MS&E 226: "Small" Data Lecture 2: Linear Regression (v2)

> Ramesh Johari rjohari@stanford.edu

> > September 26, 2016

Summarizing a sample

A sample

Suppose $\mathbf{Y} = (Y_1, \dots, Y_n)$ is a sample of real-valued *observations*. Simple statistics:

Sample mean:

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i.$$

A sample

Suppose $\mathbf{Y} = (Y_1, \dots, Y_n)$ is a sample of real-valued *observations*. Simple statistics:

Sample mean:

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i.$$

Sample median:

- Order Y_i from lowest to highest.
- Median is average of n/2'th and (n/2 + 1)'st elements of this list (if n is even)
 - or (n+1)/2'th element of this list (if n is odd)
- More robust to "outliers"

A sample

Suppose $\mathbf{Y} = (Y_1, \dots, Y_n)$ is a sample of real-valued *observations*. Simple statistics:

Sample standard deviation:

$$\hat{\sigma}_Y = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (Y_i - \overline{Y})^2}.$$

Measures dispersion of the data. (Why n - 1? See homework.)

Children's IQ scores + mothers' characteristics from National Longitudinal Survey of Youth (via [DAR])

Download from course site; lives in child.iq/kidiq.dta

```
> library(foreign)
> kidiq = read.dta("ARM_Data/child.iq/kidiq.dta")
> mean(kidiq$kid_score)
[1] 86.79724
> median(kidiq$kid_score)
[1] 90
> sd(kidiq$kid_score)
[1] 20.41069
```

Relationships

Modeling relationships

We focus on a particular type of summarization:

Modeling the relationship between observations.

Formally:

- ▶ Let Y_i, i = 1,..., n, be the i'th observed (real-valued) outcome.
 Let Y = (Y₁,..., Y_n)
- ▶ Let X_{ij}, i = 1,...,n, j = 1,...,p be the i'th observation of the j'th (real-valued) covariate.
 Let X_i = (X_{i1},...,X_{ip}).
 Let X be the matrix whose rows are X_i.

Pictures and names

How to visualize \mathbf{Y} and \mathbf{X} ?

Names for the Y_i 's: outcomes, response variables, target variables, dependent variables

Names for the X_{ij} 's: covariates, features, regressors, predictors, explanatory variables, independent variables

 ${f X}$ is also called the *design matrix*.

The kidiq dataset loaded earlier contains the following columns:

kid_score	Child's score on IQ test
mom_hs	Did mom complete high school?
mom_iq	Mother's score on IQ test
mom_work	Working mother?
mom_age	Mother's age at birth of child

[Note: Always question how variables are defined!]

Reasonable question:

How is kid_score related to the other variables?

>	kidiq				
	kid_score	mom_hs	mom_iq	mom_work	mom_age
1	65	1	121.11753	4	27
2	98	1	89.36188	4	25
3	85	1	115.44316	4	27
4	83	1	99.44964	3	25
5	115	1	92.74571	4	27
6	98	0	107.90184	1	18

We will treat kid_score as our outcome variable.

Variables such as kid_score and mom_iq are *continuous* variables: they are naturally real-valued.

For now we only consider outcome variables that are continuous (like kid_score).

Note: even continuous variables can be constrained:

- Both kid_score and mom_iq must be positive.
- mom_age must be a positive integer.

Categorical variables

Other variables take on only finitely many values, e.g.:

- mom_hs is 0 (resp., 1) if mom did (resp., did not) attend high school
- mom_work is a code that ranges from 1 to 4:
 - 1 = did not work in first three years of child's life
 - 2 = worked in 2nd or 3rd year of child's life
 - 3 = worked part-time in first year of child's life
 - 4 = worked full-time in first year of child's life

These are *categorical variables* (or *factors*).

Modeling relationships

Goal:

Find a functional relationship f such that:

 $Y_i \approx f(\mathbf{X}_i)$

This is our first example of a "model."

We use models for lots of things:

- Associations and correlations
- Predictions
- Causal relationships

Linear regression models

Linear relationships

We first focus on modeling the relationship between outcomes and covariates as *linear*.

In other words: find coefficients $\hat{\beta}_0, \ldots, \hat{\beta}_p$ such that: ¹

$$Y_i \approx \hat{\beta}_0 + \hat{\beta}_1 X_{i1} + \dots + \hat{\beta}_p X_{ip}.$$

This is a linear regression model.

¹We use "hats" on variables to denote quantities computed from data. In this case, whatever the coefficients are, they will have to be computed from the data we were given.

Matrix notation

We can compactly represent a linear model using matrix notation:

- Let $\hat{\beta} = [\hat{\beta}_0, \hat{\beta}_1, \cdots \hat{\beta}_p]^\top$ be the $(p+1) \times 1$ column vector of coefficients
- ► Expand X to have p + 1 columns, where the first column (indexed j = 0) is X_{i0} = 1 for all i.
- Then the linear regression model is that for each *i*:

$$Y_i \approx \mathbf{X}_i \hat{\boldsymbol{\beta}},$$

or even more compactly

$$\mathbf{Y} \approx \mathbf{X} \hat{\boldsymbol{\beta}}.$$

Matrix notation

A picture of \mathbf{Y} , \mathbf{X} , and $\hat{\boldsymbol{\beta}}$:

Running pairs(kidiq) gives us this plot:

Looks like kid_score is positively correlated with mom_iq.

Let's build a simple regression model of kid_score against mom_iq.

In other words: kid_score $\approx 25.80 + 0.61 \times \text{mom_iq}$.

Note: You can get the display function and other helpers by installing the arm package in R (using install.packages('arm')).

Here is the model plotted against the data:

- > library(ggplot2)
- > ggplot(data = kidiq, aes(x = mom_iq, y = kid_score)) +
 geom_point() +
 geom_smooth(method="lm", se=FALSE)

Note: Install the ggplot2 package using install.packages('ggplot2'). 19/36

Example in R: Multiple regression

We can include multiple covariates in our linear model.

(Note that the coefficient on mom_iq is different now...we will discuss why later.)

How to choose $\hat{\beta}$?

There are many ways to choose $\hat{\beta}$.

We focus primarily on *ordinary least squares* (OLS): Choose $\hat{\beta}$ so that

$$SSE = sum of squared errors = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

is minimized, where

$$\hat{Y}_i = \mathbf{X}_i \hat{\boldsymbol{\beta}} = \hat{\beta}_0 + \sum_{i=1}^p \hat{\beta}_j X_{ij}$$

is the *fitted* value of the i'th observation.

This is what R (typically) does when you call 1m. (Later in the course we develop one justification for this choice.)

Questions to ask

Here are some important questions to be asking:

- Is the resulting model a good fit?
- Does it make sense to use a linear model?
- Is minimizing SSE the right objective?

We start down this road by working through *the algebra of linear regression*.

Ordinary least squares: Solution

OLS solution

From here on out we assume that p < n and **X** has *full* rank = p + 1.

(What does p < n mean, and why do we need it?)

Theorem

The vector $\hat{\boldsymbol{\beta}}$ that minimizes SSE is given by:

$$\hat{\boldsymbol{eta}} = \left(\mathbf{X}^{\top} \mathbf{X} \right)^{-1} \mathbf{X}^{\top} \mathbf{Y}.$$

(Check that dimensions make sense here: $\hat{\beta}$ is $(p+1) \times 1$.)

OLS solution: Intuition

The SSE is the squared Euclidean norm of $\mathbf{Y}-\hat{\mathbf{Y}}:$

$$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \|\mathbf{Y} - \hat{\mathbf{Y}}\|^2 = \|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|^2.$$

Note that as we vary $\hat{\beta}$ we range over linear combinations of the columns of X.

The collection of all such linear combinations is the *subspace* spanned by the columns of \mathbf{X} .

So the linear regression question is

What is the "closest" such linear combination to \mathbf{Y} ?

OLS solution: Geometry

OLS solution: Algebraic proof [*]

Based on [SM], Exercise 3B14:

- ► Observe that X^TX is symmetric and invertible. (Why?)
- Note that: X[⊤] r̂ = 0, where r̂ = Y − Xβ̂ is the vector of residuals.

In other words: the residual vector is orthogonal to every column of \mathbf{X} .

- ▶ Now consider any vector γ that is $(p+1) \times 1$. Note that: $\mathbf{Y} - \mathbf{X}\gamma = \hat{\mathbf{r}} + \mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\gamma}).$
- Since $\hat{\mathbf{r}}$ is orthogonal to \mathbf{X} , we get:

$$\|\mathbf{Y} - \mathbf{X}\boldsymbol{\gamma}\|^2 = \|\hat{\mathbf{r}}\|^2 + \|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\gamma})\|^2.$$

- The preceding value is minimized when $\mathbf{X}(\hat{\boldsymbol{eta}}-\boldsymbol{\gamma})=0.$
- Since X has rank p+1, the preceding equation has the unique solution γ = β̂.

Hat matrix (useful for later) [*]

Since:
$$\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{Y}$$
, we have
 $\hat{\mathbf{Y}} = \mathbf{H}\mathbf{Y}$,

where:

$$\mathbf{H} = \mathbf{X} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top}.$$

H is called the *hat* matrix.

It projects \mathbf{Y} into the subspace spanned by the columns of \mathbf{X} . It is symmetric and *idempotent* ($\mathbf{H}^2 = \mathbf{H}$).

Residuals and R^2

Residuals

Let $\hat{\mathbf{r}} = \mathbf{Y} - \hat{\mathbf{Y}} = \mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}$ be the vector of *residuals*.

Our analysis shows us that: $\hat{\mathbf{r}}$ is orthogonal to every column of \mathbf{X} . In particular, $\hat{\mathbf{r}}$ is orthogonal to the all 1's vector

(first column of ${f X}$), so:

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i = \frac{1}{n} \sum_{i=1}^{n} \hat{Y}_i = \hat{\overline{Y}}.$$

In other words, the residuals sum to zero, and the original and fitted values have the same sample mean.

Residuals

Since $\hat{\mathbf{r}}$ is orthogonal to every column of $\mathbf{X},$ we use the Pythagorean theorem to get:

 $\|\mathbf{Y}\|^2 = \|\hat{\mathbf{r}}\|^2 + \|\hat{\mathbf{Y}}\|^2.$

Using equality of sample means we get:

$$\|\mathbf{Y}\|^2 - n\overline{Y}^2 = \|\hat{\mathbf{r}}\|^2 + \|\hat{\mathbf{Y}}\|^2 - n\overline{\hat{Y}}^2.$$

Residuals

How do we interpret:

$$\|\mathbf{Y}\|^2 - n\overline{Y}^2 = \|\hat{\mathbf{r}}\|^2 + \|\hat{\mathbf{Y}}\|^2 - n\hat{\overline{Y}}^2 ?$$

Note $\frac{1}{n-1}(\|\mathbf{Y}\|^2 - n\overline{Y}^2)$ is the sample variance of \mathbf{Y} .²

Note
$$\frac{1}{n-1}(\|\hat{\mathbf{Y}}\|^2 - n\hat{\overline{Y}}^2)$$
 is the sample variance of $\hat{\mathbf{Y}}$.

So this relation suggests how much of the variation in ${\bf Y}$ is "explained" by $\hat{{\bf Y}}.$

²Note that the (adjusted) sample variance is usually defined as $\frac{1}{n-1}\sum_{i=1}^n(Y_i-\overline{Y})^2$. You should check this is equal to the expression on the slide!

Formally:

$$R^{2} = \frac{\sum_{i=1}^{n} (\hat{Y}_{i} - \overline{\bar{Y}})^{2}}{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}}$$

is a measure of the *fit* of the model, with $0 \le R^2 \le 1.^3$

When ${\cal R}^2$ is large, much of the outcome sample variance is "explained" by the fitted values.

Note that R^2 is an *in-sample* measurement of fit:

We used the data itself to construct a fit to the data.

³Note that this result depends on $\overline{Y} = \hat{\overline{Y}}$, which in turn depends on the fact that the all 1's vector is part of **X**, i.e., that our linear model has an intercept term.

The full output of our model earlier includes R^2 :

Note: residual sd is the sample standard deviation of the residuals.

We can plot the residuals for our earlier model:

> fm = lm(data = kidiq, formula = kid_score ~ 1 + mom_iq)
> plot(fitted(fm), residuals(fm))
> abline(0.0)

Note: We generally plot residuals against *fitted* values, not the original outcomes. You will investigate why on your next problem set.

Questions

- What do you hope to see when you plot the residuals?
- Why might R^2 be high, yet the model fit poorly?
- Why might R^2 be low, and yet the model be useful?
- ► What happens to R² if we add additional covariates to the model?