#### **West Virginia University**

Benjamin M. Statler College of Engineering and Mineral Resources

Department of Industrial and Management Systems Engineering

# **Smart Manufacturing for SMM** *Opportunities and Challenges*

Small to Medium Manufacturing (SMM) Needs and Case Studies

- Presentations & Panel Session -

**NIST Industry Forum** 

May 8, 2018 Gaithersburg, USA



# **Agenda**

- 1. Smart Manufacturing
- 2. SmartMfg Survey of SMEs in West Virginia
- 3. Projects & Case Studies
- 4. Recommendations



# You may have heard of

**Smart Manufacturing** 

**Intelligent Manufacturing** 

**Industrial Internet** 

**IMS** 

**Industrie 4.0** 

Cyper-Physical (Production) Systems

**Smart Factory** 

Industry 4.0

**Factory of the Future** 

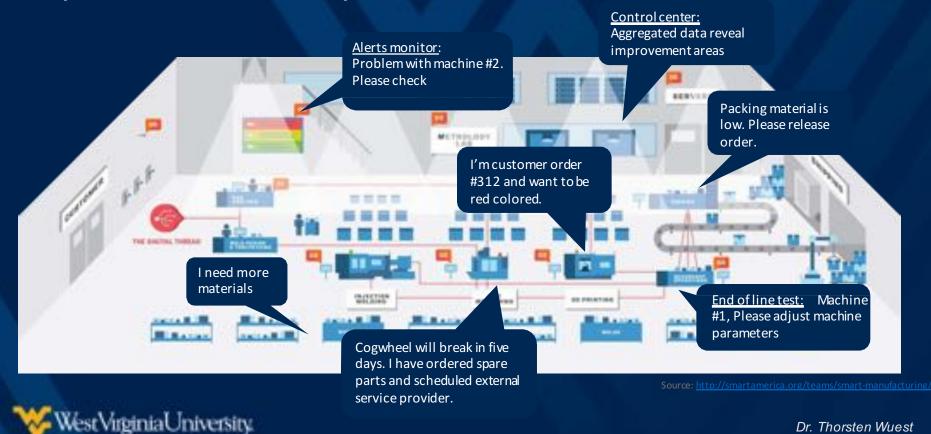
**Cloud Manufacturing** 

**Manufacturing Intelligence** 

... and many more!

All these terms describe a similar development!




# **SMART MANUFACTURING PRINCIPLES**

- / CONNECTIVITY
- / VIRTUALIZATION
- / DATA UTILIZATION

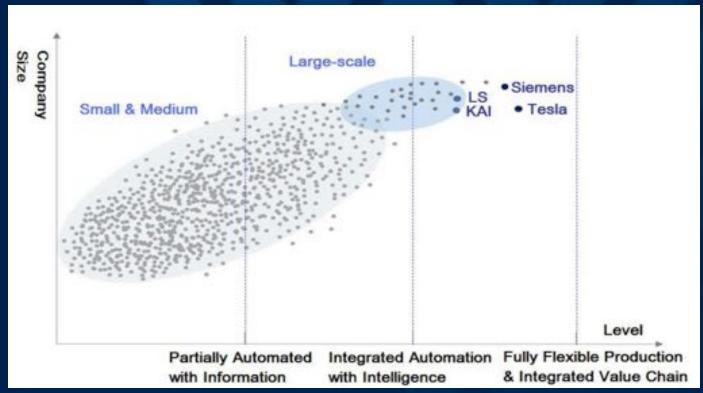


# **Smart Manufacturing Vision**

**Fully Connected Smart Factory** 



Dr. Thorsten Wuest thwuest@mail.wvu.edu


# SMART MANUFACTURING MARRIES TECHNOLOGY, DATA AND HUMAN INGENUITY



# **Smart Manufacturing in Small- and Medium-sized Enterprises (SMEs)**



# **Status of Industry**





Source: Jinwoo Park, 2015

# **Siemens Digital factory**

- Siemens' plant in Amberg, Germany
- **Products communicate** with manufacturing machines
- IT systems control and optimize all processes
- Production quality is at 99.99885 %







# **SMEs vs MNEs – Different requirements**

| # | Features                                           | SMEs                                             | MNEs                                     |
|---|----------------------------------------------------|--------------------------------------------------|------------------------------------------|
| 1 | Use of Advance  Manufacturing Technologies         | Low                                              | Very High                                |
| 2 | Financial<br>Resources                             | Limited                                          | Comparatively more                       |
| 3 | Organization Culture/<br>Leadership                | Conservative                                     | Flexible                                 |
| 4 | Company<br>Strategy                                | Dictated by Gut Feeling<br>of the Leader (Owner) | Market Research and<br>Accurate Analyses |
| 5 | Decision<br>Making                                 | Restricted to Leader/<br>Few Knowledge Carriers  | Board of Advisory                        |
| 6 | Human<br>Resources                                 | Engaged in<br>Multiple Domains                   | Have Own Area of<br>Specialization       |
| 7 | Human Resource Development                         | Exposure                                         | Training, Mentors, Workshops             |
| 8 | Alliances with Universities/ Research Institutions | Not so Strong                                    | Strong                                   |
| 9 | Important<br>Activities                            | Outsourced                                       | Internal to                              |

| #  | Features                                         | SMEs                                       | MNEs                             |
|----|--------------------------------------------------|--------------------------------------------|----------------------------------|
| 10 | Nature of<br>Product                             | Highly<br>Specialized                      | Little<br>Specialized            |
| 11 | Collaborative<br>Network                         | High<br>Dependence                         | Not so much<br>Dependent         |
| 12 | Customer/Supplier Relations (Partner Dependence) | Very<br>Strong                             | Not so<br>Strong                 |
| 13 | Standards                                        | Not so<br>Strictly                         | Strictly<br>Obeyed               |
| 14 | Organizational<br>Structure                      | Less Complex<br>and Informal               | Complex and Formal               |
| 15 | Software                                         | Provides Tailored Solutions<br>to Problems | Standardized<br>Solutions        |
| 16 | Use of Resources/<br>Research & Development      | Low                                        | High                             |
| 17 | Knowledge and Experience                         | Focused in a<br>Specific Area              | Spread Around<br>Different Areas |



# **Upgrade existing systems**

- Bosch upgraded Lathe from 1887 to be Smart Manufacturing ready
- New capabilities:
  - process monitoring for constant quality assurance
  - another is condition monitoring in order to prevent unplanned downtimes
- Extreme example but showcases
   the potential





nttp://www.boschpresse.de/pressportal/en/69632.htm Dr. Thorsten Wuest thwuest@mail.wvu.edu

# **Project Scope**

#### **Background**

- Internet of Things is changing the industrial landscape
- Manufacturing is undergoing a major transition
- Large corporations are dealing with this topic intensively
- ⇒ But how to apply Smart Manufacturing in small companies?
- ⇒ How can small manufacturers take advantage of it?

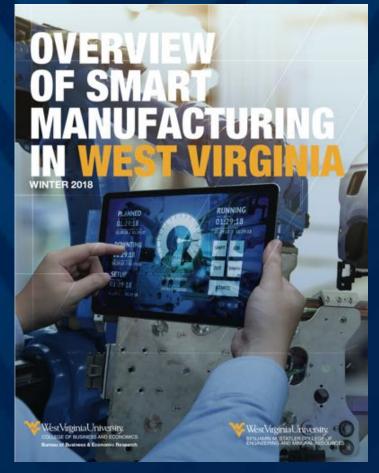
#### **Objectives**

- Examine the current state of manufacturing with a survey
- Understand the manufacturing landscape and its specific
   challenges and concerns by conducting interviews and plant visits
- Support small manufacturers in adopting Smart Manufacturing technologies by setting up a training workshop



#### **Work Packages**

- 1. Online survey
- 2. Interviews & plant visits
- 3. Analysis of results & report
- 4. Training workshop

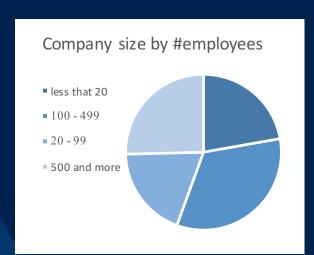


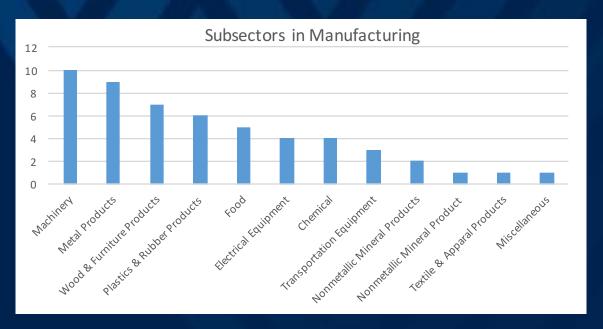

# **Survey Report**

Available for free

Download here:

https://t.co/8uTam5lQtl

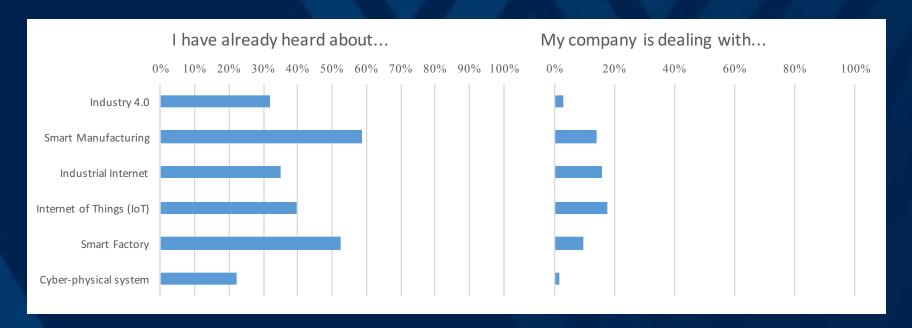



# **Survey Method**

Who participated in the survey?

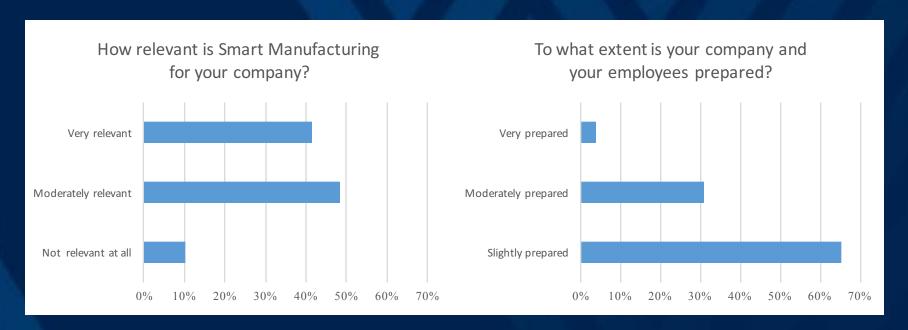
Total # of respondents from manufacturing







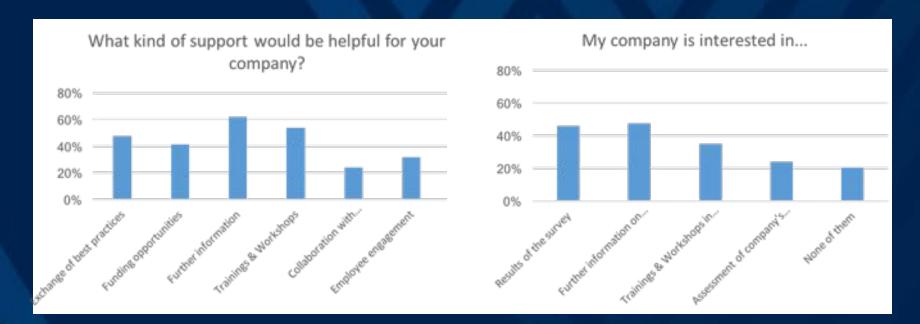

# **Survey Results**


How aware are companies of the transition towards Smart Manufacturing?





# **Survey Results**


How prepared are companies for Smart Manufacturing?





# **Survey Results**

What are the needs of manufacturers when it comes to Smart Manufacturing?





## **Interview Method**

Who participated in the interview sessions?







# **Smart Manufacturing in SMEs**

Lack of opportunity

Resources & cost

**Knowledge & awareness** 

Skilled workforce

Missing 'success stories'



# 'Capability creates Opportunity'

Craig Hartzell, Azimuth Inc., 2017





# **Opportunities for entrepreneurs**

**Brave new world** 

'Low' initial investment

**Dedicated 'Apps' (Platform solution)** 

**Scalable** solutions (interoperable & extensible)

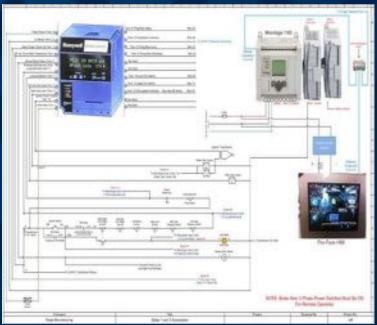
**Fast** deployment



# **Boiler Revision Project (1/2)**

#### at Eagle Manufacturing




#### Concept to revise boiler controls

Plant maintenance can control and monitor the steam boilers from outside of the plant instead of coming to the plant to schedule and check on them physically

#### **Before**





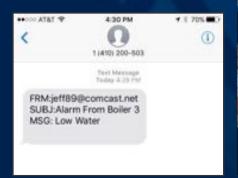


Provided by : Eagle Manufacturing, imcknight@eagle-mfg.com



# **Boiler Revision Project (2/2)**

#### at Eagle Manufacturing




#### Solution

- Using newer technology
- PLCs with integrated Ethernet and SMTP (email) protocol
- along with advanced HMI and smart hub network functionality

#### **Benefits**

- Better control & scheduling of system
- Real-time alarm monitoring (through mobile devices)



#### After









Provided by: Eagle Manufacturing, <a href="mailto:jmcknight@eagle-mfg.con">jmcknight@eagle-mfg.con</a>





# Compressed Air System Monitoring (1/2)



#### at Homer Laughlin China Company

#### **Problem**

- Compressed Air System was experiencing unacceptable pressure variations during peak demand hours
- Current system inefficient consuming 80% of full load energy while producing 20% capacity

# reased storage capacity outer system

#### Solution

- Balance system (compressor relocation, piping improvements, and increased storage capacity
- Change control method to a load no load system managed by a computer system

#### **System operation**

- Compressors are monitored & system is monitored for pressure
- Compressors are started and stopped with systematic method based on demand
- Operating sequence is determined to maintain pressure and equal compressor run-time

Provided by: Homer Laughlin, <a href="mailto:sadkins@homerlaughlin.net">sadkins@homerlaughlin.net</a>



# Compressed Air System Monitoring (2/2)



#### at Homer Laughlin China Company

#### **System benefits**

- Annual energy savings over \$100,000
- Real time information allows personnel to quickly identify problems
- Run time of compressors is reduced extending their operating life
- Preventative Maintenance tracking and scheduling
- Consistent system operating pressure

### Next steps

- Vibration and air end temperature monitoring to improve predictive maintenance of system
- Investigating use of Bosch CISS (Connected Industrial Sensor Solution multi-sensor device)

#### **Further benefits**

- One device type can be used in a variety of applications
- CISS connects existing machines without intervening to the machine control
- Visualize live and historic data
- CISS integrates easily to various platforms







# **Smart Services Project**

at Conair Group (IPEG Inc.)

#### **Problem**

 How to provide the best possible service for manufacturing equipment to customers?

#### **Approach**

Collaborate & Innovate







#### Solution

- I4.0 Platfrom that provides interface and cloud access to machine data incl. visualization
- Allows monitoring all equipment set points and actuals incl. feedback on performance
- Uptime Guaranteed<sup>™</sup> with Smart Services



Source & more information: https://www.conairgroup.com/product/smart-services/



## Recommendations (1/2)

for Smart Manufacturing in SMEs

- Provide educational resources on Smart Manufacturing and Industry 4.0
   ('spread the word' in an accessible way) for industrial partners.
- Jointly develop curriculum for 1) professionals to equip them with required knowledge to innovate and operate within a Smart Manufacturing environment, and 2) include Smart Manufacturing in existing engineering curricula across institutions ('high school to masters/Ph.D.'), departments and majors.
- Communicate successes broadly and encourage peer-to-peer exchange (across industries) of best practices and lessons learned.



## Recommendations (2/2)

for Smart Manufacturing in SMEs

- Build strong and sustainable partnerships between companies, academia and industry associations. For example, leverage (local) technology start-ups to team-up with established manufacturers and academia.
- Start with small 'lighthouse' projects targeting specific pain points to learn and achieve quick wins.
- Leverage state and federal funding to complement the limited recourses available to manufacturing SMEs.





# My take on this issue:

- Solutions must be tailored to SMEs' (real!) needs & requirements!
- Create real value (short AND long term)!
- Fit the strategy / vision!

#### To do so **SMEs need** to:

- Assess their current processes critically
- *Identify* their core competencies
- Build on those and
- Develop a roadmap with specific milestones / objectives
- (keep **80/20 rule** in mind!)



# Thank You!

#### **Contact:**

#### Thorsten Wuest, Ph.D.

Assistant Professor Smart Manufacturing Wayne and Kathy Richards Faculty Fellow

West Virginia University
Industrial and Management Systems Engineering
347 Engineering Sciences Building
Morgantown, WV 26506-6070, USA

+1 (304) 293-9439 thwuest@mail.wvu.edu www.thorstenwuest.con

