What does p < n mean, and why do we need it?)

Theorem
The vector β̂ that minimizes SSE is given by:

β̂ =
(
X>X

)−1
X>Y.

(Check that dimensions make sense here: β̂ is (p+ 1)× 1.)

24 / 36



OLS solution: Intuition

The SSE is the squared Euclidean norm of Y − Ŷ:

SSE =

n∑
i=1

(Yi − Ŷi)2 = ‖Y − Ŷ‖2 = ‖Y −Xβ̂‖2.

Note that as we vary β̂ we range over
linear combinations of the columns of X.

The collection of all such linear combinations is
the subspace spanned by the columns of X.

So the linear regression question is

What is the “closest” such linear combination to Y?
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OLS solution: Geometry
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OLS solution: Algebraic proof [∗]
Based on [SM], Exercise 3B14:

I Observe that X>X is symmetric and invertible. (Why?)

I Note that: X>r̂ = 0, where r̂ = Y −Xβ̂ is the vector of
residuals.
In other words: the residual vector is orthogonal to every
column of X.

I Now consider any vector γ that is (p+ 1)× 1. Note that:
Y −Xγ = r̂+X(β̂ − γ).

I Since r̂ is orthogonal to X, we get:

‖Y −Xγ‖2 = ‖r̂‖2 + ‖X(β̂ − γ)‖2.

I The preceding value is minimized when X(β̂ − γ) = 0.

I Since X has rank p+ 1, the preceding equation has the
unique solution γ = β̂.
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Hat matrix (useful for later) [∗]

Since: Ŷ = Xβ̂ = X(X>X)−1X>Y, we have:

Ŷ = HY,

where:
H = X(X>X)−1X>.

H is called the hat matrix.
It projects Y into the subspace spanned by the columns of X.
It is symmetric and idempotent (H2 = H).
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Residuals and R2
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Residuals

Let r̂ = Y − Ŷ = Y −Xβ̂ be the vector of residuals.

Our analysis shows us that: r̂ is orthogonal to every column of X.

In particular, r̂ is orthogonal to the all 1’s vector
(first column of X), so:

Y =
1

n

n∑
i=1

Yi =
1

n

n∑
i=1

Ŷi = Ŷ .

In other words, the residuals sum to zero, and
the original and fitted values have the same sample mean.
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Residuals

Since r̂ is orthogonal to every column of X,
we use the Pythagorean theorem to get:

‖Y‖2 = ‖r̂‖2 + ‖Ŷ‖2.

Using equality of sample means we get:

‖Y‖2 − nY 2
= ‖r̂‖2 + ‖Ŷ‖2 − nŶ

2
.
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Residuals

How do we interpret:

‖Y‖2 − nY 2
= ‖r̂‖2 + ‖Ŷ‖2 − nŶ

2
?

Note 1
n−1(‖Y‖

2 − nY 2
) is the sample variance of Y. 2

Note 1
n−1(‖Ŷ‖

2 − nŶ
2
) is the sample variance of Ŷ.

So this relation suggests how much of the variation in Y is
“explained” by Ŷ.

2Note that the (adjusted) sample variance is usually defined as
1

n−1

∑n
i=1(Yi − Y )2. You should check this is equal to the expression on the

slide!
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R2

Formally:

R2 =

∑n
i=1(Ŷi − Ŷ )2∑n
i=1(Yi − Y )2

is a measure of the fit of the model, with 0 ≤ R2 ≤ 1.3

When R2 is large, much of the outcome sample variance is
“explained” by the fitted values.

Note that R2 is an in-sample measurement of fit:

We used the data itself to construct a fit to the data.

3Note that this result depends on Y = Ŷ , which in turn depends on the fact
that the all 1’s vector is part of X, i.e., that our linear model has an intercept
term.
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Example in R

The full output of our model earlier includes R2:

> fm = lm(data = kidiq, formula = kid_score ~ 1 + mom_iq)

> display(fm)

lm(formula = kid_score ~ 1 + mom_iq, data = kidiq)

coef.est coef.se

(Intercept) 25.80 5.92

mom_iq 0.61 0.06

---

n = 434, k = 2

residual sd = 18.27, R-Squared = 0.20

Note: residual sd is the sample standard deviation of the residuals.
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Example in R
We can plot the residuals for our earlier model:
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> fm = lm(data = kidiq, formula = kid_score ~ 1 + mom_iq)

> plot(fitted(fm), residuals(fm))

> abline(0,0)

Note: We generally plot residuals against fitted values, not the original

outcomes. You will investigate why on your next problem set.
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Questions

I What do you hope to see when you plot the residuals?

I Why might R2 be high, yet the model fit poorly?

I Why might R2 be low, and yet the model be useful?

I What happens to R2 if we add additional covariates to the
model?
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