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ABSTRACT 
 
In the present study, we have developed a smart flapping wing with a MFC (macro-fiber composites) actuator. To 
mimic the flying mechanisms of nature’s flyers such as birds or insects, the aerodynamic characteristics related to the 
birds and ornithopters are investigated. To measure the aerodynamic forces of flapping devices, a test stand consisting 
of two loadcells is manufactured, and the dynamic tests are performed for an onithopter. The smart flapping wing is 
designed and manufactured using composite materials and MFC actuators. The camber of the wing can be changed by 
using the surface actuators to enhance the aerodynamic performance of the wing. Finally, aerodynamic tests are 
performed in a subsonic wind tunnel to evaluate the dynamic characteristics of the smart flapping wing. Experimental 
results show that unsteady flow effects are increased with low velocity in high flapping frequency regions, and that the 
deformation of the wing surface generated by the MFC is enough to control the lift and thrust. The lift generated by the 
smart flapping wing can be increased by 20% when the MFC is actuated. 
 
Keywords: Bird flight, flapping wing, Macro Fiber Composite, biomimetic design 
 

1. INTRODUCTION 
 
Bird and insect flight has fascinated humans for many centuries, and the imitation of their flapping wing flight has been 
the oldest aeronautical dream. The biological flapping flight, which has evolved over 150 million years, is one of the 
nature’s optimized locomotion experiments. Because of the aerodynamic and mechanical complexity, however, 
complete and exact analysis of the flapping flight is not available [1].  

One of the methods to make a successful flapping vehicle is to evaluate and mimic the nature’s flyers such as insects, 
birds or bats. Much effort has been made for flapping flight vehicles named ornithopter by using the biomimetic 
designs. Pornsin-sirirak et al. [2,3] developed a palm-sized onithopter named “Microbat”. Its wings were manufactured 
by using MEMS technology, and the aerodynamic forces of the wings were measured by static and dynamic tests. SMA 
(Shape-memory-alloy) wires were used as muscle wires to control the elevator and rudder of the battery-powered 
ornithopter with a radio control system. The total weight was 12.5g and the flight duration of 49 seconds was achieved. 
Liger et al. [4,5] manufactured passive and adaptive valves by using MEMS technology. The wing skins were integrated 
with the electrostatic check-valves to control the distribution of the pressure on the wings during flapping. Jones et al. 
[6-8] developed a micro air vehicle which was propelled by a pair of flapping wings. The wings flapped in 
counterphase, and generated ground effect and stall suppression effect which increased the flight efficiency. Park et al. 
[9,10] manufactured flapping devices actuated by IPMC (Ionic Polymer Metal Composite) and LIPCA (Lighweight 
Piezo-Composite Actuator) of which actuation displacements were amplified by a linkage system. Flapping tests were 
performed to investigate the performance of the devices. 

Most of the ornithopters have flexible wings and use the flapping motion which is one of the main wing motions of 
birds or insects. Unlike the nature’s flyers, however, when their flapping axes are horizontal, the wings generate very 
little mean lift which is not enough to sustain their weight.  

In this paper, the differences of the flapping flight between birds and ornithopters are described. To mimic the flapping 
motion of the birds, a smart flapping wing is designed and manufactured by using the graphite/epoxy composite 
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material and a MFC actuator. A dynamic test stand is manufactured to measure the aerodynamic forces of flapping 
devices, and wind tunnel tests for the wing are performed to investigate the aerodynamic characteristics and the 
performance of the surface actuators. 

 

2. UNSTEADY AERODYNAMICS 
 
2.1 Bird flight 

Conventional airplanes with fixed wings use simple forward motion relative to the air to generate the lift. Traditional 
aerodynamic analysis can be used to predict the surface forces on the wings. However, flapping flight is quite 
complicated so that a complete and exact analysis for the flight is not available. In biological flight, the wings not only 
move forward relative to the air but also flap up and down, plunge, and sweep [1]. The birds, nature’s optimized flying 
machines, have the wings of which cross sections are similar to the fixed wing airfoil, but insects have almost flat and 
flexible wings with corrugation which increases the natural frequency of the torsional deformation [11]. In the bird 
flight, a bound wing vortex and translational circulation are assumed to generate aerodynamic forces unlike insects [12]. 
There are three important motions in addition to the bird’s forward motion: flapping, twisting and folding motions. They 
use these motions to produce large lift, thrust and effective incident angle, and to reduce drag throughout the wing 
stroke. By adaptation of skeletal and muscular systems as shown in Figure 1, they can also generate additional flight 
motions such as modification and reversal of camber between upward and downward strokes, wing area expansion and 
contraction, and transverse bending. 
 

 
 

Figure 1: Bird’s skeletal and muscular systems. 
 
2.2 Ornithopter flight 

In ornithopter flight, the flapping and twisting motions are mainly used to produce aerodynamic forces. If the artificial 
flapping machine has a flexible wing, the twisting motion can be generated automatically throughout the flapping 
motion. The wing generates positive horizontal forces relative to the flapping axis during the entire wing-stroke, but the 
vertical forces are produced in reciprocally opposite directions during up and down strokes. When the flapping axes are 
horizontal, therefore, the wing generates very little lift, even if cambered ribs are incorporated in the structure unlike 
birds as shown in Table 1 [13]. Therefore, most ornithopters are operated with the flapping axis vectored by adjusting 
the mass center or the stabilizer to achieve a positive trim angle as shown in Figure 2. The lifted flapping axis generates 
a vertical component force of the average resultant force, which is utilized as some of lift. It also makes effective angle 
of attack of the wing, so additional lift can be produced to sustain the flight.  
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Table 1: Comparison of aerodynamic forces between 
ornithopters and birds at horizontal flapping axis. 

Figure 2: Force diagram for Penaud-type ornithopter. Modified 
from DeLaurier [13]. 

Ornithopters Birds 
Stroke 

Lift Thrust Lift Thrust 

Down + +  + +  + +  + +  

Up − −  + +  +  −  

Sum  + + + +  + + +  +   
 
However, cruising birds and bats fly with horizontal flapping axis and their flight efficiency is fairly higher than that of 
the ornithopters. It is one of the objectives of this research to produce the positive mean lift with horizontal flapping axis 
like birds by using the biomimetic design. 

 
3. AERODYNAMIC FORCES OF ORNITHOPTER 

 
3.1 Test stand 

The test stand is designed and manufactured to measure the vertical and horizontal aerodynamic forces, lift and thrust, 
of flapping devices. It consists of two loadcells that are combined together in perpendicular direction as shown in figure 
3. The loadcell rated capacity is 6kg and non-linearity is less than 0.02%. Flapping devices are fixed at the test mount 
which can be used to adjust the angle of attack from 10ο−  to 20ο . Using the test stand, the lift and thrust can be 
measured simultaneously during flapping motion. 
 

  
Figure 3: Configuration of test stand. Figure 4: Experimental setup of flapping motion test. The 

insect is the transmission system of Cybird. 

 
3.2 Onithopter test 

For the first flapping test, a commercial ornithopter named Cybird-P2, made by Neuros Co. Ltd. in Korea, is used. It is a 
Li-Poly battery powered ornithopter with a 3Ch radio control system. The span of the wing is 990 mm, the total weight 
is 290 g and maximum flight duration is 18 minutes. The flapping motion is generated by a transmission system shown 
in Figure 4 insert, which converts the rotary motion of the driving DC motor into the flapping motion. The flapping 
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frequency can be controlled by varying the drive signal to the motor. The flapping angle is measured by the use of a 
laser Doppler vibrometer (OFV-3001/303), and all signals are acquired by the use of DSP board (dSPACE DS1103).  

The flapping test is performed at zero angle of attack and zero velocity conditions. The flapping frequency is varied 
from 2 to 8.4 Hz. Figure 5 shows the time histories of lift, thrust and flapping angle measured from the flapping test. 
From the result, it is clear that the lift has almost the same frequency as the flapping motion and the thrust frequency is 
two times of flapping frequency. There are flat lift regions during the down-ward motion of the wing, which may be 
generated by the ground effect. The phase shift between lift and flapping angle for the variation of flapping frequency 
can not be exactly explained, because there are so many parameters affecting them such as flexible and 3D wing effect, 
ground effect, vortex attachment, asymmetric motion, and so on. Figure 6 shows the mean lift and thrust values for the 
variation of the flapping angle. The thrust values are proportional to the flapping frequency, but the lift mean value is 
almost zero. This result clearly demonstrates that when the flapping axis is horizontal, the wing generates positive thrust 
and very little lift which is not enough to sustain the flight as explained earlier. 

 

  
Figure 5: Comparison of lift, thrust and flapping angle at 8.4 Hz. Figure 6: Flapping frequency vs. mean lift and thrust 

values. 

 
4. SMART FLAPPING WING 

 
4.1 Smart wing design 

A smart flapping wing with MFC actuators is manufactured as shown in figure 7. The wing is designed from the 
structural analysis of the wing model based on the analogy between thermal strains and piezoelectric strains under 
MSC/NASTRAN [14]. The wing semi-span is 27 cm and the aspect ratio is 4.3. The wing consists of graphite/epoxy 
composite frames and flexible thin skin made of a PVC film. To control the camber, the MFC (Smart Material Co. / 
M8528P1, d33 type) actuators are embedded between the frames and skin at the distance of 8.5 cm from the flapping 
axis on the left and right wings. 
 

      

 

 
Figure 7: Configuration of smart flapping wing (left) and finite element model (right). 
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4.2 Performance tests 

Static and dynamic tests are performed to investigate the performance of the surface actuators. The input voltage from  
-500V to 1500V is applied to the MFC, and the vertical displacement of the trailing edge is measured by using a laser 
displacement sensor (LK081/LK2101). For the dynamic test, the excitation frequency range is selected to be from 1 to 8 
Hz. Figures 8 and 9 show the static and dynamic test results, respectively. The displacement at the static test varies from 
-6.98 mm to 12.08 mm, and this deformation is 15.2% of the cord length. 
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Figure 8: Static displacement of smart flapping wing. Figure 9: Dynamic displacement of smart flapping wing. 

 
5. AERODYNAMIC TEST 

 
5.1 Experimental setup 

For the flapping test of the smart flapping wing, a flapping device is manufactured by the use of the electric motor and 
the transmission system of Cybird. The aerodynamic tests are performed in a subsonic wind tunnel with a test section of 
1m  0.75m  2.2m × × as shown in Figure 10. Figure 11 shows the experimental test setup for the wind tunnel test. The 
lift (L), thrust (T) and flapping angle (S) are measured by using the test stand and the laser Doppler vibrometer (OFV-
3001/303). The dynamic deformation of the wing is captured by a high speed camera (IDT XS-3). The input signals of 
the flapping frequency (D) and the surface actuator (U) are applied by the use of DC-power supply and Hi voltage 
amplifier. 

 
Figure 10: Wind tunnel test section and smart flapping 
wing. 

Figure 11: Experimental test setup for wind tunnel test. 
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A series of aerodynamic tests are performed with various values of test parameters. Table 2 shows the parameter values 
used in this study. 
 

Table 2: Aerodynamic test conditions of smart flapping wing. 

Velocity, V(m/s) Angle of attack, A(deg) Flapping frequency, F(Hz) Actuator input voltage, U(V) 

0, 2, 4, 6, 8, 10 -10, -5, 0, 5, 10, 15, 20 0 ~ 8 Hz -500, 0, 1500 
 
5.2 Test results 

Figure 12 shows the flapping motion of the smart flapping wing measured by Hi-speed camera at V = 4m/s, F = 6Hz, U 
= 0V and A = 0ο . Figure 13 shows the time histories of flapping angle, lift and thrust at the same test condition. From 
the results, it is shown that the flapping angle varies between -25ο  and 32ο , the lift has almost same frequency as the 
flapping angle and the thrust frequency is again two times of flapping frequency. There are distortions of the lift and 
thrust signals at the end of the down stroke, which may be generated by vortex which is attached to the wing. Figure 14 
shows the time histories of the signals at V = 10m/s, F = 8Hz, U = -500, 0, 1500V and A = 20ο . It shows the effect of 
surface actuators, which is more obvious in the lift signal.  
 

 
Figure 12: Flapping motion of smart flapping wing measured by Hi-speed camera. 
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Figure 13: Comparison of lift, thrust and flapping angle at 
V=4m/s, F=6Hz, U=0V, A= 0ο . 

Figure 14: Comparison of lift, thrust and flapping angle at 
V=10m/s, F=6Hz, U=-500, 0, 1500V, A= 20ο . 
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5.3 Aerodynamic characteristics 

From the test results, the aerodynamic characteristics of the smart flapping wing are investigated. Figure 15 shows the 
static lift values according to the velocity at A= 10ο− , 0ο , 20ο . The lift is effectively changed by the angle of attack and 
the surface actuator. The maximum and minimum static lifts are 233g and -98g, respectively.  

The aerodynamic lift and thrust coefficients can be expressed as follows: 

 2

2
L

LC
AVρ

=  (1) 

 2

2
T

TC
AVρ

=  (2) 

where ρ and A  are the air density and wing area, respectively. In the aerodynamic test, the air density is 1.22 Kg/m3 
and the wing area is 0.037 m2. Figure 16 shows the lift and thrust coefficients at the static condition. From this result, it 
is clear that the lift coefficient has constant slope at same velocity for the surface actuator inputs. The slope decreases by 
increasing the velocity because of the flexibility of the wing which reduces the effective angle of attack of the wing. 

Figures 17 and 18 show the mean lift and thrust coefficients according to advance ratio, J, which is the ratio of the flight 
speed to the speed of the wingtip. The advance ratio can be written as follows: 

 
2
VJ
fbθ

=  (3) 

where θ , f , and b  are flapping amplitude, flapping frequency, and wing semi-span, respectively. From the result, it 
is clear that as the advance ratio is reduced below unity, the coefficients increases rapidly. It means that for the small 
advance ratio regime, the test condition is unsteady flight. For large advance ratio region, the variation of the 
coefficients is very small, which means quasi-steady flight. The results clearly show the unsteady aerodynamic 
characteristic. 

Figure 19 shows the mean lift and thrust according to the velocity for dynamic test conditions. As the velocity increases, 
the surface actuator increases, and the mean lift changes up to 20% at V = 10m/s, and A = 20%. Figure 20 shows that 
the lift and thrust coefficients increase with increasing flapping frequency at low speed regime. It clearly demonstrates 
that the test condition is the unsteady flow regime, where the aerodynamic characteristics depend on dynamic stall 
vortex.  

Figures 21 and 22 show the mean lift and the thrust maps. Form the results, it is shown that the lift is mostly effected by 
velocity and angle of attack, and the thrust is mostly effected by velocity and flapping frequency. 
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Figure 15: Angle of attack effect at static conditions, F=0Hz. Figure 16: Comparison of lift and thrust coefficients at static 
conditions, F=0Hz. 
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A= 20ο . 

Figure 18: Unsteady aerodynamic effect of mean lift, at 
A= 20ο . 
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Figure 19: Surface actuator effect according to velocity. Figure 20: Surface actuator effect according to flapping 

frequency. 
 

  

 

Figure 21: Mean lift maps according to velocity and flapping 
frequency. 

Figure 22: Mean thrust maps according to angle of attack 
and flapping frequency. 
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6. CONCLUDING REMARKS 
 
In the present study, we developed the smart flapping wing with a MFC actuator. To mimic the bird flight, unsteady 
aerodynamic characteristics of bird, insect and ornithopters are investigated. For the measurement of aerodynamic 
forces of flapping devices, the test stand is manufactured, and dynamic test of Cybird is performed. The smart flapping 
wing is designed and manufactured, and static and dynamic tests are performed to investigate the performance of the 
surface actuators. Finally, the aerodynamic tests of the smart flapping wing in low speed wind tunnel are performed to 
evaluate the dynamic characteristics. Experimental results show that unsteady flow effects are increased by decreasing 
the advance ratio. The deformation of the wing surface generated by the MFC is enough to control the lift and thrust. 
The lift generated by the smart flapping wing can increase by 20% when the MFC is actuated. The test results can be 
useful for the development of flapping wing air vehicles. 
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