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Abstract

In this article, we introduce the Vanna-Volga approach for an alternative valuation
of CMS convexity adjustments. Our pricing procedure leads to closed-form formulas
that are extremely simple to implement and that retrieve, within bid-ask spreads,
market data of CMS swap spreads.

1 Introduction

CMS derivatives (swaps, caps and floors and spread options) are actively traded in the
interest rate market and often quoted for several expiries and CMS tenors. Their popularity
has urged the need for specific valuation procedures that incorporate stylized facts such as
the swaption smile, and that are relatively easy to implement and manage. In particular, a
systematic update of CMS swap quotes, based on any interest rate model calibrated to the
swaption smile, would typically be too time consuming to be efficiently applied in practice.
The purpose of this article is to propose a robust procedure that allows for a rapid and
consistent calculation of CMS convexity adjustments from the quoted implied volatilities.

The pricing issues related to CMS derivatives have been studied by several authors.
Hagan (2003) analyzes the pricing of CMS swaps and options relating them to the swap-
tion market via a static replication approach and deriving closed form formulae. Berrahoui
(2005) considers a different replication argument, which is based on a numerical optimiza-
tion to find the optimal weights in a suitable portfolio of cash-settled swaptions. Mercurio
and Pallavicini (2005, 2006) apply Hagan’s replication approach by modelling implied
volatilities with the SABR functional form of Hagan et al. (2002).

The SABR functional form, when calibrated to an option’s smile, reveals an intrinsic
parameter redundancy. Precisely, one typically finds that different values of the constant-
elasticity-of-variance parameter β can accommodate the same smile with comparable levels
of precision. To overcome this drawback, Mercurio and Pallavicini (2006) suggests to
include CMS swap data in the calibration set. By doing so, one is then able to identify a
unique value of β that fits the considered market quotes. However, the problem remains
of how to derive CMS convexity adjustments with the sole knowledge of swaption smiles,
and without resorting to a dynamical interest rate model.
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In this article, we address this issue by presenting an alternative approach to the pricing
of CMS swaps and options. Specifically, we apply the Vanna-Volga method, which is a well
known empirical procedure employed by traders, especially in the FX market, to construct
implied volatility surfaces and price simple exotic claims. Its consistency and robustness
have been analyzed by Castagna and Mercurio (2006, 2007), who eventually hint at its
possible application to the calculation of CMS convexity adjustments. Here, we follow
their suggestion and show how to perform such a calculation.

The article is organized as follows. We start by briefly describing the swaption and
CMS swap markets and report the smile-consistent convexity-adjustment formula, whose
derivation is outlined in Mercurio and Pallavicini (2005). We then illustrate the Vanna-
Volga methodology and finally show how to use it for the purpose of pricing CMS swap
and options.

2 The swaption and CMS markets

In the current markets, besides the at-the-money swaption volatilities that are published
by brokers and market makers for every expiry and tenor traded, smiles are also available
for a subset of expiries and underlying tenors. Implied volatilities, expressed as a spread
over the at-the-money value, are typically published for away-from-the-money strikes in
terms of their distance from the at-the-money (in basis points):

∆σM
a,b(∆K) = σM

a,b(K
ATM + ∆K)− σM

a,b(K
ATM)

where the option has strike K and expiry Ta and is written on a swap maturing in Tb,
0 < Ta < Tb. Common distances from the at-the-money are ∆K = ±200,±100,±50,±25
basis points. Clearly, suitable interpolation schemes must be devised for non-quoted strikes.

Lately, also derivatives on swap rates have become very popular. The main ones are
CMS swaps, which pay the difference between a swap rate of a given maturity and a Libor
rate plus a spread, typically on a quarterly basis. CMS swaps are quoted in the market as
the spread over the Libor rate that makes the value of the contract nil at the inception.
We then have CMS caps and floors, which are (strip of) options written on a CMS rate and
analogous to the same contracts written on the Libor rates. Their premiums are quoted
in basis points and they are usually traded for expiries longer than 5 years. Finally, we
have CMS spread options, paying the difference between the spread of two CMS rates and
a strike. Also for these contracts, premiums are expressed in basis points and common
expiries are longer than 5 years, and the underlying spread is usually the 10Year-2Years.

In what follows we study the pricing of CMS swaps and CMS caps and floors. Spread
options are more complex to deal with and deserve a separate treatment.

3 The pricing of derivatives on swap rates

We present a quick review of the basic principles to price options on swap rates. We refer
to Mercurio and Pallavicini (2005, 2006) for more details.
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Let us fix a maturity Ta and a set of time T a,b := {Ta+1, ..., Tb} with constant year
fractions τ > 0. The forward swap rate at time t for payments in T is defined as

Sa,b(t) =
P (t, Ta)− P (t, Tb)

τ
∑b

j=a+1 P (t, Tj)

where P (t, T ) is the discount factor at time t for the maturity Tj. Denoting by QT the
T -forward measure for a generic time T (with associated expectation ET ), and by Qa,b the
forward swap measure related to Sa,b (with associated expectation Ea,b), we have that the
convexity adjustment for the swap Sa,b(Ta), at time t = 0, is defined by:

CA(Sa,b; δ) = ETa+δ[Sa,b(Ta)]− Sa,b(0), (1)

where δ ≥ 0 is the accrual period.
A CMS caplet struck at K is a call option on the swap rate Sa,b that pays [Sa,b(Ta)−K]+

at time Ta + δ. Its price at time zero can be expressed as

CMSCplt(Sa,b, K; δ) = P (0, Ta + δ)ETa+δ{(Sa,b(Ta)−K)+}. (2)

The expectation in (1) and (2) can be calculated by moving to the forward swap measure
Qa,b

ETa+δ{(Sa,b(Ta)−K)+} =

∑b
j=a+1 P (0, Tj)

P (0, Ta + δ)
Ea,b

(
(Sa,b(Ta)−K)+P (Ta, Ta + δ)∑b

j=a+1 P (Ta, Tj)

)
,

which, following Hagan’s (2003) procedure, can be approximated as

ETa+δ{(Sa,b(Ta)−K)+} ≈ 1

f̄(Sa,b(0))
Ea,b

{
f̄(Sa,b(Ta))(Sa,b(Ta)−K)+

}
, (3)

where

f̄(S) :=
1

Ga,b(S)(1 + τS)
δ
τ

Ga,b(S) :=
b−a∑
j=1

τ

(1 + τS)j
=

{
1
S

[
1− 1

(1+τS)b−a

]
S > 0

τ(b− a) S = 0

Applying standard replication arguments, one finally has:

ETa+δ{(Sa,b(Ta)−K)+}

≈ 1

f̄(Sa,b(0))

[
f̄(K)ca,b(K) +

∫ +∞

K

[
f̄ ′′(x)(x−K) + 2f̄ ′(x)

]
ca,b(x) dx

]
,

(4)

where ca,b(x) denotes the price of a payer swaption with strike x, divided by its annuity
term. The CMS adjustment (1) can then be calculated by setting K = 0 in (4):

CA(Sa,b; δ) ≈ 1

f̄(Sa,b(0))

[
f̄(0)Sa,b(0) +

∫ +∞

0

[
f̄ ′′(x)x + 2f̄ ′(x)

]
ca,b(x) dx

]
− Sa,b(0) (5)
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As noticed by Mercurio and Pallavicini (2005, 2006), to calculate the integral in (5),
one needs to introduce a model to assign a value to the swaption volatilities for strikes
outside the quoted range. To this end, they employ the SABR functional form of Hagan
et al. (2002), due to its popularity, tractability and ease of implementation.1 In this
article, we propose a different approach, which is even faster to implement and nonetheless
recovers market data of CMS swap spreads with the same accuracy as the SABR form. This
approach is based on the Vanna-Volga methodology described by Castagna and Mercurio
(2006, 2007), which we briefly review in the following.

4 The Vanna-Volga Approach

The Vanna-Volga method is an empirical procedure to infer option prices, and hence im-
plied volatilities, from three basic quotes that are available for a given maturity.

Assume that, in a given option market, three basic options are quoted for a given
maturity T on an underlying asset whose initial value is S0. We denote the corresponding
strikes by Ki, i = 1, 2, 3, K1 < K2 < K3. The market implied volatility associated to Ki is
denoted by σi, i = 1, 2, 3. The Vanna-Volga price of a European call with maturity T and
strike K is defined by

CVV(K) = CBS(K) +
3∑

i=1

xi(K)[CMKT(Ki)− CBS(Ki)], (6)

where CBS(x) is the Black and Scholes price of the call with strike x (and maturity T ),
calculated with a given volatility σ (typically equal to σ2), CMKT(Ki) is the market price
of the call with strike Ki, and the weights xi are computed by solving the system

∂CBS

∂σ
(K) =

3∑
i=1

xi(K)
∂CBS

∂σ
(Ki)

∂2CBS

∂σ2
(K) =

3∑
i=1

xi(K)
∂2CBS

∂σ2
(Ki)

∂2CBS

∂σ∂S0

(K) =
3∑

i=1

xi(K)
∂2CBS

∂σ∂S0

(Ki)

(7)

The values of xi are found by equating the Vega, the Vanna (∂Vega
∂Spot

) and the Volga (∂Vega
∂Vol

)
of the call with strike K to the respective Greeks of the portfolio made of xi units of the
call with strike Ki, i = 1, 2, 3. An explicit expression for them can be found in Castagna
and Mercurio (2007).

The pricing function (6) not only defines an interpolation rule between K1 and K3 but
also yields extrapolated values for option prices outside the interval [K1, K3]. This consid-
eration led Castagna and Mercurio (2007) to propose the possible use of the Vanna-Volga

1Mercurio and Pallavicini (2005) also consider the example of a mixture of shifted-lognormal densities.
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approach to model swaption volatilities outside the strike range quoted by the market, so
as to produce an alternative valuation of the integral in (5).

Now, we show how to apply the Vanna-Volga method for the calculation of CMS con-
vexity adjustments.

5 The Vanna-Volga convexity adjustment formula

Assume that, for the swap rate Sa,b, volatility quotes are available for the at-the-money
strike K2 = Sa,b(0) and for two away-from-the-money strikes K1 and K3, respectively below
and above Sa,b(0). Setting σ equal to the at-the-money volatility σ2 = σATM (market quote
for K2), formula (6) can be re-written in the swaption case as follows:

cVV

a,b(K) = cBS

a,b(K) +
3∑

i=1

xi(K)[cMKT

a,b (Ki)− cBS

a,b(Ki)], (8)

where

cBS

a,b(K) := Bl(K,Sa,b(0), σATM

√
Ta),

cMKT

a,b (Ki) := Bl(Ki, Sa,b(0), σi

√
Ta),

Bl(K, S, v) := SΦ

(
ln(S/K) + v2/2

v

)
−KΦ

(
ln(S/K)− v2/2

v

)
,

with Φ denoting the standard normal cumulative distribution function, and the weights
xi(K) are explicitly given, see Castagna and Mercurio (2007), by

x1(K) =
V(K)

V(K1)

ln K2

K
ln K3

K

ln K2

K1
ln K3

K1

,

x2(K) =
V(K)

V(K2)

ln K
K1

ln K3

K

ln K2

K1
ln K3

K2

,

x3(K) =
V(K)

V(K3)

ln K
K1

ln K
K2

ln K3

K1
ln K3

K2

,

with V(K) the Black and Scholes Vega (divided by the annuity) of the payer swaption with
strike K:

V(K) := Sa,b(0)
√

Ta ϕ

(
ln

Sa,b(0)

K
+ 1

2
σ2

ATMTa

σATM

√
Ta

)
,

ϕ(x) := Φ′(x) =
1√
2π

e−
1
2
x2

.
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Therefore, the Vanna-Volga convexity adjustment (1) for the swap rate Sa,b can be calcu-
lated as

CAVV(Sa,b; δ) ≈ 1

f̄(Sa,b(0))

[
f̄(0)Sa,b(0) +

∫ +∞

0

[
f̄ ′′(x)x + 2f̄ ′(x)

]
cVV

a,b(x) dx

]
− Sa,b(0).

(9)
More generally, the Vanna-Volga price of a CMS caplet is given by

CMSCpltVV(Sa,b, K; δ) = P (0, Ta + δ)ETa+δ{(Sa,b(Ta)−K)+}

≈ P (0, Ta + δ)

f̄(Sa,b(0))

[
f̄(K)cVV

a,b(K) +

∫ +∞

K

[
f̄ ′′(x)(x−K) + 2f̄ ′(x)

]
cVV

a,b(x) dx

]
.

(10)

Formulas (9) and (10) provide alternative valuations of convexity adjustments and CMS
options. Their computational complexity is comparable to those obtained with the SABR
functional form. However, contrary to SABR case, for which equivalent smile-fitted param-
eters can imply quite different adjustments, the Vanna-Volga method is more consistent.
Once assigned the basic strikes, (9) and (10) can be calculated with no ambiguity.

The goodness of the VV approach for the valuation of CMS adjustments must also be
tested on market data. This is achieved in the following.

6 An example with market data

For our testing purposes, we first retrieve the swaption volatilities for different strikes from
the published ones (we use Bloomberg pages). For each expiry, we choose three strikes: the
ATM (equal to the forward swap rate) and two wings (respectively lower and higher than
the ATM) such that the ∆ of the swaption (again, without any inclusion of the annuity)
is as close as possible to 25% (from below), in absolute terms, both for the payer (higher
strike) and the receiver (lower strike).

After identifying the basic strikes and the related implied volatilities, we follow the
approach described above, computing the integral in (9) by Vanna-Volga interpolation of
the market volatility surface as of January 26th, 2007. We have applied this methodology
to evaluate CMS swap spreads on the same date. In Table 1 we present market data for 5
different CMS indexes (2y, 5y, 10y, 20y, 30y) and 5 different swap maturities (5y, 10y, 15y,
20y, 30y).

Results show that the Vanna-Volga approach performs quite well. Differences with
respect to market mid values are typically much lower than one basis point and always
inside the bid-ask spreads (the largest differences we observe correspond to the largest
bid-ask spreads). Such differences are displayed in Figure 1.

7 Simplifying the calculations

As already noticed, the Vanna-Volga approach involves the numerical computation of an
integral, which as such is rather time consuming. Contrary to the SABR case, however,
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CMS-2y CMS-5y
Maturity Bid Ask Mid VV Maturity Bid Ask Mid VV

5y 16.4 16.9 16.7 16.5 5y 21.2 22.2 21.7 21.6
10y 18.4 19.6 19.0 18.9 10y 25.8 27.0 26.4 26.2
15y 18.8 20.1 19.5 19.4 15y 25.5 27.4 26.5 26.3
20y 18.5 20.0 19.3 19.4 20y 24.5 26.8 25.7 25.7
30y 18.5 20.5 19.5 19.6 30y 24.7 27.9 26.3 26.0

CMS-10y CMS-20y
Maturity Bid Ask Mid VV Maturity Bid Ask Mid VV

5y 32.0 34.0 33.0 32.9 5y 41.7 44.5 43.1 42.7
10y 36.5 38.5 37.5 37.1 10y 43.5 46.5 45.0 44.2
15y 35.4 37.4 36.4 35.6 15y 39.8 44.1 42.0 41.1
20y 33.5 35.5 34.5 34.0 20y 37.4 42.5 40.0 39.5
30y 33.0 37.1 35.1 34.0 30y 39.8 47.1 43.5 42.9

CMS-30y
Maturity Bid Ask Mid VV

5y 39.3 43.1 41.2 40.6
10y 41.4 45.4 43.4 42.0
15y 37.3 43.2 40.3 39.2
20y 34.7 41.5 38.1 38.1
30y 38.4 48.2 43.4 43.1

Table 1: Market values for CMS swap spreads compared to the corresponding Vanna-Volga ones.

we can resort to a closed-form approximation that considerably speeds up the pricing
procedure.

In fact, the calculation of the adjustment (9) and caplet price (10) can be simplified by
using a robustness property that holds for the implied volatilities, and hence option prices,
constructed with the Vanna-Volga method. Precisely, we refer to the second consistency
result stated and proved by Castagna and Mercurio (2006, 2007), which reads as follows:
a European-style payoff h(Sa,b(Ta)), at time Ta + δ, can be equivalently valued either by
using a static-replication argument combined with the explicit formula for the Vanna-Volga
option prices (8) or by applying the Vanna-Volga construction procedure directly to the
payoff to price.

Therefore, in our CMS case, instead of using the Vanna-Volga price for the options
ca,b(x) in (4), leading to formulas (9) and (10), one can calculate the expectation in the
RHS of (3) by applying the Vanna-Volga method directly to the European-style payoff
H := f̄(Sa,b(Ta))(Sa,b(Ta)−K)+. We obtain:

Ea,b
{
f̄(Sa,b(Ta))(Sa,b(Ta)−K)+

}
= ΠH,VV := ΠH,BS +

3∑
i=1

xH
i [cMKT

a,b (Ki)− cBS

a,b(Ki)], (11)

7



2y
5y

10y 20y
30y

5y

10y

15y
20y

30y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Tenor

M aturity

Figure 1: Differences (in absolute value) between market CMS swap spreads and Vanna-Volga
ones.

where we again set σ = σ2 = σATM, ΠH,BS is the time-0 price of the payoff H at time Ta + δ
under Black-Scholes’ dynamics, i.e.

ΠH,BS =

∫ +∞

0

f̄(x)(x−K)+
d2cBS

a,b

dx2
(x) dx

= f̄(K)cBS

a,b(K) +

∫ +∞

K

[
f̄ ′′(x)(x−K) + 2f̄ ′(x)

]
cBS

a,b(x) dx,

(12)

and the weights xH
i are the unique solution to the system

∂ΠH,BS

∂σ
=

3∑
i=1

xH
i

∂cBS
a,b

∂σ
(Ki)

∂2ΠH,BS

∂σ2
=

3∑
i=1

xH
i

∂2cBS
a,b

∂σ2
(Ki)

∂2ΠH,BS

∂σ∂Sa,b(0)
=

3∑
i=1

xH
i

∂2cBS
a,b

∂σ∂Sa,b(0)
(Ki)

(13)

Analogously to the Vanna-Volga swaption price (8), the Vanna-Volga price of the payoff
H is obtained by adding to the (Black-Scholes) flat-smile value of the derivative H the
weighted sum of the differences between the market value of each traded option cMKT

a,b (Ki)
and its Black-Scholes value cBS

a,b(Ki). The weights xH
i are now computed by equating the
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Vega, the Vanna and the Volga of the derivative’s price ΠH,BS to the corresponding Greeks
of the portfolio built with the three basic swaptions.2

The calculation of ΠH,VV in (11) is based on the numerical calculation of either integral
in (12) and the numerical solution of the linear system (13). Therefore, the robustness
result we just applied does not seem to be that helpful, since the computational effort
required for (11) is comparable with that for (10). However, a clear improvement, as far
as computation time is concerned, can be achieved by expanding the function f̄ around its
known value f̄(Sa,b(0)) up to a given order n:

f̄(x) ≈ f̃n(x) :=
n∑

i=0

f̄ (i)(Sa,b(0))

i!
[x− Sa,b(0)]i. (14)

By doing so, we can calculate ΠH,BS (approximately) as follows

ΠH,BS ≈
∫ +∞

K

f̃n(x)(x−K)gBS

a,b(x) dx, (15)

with

gBS

a,b(x) :=
d2cBS

a,b

dx2
(x) =

1

xσATM

√
Ta

ϕ

(
ln

Sa,b(0)

x
− 1

2
σ2

ATMTa

σATM

√
Ta

)
,

which can be obtained in closed form, being equal to the integral of an algebraic function
times a lognormal density.

For practical purposes, it is typically enough to choose n = 3. See also Figure 3 below
for a graphical comparison of approximations at different orders. Hereafter, therefore, we
expand f̄ up to the third order, replacing f̄ with f̃3. To this end, the first three derivatives
of f̄ at point Sa,b(0) are explicitly given by

f̄ ′(Sa,b(0)) =
θ

Sa,b(0)
f̄(Sa,b(0))

f̄ ′′(Sa,b(0)) =
θ2 − γ

S2
a,b(0)

f̄(Sa,b(0))

f̄ ′′′(Sa,b(0)) =
θ3 − 3θγ + 2η

S3
a,b(0)

f̄(Sa,b(0))

(16)

where, setting l := b− a and T (Sa,b(0)) := (1 + τSa,b(0))l − 1,

θ :=1− τSa,b(0)

1 + τSa,b(0)

(
δ

τ
+

l

T (Sa,b(0))

)

γ :=1− (τSa,b(0))2

(1 + τSa,b(0))2

(
δ

τ
+

l + l2

T (Sa,b(0))
+

l2

T 2(Sa,b(0))

)

η :=1− (τSa,b(0))3

(1 + τSa,b(0))3

(
δ

τ
+

l + 3
2
l2 + 1

2
l3

T (Sa,b(0))
+

3
2
l2 + 3

2
l3

T 2(Sa,b(0))
+

l3

T 3(Sa,b(0))

)
(17)

2The terms prices and Greeks are here used with a slight abuse of terminology. In fact, actual prices
and Greeks are obtained by multiplying the former quantities by the “annuity term” 1/f̄(Sa,b(0))).
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When K = 0, the calculation of (15) boils down to the calculation of the first n+1 moments
of a lognormal density. We get:

ΠH,BS|K=0 ≈Sa,b(0)
(
1− ASa,b(0) + 1

2
BS2

a,b(0)− 1
6
CS3

a,b(0)
)

+ 2AI1

+ B(3I2 − 2Sa,b(0)I1) + C(2I3 − 3Sa,b(0)I2 + S2
a,b(0)I1)

(18)

where

A =
θ

Sa,b(0)

B =
θ2 − γ

S2
a,b(0)

C =
θ3 − 3γθ + 2η

S3
a,b(0)

I1 =
1

2
S2

a,b(0)eσ2Ta

I2 =
1

6
S3

a,b(0)e3σ2Ta

I3 =
1

12
S4

a,b(0)e6σ2Ta

(19)

The simplified expression of the Vanna-Volga convexity adjustment for the swap rate Sa,b

is then obtained by combining (11) with (18), setting K = 0:

CAVV(Sa,b; δ) ≈ 1

f̄(Sa,b(0))

[
Sa,b(0)

(
1− ASa,b(0) + 1

2
BS2

a,b(0)− 1
6
CS3

a,b(0)
)

+ 2AI1

+ B(3I2 − 2Sa,b(0)I1) + C(2I3 − 3Sa,b(0)I2 + S2
a,b(0)I1)

+
3∑

i=1

xH
i |K=0

(
cMKT

a,b (Ki)− cBS

a,b(Ki)
)]− Sa,b(0),

(20)

where xH
i |K=0 are the weights when K = 0.

As to the Vanna-Volga pricing of a CMS caplet, tedious but straightforward algebra
leads to:

ΠH,BS =ca,b(K)
[
1 + A(K − Sa,b(0)) + B

2
(K − Sa,b(0))2 + C

6
(K − Sa,b(0))3

]
+ 2AJ1

+ B
[
3J2 − (K + 2Sa,b(0))J1

]
+ C

[
2J3 − (K + 3Sa,b(0))J2 + (S2

a,b(0) + Sa,b(0)K)J1

]
(21)

where

J1 :=
1

2

[
S2

a,b(0)eσ2TaΦ(d 3
2
)− 2KSa,b(0)Φ(d 1

2
) + K2Φ(d− 1

2
)
]

J2 :=
1

6

[
S3

a,b(0)e3σ2TaΦ(d 5
2
)− 3K2Sa,b(0)Φ(d 1

2
) + 2K3Φ(d− 1

2
)
]

J3 :=
1

12

[
S4

a,b(0)e6σ2TaΦ(d 7
2
)− 4K3Sa,b(0)Φ(d 1

2
) + 3K4Φ(d− 1

2
)
]
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and

dq :=
ln

Sa,b(0)

K
+ qσ2

ATMTa

σATM

√
Ta

.

Therefore, we finally obtain

CMSCpltVV(Sa,b, K; δ) ≈P (0, Ta + δ)

f̄(Sa,b(0))

[
ca,b(K)

(
1 + A(K − Sa,b(0)) + B

2
(K − Sa,b(0))2

+ C
6
(K − Sa,b(0))3

)
+ 2AJ1 + B

(
3J2 − (K + 2Sa,b(0))J1

)

+ C
(
2J3 − (K + 3Sa,b(0))J2 + (S2

a,b(0) + Sa,b(0)K)J1

)

+
3∑

i=1

xH
i

(
cMKT

a,b (Ki)− cBS

a,b(Ki)
)]

,

(22)

where xH
i are the weights for the generic strike K > 0.

8 Numerical examples on CMS swaps

In this section we will compare the performance of the third-order approximation (20)
with the full (numerical) calculation of the integral in (9). If the approximation works
nicely, then the calculation time for the Vanna-Volga procedure can be reduced drastically.
Besides, we will compare the Vanna-Volga prices (third-order approximation) with those
produced by the SABR model as in Mercurio and Pallavicini (2005, 2006), since this latter
approach is often used by practitioners in the swaption market.

In Table 2, we show the mid market prices and the Vanna-Volga prices obtained via
third-order approximation. We find that the approximated Vanna-Volga prices lie all
within the market bid-ask spreads as reported in Table 1. Moreover, the comparison
with the values coming from formula (9), see again Table 1, shows that the third-order
approximation works fairly well.3 The differences between exact and approximated prices
are reported in the third column of Table 2 and graphically represented in Figure 2. The
discrepancies in values are indeed negligible, with the largest differences observed for long
tenors and maturities, for which the third-order expansion tends to deviate from the true
value of f̄ (see Figure 3 where the case of a 10y CSM rate is considered).

In Table 2, we also include the CMS swap spreads coming from the SABR functional
form calibrated to market volatilities. We choose different β parameters for different CMS
tenors: β = 0.5 for CMS-2y, β = 0.6 for CMS-5y, CMS-20y and CMS-30y, and β = 0.7
for CMS-10y. In fact, as pointed out by Mercurio and Pallavicini (2006), different β’s can
accommodate the swaption smile with similar accuracy, but the implied CMS adjustments

3The third order seems to yield a good trade-off between performance and precision. Typically, the
second order approximation is not enough satisfactory, and adding the fourth order gives only a slight
improvement, which does not justify the increase in complexity.
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Figure 2: Absolute differences between CMS spreads computed with the general and the simpli-
fied versions of the Vanna-Volga approach.
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Figure 3: Comparison between f̄ with its approximations up to the third order.
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CMS-2y CMS-5y
Maturity Mkt VV3rd ∆VV SABR Maturity Mkt VV3rd ∆VV SABR

5y 16.7 16.5 0.0 16.5 5y 21.7 21.6 0.0 21.6
10y 19.0 18.9 0.0 18.9 10y 26.4 26.2 0.0 26.2
15y 19.5 19.4 0.0 19.4 15y 26.5 26.3 0.0 26.3
20y 19.3 19.3 0.1 19.4 20y 25.7 25.7 0.0 25.7
30y 19.5 19.4 0.2 19.4 30y 26.3 25.6 0.4 26.0

CMS-10y CMS-20y
Maturity Mkt VV3rd ∆VV SABR Maturity Mkt VV3rd ∆VV SABR

5y 33.0 32.9 0.0 33.0 5y 43.1 42.8 -0.1 42.8
10y 37.5 37.1 0.0 37.4 10y 45.0 44.4 -0.2 44.8
15y 36.4 35.7 -0.1 35.0 15y 42.0 41.4 -0.3 42.3
20y 34.5 34.1 -0.1 35.0 20y 40.0 39.8 -0.3 41.0
30y 35.1 34.0 0.0 35.3 30y 43.5 42.7 0.2 44.6

CMS-30y
Maturity Mkt VV3rd ∆VV SABR

5y 41.2 40.8 -0.2 40.7
10y 43.4 42.6 -0.6 42.8
15y 40.3 40.0 -0.8 40.7
20y 38.1 39.1 -1.0 39.7
30y 43.3 43.6 -0.5 44.2

Table 2: Comparison between market CMS swap spreads and those computed with the approxi-
mated Vanna-Volga method (VV3rd) and the SABR model. ∆VV denotes the difference between
exact and approximated Vanna-Volga spreads (in basis points).

can be quite different. The β values we use in our calibration are then chosen so as to
reproduce also CMS data in a satisfactory way.

In Figure 4 we plot the (absolute) differences between CMS swap spreads computed with
the SABR and the Vanna-Volga approaches. The discrepancies between the two models
are very small for short-dated swaps, while they increase for higher swap maturities and
tenors. Again, differences are negligible when compared to bid-ask spreads.

9 Numerical examples on CMS caps

As a last numerical example, we consider the pricing of CMS caps with different methods.
Precisely, we compare the values obtained through the Vanna-Volga formula (10) with
those coming from (4) combined with SABR implied volatilities. We also show the results
obtained with the approximated Vanna-Volga prices (22) and those implied by the approach
presented in Hagan (2003).

In Table 3 we report the prices of a 10 year cap on the CMS-10y index for different
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Figure 4: Comparison between SABR and Vanna-Volga CMS swap spreads after calibration to
swaption data.

Strike VV VV3rd SABR Hagan
2.5% 2095.5 2107.6 2112.4 2191.3
4.5% 393.0 396.7 393.8 385.6
10.0% 11.5 11.2 11.0 8.3

Table 3: Prices (in basis points) of 10 years CMS caps on the CMS-10y index.

strikes: one deep in-the-money (2%), one nearly at-the-money (4.5%) and one deep out-of-
the-money (10%). Prices are calculated with the model parameters obtained through the
calibration outlined in the previous section.

The Vanna-Volga approach (both in the general and in the approximated versions) and
the SABR-based one lead to quite similar results, particularly for the ATM case.

On the other side, Hagan’s method yields rather different values. This is not surprising
since these latter prices are not obtained using the whole volatility smile, but a volatility
quote only, namely the one corresponding to the particular strike considered.

10 Conclusions

The Vanna-Volga approach provides alternative valuations of CMS convexity adjustments
and options, with similar computational complexity of the popular method based on SABR
implied volatilities.
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However, the Vanna-Volga approach has clear advantages. First, in a swaption smile
construction, it only requires three quoted strikes to build a consistent implied volatil-
ity curve, without involving any calibration procedure and without assigning a priori any
model parameter. Second, in the valuation of CMS adjustments, it allows for an analyt-
ical approximation that fasten considerably the pricing procedure. The approximation is
extremely accurate and fast, involving no numerical integration.

The Vanna-Volga approach can also be used for the pricing of European-style derivatives
on a single CMS rate. Derivatives with payoffs depending on two or more CMS rates, like
spread options for instance, are more complex to deal with, since the extension of the
Vanna-Volga methodology to the multi-asset case is not straightforward.
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