MS\&E 226: "Small" Data

Lecture 2: Linear Regression (v2)

Ramesh Johari
rjohari@stanford.edu

September 26, 2016

Summarizing a sample

A sample

Suppose $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right)$ is a sample of real-valued observations.
Simple statistics:

- Sample mean:

$$
\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i} .
$$

A sample

Suppose $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right)$ is a sample of real-valued observations.
Simple statistics:

- Sample mean:

$$
\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}
$$

- Sample median:
- Order Y_{i} from lowest to highest.
- Median is average of $n / 2$ 'th and ($n / 2+1$)'st elements of this list (if n is even)
or $(n+1) / 2^{\prime}$ th element of this list (if n is odd)
- More robust to "outliers"

A sample

Suppose $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right)$ is a sample of real-valued observations.
Simple statistics:

- Sample standard deviation:

$$
\hat{\sigma}_{Y}=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}} .
$$

Measures dispersion of the data.
(Why $n-1$? See homework.)

Example in R

Children's IQ scores + mothers' characteristics from National Longitudinal Survey of Youth (via [DAR])

Download from course site; lives in child.iq/kidiq.dta
> library (foreign)
> kidiq = read.dta("ARM_Data/child.iq/kidiq.dta")
> mean(kidiq\$kid_score)
[1] 86.79724
> median(kidiq\$kid_score)
[1] 90
> sd(kidiq\$kid_score)
[1] 20.41069

Relationships

Modeling relationships

We focus on a particular type of summarization:
Modeling the relationship between observations.
Formally:

- Let $Y_{i}, i=1, \ldots, n$, be the i 'th observed (real-valued) outcome.
Let $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right)$
- Let $X_{i j}, i=1, \ldots, n, j=1, \ldots, p$ be the i 'th observation of the j 'th (real-valued) covariate.
Let $\mathbf{X}_{i}=\left(X_{i 1}, \ldots, X_{i p}\right)$.
Let \mathbf{X} be the matrix whose rows are \mathbf{X}_{i}.

Pictures and names

How to visualize \mathbf{Y} and \mathbf{X} ?

Names for the Y_{i} 's:
outcomes, response variables, target variables, dependent variables
Names for the $X_{i j}$'s:
covariates, features, regressors, predictors, explanatory variables, independent variables
\mathbf{X} is also called the design matrix.

Example in R

The kidiq dataset loaded earlier contains the following columns:

$$
\begin{array}{ll}
\text { kid_score } & \text { Child's score on IQ test } \\
\text { mom_hs } & \text { Did mom complete high school? } \\
\text { mom_iq } & \text { Mother's score on IQ test } \\
\text { mom_work } & \text { Working mother? } \\
\text { mom_age } & \text { Mother's age at birth of child }
\end{array}
$$

[Note: Always question how variables are defined!]
Reasonable question:
How is kid_score related to the other variables?

Example in R

> kidiq
kid_score mom_hs mom_iq mom_work mom_age

1	65	1	121.11753	4	27
2	98	1	89.36188	4	25
3	85	1	115.44316	4	27
4	83	1	99.44964	3	25
5	115	1	92.74571	4	27
6	98	0	107.90184	1	18

We will treat kid_score as our outcome variable.

Continuous variables

Variables such as kid_score and mom_iq are continuous variables: they are naturally real-valued.

For now we only consider outcome variables that are continuous (like kid_score).
Note: even continuous variables can be constrained:

- Both kid_score and mom_iq must be positive.
- mom_age must be a positive integer.

Categorical variables

Other variables take on only finitely many values, e.g.:

- mom_hs is 0 (resp., 1) if mom did (resp., did not) attend high school
- mom_work is a code that ranges from 1 to 4 :
- $1=$ did not work in first three years of child's life
- $2=$ worked in 2 nd or 3 rd year of child's life
- $3=$ worked part-time in first year of child's life
- $4=$ worked full-time in first year of child's life

These are categorical variables (or factors).

Modeling relationships

Goal:
Find a functional relationship f such that:

$$
Y_{i} \approx f\left(\mathbf{X}_{i}\right)
$$

This is our first example of a "model."
We use models for lots of things:

- Associations and correlations
- Predictions
- Causal relationships

Linear regression models

Linear relationships

We first focus on modeling the relationship between outcomes and covariates as linear.

In other words: find coefficients $\hat{\beta}_{0}, \ldots, \hat{\beta}_{p}$ such that: ${ }^{1}$

$$
Y_{i} \approx \hat{\beta}_{0}+\hat{\beta}_{1} X_{i 1}+\cdots+\hat{\beta}_{p} X_{i p}
$$

This is a linear regression model.

[^0]
Matrix notation

We can compactly represent a linear model using matrix notation:

- Let $\hat{\boldsymbol{\beta}}=\left[\hat{\beta}_{0}, \hat{\beta}_{1}, \cdots \hat{\beta}_{p}\right]^{\top}$ be the $(p+1) \times 1$ column vector of coefficients
- Expand \mathbf{X} to have $p+1$ columns, where the first column (indexed $j=0$) is $X_{i 0}=1$ for all i.
- Then the linear regression model is that for each i :

$$
Y_{i} \approx \mathbf{X}_{i} \hat{\boldsymbol{\beta}}
$$

or even more compactly

$$
\mathbf{Y} \approx \mathbf{X} \hat{\boldsymbol{\beta}}
$$

Matrix notation

A picture of \mathbf{Y}, \mathbf{X}, and $\hat{\boldsymbol{\beta}}$:

Example in R

Running pairs(kidiq) gives us this plot:

Looks like kid_score is positively correlated with mom_iq.

Example in R

Let's build a simple regression model of kid_score against mom_iq.
> fm = lm(formula = kid_score ~ 1 + mom_iq, data = kidiq)
> display(fm)
lm(formula = kid_score ~ 1 + mom_iq, data = kidiq)
coef.est coef.se
(Intercept) $25.80 \quad 5.92$
$\begin{array}{lll}\text { mom_iq } & 0.61 \quad 0.06\end{array}$

In other words: kid_score $\approx 25.80+0.61 \times$ mom_iq.
Note: You can get the display function and other helpers by installing the arm package in R (using install.packages ('arm')).

Example in R

Here is the model plotted against the data:

> library (ggplot2)
> ggplot(data = kidiq, aes(x = mom_iq, y = kid_score)) + geom_point() +
geom_smooth(method="lm", se=FALSE)
Note: Install the ggplot2 package using install.packages('ggplot2').

Example in R: Multiple regression

We can include multiple covariates in our linear model.

```
> fm = lm(data = kidiq,
    formula = kid_score ~ 1 + mom_iq + mom_hs)
> display(fm)
lm(formula = kid_score ~ 1 + mom_iq + mom_hs, data = kidiq)
    coef.est coef.se
(Intercept) 25.73 5.88
mom_iq 0.56 0.06
mom_hs 5.95 2.21
```

(Note that the coefficient on mom_iq is different now...we will discuss why later.)

How to choose $\hat{\boldsymbol{\beta}}$?

There are many ways to choose $\hat{\boldsymbol{\beta}}$.
We focus primarily on ordinary least squares (OLS):
Choose $\hat{\beta}$ so that

$$
\mathrm{SSE}=\text { sum of squared errors }=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}
$$

is minimized, where

$$
\hat{Y}_{i}=\mathbf{X}_{i} \hat{\boldsymbol{\beta}}=\hat{\beta}_{0}+\sum_{i=1}^{p} \hat{\beta}_{j} X_{i j}
$$

is the fitted value of the i 'th observation.
This is what R (typically) does when you call lm.
(Later in the course we develop one justification for this choice.)

Questions to ask

Here are some important questions to be asking:

- Is the resulting model a good fit?
- Does it make sense to use a linear model?
- Is minimizing SSE the right objective?

We start down this road by working through the algebra of linear regression.

Ordinary least squares: Solution

OLS solution

From here on out we assume that $p<n$ and \mathbf{X} has full rank $=p+1$.
(What does $p<n$ mean, and why do we need it?)

Theorem

The vector $\hat{\boldsymbol{\beta}}$ that minimizes SSE is given by:

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}
$$

(Check that dimensions make sense here: $\hat{\boldsymbol{\beta}}$ is $(p+1) \times 1$.)

OLS solution: Intuition

The SSE is the squared Euclidean norm of $\mathbf{Y}-\hat{\mathbf{Y}}$:

$$
\mathrm{SSE}=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}=\|\mathbf{Y}-\hat{\mathbf{Y}}\|^{2}=\|\mathbf{Y}-\mathbf{X} \hat{\boldsymbol{\beta}}\|^{2}
$$

Note that as we vary $\hat{\boldsymbol{\beta}}$ we range over linear combinations of the columns of \mathbf{X}.

The collection of all such linear combinations is the subspace spanned by the columns of \mathbf{X}.

So the linear regression question is
What is the "closest" such linear combination to \mathbf{Y} ?

OLS solution: Geometry

OLS solution: Algebraic proof [*]

Based on [SM], Exercise 3B14:

- Observe that $\mathbf{X}^{\top} \mathbf{X}$ is symmetric and invertible. (Why?)
- Note that: $\mathbf{X}^{\top} \hat{\mathbf{r}}=0$, where $\hat{\mathbf{r}}=\mathbf{Y}-\mathbf{X} \hat{\boldsymbol{\beta}}$ is the vector of residuals.
In other words: the residual vector is orthogonal to every column of \mathbf{X}.
- Now consider any vector γ that is $(p+1) \times 1$. Note that: $\mathbf{Y}-\mathbf{X} \boldsymbol{\gamma}=\hat{\mathbf{r}}+\mathbf{X}(\hat{\boldsymbol{\beta}}-\boldsymbol{\gamma})$.
- Since $\hat{\mathbf{r}}$ is orthogonal to \mathbf{X}, we get:

$$
\|\mathbf{Y}-\mathbf{X} \gamma\|^{2}=\|\hat{\mathbf{r}}\|^{2}+\|\mathbf{X}(\hat{\boldsymbol{\beta}}-\gamma)\|^{2}
$$

- The preceding value is minimized when $\mathbf{X}(\hat{\boldsymbol{\beta}}-\boldsymbol{\gamma})=0$.
- Since \mathbf{X} has rank $p+1$, the preceding equation has the unique solution $\gamma=\hat{\boldsymbol{\beta}}$.

Hat matrix (useful for later) [*]

Since: $\hat{\mathbf{Y}}=\mathbf{X} \hat{\boldsymbol{\beta}}=\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}$, we have:

$$
\hat{\mathbf{Y}}=\mathbf{H Y}
$$

where:

$$
\mathbf{H}=\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}
$$

\mathbf{H} is called the hat matrix.
It projects \mathbf{Y} into the subspace spanned by the columns of \mathbf{X}.
It is symmetric and idempotent $\left(\mathbf{H}^{2}=\mathbf{H}\right)$.

Residuals and R^{2}

Residuals

Let $\hat{\mathbf{r}}=\mathbf{Y}-\hat{\mathbf{Y}}=\mathbf{Y}-\mathbf{X} \hat{\boldsymbol{\beta}}$ be the vector of residuals.
Our analysis shows us that: $\hat{\mathbf{r}}$ is orthogonal to every column of \mathbf{X}.
In particular, $\hat{\mathbf{r}}$ is orthogonal to the all 1's vector (first column of \mathbf{X}), so:

$$
\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}=\frac{1}{n} \sum_{i=1}^{n} \hat{Y}_{i}=\hat{\bar{Y}}
$$

In other words, the residuals sum to zero, and the original and fitted values have the same sample mean.

Residuals

Since $\hat{\mathbf{r}}$ is orthogonal to every column of \mathbf{X}, we use the Pythagorean theorem to get:

$$
\|\mathbf{Y}\|^{2}=\|\hat{\mathbf{r}}\|^{2}+\|\hat{\mathbf{Y}}\|^{2}
$$

Using equality of sample means we get:

$$
\|\mathbf{Y}\|^{2}-n \bar{Y}^{2}=\|\hat{\mathbf{r}}\|^{2}+\|\hat{\mathbf{Y}}\|^{2}-n \hat{\bar{Y}}^{2}
$$

Residuals

How do we interpret:

$$
\|\mathbf{Y}\|^{2}-n \bar{Y}^{2}=\|\hat{\mathbf{r}}\|^{2}+\|\hat{\mathbf{Y}}\|^{2}-n \hat{\bar{Y}}^{2} ?
$$

Note $\frac{1}{n-1}\left(\|\mathbf{Y}\|^{2}-n \bar{Y}^{2}\right)$ is the sample variance of $\mathbf{Y} .{ }^{2}$
Note $\frac{1}{n-1}\left(\|\hat{\mathbf{Y}}\|^{2}-n \hat{\bar{Y}}^{2}\right)$ is the sample variance of $\hat{\mathbf{Y}}$.
So this relation suggests how much of the variation in \mathbf{Y} is "explained" by $\hat{\mathbf{Y}}$.

[^1]
R^{2}

Formally:

$$
R^{2}=\frac{\sum_{i=1}^{n}\left(\hat{Y}_{i}-\hat{\bar{Y}}\right)^{2}}{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}
$$

is a measure of the fit of the model, with $0 \leq R^{2} \leq 1$. 3
When R^{2} is large, much of the outcome sample variance is "explained" by the fitted values.

Note that R^{2} is an in-sample measurement of fit:
We used the data itself to construct a fit to the data.
> ${ }^{3}$ Note that this result depends on $\bar{Y}=\hat{\bar{Y}}$, which in turn depends on the fact that the all 1's vector is part of \mathbf{X}, i.e., that our linear model has an intercept term.

Example in R

The full output of our model earlier includes R^{2} :
> fm $=$ lm(data $=$ kidiq, formula $=$ kid_score $\sim 1+$ mom_iq)
> display (fm)
lm(formula = kid_score $\sim 1+$ mom_iq, data = kidiq) coef.est coef.se
(Intercept) $25.80 \quad 5.92$
$\begin{array}{lll}\text { mom_iq } & 0.61 \quad 0.06\end{array}$

$\mathrm{n}=434, \mathrm{k}=2$
residual $s d=18.27, R$-Squared $=0.20$
Note: residual sd is the sample standard deviation of the residuals.

Example in R

We can plot the residuals for our earlier model:

> fm = lm (data = kidiq, formula = kid_score ~ 1 + mom_iq)
> plot(fitted(fm), residuals(fm))
> abline (0,0)
Note: We generally plot residuals against fitted values, not the original outcomes. You will investigate why on your next problem set.

Questions

-What do you hope to see when you plot the residuals?

- Why might R^{2} be high, yet the model fit poorly?
- Why might R^{2} be low, and yet the model be useful?
- What happens to R^{2} if we add additional covariates to the model?

[^0]: ${ }^{1}$ We use "hats" on variables to denote quantities computed from data. In this case, whatever the coefficients are, they will have to be computed from the data we were given.

[^1]: ${ }^{2}$ Note that the (adjusted) sample variance is usually defined as $\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}$. You should check this is equal to the expression on the slide!

