
PureConnect®PureConnect®

2022 R32022 R3

Generated:

18-October-2022

Content last updated:

06-November-2019

See Change Log for summary of
changes.

SOAP APISOAP API

Developer's GuideDeveloper's Guide

AbstractAbstract

This document contains Application Programming Interface (API)
reference information for the Simple Object Access Protocol (SOAP)
with PureConnect.

For the latest version of this document, see the PureConnect
Documentation Library at: http://help.genesys.com/pureconnect.

For copyright and trademark information, see
https://help.genesys.com/pureconnect/desktop/copyright_and_trademark_information.htm.

1

http://help.genesys.com/pureconnect
https://help.genesys.com/pureconnect/desktop/copyright_and_trademark_information.htm

2
5
5
5
5
5
7
7
8
9
9
9

10
10
11
11
12
12
12
12
12
13
13
13
13
15
15
16
16
16
17
17
17
20
25
25
28
28
29
30
30
32
32
33
33
34
34
34
34
35
37
38
39
39
40
40
40
42
43
43
43

Table of ContentsTable of Contents
Table of Contents
CIC and SOAP API Developer's Guide overview

Audience
Organization of Material
Related Documentation
Recommended Web Links

Introduction to SOAP in the CIC Environment
What is SOAP?
Who uses CIC's SOAP functionality?
SOAP's Request/Response Model

Web Services
Requests and Responses are XML Documents

What is XML?
What is the relationship between XML and markup languages, such as HTML or SGML?

XML Parsers
Viewing XML in Internet Explorer or Edge

Comparing XML to HTML
Other features of XML

Structure of an XML file
Listing 1: Sample XML File
XML Declaration
Rules that govern tags
The Root Element
Child Elements

Structure of SOAP Messages
Envelope Section
Header Section
Body Section
Request Messages
Response Messages
Fault Messages

CIC's SOAP Components
SOAP Tools in Interaction Designer
The SOAP Tracer Utility
SOAP ISAPI Listener Task for IIS
SOAP Notifier COM Objects

Install and Configure SOAP ISAPI Listener
Installation and configuration pre-planning
Install SOAP Listener
Post-installation procedures

I3SOAPISAPIConfig.xml Filter File Format
<Rules>

Sample I3SOAPISAPIConfig File
Forward only supported SOAPActions to CIC

Configuring IC SOAP Listener to work with IC 4.0 and 2015 or later
Update the IC User Configuration
Update the Registry
Update Environment Variables
Update IIS Settings

Additional configuration steps required for SOAP Listener when using IIS7
SOAP ISAPI Filter Schema
Reinstall/Uninstall SOAP Listener

Install SOAP Notifier COM
Reinstall/Uninstall SOAP Notifier COM Components

Appendix A: SOAP Transport Information and Control
HTTP Transport

Request (Transport Info)
Response (Transport Control)

Appendix B: SOAP Tools
Initiator Tools

SOAP Initiator

2

43
43
44
44
45
45
47
47
47
49
49
49
51
51
52
53
53
55
55
56
57
59
60
61
61
63
64
66
66
69
69
69
70
70
71
72
72
74
75
75
75
75
75
75
75
75
76
76
77
77
77
77
77
77
77
77
77
78
78
78
78
78
78
78

Request Tools
SOAP Get Request Info
SOAP Abort Request
SOAP Get Transport Info
SOAP Expects Response
SOAP Parse Request Payload
SOAP Send Response

Payload Processing Tools
SOAP Create Envelope
SOAP Get Body
SOAP Get Body Element
SOAP Add Body Element
SOAP Query Encoding Style
SOAP Get Header
SOAP Get Header Element
SOAP Get Header Elements
SOAP Add Header Element
SOAP Get Fault
SOAP Set Fault
SOAP Create Fault Response
SOAP Get RPC Parameter
SOAP Add RPC Parameter
SOAP Get RPC Method Info
SOAP Get Next RPC Parameter
SOAP Create RPC Response
SOAP Set Element Type
SOAP Create Array

Invocation Tools
SOAP HTTP Request

Helper Tools
SOAP Base64 Encode
SOAP Base64 Decode
SOAP Base64 Encode File
SOAP Base64 Decode To File

Appendix C: Structure of IP Notification Messages
Request Message Structure
Response Message Structure

Appendix D: SOAP ISAPI Listener Fault Messages
Glossary

CIC Module
COM
Customer Interaction Center (CIC)
Denial of Service Attack
DTD
Handler
HRESULT Codes
HTML
IDispatch Interface
Initiator
Interaction Designer
Interaction Processor (IP)
IUnknown Interface
Method
Namespace
Notifier
Package
Payload
Processing Instruction
Protocol
Schema
SOAP
TCP/IP
Tool
Valid

3

78
78
79
79
79
79
80

Vocabulary
Web Service
Well-Formed
WSDL
XML
XSL/XSLT

Change log

4

CIC and SOAP API Developer's Guide overviewCIC and SOAP API Developer's Guide overview

AudienceAudience
SOAP stands for Simple Object Access Protocol. SOAP is an XML-based protocol specification that defines how information can be
exchanged between computers. SOAP supplies the conventions used to invoke methods on servers, services, components and
objects. This document introduces XML/SOAP concepts and explains how SOAP facilitates robust data interactions between CIC
and remote web services. SOAP supplies the conventions used to invoke methods on remote servers, services, components and
objects.

This publication is for managers, technical implementers, and other decision-makers who need to understand the practical
implications of SOAP technology in the CIC environment. The introduction is written for a general audience who may not be familiar
with XML or SOAP technology. Subsequent sections of this document guide technical implementers through the process of
preplanning, installing and configuring the SOAP ISAPI Listener Task and SOAP Notifier COM Components. Instructions for using
the SOAP Tracer utility are also provided.

Organization of MaterialOrganization of Material
This documentation is divided into logical, easy-to-digest sections that gradually introduce concepts and specific product features.
To fully understand the material, we recommend that you read topics in order. However, most topics are hyperlinked for those who
prefer to read in non-linear fashion.

Introduction to SOAP in the CIC Environment provides short primers on XML and SOAP, and explains the relationship between
XML, SOAP and the Interaction Center platform. It introduces CIC's SOAP Components.
Install and Configure SOAP ISAPI Listener explains how to select a host server, apply prerequisite service packs and hotfixes,
and then install SOAP Listener components. This section also explains how to configure the server to prevent denial of service
attacks, and how to modify the configuration so that only supported SOAPActions are forwarded to CIC for processing.
Install SOAP Notifier COM explains how to install and register components needed to run or develop third-party
SOAPNotifierCOM applications on a desktop PC.
Appendix A (SOAP Transport Information) describes HTTP schema used to transport SOAP packets in the CIC environment.
This appendix is for advanced readers who are curious about SOAP transport mechanisms used in CIC.
Appendix B (SOAP Tools) describes tools in Interaction Designer that process SOAP requests and responses.
Appendix C (Structure of IP Notification Messages) explains the notification message format and protocols used to send
requests to and from CIC's Notifier subsystem.
Appendix D (SOAP ISAPI Listener Fault Messages) is a reference about fault messages returned by the SOAP ISAPI Listener.
Special terms used with SOAP technology are defined in a Glossary.
Change Log describes what's new by release.

Related DocumentationRelated Documentation
1. CIC and SOAP API Developer's Guide (this document). This paper provides primers on SOAP and XML, and discusses the

components that must be installed to implement SOAP functionality in CIC.
2. Interaction Center SOAP Listener Setup installs SOAP ISAPI components on an IIS server. We highly recommend that you read

Install and Configure SOAP ISAPI Listener before running the install.
3. The SOAP Notifier COM Components Install installs and registers component software used by developers to create high-

performance SOAP applications.
4. SOAP Notifier COM setup optionally installs the SOAP Notifier COM API Developer's Guide

(Soap_Notifier_COM_API_DG.chm). This windows help file cross-references the interfaces, methods, and properties
exposed by SOAP Notifier COM objects.

5. SOAP Tools are documented in Interaction Designer help. These help topics appear when a SOAP tool or toolstep has focus
and the F1 key is pressed in Interaction Designer.

Recommended Web LinksRecommended Web Links
XML Home Page at the World Wide Web Consortium (W3C)

http://www.w3.org/XML/

XML Tutorial by W3Schools

5

http://www.w3.org/XML/

http://www.w3schools.com/xml/default.asp

O'Reilly XML.COM

http://www.xml.com/

W3C SOAP specification document:

http://www.w3.org/TR/SOAP/

SOAP Tutorial by W3Schools

https://www.w3schools.com/xml/xml_soap.asp

Web Services Description Language (WSDL) 1.1

http://www.w3.org/TR/wsdl

Namespaces in XML

http://www.w3.org/TR/REC-xml-names/

6

http://www.w3schools.com/xml/default.asp
http://www.xml.com/
http://www.w3.org/TR/SOAP/
https://www.w3schools.com/xml/xml_soap.asp
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/REC-xml-names/

Introduction to SOAP in the CIC EnvironmentIntroduction to SOAP in the CIC Environment
This section is for managers and other decision makers who need to understand the practical implications of SOAP technology in a
CIC environment. No prior knowledge of XML or SOAP is required to understand the concepts presented here. XML and SOAP are
standards for information exchange that were developed for the Internet.

What is SOAP?What is SOAP?
SOAP stands for Simple Object Access Protocol. SOAP is an XML-based wire protocol designed for decentralized, distributed
networks such as the Internet. SOAP defines conventions that allow a computer to invoke a remote procedure in another. These
remote procedure calls (SOAP requests) can be transported using a variety of network protocols.

For example, the SOAP Listener task on an IIS server uses HTTP protocol to transport SOAP messages to and from the Internet.
Applications developed using SOAP Notifier COM components use Notifier protocol to transport SOAP messages to and from CIC
server. SOAP itself is unconcerned with the protocol used for transport. For this reason, SOAP can be used on many types of
computer networks.

SOAP makes it possible for programs running on different computers to request and receive data from one another in a structured
way, even when different operating systems are used. SOAP provides the XML vocabulary needed to specify method parameters,
return values, and exceptions.

SOAP empowers remote computers to start handlers on CIC and receive data from CIC in response. SOAP extends CIC
interoperability to the entire Internet. Anything that "talks" SOAP through HTTP can communicate with CIC. Any computer platform
(Windows, Unix, Linux, Mac, etc.) that can create and transport a SOAP message request can start a handler on CIC. Depending upon
the type of request, the handler may or may not send back a response containing values looked up by CIC.

For example, a Unix Server might use Enterprise JavaBeans (EJB) to generate a SOAP Message requesting information about a
user's status. When the request is received by CIC, it starts a handler that looks up the user's status, generates a SOAP response,
and transports the response back to the requesting server. When the Unix system receives this SOAP payload, it uses another EJB
to parse and process the information.

Conversely, handlers created using CIC's SOAP tools can request data from web services and remote procedures. For example, a
handler might request the current price of a stock from a brokerage service, check inventory levels from an inventory management
system, conduct a credit card transaction, or obtain a weather report. SOAP support in CIC is implemented by SOAP tools in
Interaction Designer that define initiators, invoke remote procedures, process requests and payloads. SOAP messages are
channeled through a SOAP ISAPI Listener task that runs on an IIS server. Developers can optionally use SOAP Notifier COM
components to develop COM applications that directly invoke SOAP handlers. SOAP Notifier COM components are compatible with
any language/application that supports Microsoft's Component Object Model. These options are discussed later in this document.

7

Who uses CIC's SOAP functionality?Who uses CIC's SOAP functionality?
SOAP tools support open standards (SOAP, XML, WSDL, etc.) These tools promote interoperability and are applicable to many types
of application development. SOAP tools are primarily used by developers, advanced handler authors, and professional services
personnel. However, the services created using SOAP tools are another matter. Anyone, anywhere on the Internet is potentially a
consumer or provider of information processed by SOAP handlers. The possibilities are limitless.

For example, an caller might enter a PIN number into an auto-attendant menu created using Interaction Attendant. In turn, Attendant
could start a SOAP handler that passes the PIN number to a remote web service to look up information that is spoken back to the
caller using CIC's text-to-speech capability. A remote procedure invoked by SOAP can perform any kind of data processing tasks,
ranging from a simple lookups to complex transactions that accept complex data types as input. SOAP does not impose any limits
on the application functionality that can be invoked.

OAP tools allow developers to create handlers that retrieve data from web services, or which function as web services. Handler-
based services can be described using Web Services Description Language (WSDL)—an XML-based language that defines the
functionality offered by a web service and how to access it. WSDL makes it possible to describe a service on CIC so that a
worldwide audience can find and use it. WSDL describes the service, all parameters required to invoke it, and the location
(endpoint) where the service can be accessed.
WSDL's are not available for handler examples included with this release. However, you can easily create WSDL's to describe
the example files.
SOAP makes it possible for programs written in different languages and running on different platforms to communicate with
each other.
SOAP integrates CIC with business-to-business interactions and information services.
Once a SOAP endpoint is exposed to the internet, a handler may call into the endpoint, which may be on the Internet or an
Intranet.

SOAP is not appropriate for low-level, tightly-coupled transactions, due to network latency and the overhead imposed by the SOAP
messaging encoding and decoding. SOAP is best suited for simple, high-level transactions, such as sending a name and PIN number
to a service to obtain an account summary.

8

SOAP's Request/Response ModelSOAP's Request/Response Model
CIC uses a request/response model to process SOAP requests. This mechanism should be familiar to anyone who has used a web
browser.
1. A client (e.g. web browser) connects to a server and passes a request (fetch a web page). The client then waits for the server

to respond.
2. The server responds in one of two ways. It either returns the requested information, or it responds with an error message that

tells the client why the request could not be completed.
3. Once the server has responded to the client, it closes the connection, discards all state information about the transaction, and

listens for another request.

In the world of SOAP, the client is a computer program that asks a server (another computer program) to execute a method
(sometimes called a web service).

In CIC configuration, HTTP requests are received by SOAP Listener—an ISAPI DLL that runs on an IIS web server. SOAP Listener
passes requests to the CIC Notifier subsystem for processing. Notifier alerts the Interaction Processor subsystem, which in turn
starts the handler needed to process the request. Response data from the handler is passed back to the Listener task for transport
to the remote computer.

In general, SOAP Listener translates HTTP requests into notifications and acts as a gatekeeper to prevent denial of service attacks.

On the receiving end, the response message is decoded and used by the requesting computer in some way. This low-overhead
approach permits a single server to share information with many clients.

In order for the request/response model to work, messages must be formatted in a way that both computers understand. SOAP
uses XML to accomplish this.

Web ServicesWeb Services

Requests and Responses are XML DocumentsRequests and Responses are XML Documents

9

What is XML?What is XML?
XML stands for Extensible Markup Language. XML provides a structured way to define data in plain text format, so that data can be
exchanged between computers. SOAP messages are XML documents, which are just text files formatted according to some very
specific guidelines. (SOAP is the specification that defines the guidelines used to describe remote procedure calls using XML.) XML
provides the syntax needed to define a markup vocabulary—the tags and attributes needed to describe a particular type of data. XML
files can be created using a simple text editor, such as Notepad. XML is more flexible than comma-delimited or fixed-length
formats, since XML encloses information inside descriptive tags in a tree-based hierarchy. Before a SOAP request can be
transported to another computer, the request is structured using XML so that the remote system can interpret the request in
accordance with the SOAP specification. Responses from the remote procedure are returned as XML documents.

SOAP uses XML to package the data passed to a method, or received as a response. SOAP itself is nothing more than a set of
rules that define how to describe method calls and return values using XML syntax. XML merely describes data, without
consideration for the way that the data is processed or presented.

To summarize, SOAP defines conventions needed to invoke the methods of a web service. SOAP tools on CIC allow web services
to be created using Interaction Designer. SOAP uses existing transport protocols (such as HTTP) to transmit an XML payload to
another computer. The payload contains everything that the remote computer needs to execute a function (arguments and data).
Services that understand SOAP requests can be expected to return XML responses in accordance with the rules of SOAP. The
relationship between SOAP and XML can be expressed this way:

SOAP documents are XML documents that conform to a particular specification, allowing the exchange of messages. Therefore, to
understand SOAP, you need a working knowledge of XML.

What is the relationship between XML and markup languages, such asWhat is the relationship between XML and markup languages, such as
HTMLHTML or or SGML?SGML?
If you use the Internet, you probably know that HTML is the markup language used to create World Wide Web pages. (HTML stands
for Hypertext Markup Language.) HTML and XML are both descendants of an earlier markup language called SGML (Standard
Generalized Markup Language). SGML is a complicated set of rules that define document structures. XML is a subset of
SGML that does the same thing, using fewer rules. Since XML is a less-complicated derivative of SGML, XML is more easily
implemented on large networks such as the Internet. The primary role of XML is to define data.

XML delivers the power of SGML without the complexity. XML does not utilize features that make the authoring difficult or
costly. Yet XML preserves most of the flexibility and richness associated with SGML.

Web browsers use a combined parsing and presentation engine that is tolerant of markup problems. Sloppy markup in HTML pages
is ignored or interpreted in a proprietary way. For example, if a closing tag is omitted in an HTML document, the browser attempts
to guess where the closing tag should have been. If the browser encounters a tag or attribute that it does not recognize (such as a
tag supported by a different brand of browser), the tag or element is ignored.

The loose, uncontrolled nature of HTML makes it impossible to predict exactly how a web page will be displayed. Browsers
attempt to render something on-screen, however odd, rather than display validation error messages. Since HTML is presentation-
oriented, it uses markup tags for formatting as well as to define structure. The complexity of HTML formatting can make it difficult
to locate data in HTML documents. HTML was not originally designed to provide precise control over the layout of page
elements. To compensate, savvy page designers use tables, style sheets, and DHTML layers to control the placement of text and
graphics. This creates visually-appealing web pages at the expense of clear-cut document structures. Complex web pages bury
data in a mix of structures in the information stream. The lack of structural consistency in HTML documents makes it difficult for
computer programs to locate, extract or update data. XML resolves this problem, by demanding that document authors get
structure and syntax right.

10

XML documents are often parsed to ensure that they are valid and well-formed.
A well-formed document conforms to the XML specification.
A valid XML document conforms to a document structure defined by a schema or DTD (Document Type Definition). Valid
documents are well-formed documents that have a DTD or schema applied to them.

It is important to note the distinction between parsers and browsers. Parsers validate data. Browsers display information. SGML
and XML are focused on parsing documents rather than presenting them. Parsing is the computer equivalent of reading a document.
A parser is a program that reads in a text file, breaks it down into component parts, and validates the document using rules in a DTD
file. Internet Explorer offers a built-in parser that you can use to validate XML files. For details, see Viewing XML in Internet Explorer.

DTD stands for Document Type Definition. DTD's define hierarchy structure and elements that can be used in an XML document. For
links to DTD tutorials, see Recommended Web Links.) The role of a parser is to identify portions of a document that are invalid in
terms of structure or syntax. XML and SGML parsers ensure that documents are coded correctly.

The tree structure of XML documents is easy to understand when seen visually. Microsoft's Edge and Internet Explorer 6 (or later)
browsers provide a built-in parser that you can use parse, validate, and view XML files.

Tip: Tip: To open an XML file, drag and drop an XML file from Windows Explorer into your browser's document window. Or, double-
click an .xml filename in Windows Explorer.

The figure below shows the sample movie database (sample1.xml) after it has been opened in Notepad and Internet Explorer. As
you can see, Notepad displays the statements appear as they were entered. Edge and Internet Explorer display a tree of elements,
which makes the content easier to view.

Edge and Internet Explorer automatically add DHTML code so that you can expand or collapse nodes in the tree. Internet Explorer
doesn't allow you to do much besides view XML files. However, if you save your XML file with an extension of .htm or .html, IE will
render the data contained in the XML file.

XML ParsersXML Parsers

Viewing XML in Internet Explorer or EdgeViewing XML in Internet Explorer or Edge

11

Comparing XML to HTMLComparing XML to HTML
XML and HTML are both markup languages, and they both use syntax that is enclosed between angle-bracketed tags. But they are
used for different purposes—almost as if one is an apple and the other is an automobile.

XML is used to define data in a highly structured way, so that it can be read both by people and by computers. If you send an XML
document to a computer that understands its format, the computer can parse the document and make use of all of its data. To
achieve this goal, XML documents must be well-formed and valid, or the receiving computer will not be able to process them. Note,
however, that the XML formatting of a document is not directly responsible for the appearance of this data.

HTML, on the other hand, is used to render documents in a web browser, so people can read them. That is, it controls the
appearance of the document. One of the consequences of this is that an HTML rendering engine will do whatever it can to render a
document that isn't well-formed, so that the person who opened it can read the document.

While any given version of HTML supports a fixed set of tags, XML is completely extensible. As long as your document is well-
formed—and as long it follows an XML Schema that is understood by the parser at the other end—you can make up tags for just
about any purpose you can think of, whether it's a row in a table, a financial transaction, a short story, or an object that exposes
methods and properties.

And if you need to render an XML document, you can use XSLT (eXtensible Stylesheet Language Transformations) to transform all
or part of it into another type of document, reordering the data as needed. If your target document type is HTML—or any other other
form of presentation-oriented markup—you can format the output in just about any way you could imagine.

Because XML is plain text, it is easily transmitted between computers and through firewalls.
XML is more secure than binary files, since text files can't be executed directly.
XML is universally compatible, as the XML file format is not tied to any particular program, operating system, database, or
network. This also means that XML can be used by non-web applications to store data.

Structure of an XML fileStructure of an XML file
An XML file is just a structured text file. The best way to understand XML is to look at example files. Listing 1 below contains
three records from a movie database. Each record contains two fields: the title of a movie, and its genre.

The example file is formatted using blank lines, tabs and white space that make the file easier to read. In practice, those items are
ignored by XML parsers. Likewise, bold text and line numbers in the listing are for illustration purposes only. Actual XML files do
not contain line numbers.

1 <?xml version="1.0"?>
2 <movies>
3 <movie>
4 <title>The Ghost and Mr. Chicken</title>
5 <genre>Comedy</genre>
6 </movie>
7 <movie>
8 <title>Gone with the Wind</title>
9 <genre>Drama</genre>
10 </movie>
11 <movie>
12 <title>ThunderBall</title>
13 <genre>Adventure</genre>
14 </movie>
15 </movies>

Line 1 contains a processing instruction known as the XML declaration. This statement tells parsers that the file contains
XML. The remainder of the file is composed of XML elements. Each element consists of a start tag and an end tag. XML data is
just information that appears between tags.

Other features of XMLOther features of XML

Listing 1: Sample XML Listing 1: Sample XML FileFile

XML DeclarationXML Declaration

12

https://en.wikipedia.org/wiki/Well-formed_element
https://en.wikipedia.org/wiki/XML#Schemas_and_validation
https://en.wikipedia.org/wiki/XML_schema

The terms tag and element are often used interchangeably. A tag is an identifier that defines something. An element is an instance
of a set of tags. In our example, <title> is a tag, and <title>Gone with the Wind</title> is an element. Elements are the basic
building blocks of HTML files. Elements can be nested inside of other elements.

Tags are governed by a few basic rules:
Tag names are case-sensitive. <movie>, <Movie>, and <MOVIE> are not equivalent. Attribute names are also case-sensitive.
Tag names must begin with an alphabetic character, an underscore, or a colon.
Tag and attribute names cannot begin with "xml", which is reserved.
All tags must be closed. A start tag must be closed by a corresponding end tag. Empty elements with no attributes can use a
backslash as a shortcut for the end tag (e.g. <movie/> is equivalent to <movie></movie>.

Line 2 defines the root elementroot element . Since an XML document is a tree of elements, each document has a single root element that
denotes the beginning and end of the XML statements in the file. In the example, the root element begins with a start tag <movies>
and is closed by an end tag </movies>. All other elements are nested inside the root element.

Line 3 identifies <movie> as a chi ldchi ld of the <movies> root element. Parent-child relationships are common in XML files. Parent
elements can have many children. All elements must be properly closed, meaning that each element has a start tag and an end
tag. Likewise, tags must be balanced. The close tag of a child cannot appear after the close tag of its parent. For example:

<title>ThunderBall<genre>Adventure</title></genre> is incorrect.
<title>ThunderBall<genre>Adventure</genre></title> is correct.
Line 4 contains some data (the title of a movie) between tags that identify the data.

Line 5 contains a different data item. In this case, it is a movie category between genre tags.

Line 6 closes this movie element.

This basic structure is repeated in lines 7 through 14, which define two more records.

Line 15 contains the closing tag for the root element.

Rules that govern tagsRules that govern tags

The Root ElementThe Root Element

Child ElementsChild Elements

13

Structure of SOAP MessagesStructure of SOAP Messages

SOAP messages are constructed using a framework that
describes what is in a SOAP message, and how it should be
processed. This is known as the SOAP envelope.

SOAP messages may contain encoding rules, which express
instances of application‑defined data types. Remote procedure
calls and responses are also described in a SOAP message. As
mentioned earlier, there are two types of SOAP messages:

RequestRequest messages ask a remote process to perform
some sort of processing.
ResponseResponse messages are replies from a remote process
that return data or an error message that indicates why the
request could not be processed.

The payloadpayload contains data in XML format that is passed to or
from a function. Request payloads contain everything needed to
execute a function, including data and arguments passed as
parameters. Response payloads contain the values that are
returned from a function. SOAP uses XML to express payload
information accurately and concisely. Every SOAP message has
a main envelope section, which can contain header and body
sub-sections.

The envelope is always the outer most element. Everything else in a SOAP message appears inside SOAP-ENVSOAP-ENV tags. The envelope
in Listing 2 is empty—it doesn't contain any header or body tags.

Listing 2: SOAP Envelope E lementsListing 2: SOAP Envelope E lements

1 <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
2 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
3 </SOAP-ENV:Envelope>

1. Line 1 of the envelope refers an external XML namespace (xmlnsxmlns) that defines elements and attributes that can appear in the
envelope (such as header or body elements).

2. Namespacesresolve collision issues by associating XML attribute and element names with a specific context, or "namespace".
A namespace is an identifier that helps computer programs determine whether identically named elements refer to the same
type of data. Using namespaces, a program can determine that a data element named "Grade" in the "Schoolwork" namespace
is different from an element called "Grade" in an "Egg Quality" namespace.

3. Most SOAP envelopes refer to XML schema defined by the W3C. It is very common to see
http://schemas.xmlsoap.org/soap/envelope/ as the namespace reference in a message envelope.
XML Schema are the successor to DTDs for XML. XML schema describe method calls, and can recognize and enforce data-
types, inheritance, and presentation rules. A schema can be part of an XML document or can be referenced as an external file.

4. Line 2 refers to encodingStyleencodingStyle schema that describes basic data types (Booleans, Integers, Strings, etc.) that can be passed
to a remote procedure call. SOAP messages typically define encoding rules using the W3C schema at
http://schemas.xmlsoap.org/soap/encoding/.

5. Line 3 closes the envelope.

Envelope SectionEnvelope Section

14

http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/encoding/

As mentioned earlier, the envelope can contain header and body sections. These are defined using HeaderHeader and BodyBody elements.
Listing 3 shows a SOAP message with empty Header and Body sections.

Listing 3: Header and Body Sections of a SOAP EnvelopeListing 3: Header and Body Sections of a SOAP Envelope

1 <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
2 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
3 <SOAP-ENV:Header>
4 </SOAP-ENV:Header>
5 <SOAP-ENV:Body>
6 </SOAP-ENV:Body>
7 </SOAP-ENV:Envelope>
As you can see, lines 3-4 define the Header section. Lines 5-6 define the Body. Other independent elements can optionally be
defined inside the envelope, but for purposes of this discussion, we do not need to be concerned with independent elements. Refer
to the W3C SOAP Specification at http://www.w3.org/TR/SOAP/ for more information about independent elements.

The Header section can contain meta data about the message. Meta data is "data that describes data". A SOAP message does not
have to contain a Header. Header elements make it possible to extend the base SOAP protocol, to accommodate needs that the
SOAP specification does not include.

For example, Header elements might maintain session information between a server and a client, or might contain authentication
information about a transaction. A Header can contain any number of namespace-qualified child elements, each of which extends
the default protocol in some way. Each header element provides extra content for processing the Body of the message.

Each Header element may be annotated with a "mustUnderstand" attribute, which indicates whether or not the element is
mandatory. When "mustUnderstand" is True for an element, the server that processes the message must know how to interpret that
element. If it doesn't, it must reject the message. Headers that do not have a "mustUnderstand" attribute, or which have this
attribute set False, are considered to be optional, meaning that the recipient server is allowed to process the message as best it
can.

The most important part of a SOAP message is the Body section, since it contains the message's payload. In a request message,
the Body defines the method to execute, and parameters that must be passed to it. The Body of a response message contains
references to the method called, and return values from the method. If an error occurs, the response contains information about the
fault. To better understand these concepts, let's look at some actual request/response messages. The request message in Listing
4 invokes a simple method that adds two numbers. Listing 5 contains the response from the web service.

Listing 4: Request to Invoke Add MethodListing 4: Request to Invoke Add Method

1 <SOAP-ENV:Envelope
2 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
3 SOAP-4 ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
5 <SOAP-ENV:Body>
6 <m:Add xmlns:m="uri:my-calculator">
7 <Parameter1>2</Parameter1>
8 <Parameter2>3</Parameter2>
9 </m:Add>
10 </SOAP-ENV:Body>
11 </SOAP-ENV:Envelope>
The m:Addm:Add method name element in line 6 contains the name of the method (Add) we wish to call, and the namespace it is found
in (uri:my-calculator). The URI (Universal Resource Indicator) specifies which computer offers an Add method web service.

Lines 7-8 define two arguments (Parameter1 and Parameter2) that the Add method requires. In this example, the numbers to be
added are 2 and 3.

Line 9 closes the method name element.

Header SectionHeader Section

Body SectionBody Section

Request MessagesRequest Messages

15

http://www.w3.org/TR/SOAP/

The response from the computer at uri :my-calculatoruri :my-calculator is listed below. This response message contains return values from the
Add method. By convention, "Response" is appended to the name of the method called. However, the format of the method name
can also be defined using WSDL.

Listing 5: Response from the Add MethodListing 5: Response from the Add Method

1 <SOAP-ENV:Envelope
2 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
3 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
4 <SOAP-ENV:Body>
5 <m:AddResponse xmlns:m="uri:my-calculator">
6 <Result>5</Result>
7 </m:AddResponse>
8 </SOAP-ENV:Body>
9 </SOAP-ENV:Envelope>
Line 5 identifies the remote procedure call. The Result tag in line 5 contains the sum of 2+3, which is 5. Note that the response
message does not contain any of the data passed to call the function. Responses contain a return value from the function, or a fault
message that indicates why the function call failed.

When a message is rejected, the server generates a Fault, or error message. Faults are commonly caused by unrecognizable header
fields, messages that cannot be authenticated, or problems that occurred when the server attempted to invoke a method or process
the message.

Listing 6: A Typical Fault Response MessageListing 6: A Typical Fault Response Message

<S:Envelope xmlns:S='http://schemas.xmlsoap.org/soap/envelope/'>
 <S:Body>
 <S:Fault>
 <faultcode>S:Server</faultcode>
 <faultstring>S:Server</faultstring>
 <detail>
 <e:mydetails xmlns:e="http://foo.com/detail">Some Error Message</e:mydetails>
 </detail>
 </S:Fault>
 </S:Body>
</S:Envelope>

CIC's SOAP ComponentsCIC's SOAP Components
The SOAP components in a Customer Interaction Center environment are:
1. Interaction Designer SOAP Components:Interaction Designer SOAP Components: When Interaction Designer is installed, SOAP tools, SOAP Tool help, and a SOAP

message trace utility are installed to the C:\I3\IC\Install\Admin\IC_Admin directory on the CIC server.
SOAP tools are implemented in a dynamic link library named SOAPToolsIDA.DLL. When Interaction Designer starts up, it adds
the tools defined in this DLL to Interaction Designer's tool palette. SOAP Tools are always installed with Interaction Designer.
See SOAP Tools in Interaction Designer for more information. Context-sensitive online help for SOAP tools is available in
Interaction Designer. Soap help topics are displayed when a SOAP tool has focus in Interaction Designer and the F1 key is
pressed.

2. SOAP TracerSOAP Tracer Uti l i ty: Uti l i ty: (SOAPTracerA.exe) is optionally installed with Interaction Designer when the "SOAP" option is selected.
It permits users to "spy" on SOAP notification traffic. Soap Tracer displays request and response packets in a list and allows
inspection of request and response payloads. For usage information, see SOAP Tracer Utility later in this section.

3. The SOAP ISAPI Listener:SOAP ISAPI Listener: Task Task is responsible for parsing incoming SOAP requests, dispatching requests to the appropriate
method, and packaging return values into outgoing SOAP responses. This process runs on an IIS Server. See SOAP ISAPI
Listener Task for IIS later in this section.

4. SOAP Notifier COM ObjectsSOAP Notifier COM Objects issue SOAP notifications from automation compatible applications. These components
provide a high-performance method of initiating handlers without incurring the performance penalty of HTTP-based Listener
operations. Third-party applications created using the SOAP Notifier COM components can directly create and forward packets
to Interaction Processor, bypassing the need to create packets received using HTTP and the Soap Listener task. See SOAP
Notifer COM Objects later in this section.

Response MessagesResponse Messages

Fault MessagesFault Messages

16

This topic summarizes SOAP-related tools in Interaction Designer that create handlers to process SOAP requests or responses. For
additional information, see Appendix B: SOAP Tools.

Initiator ToolsInitiator Tools

SOAP Initiator

This initiator triggers if the "Notification Event" of the request matches a specified string. The Notification Event on which
the Initiator triggers is specified in the property dialog.

Request ToolsRequest Tools

SOAP Get Request Info

Queries some information from the request handle.

SOAP Abort Request

Aborts the request. Aborting a request is useful if a SOAP request handler is registered as a Monitor handler.

SOAP Get Transport Info

Returns an XML document containing transport specific (header) data. It allows the client to include any kind of out-of-band
data in the request.

SOAP Expects Response

Takes a different exit path depending on whether the SOAP request requires a response (YES) or not (NO).

SOAP Parse Request Payload

Parses the payload of the request into an XML document.

SOAP Send Response

Sends the specified payload as response to the sender of the request. To support transport specific features, the "Transport
Control Data" argument takes an XML node whose content will be sent back to the client. It can be used to send transport
specific out-of-band data to the client.

Payload Processing ToolsPayload Processing Tools

SOAP Create Envelope

Creates a new SOAP envelope.

SOAP Get Body

Retrieves the Body element from the SOAP envelope. A body must exist. If it can't be found, the tool exits through "Failure"
and attaches error information to the envelope.

SOAP Get Body Element

Retrieves the first body element that matches the given base name and namespace.

SOAP Add Body Element

Adds an entry to the body of the SOAP envelope.

SOAP Query Encoding Style

Matches a space separated list of URIs against the "encodingStyle" attribute of the given element. If the element doesn't
have an ‘encodingStyle' attribute, the parent of the element is checked and so on, until an element with an "encodingStyle"
attribute is found. If that attribute contains any of the specified encoding style URIs, the tool returns through "Found" and
returns the style that was found.

SOAP Tools in Interaction DesignerSOAP Tools in Interaction Designer

17

SOAP Get Header

Retrieves the header element from the SOAP envelope if it has one.

SOAP Get Header Element

Retrieves the first header element that matches the given base name and namespace. Returns the first element in the
header if neither a name nor namespace is given. Takes "Not Found" exit if the envelope doesn't have a header or the
element can't be found.

SOAP Get Header Elements

Returns iterator to a list of header elements filtered by the given arguments. Takes the "None" exit if envelope has no
header or none of the header elements matched the filter criteria.

SOAP Add Header Element

Creates a header element and adds it to the given envelope. If the envelope does not have a header, one is inserted before
the Body element.

SOAP Get Fault

Retrieves fault information from the SOAP envelope. If there is no style="color: #0e5470;"><Fault> element in the envelope,
the "No Fault" exit is taken and NULL elements and empty strings are returned.

SOAP Set Fault

Adds a style="color: #0e5470;"><Fault> element to the envelope or replaces an existing one.

SOAP Create Fault Response

Copies the request envelope and replaces all children of the style="color: #0e5470;"><Body> element with a single
style="color: #0e5470;"><Fault> element. It combines the functionality of the "SOAP Create Envelope" tool with the
functionality of the "SOAP Set Fault" tool.

SOAP Get RPC Parameter

This is a convenience tool for cracking RPC requests. It retrieves a parameter element (child) from the first element in the
<Body> element (method in an RPC request). It returns the first element that matches all of the specified arguments.

SOAP Add RPC Parameter

This is a convenience tool for composing RPC requests or responses. It adds a parameter element to the first element in
the body of the envelope, which represents the method in RPC requests. Use the XML tools to add complex data (not just a
string) to the parameter by manipulating the returned "Parameter Element" node.

SOAP Get RPC Method Info

This is a convenience tool for cracking RPC requests. It retrieves the first child element of the SOAP <Body> element
(Method element in RPC requests). It returns a collection containing the child elements of the method, which constitute the
method arguments.

SOAP Get Next RPC Parameter

This tool returns the element node at the current iterator position and returns an iterator to the next position.

SOAP Create RPC Response

This is a convenience tool for composing the response envelope for an RPC request. It copies the source envelope and
replaces the method element in the body with an element that has the same name but "Response" added to its name. It also
adds a <Result> element as child of the method element.

SOAP Set Element Type

In SOAP, the type of an argument or the return value is specified by the service description and doesn't need to be included
in the payload. However, the service may define the type as xsd:anyType, for VARIANT types. This tool allows you to include
the type in the argument.

SOAP Create Array

Turns an element, for example an RPC parameter, into a SOAP array. The array is created for values supplied as list of
strings or just a number of empty elements that can be populated with complex data.

18

Invocation ToolsInvocation Tools

SOAP HTTP Request

This tool issues an HTTP request to the specified URL with the SOAP request envelope as payload. The response body is
parsed and returned as response envelope.

Helper ToolsHelper Tools

SOAP Base64 Encode

Converts a supplied UNICODE string to the specified character set (default = UTF-8) and encodes the resulting data into a
Base64 string. Characters that cannot be translated to the destination character set will be represented as ‘?'. Wide
character sets, such as UTF-16 are currently not supported.

SOAP Base64 Decode

Decodes the base64 encoded string into the binary representation and converts it to UNICODE based on the specified
character set.

SOAP Base64 Encode File

Reads the specified file as binary data and encodes it into a base64 string. This tool can be used to send any kind of data
through SOAP requests. For example, you could encode a wave file in a SOAP message.

SOAP Base64 Decode To File

Decodes the base64 encoded string into the binary representation and writes the data to the specified file as binary data.

19

SOAP Tracer is used to debug SOAP requests and responses. It displays notifications exchanged between the client (SOAP Notifier
COM or ISAPI listener) and the CIC server. It spies on SOAP notification messages. It records and displays request and response
packets in a list and allows inspection of request and response payloads. Filtering for particular SOAP actions or clients is not
supported in the current release, but may be added in the future. SOAP Tracer is optionally installed on the CIC server when
Interaction Designer is installed—if the "SOAP" option is selected. It can be used from any machine that has access to a CIC server
through a Notifier connection. However, SOAP Tracer is unrelated to Interaction Designer. It is also unrelated to ISAPI Listener.

IMPORTANTIMPORTANT—Do not run SOAP Tracer for extended periods of time. It can consume a lot of memory and may degrade
performance of CIC.

Starting SOAP TracerStarting SOAP Tracer

The default shortcut created under Program Files > PureConnect > SOAP Tracer is:

C:\I3\IC\Install\Admin\IC_Admin\SOAPTracerAD.exe /notifier=localhost
To run this utility, press the Start button, then select Programs > PureConnect > Soap Tracer. SOAP Tracer optionally accepts the
command line arguments listed below.

Command Line ArgumentsCommand Line Arguments

/NOTIFIER=<hostname>

Hostname or IP address of the Notifier server. Default: default Notifier server of the user.

/USER=<username>

User name of the CIC user. Default: current user

/PASSWORD=<password>

Password of the CIC user.

/TEMPDIR=<directory>

Directory in which to store the temporary files generated by the utility. Default is the system's TEMP directory.

/STARTCAPTURE

If this argument is specified, the SOAP Tracer immediately starts capturing SOAP notifications. If not specified, the capture
must be started by selecting Start Capture from the Tools menu, or by pressing the corresponding tool bar button for this
command.

/KEEPTEMPFILES

By default, temporary files used to store the SOAP payload are deleted when the traces are cleared or the utility is exited.
When this switch is specified, SOAP Tracer won't delete its temporary files automatically.

SOAP Tracer's User InterfaceSOAP Tracer's User Interface

The SOAP Tracer UtilityThe SOAP Tracer Utility

20

The SOAP Tracer window is divided into three panes. Users select a message in the top pane to display corresponding request and
response messages in the other panes.

The The Request List PaneRequest List Pane

The top pane is the Request List. It displays information about SOAP requests. such as the name of the client who issued the
request, the time, and whether or not the request succeeded. This pane contains the following columns:

Request Timestamp (UTC)

Date and time in UTC when request notification was recorded.

Initiator Event

Notification Event of the request (often same as SOAP Action).

SOAP Action

SOAP Action of the request.

Client

Name of the client issuing the request.

Client ID

Dynamic identifier of the client.

Request ID

Identifier of the request (generated by and scoped to client).

Request Size

Size of the request payload (SOAP envelope) in bytes.

Result Code

21

Result code returned by the server.

Succeeded

Request successfully processed

Failed

Request failed, server returned SOAP fault

Unhandled

Request was not handled by the server

Response Timestamp (UTC)

Date and time in UTC when response notification was recorded

Duration

Difference between Response Timestamp and Request Timestamp

Response Size

Size of the response payload data in bytes.

Key TermKey Term—A payload contains data in XML format that is passed to or from a function. Request payloads contain
everything needed to execute a function, including data and arguments passed as parameters. Response payloads
contain the values that are returned from a function.

The The Request Payload PaneRequest Payload Pane

The Request Payload pane displays XML payload data that was sent to the handler for the selected request.

The The Response Payload PaneResponse Payload Pane

The Response Payload pane panes display payload data that was sent back to the client by the handler.

22

Menu CommandsMenu Commands

File > Exit

Closes Soap Tracer.

View > Transport Info Data

Displays a dialog containing the transport info data of the request. This option is enabled if the SOAP request notification
included transport information data.

View > Transport Control Data

Displays a dialog containing the transport control data of the response. This option is enabled if the SOAP request
notification included transport control data.

View > Follow Requests

If checked, the selection in the request list will follow the recorded requests and always select the most recent one.

View > Toolbar

Hides or displays toolbar icons.

View > Status Bar

Hides or displays the status bar.

Tools > Start Capture

Starts recording the SOAP notification traffic.

Tools > Stop Capture

Stops recording the SOAP notification traffic.

Tools > Clear View

Clears the list of recorded SOAP notifications.

Tools > Settings

Displays dialog used to configure the application. This feature is disabled in the current release.

Help > About SOAPTracer…

Opens a dialog that displays copyright information.

23

ToolbarToolbar

Some SOAP Tracer commands have tool bar equivalents.

Tool bar icons in SOAP Tracer.

24

SOAP ISAPI Listener translates HTTP SOAP packets into notifications and sends them to the CIC server. The SOAP ISAPI Listener
must be installed on a machine that has IIS installed.

What is a Listener?What is a Listener?

A listener receives incoming HTTP messages that contain SOAP requests for some type of service. It parses these messages,
decides whether to process the request (based upon threshold values and filter configurations), and dispatches the request to the
appropriate method for processing. If the service returns a response, the listener packages the response into an HTTP payload, and
sends that back to the client. A listener also handles requests for WSDL information about web services.

The SOAP ISAPI Listener looks at incoming SOAP requests, decides whether requests should be forwarded to CIC to invoke a
handler, and forwards appropriate requests to CIC's Notifier subsystem, which in turn calls Interaction Processor to invoke the
handler associated with the initiator specified in the incoming message. SOAP ISAPI listener and packages return values from
handlers into outgoing HTTP responses, and sends them to the client. If the listener decides not to forward a request to CIC for
processing, it returns a fault message (SOAP and/or HTTP) to the requesting client application.

What is ISAPI?What is ISAPI?

The SOAP ISAPI Listener is sometimes called the SOAP ISAPI DLL, since it is a dynamic link library developed in conformance with
Microsoft's Internet Server Application Programming Interface (ISAPI). ISAPI allows developers to extend the functionality of
Microsoft's Internet Information Server (IIS). The component that implements the ISAPI Soap Listener task is I3SOAPISAPIU.DLL.
This DLL is installed by the Interaction Center SOAP Listener Install to the IIS server of your choice. It translates HTTP requests
into notifications and acts as a gatekeeper to prevent denial of service attacks. An ISAPI DLL is not a COM DLL. To invoke an ISAPI
DLL, it must be explicitly referenced in a HTTP header. For example:

http://www.foo.com/virtual_directory_name/I3SOAPISAPIU.DLL
The virtual directory name is optional, so long as the server can resolve the location of the DLL.

What is an endpoint?What is an endpoint?

SOAP invokes methods at HTTP endpoints. An endpoint is a URL that uniquely identifies a namespace URI (Universal Resource
Indicator), and the name of the method to execute (known as the NCName). Consider the following endpoint:

uri:my-calculator#Add"
The URI namespace (my-calculator) identifies the code module that contains the method to be called (Add), just as an interface
name scopes a method in Java, CORBA, or COM. The namespace and the method name are separated by a pound sign.

When a SOAP request is transported to invoke the method, the endpoint name is passed in the SOAPMethodName header of the
HTTP POST request. Consider the following sample HTTP header:

POST /objectURI HTTP/1.1
Host: www.foo.com
SOAPMethodName: urn:foo.com:my-calculator#Add
Content-Type: text/xml
Content-Length: nnnn
The HTTP header indicates that the AddAdd method (from the urn:foo.com:my-calculatorurn:foo.com:my-calculator namespace) should be invoked against
the endpoint identified by http://www.foo.com/objectURI.. The rest of the HTTP request is an XML document that contains
additional information needed to invoke the request, such as parameters passed to the method. The server-side software that
receives the request (e.g. the SOAP ISAPI Listener) is responsible for processing the request. Unlike other RPC protocols, SOAP
doesn't define specific actions that must occur when a request is received. It leaves the implementation details to the process
running at the endpoint. See http://www.w3.org/TR/REC-xml-names/

SOAP Notifier COM is a set of software components that allow custom applications to invoke handlers. SOAP Notifier COM
objects issue SOAP notifications from automation compatible applications. Microsoft's .NET framework makes it possible for
programmers to invoke a web service as if they were invoking a method of an object. SOAP Notifier COM components provide a
high-performance method of calling handlers without incurring the performance penalty of HTTP-based Listener operations. Third-

SOAP ISAPI Listener Task for IISSOAP ISAPI Listener Task for IIS

SOAP Notifier COM ObjectsSOAP Notifier COM Objects

25

http://www.w3.org/TR/REC-xml-names/

party applications created using the SOAP Notifier COM components can directly create and forward packets to Interaction
Processor, bypassing the need to create packets received using HTTP and the Soap Listener task. These packets that are identical
to those created by SOAP ISAPI Listener. However, the process is faster than HTTP-based Listener operations.

SOAP Notifier COM is appropriate for Windows client workstations that can run COM applications. It is not appropriate for
operating systems (Linux, for example) that do not support COM. SOAP Notifier COM Components Setup registers SOAP Notifer
COM API components on desktop PCs used to develop or run SOAP Notifier COM API applications.
Soap_Notifier_COM_API_DG.chm is the SOAP Notifier COM API Developer's Guide. It describes interfaces, methods, and properties
of the SOAP Notifier COM API. You will find this publication in the System APIs section of the PureConnect Documentation Library.

ISoapConnector: the MSSOAP Notifier ConnectorISoapConnector: the MSSOAP Notifier Connector

ProgId: ININ.MSSOAPNotifierConnector

The SOAP Notifier COM API provides a component named ISoapConnectorISoapConnector that is used to initiate SOAP handlers. Programmers
can invoke a web service as easily as invoking a method on an object. The VB example below shows how to use the transport. It is
assumed that a WSDL file with the service description exists, since this is required for MSSOAPLib.SoapClient. Instead of the
SoapClient, you may use the MSSOAPLib.SoapSerializer and MSSOAPLib.SoapReader objects with any object that uses a
ISoapConnector.

Dim objTransport As New SOAPNotifierCOMLib.SOAPNotifierTransport
objTransport.Connect "<Notifier>", "<AppId>", "<user>", "<password>", "<ClientName>"
Dim objClient As New MSSOAPLib.SoapClient
objClient.ClientProperty("ConnectorProgID") = "ININ.MSSOAPNotifierConnector"
objClient.mssoapinit "<WSDL filename or URL>"
objClient.ConnectorProperty("Transport") = objTransport
Result = objClient.<method>(<arguments>...)

PropertiesProperties

SOAP Notifier Connector supports the following properties:

Transport

Transport object to be used for server communication. Must be set before the first invocation.

SOAPAction

SOAP Action used in the request. If not defined (empty string), uses value from the WSDL file.

InitiatorEvent

Initator Event (notification event) of the request notification. If not specified or as default, the SOAPAction is used.
Changing the SOAPAction also resets this property, unless the PreserveInitiatorEvent property is set. If the SOAPAction has
never been set or is an empty string and the value from the WSDL file is used, the InitiatorEvent is reset after each request
(again, unless PreserveInitiatorEvent is True).

PreserveInitiatorEvent

If True, changing the SOAPAction does not change the InitiatorEvent property.

RequestTimeout

Maximum amount of time to wait for response in milliseconds. Value < 0 = infinite. Default = 60000 (1 minute).

TransportInfo

Write only. Transport info data. Must be object implementing IStream.

TransportCtrl

Read only. Transport control data, returns IUnknown of an object implementing IStream. Can only be retrieved after
invocation until the object using the connector calls the ‘BeginMessage' method of the connector (usually, as part of the
next invocation).

ResponseObject

Read Only. Returns the ISOAPResponse object resulting from the request. Can only be retrieved after invocation until the
object using the connector calls the ‘BeginMessage' method of the connector (usually, as part of the next invocation).

26

https://help.genesys.com/cic/desktop/system_apis.htm
https://help.genesys.com/cic/desktop/welcome_page.html

Related TopicsRelated Topics

Appendix C: Structure of IP Notification Messages

27

Install and Configure SOAP ISAPI ListenerInstall and Configure SOAP ISAPI Listener
The components of SOAP follow the client/server model. Some components are installed when Interaction Designer is installed on
the CIC Server. Other components are installed on IIS web servers and client PCs. This section explains how to install and configure
SOAP Tools, SOAP Tracer, SOAP Listener, and Soap Notifier COM components.

SOAP Tools Instal lationSOAP Tools Instal lation: When Interaction Designer is installed (as part of the CIC Admin setup), new SOAP tools are added
to Interaction Designer's tool palette. SOAP tools are implemented in a DLL (SOAPToolsIDA.DLL) that is installed with
Interaction Designer. Appendix B in this document also contains a summary of each SOAP Tool.
SOAP Tracer Instal lationSOAP Tracer Instal lation: The Soap Tracer Utility (SOAPTracerA.exe) is optionally installed if the "SOAP" option is selected
during installation of Interaction Designer.
SOAP SOAP ISAPI Listener Instal lationISAPI Listener Instal lation: The Interaction Center SOAP Listener Install installs the SOAP Listener Task on an IIS
server. The SOAP Listener task is an ISAPI DLL. Installation requires preplanning on your part to address security and
configuration issues, and some post-installation work to customize the default SOAP filter configuration. The SOAP ISAPI DLL
must be installed on a server running Microsoft Internet Information Server (IIS), version 5 or later.

Installation Installation and configuration pre-planningand configuration pre-planning
This section describes issues that SOAP implementers must resolve before installing ISAPI SOAP Listener on an IIS server. Security
issues are particular important to consider if you plan to pass SOAP requests across the Internet.
1. Select Select a server to host SOAP ISAPI Listener.a server to host SOAP ISAPI Listener.

The SOAP Listener task is an ISAPI DLL that you must install on a computer running Microsoft's Internet Information Server
(IIS) service. SOAP Listener uses IIS (version 5 or later) solely for HTTP operations. It does not consume other IIS services.
You can install this task on a dedicated IIS server, or on a CIC server that is running IIS. Before choosing a platform, you should
carefully consider security, performance, and capacity issues.
SOAP Listener will work if it is installed on a CIC server running IIS. Theoretically, this could improve performance by
eliminating latency between CIC and a dedicated IIS server. In practice, performance could be degraded if the CIC server
becomes too highly tasked, and this configuration could compromise network security. As a rule of thumb, do not install SOAP
ISAPI Listener on a CIC server unless:
Port 80 HTTP traffic is tightly controlled (e.g. SOAP will be used exclusively for interactions between servers inside a firewall).
This is appropriate for some corporate Intranets. Use a different port than 80 (e.g. 8080) that is blocked by the firewall. SOAP
requests will not be received from the Internet, or use another port. The CIC server has the capacity to run IIS without degrading
performance.
If SOAP requests will be received from the Internet, you should install SOAP ISAPI Listener on an IIS server in a DMZ
(Demilitarized Zone) between two firewalls. This can be an existing CIC/web server or a dedicated web server.

2. Open port 2633 on the firewall between the DMZ and the Intranet on which the CIC server is located, so that Notifier traffic can
pass between the CIC server and the SOAP listener. Do not open port 2633 to the Internet.

What is a Demil i tarized Zone?What is a Demil i tarized Zone?
In an Internet-connected world, any public access server, such as a web server that connects outside of an internal network
is unprotected against hacking. A public access server can expose the rest of a network to potential intrusion.
Demilitarized zones (DMZ) reduce security risks by using multiple firewalls to delimit an internal network from publicly
connected devices, such as web servers. A DMZ configuration protects both public servers and the internal network. The
first firewall isolates essential Internet services (web, email, DNS, etc). The second firewall protects the internal network.
A DMZ is not the only solution that you might employ to protect your network. It is completely acceptable to use different
security measures. The exact method is up to you—be reminded that if you connect a server to the outside world, you must
manage the risk that your internal network might be penetrated through a public server.

3. Apply Apply service packs and hotfixes to IIS.service packs and hotfixes to IIS.
Network security is a topic outside the scope of this paper. However, we strongly recommend that you keep server operating
system and IIS software up-to-date. Apply Microsoft service packs and hot fixes regularly. Hackers frequently exploit known

28

security holes that you can close by applying free software updates. You can automate this process to a limited extent. For
example, Microsoft's HFNETCHK is an executable that runs on your server. It retrieves an XML file that contains information
about security hot fixes that your system might need. Browse Microsoft's web site (http://www.microsoft.com/security) for
security bulletins, upgrades and other information. As a rule of thumb, you should not install services that you do not need.
Subscribe to "NTBugtraq" or a similar discussion list. This mailing list discusses security exploits and security bugs in
Windows NT, Windows 2000, and Windows XP plus related applications. To sign up, visit http://www.ntbugtraq.com/.

4. Decide Decide how to configure SOAP Listener to prevent DoS Attackshow to configure SOAP Listener to prevent DoS Attacks
Denial of Service (DoS) Attacks are attempts to flood a server with false requests for information, with the goal of
overwhelming the system and ultimately crashing it. Not much can be done to prevent a denial of service attack. However, you
can minimize the impact of DoS attacks by supplying the a couple of threshold values at installation time, and by customizing
an ISAPI filter after installation is complete.

Default Request Timeout
Since DoS attacks can degrade performance of the CIC Server, ISAPI Listener can be configured (at installation time) to
return a fault message (Server.RequestTimeout) if the CIC Server fails to respond within a specific time interval.
Before installing SOAP Listener, decide what value to enter into the Default Request Timeout field. This value sets the
maximum amount of time in milliseconds that ISAPI Listener will wait for the CIC Server to respond to a SOAP request.
When this interval is exceeded, ISAPI Listener sends a fault message to the requester. The default is 60,000
milliseconds (1 minute). If your IIS server has a fast processor, and is dedicated to IIS, you may be able to reduce the
default value.
This value sets the default timeout for all SOAPActions. Following installation, you can assign timeout values to
specific SOAPActions, by editing a configuration file. For details, see Step 2: Set SOAPAction-Specific Timeout Values
in the Post-Installation Procedures section of this document.

Maximum SOAP Payload Size
SOAP ISAPI Listener uses a threshold setting named Maximum SOAP Payload Size to limit the size of incoming SOAP
messages. By default, the maximum SOAP payload Size is 128 KB. Larger messages are not forwarded by the Listener
to the CIC Server for processing. Based upon the size of data passed to your handlers, you may be able to reduce this
value significantly. This helps minimize the impact of denial of service (DoS) attacks.

Maximum Pending Requests
The Maximum Pending Requests threshold limits the maximum number of SOAP requests that the CIC server should
process concurrently. It helps to think of this as the maximum number of pending responses that SOAP Listener will
wait for at any given time, since SOAP Listener waits for a response to each request that it sends to CIC.
If Listener finds itself waiting for more responses that are allowed, it stops sending additional inbound request
messages to the CIC Server until the number of pending requests falls below the threshold. SOAP ISAPI Listener does
not queue unprocessed requests. It fails unprocessed requests with a fault message (Server.TooBusy).

Process Isolation Level
There is one last setting that you must consider before installing SOAP ISAPI Listener, and that is the level of process
isolation (Low or High) that you wish to assign to the ISAPI Listener DLL. Process isolation protects the main IIS
process against application faults—in this case, against potential failure of the ISAPI Listener DLL .
Process Isolation provides an additional layer of durability for your Web server. Low process isolation provides the
best performance. High process isolation offers more protection against possible faults in the Listener application
(unlikely). Low is the default.

Install Install SOAP ListenerSOAP Listener
If at this point, if you have IIS running with the latest service packs and hot fixes, behind an acceptable firewall configuration, and
have formulated threshold values, you are ready to install SOAP Listener. This procedure explains how to run the SOAP ListenerSOAP Listener
SetupSetup to install, register, and configure the SOAP Listener task on an IIS server. The Soap Listener task is an ISAPI DLL that
translates HTTP requests into notifications. It acts as a gatekeeper to prevent denial of service attacks. Complete this procedure at
your dedicated IIS Server or CIC Server running IIS. Installation requires pre-planning on your part to address security and
configuration issues. If you have not read the Installation and configuration pre-planning section, we strongly recommend that you
do so before performing this procedure.
1. Download the CIC 2018 R1 or later .iso file from the Genesys Product Information site at

https://my.inin.com/products/Pages/Downloads.aspx.
2. Copy the .iso file to a file server (non-CIC server) with a high bandwidth connection to the server(s) on which you will be running

the CIC 2018 R1 or later installs.
3. Mount the .iso file and share the contents to make them accessible to the server(s) on which you will be running the CIC 2018

R1 or later installs.

29

http://www.microsoft.com/security
http://www.ntbugtraq.com/
https://my.inin.com/products/Pages/Downloads.aspx

4. Navigate to the \Installs\Off-ServerComponents directory on the file server.
5. Copy the SOAP Listener .msi file, for example, SOAPListener_2018_R1.msi, to the server on which you plan to run this install

and double-click to launch it.
The welcome page appears.

6. Press Next to proceed past the welcome screen. Then press Next a second time to accept installation of default features.
7. Supply user name, domain password, and domain for a user account with administrative privileges on the CIC server. Then

press NextNext .
8. Type the name of the CIC server. Then press NextNext .
9. Supply values as indicated below:

Default Request Timeout (in seconds)
Enter the number of seconds that the ISAPI Listener should wait for the CIC Server to respond (to a SOAP request)
before timing out and returning a fault message. The default value is 0 seconds. Press NextNext to proceed.

Maximum Pending Requests
Specify the maximum number of SOAP requests that your CIC server should handle concurrently during peak periods.
This helps protect your server from denial of service (DoS) attacks. When this value is exceeded, additional requests
will be denied.

Maximum SOAP Payload Size (in KB)
Specify the maximum size (in kilobytes) of SOAP payloads sent by the SOAP Listener to the CIC Server. Larger XML
payloads will not be forwarded, to minimize the risk of denial of service (DoS) attacks.

10. Press NextNext to proceed. The next screen prompts for a location where log files will be stored. Accept the default path, or
navigate to a different path. When you are finished, click Next.

11. Click Instal lInstal l to begin installing files.
12. Press FinishFinish to exit Setup.
13. Click YesYes to restart.
14. For the SOAP Listener machine to receive updates from the Interactive Update Provider on the CIC Server, you must run the

Interactive Update Client install following the SOAP Listener install. The install will prompt for the Interactive Update Provider
Server (CIC Server) name or IP address.

Post-installation proceduresPost-installation procedures
Following installation of ISAPI SOAP Listener, you should complete additional security steps to defend against DoS Attack.
Specifically, you should limit requests to known SOAPActions, and to assign timeout values to individual SOAPActions. You will
modify the default ISAPI filter configuration file. The relative path to this file is ..\soaplistener\filter\I3SOAPISAPIConfig.xml. The
SOAP ISAPI endpoint listener uses I3SOAPISAPIConfig.xml to filter incoming message requests. This file acts as a gatekeeper. It
affects whether or not incoming messages are forwarded to the CIC Server by ISAPI Listener. Implementers are strongly
encouraged to edit I3SOAPISAPIConfig.xml immediately after SOAP ISAPI Listener is installed, and whenever new handlers
implement an additional SOAPAction.

The default configuration indiscriminately forwards all SOAP requests to the Interaction Center server identified in the ISAPI
Listener install. You should modify the filter file to make the following modifications:
1. Add <Rule> elements that identify the specific operations (SOAPActions) that your CIC server should process. Thereafter,

SOAP ISAPI Listener will forward only those particular SOAPActions to the CIC server.
2. Set timeout thresholds for specific SOAPActions used in your environment.

These modifications are particularly important if your SOAP Listener is exposed to the Internet. If you leave the default filter
unchanged, your CIC server is more venerable to DoS attacks. Before we discuss the modification procedure steps in detail, it is
necessary to introduce the format of the configuration file.

The ISAPI filter is just an XML file whose structure can be described as follows. Its root element, <FilterConfig> has three child
elements, <ICServers>, <Defaults> and <Rules>.

<ICServers><ICServers>

I3SOAPISAPIConfig.xml Filter File FormatI3SOAPISAPIConfig.xml Filter File Format

30

The <ICServers> element contains a list of Interaction Center Servers to which to route the messages. <ICServers> can have
<ICServer> and <ICServer2> child elements.

<ICServer2> Uses a remote subsystem connection. GenSSLCerts must be run prior to attempting to connect to a notifier with this
type of connection. In a switchover situation, use <ICServer>.

To get SOAP LIstener to work in this environment, use <ICServer2>, which can specify multiple hostnames separated by space
characters. When establishing a connection, SOAP Listener will try each server in succession until it finds one that it can connect to
that is not in backup mode.

The attributes of the <ICServer> child element are:

name

The name of the CIC server, used to identify the server in filter rules.

host

Hostname or IP address of the Notifier (CIC) server.

username

Login name for the Notifier connection.

password

Password for the Notifier session.

The attributes of the <ICServer2> child element are:

name

Name of the server (used to identify it in rule action).

host

Hostname or IP address of the Notifier server. You can specify multiple hostnames separated by space characters. When
establishing a connection, SOAP Listener will try each server in succession until it finds one that it can connect to that is
not in backup mode.

<Defaults><Defaults>

The <Defaults> element stipulates default rule actions. It has two child elements. <ForwardRequest> identifies requests that will be
forwarded. <HTTPResponse> identifies requests to be rejected.

The attributes of the <ForwardRequest> child element are:

server

Name of the Interaction Center Server configured through the corresponding <ICServer> tag. This attribute is (case-
sensitively) matched against the name attributes of the <ICServer> tags.

initiatorEvent

Name of the InitiatorEvent (notification event) as which the request should be forwarded to the Interaction Center server. If
not explicitly specified or an empty string, the soapAction from the HTTP header will be used.

soapAction

SOAPAction string to be forwarded to IP. If not defined or "*", use same action that matched the rule.

clientName

Client name value specified in the request notification. Default = "I3SOAPISAPI". This is mainly informational for use as a
trace message.

requestTimeout

Timeout value used for the request. Default as specified by ‘DefaultRequestTimeout' registry key. Time in milliseconds

includeTransportInfo

31

Specifies whether to include the TransportInfo data in the request sent to IP. Possible values: "1", "0", "true", "false". Default
= "1".

The attributes of the <HTTPResponse> child element are:

statusCode

HTTP status code. Default = "500".

statusText

HTTP status text. Default = lookup based on statusCode (for "500": "Internal Server Error").

soapFaultcode

Value of the <faultcode> element in the <Fault> element of the response sent back to the client. Default =
"Server.SOAPAction".

soapFaultstring

Value of the <faultstring> element in the <Fault> element of the response sent back to the client.. Default = "The
SOAPAction is not recognized by the server!"

The <Rules> element contain <Rule> child elements which define the action to be performed when the rule fires. That happens when
the request's SOAPAction matches the rule's soapAction attribute. The <Rule>child element has only one attribute:

soapAction

SOAPAction that triggers this rule. SOAPAction matching is case-sensitive.

Sample I3SOAPISAPIConfig FileSample I3SOAPISAPIConfig File
This sample filter listed below shows how the elements fit together. The numbers are for illustration purposes and do not appear in
an actual configuration file. See SOAP ISAPI Filter Schema for the schema used by I3SOAPISAPIConfig.xml.

 1 <FilterConfig xmlns="urn:schemas-inin-com:soapisapi-filter-config">
 2 <ICServers>
 3 <ICServer name="localhost"
 4 host="localhost"
 5 userName=""
 6 password=""/>
 7 <ICServer name="mars"
 8 host="mars"
 9 userName="eic_admin"
 10 password="i3"/>
 11 </ICServers>
 12 <Defaults>
 13 <ForwardRequest server="localhost"
 14 clientName="I3SOAPISAPI"
 15 requestTimeout="20000"
 16 includeTransportInfo="1"/>
 17 <HTTPResponse statusCode="500"
 18 statusText="Internal Server Error"
 19 soapFaultcode="Client.SOAPAction"
 20 soapFaultstring="The specified method is not supported!"/>
 21 </Defaults>
 22 <Rules>
 23 <Rule soapAction="uri:my-calculator#Add">
 24 <ForwardRequest initatorEvent="uri:my-calculator"/>
 25 </Rule>
 26 <Rule soapAction="uri:my-calculator#Subtract">
 27 <ForwardRequest initatorEvent="uri:my-calculator"/>
 28 </Rule>
 29 <Rule soapAction="uri:my-calculator#Multiply">
 30 <ForwardRequest initatorEvent="uri:my-calculator"/>
 31 </Rule>

<Rules><Rules>

32

 32 <Rule soapAction="uri:my-calculator#Divide">
 33 <ForwardRequest initatorEvent="uri:my-calculator"/>
 34 </Rule>
 35 <Rule soapAction="uri:test#foo">
 36 <ForwardRequest server="mars"
 37 soapAction="uri:test#bar"
 38 requestTimeout="120000"/>
 39 </Rule>
 40 <Rule>
 41 <HTTPResponse/>
 42 </Rule>
 43 </Rules>
 44 </FilterConfig>

This sample specifies several SOAPActions that refer to a calculator service. On line 23, the SOAPActions of the calculator are
forwarded with the "uri:my-calculator" InitiatorEvent, so all requests trigger the same initiator. All other attributes of that rule are
inherited from the default <ForwardRequest> element (line 13). Accordingly, requests for my-calculator are sent to the "localhost"
server, even though that was not explicitly defined in the rule. It is easy to specify attributes in a Rule element that override default
elements. In line 35, the SOAPAction "uri:test#foo" is forwarded as "uri:test#bar" (both the SOAPAction and InitiatorEvent) to the
server "mars". The request timeout for this particular request is set to 2 minutes (120,000 milliseconds).

The last rule simply rejects all other SOAPActions with the default <HTTPResponse> rule action. To forward all SOAPActions
indiscriminately, the following rule could be used:

<Rule>
 <ForwardRequest/>
</Rule>

Wildcard Pattern MatchingWildcard Pattern Matching
Currently, we do not support regular expression patterns as the soapAction attribute of a rule, although that may be added in a
future release. However, to simplify filters for objects with many methods, a simple wildcard pattern is supported: The
soapAction value may end with an asterisk (*), which means that the SOAPAction many be followed by one or more characters,
that are ignored in the match. The * wildcard is supported only if it is the last character in a soapAction attribute. For example,
this technique could be used to replace all rules for the calculator with a single one, where soapAction attribute has a value of "
uri:my-calculator#*". Implement wildcards with care, or not at all, since this opens the possibility for DoS attacks on the
Notifier event-ID caches. We thus strongly suggest explicitly adding rules for each SOAPAction that is to be forwarded to the
server.

1. Customize the ISAPI filter file to prevent the SOAP Listener task from indiscriminately forwarding all SOAP requests to the
Interaction Center Server. Filtering ensures that the CIC Server receives only those requests that match supported
SOAPActions.

2. Set SOAPAction Timeout Values. You can optionally modify this file to assign SOAPAction-specific timeout values, by adding
requestTimeout attributes to ForwardRequest elements. The example below shows how to set the timeout value for a
SOAPAction named "bar" to 120 seconds.
<ForwardRequest server="mars" …identifies the CIC server
soapAction="uri:test#bar" …identifies which SOAPAction
requestTimeout="120000"/> …action-specific timeout value in milliseconds

3. Unload the SOAP ISAPI DLL. To put a modified filter configuration into effect, you must unload the ISAPI DLL. The DLL will
reload automatically the next time that a SOAP request is received.
a. From the desktop of your IIS server, press the Start button. Select Settings, then Control Panel.
b. Double-click the Administrative Tools folder to open it.
c. Double-click the icon titled Internet Services Manager.
d. Right-click the name of your virtual directory. Then select Properties.
e. Select the Virtual Directory tab. Then press the Unload button.
f. Press OK to close the active dialog.
g. Close the Internet Services Manager window. Changes made to the SOAP filter configuration will take effect the next time

that a request is received.

Configuring IC SOAP Listener to work with IC 4.0 and 2015 or laterConfiguring IC SOAP Listener to work with IC 4.0 and 2015 or later

Forward Forward only supported SOAPActions to CIConly supported SOAPActions to CIC

33

The IC SOAP Listener install does not properly handle certificate mappings necessary for connecting to the IC 4.0 and 2015+
Notifier. This article describes the steps required to enable IC SOAP Listener to function in an CIC 4.0 or COC 2015+ environment
when installed on a separate web server.

Perform these steps after the CIC SOAP Listener component is installed on the web server and patched to the latest SU level.

Update the IC User ConfigurationUpdate the IC User Configuration

1. Navigate to C:\Program Files (x86)\Interactive Intelligence\SOAPListener\Filter directory.
2. Edit the I3SOAPISAPIConfig.xml file.
3. Update tag values, where:

ICSERVER is the name of the CIC server to which a connection should be made
ICUSERNAME is the name of a valid user account on the CIC server
ICPASSWORD is the password for CC user

4. Save the file.

Update the RegistryUpdate the Registry

1. Open the registry by navigating to StartStart | RunRun | regeditregedit .
2. Select the HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Interactive Intelligence\Certificates registry key.

If this key does not exist create it.
3. Under this key there should be an entry named Path with type REG_SZ and a data value of C:\Program Files

(x86)\Interactive Intelligence\Certificates. If this key does not exist create it.
4. Right-click the HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Interactive Intelligence\Certificates key.

Then select Permissions…Permissions….
5. Grant the NETWORK user Full Control access over this key.

Use the NETWORK user not the NETWORK SERVICE user.

Update Environment VariablesUpdate Environment Variables

1. Right-click My Computer* and select *Properties.
2. Select Advanced System Settings.

Click the Environment Variables button.
3. Add a new System variable with a Variable name of ININ_Certificates. Set a Variable value of C:\Program

Files (x86)\Interactive Intelligence\Certificates\<WEB SERVER NAME>_ININ_Certificates.xml where
<WEB SERVER NAME> is the name of the web server the IC SOAP Listener component was installed on.Updating the
Certificates Directory:

4. Navigate to C:\Program Files (x86)\Interactive Intelligence.
5. Right-click the Certificates folder and select Properties. If this folder does not exist create it.
6. Select the Security tab
7. Grant the NETWORK user Full Control over this directory

Use the NETWORK user not the NETWORK SERVICE user.

8. Restart the server.
9. After the restart, use the command gensslcertsu -c <notifier> -f to generate certificates against each IC server the

SOAP Listener will connect to.

1. Under ISAPI and CGI Restrictions, add a new entry, specifying the I3SOAPISAPIU.dll, and select "Allow extension path to
execute".

2. Under SoapListener web site, select Handler Mappings.
3. Add a Module Mapping.

Request path: *.dll
Module: IsapiModule
Executable: browse to I3SOAPISAPIU.dll

Update IIS SettingsUpdate IIS Settings

34

Enable Execute under the Access tab in Request Restrictions
4. Select the Application Pools tab, then select the app pool that the default website is configured under, then "Advanced

Settings".
5. For SoapListener, set 32-Bit Applications to True.
6. Set Managed Pipeline Mode to Classic.
7. Reboot the server.

Additional steps for Additional steps for switchover pairsswitchover pairs

On each CIC server:
1. Open regedit and navigate to HKEY_LOCAL_MACHINE\SOFTWARE\Interactive Intelligence\Certificates. Right

click on this registry key, and select Permissions. Click on the AddAdd button, and enter NETWORK SERVICE for the user. Give
this user Full Control to allow the user permissions to access the registry key.

2. Open Windows Explorer.
3. Navigate to the \I3\IC\Certificates directory.
4. Select the <Machine Name>_ININ_Certificates.xml, <Machine Name>_PrivateKey.bin and <Machine

Name>_PublicKey.bin files. Right click and then select Properties.
5. Click on the Security tab. Then click AddAdd. Enter NETWORK SERVICE for the user, and give Full Control to this user to

allow proper file access to these files.
6. Do the same for the \I3\IC\Certificates\Client\Remote_Client\<Notifier Name>\<Notifier

Name>_TrustedCertificate.cer file.

Additional configuration steps required for SOAP Listener when using Additional configuration steps required for SOAP Listener when using IIS7IIS7
Several settings need to be configured in IIS7 for SOAP functionality in a CIC 4.0 (or later) environment. As a supplement to the
installation document, the following article covers the extra steps that need to be made in IIS7 before SOAP Listener is fully
operational.

When utilizing SOAP functionality in CIC 4.0 with IIS7, it is important to note that SOAP Listener is an ISAPI extension. To enable an
ISAPI extension, make the following changes in IIS7:
1. Add an exception to "ISAPI and CGI Restrictions" so that the "I3SOAPISAPIU.dll" is allowed to execute. This can be found at the

server level in IIS Manager.

2. After selecting restrictions, choose "Add..." from the right-hand side of IIS Manager and input the filepath and description for
SOAP Listener.

35

3. Next, enable "ISAPI-dll" handler mapping. Genesys recommends doing this at the "SoapListener" application level, but it can be
accomplished at a site or server level as well depending on the desired inheritance model. After selecting SOAP Listener from
the "Default Web Site" hierarchy, highlight the "ISAPI-dll" handler mapping. Then select "Edit Feature Permissions..." from the
right-hand side of the screen.

4. Check "Execute" in the popup window. Then click OK.

At this point, SOAP Listener is configured to work with IIS7 in a CIC 4.0 or later environment.

36

SOAP ISAPI Filter SchemaSOAP ISAPI Filter Schema

The ISAPI Filter Configuration file conforms to the following schema:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="urn:schemas-inin-com:soapisapi-filter-config"
 targetNamespace="urn:schemas-inin-com:soapisapi-filter-config"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xsd:element name="FilterConfig" type="tns:FilterConfig"/>
 <xsd:complexType name="FilterConfig">
 <xsd:sequence>
 <xsd:element name="ICServers" type="tns:ICServers" minOccurs="0"/>
 <xsd:element name="Defaults" type="tns:Defaults" minOccurs="0"/>
 <xsd:element name="Rules" type="tns:Rules" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="ICServers">
 <xsd:element name="ICServer" type="tns:ICServer" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:complexType>
 <xsd:complexType name="ICServer">
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 <xsd:attribute name="host" type="xsd:string" use="required"/>
 <xsd:attribute name="userName" type="xsd:int" use="optional"/>
 <xsd:attribute name="password" type="xsd:boolean" use="optional"/>
 </xsd:complexType>
 <xsd:complexType name="Defaults">
 <xsd:sequence>
 <xsd:element name="ForwardRequest" type="tns:ForwardRequest" minOccurs="0"/>
 <xsd:element name="HTTPResponse" type="tns:HTTPResponse" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="Rules">
 <xsd:element name="Rule" type="tns:Rule" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:complexType>
 <xsd:complexType name="Rule">
 <xsd:choice minOccurs="0">
 <xsd:element name="ForwardRequest" type="tns:ForwardRequest"/>
 <xsd:element name="HTTPResponse" type="tns:HTTPResponse"/>
 </xsd:choice>
 <xsd:attribute name="soapAction" type="xsd:string" use="optional"/>
 </xsd:complexType>
 <xsd:complexType name="ForwardRequest">
 <xsd:attribute name="server" type="xsd:string" use="optional"/>
 <xsd:attribute name="initatorEvent" type="xsd:string" use="optional"/>
 <xsd:attribute name="soapAction" type="xsd:string" use="optional"/>
 <xsd:attribute name="clientName" type="xsd:string" use="optional"/>
 <xsd:attribute name="requestTimeout" type="xsd:int" use="optional"/>
 <xsd:attribute name="includeTransportInfo" type="xsd:boolean" use="optional"/>
 </xsd:complexType>
 <xsd:complexType name="HTTPResponse">
 <xsd:attribute name="statusCode" type="xsd:positiveInteger" use="optional"/>
 <xsd:attribute name="statusText" type="xsd:string" use="optional"/>
 <xsd:attribute name="soapFaultcode" type="xsd:QName" use="optional"/>
 <xsd:attribute name="soapFaultstring" type="xsd:string" use="optional"/>
 </xsd:complexType></xsd:schema>

37

Reinstall/Uninstall SOAP ListenerReinstall/Uninstall SOAP Listener
If you run the SOAP Listener Install a second time, it provides the opportunity to change the way features are installed, repair
installation errors, or remove SOAP Listener from your computer.
1. Insert your CIC installation DVD (or mount an ISO image). In many cases, the user interface application will start automatically.

If it does not appear, run autorun.exeautorun.exe from the root directory.
2. Click the Optional Instal ls (2)Optional Instal ls (2) button.
3. Click CIC SOAP ListenerCIC SOAP Listener .
4. Click NextNext to dismiss the Welcome screen.
5. Click ChangeChange , RepairRepair , or RemoveRemove.

38

Install SOAP Notifier COMInstall SOAP Notifier COM
SOAP Notifier COM objects issue SOAP notifications from automation compatible applications. SOAP Notifier COM components
provide a high-performance method of initiating handlers without incurring the performance penalty of HTTP-based Listener
operations.

Third-party applications created using the SOAP Notifier COM API directly create and forward packets to Interaction Processor,
bypassing the need to create packets received using HTTP and the Soap Listener task.

What: Run CC CC SOAP Notifier COM Components SetupSOAP Notifier COM Components Setup to install and register components needed to run or develop third-party
SOAPNotifierCOM applications on a desktop PC. Components are installed to the destination folder specified by the user. The
default folder is c:\Program Files\PureConnect. Setup registers two dynamic link libraries: SOAPNotifierCOMU.DLL and
MSSOAPNotifierConnectorU.DLL. Setup optionally installs a help system that describes interfaces, methods, and properties in
the Notifier COM API. When this option is selected, setup adds a shortcut named SOAP Notifier COM HelpSOAP Notifier COM Help to the start menu,
inside the PureConnectPureConnect folder.

Where: Install these components on any PC used to develop or run SOAP Notifier applications.

Prerequisite: The desktop PC must be running a version of Windows that supports the Component Object Model. SOAP Notifier
COM API is not compatible with operating systems that do not support COM (Linux, for example).

Steps to CompleteSteps to Complete
1. Download the CIC 2018 R1 or later .iso file from the Genesys Product Information site at

https://my.inin.com/products/Pages/Downloads.aspx.
2. Copy the .iso file to a file server (non-CIC server) with a high bandwidth connection to the server(s) on which you will be

running the CIC 2018 R1 or later installs.
3. Mount the .iso file and share the contents to make them accessible to the server(s) on which you will be running the CIC 2018

R1 or later installs.
4. Navigate to the \Installs\Off-ServerComponents directory on the file server.
5. Copy the SOAP Notifier COM .msi file, for example, SOAPCOM_2018_R1.msi, to the server on which you plan to run this

install and double-click to launch it.
6. If prompted whether to run the install program, respond RunRun.
7. Press NextNext to dismiss the welcome screen.
8. Press NextNext to accept all default features.
9. Press Instal lInstal l to begin installation.

10. Wait while files are copied.
11. Press FinishFinish to exit Setup.

Reinstall/Uninstall SOAP Notifier COM ComponentsReinstall/Uninstall SOAP Notifier COM Components
If you run SOAP Notifier COM Components Setup a second time, it provides the opportunity to modify the way features in installed,
to repair installation errors, or to remove SOAP Notifier COM components from your computer.
1. Click NextNext to proceed past the startup screen.
2. Then select ChangeChange , RepairRepair , or RemoveRemove.

39

https://my.inin.com/products/Pages/Downloads.aspx

Appendix A: SOAP Transport Information and ControlAppendix A: SOAP Transport Information and Control
The transport info structure must have a TransportInfoTransportInfo root element that is in no namespace. It must have a namename attribute that
contains the name of the transport. The transport name is useful for debugging, tracing, or to perform transport specific
operations. However, this Transport Information is not defined by the SOAP specification. The TransportInfo element may have
any number of child elements. The following is the schema for the Transport Info structure. For efficiency, a client may chose not
to include transport information, but still send the transport name. In this case, the TransportInfoTransportInfo element will be empty.

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="TransportInfo" type="TransportInfoType"/>
 <xsd:complexType name="TransportInfoType">
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 <any minOccurs="0" maxOccurs="unbounded"/>
 <anyAttribute/>
 </xsd:complexType>
</xsd:schema>The Transport Control structure must have a TransportCtrl root element that is in no namespace.
It may contain any number of attributes or child elements:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="TransportCtrl" type="TransportCtrl"/>
 <xsd:complexType name="TransportCtrl">
 <any minOccurs="0" maxOccurs="unbounded"/>
 <anyAttribute/>
 </xsd:complexType>

HTTP TransportHTTP Transport

The following schema describes the transport information for the HTTP transport. The HTTPHTTP element is the child element of the
TransportInfoTransportInfo element generated by the ISAPI Listener.

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="HTTP" type="HTTP"/>
 <xsd:complexType name="HTTP">
 <xsd:sequence>
 <xsd:element name="Headers" type="Headers" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="method" type="xsd:string" use="required"/>
 <xsd:attribute name="url" type="xsd:string" use="required"/>
 <xsd:attribute name="pathInfo" type="xsd:string" use="required"/>
 <xsd:attribute name="queryString" type="xsd:string" use="required"/>
 <xsd:attribute name="remoteAddr" type="xsd:string" use="required"/>
 </xsd:complexType>
 <xsd:complexType name="Headers">
 <xsd:element name="Header" type="Header" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:complexType>
 <xsd:complexType name="Header">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
</xsd:schema>

Request (Transport Info)Request (Transport Info)

40

HTTP Element AttributesHTTP Element Attributes

The attributes of the HTTP entry have the following meaning:

method

The HTTP method with which the request was made. In our case usually POST. This is equivalent to the value of the CGI
variable REQUEST_METHOD.

url

Designates the base portion of the URL. Parameter values are not included (see pathInfo and queryString).

pathInfo

Contains the additional path information given by the client. This consists of the trailing part of the URL after the ISAPI DLL
name, but before the query string, if any. Corresponds to the CGI variable PATH_INFO.

queryString

Contains the information that follows the first question mark in the URL Corresponds to the CGI variable QUERY_STRING.

remoteAddr

Contains the IP address of the client or agent of the client (for example gateway, proxy, or firewall) that sent the request.
Corresponds to the CGI variable REMOTE_ADDR.

Request Transport ExampleRequest Transport Example

This sample Transport Info structure adheres to schemas:

<TransportInfo name="HTTP">
 <HTTP method="POST" url="/soapendpoint/I3SOAPISAPIAD.DLL" pathInfo=""
 queryString="" remoteAddr="127.0.0.1">
 <Headers>
 <Header name="Host">localhost</Header>
 <Header name="Content-Type">text/xml</Header>
 <Header name="Content-Length">1234</Header>
 <Header name="SOAPAction">"uri:my-soap-request#MyMethod"</Header>
 </Headers>
 </HTTP>
</TransportInfo>

41

The following schema describes the transport control data for the HTTP transport. The HTTPHTTP element is the child element of the
TransportCtrlTransportCtrl element.

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="HTTP" type="HTTP"/>
 <xsd:complexType name="HTTP">
 <xsd:sequence>
 <xsd:element name="Headers" type="Headers" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="statusCode" type="xsd:positiveInteger" use="optional"/>
 <xsd:attribute name="statusText" type="xsd:string" use="optional"/>
 </xsd:complexType>
 <xsd:complexType name="Headers">
 <xsd:element name="Header" type="Header" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:complexType>
 <xsd:complexType name="Header">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
</xsd:schema>

Response Response Transport ExampleTransport Example

The following is an example of a transport control response structure that "asks" the ISAPI listener to send a 501 error (Not
Implemented) back to the client. The default status codes are 200 (OK) for successfully processed requests, and 500 (Internal
Server Error) for failed requests (body contains a <Fault> element).

<TransportCtrl>
 <HTTP statusCode="501" statusText="Not Implemented"/>
</TransportCtrl>

Tip—Tip— Header fields specified in the TransportControl structure will have precedence over the default headers generated by the
ISAPI listener (such as "Content-Type:text/xml").

Response (Transport Control)Response (Transport Control)

42

Appendix B: SOAP ToolsAppendix B: SOAP Tools
This appendix provides information about the tools in Interaction Designer that process SOAP requests and responses. SOAP tools
are late-bound, meaning that the structure of data processed by a SOAP handler does not have to be specified at compile time when
the handler is published. SOAP tool steps can be added to any handler, to create and send SOAP requests to any server that
understands SOAP. SOAP Tools do not support calls to an SSL server. In CIC 2.3 and later, the assumed namespace prefix is SOAP,
rather than SOAP-ENV, for compatibility with Microsoft .NET. These tools are also documented in the Interaction Designer help.

There are 5 categories of SOAP tools:
Initiator Tools
Request Tools
Payload Processing Tools
Invocation Tools
Helper Tools

Initiator ToolsInitiator Tools

This initiator triggers if the ‘Notification Event' of the request matches a specified string. The Notification Event on which the
Initiator triggers is specified in the property dialog.

ParameterParameter DirDir TypeType RemarksRemarks

SOAP
Request

OUT Hand
le

Handle representing the SOAP request. It can subsequently be used to query additional information
from the (HTTP) header.

Initiator
Event

OUT Strin
g

String of the notification event that triggered the initiator.

SOAP
Action

OUT Strin
g

SOAP Action of the request that triggered the handler.

Request ToolsRequest Tools

Queries some information from the request handle. Exit Paths: Success, Failure.

ParameterParameter DirDir TypeType RemarksRemarks

SOAP Request IN Handle Handle of the SOAP request.

Initiator Event OUT String Notification event that caused the initiator to trigger.

SOAP Action OUT String SOAP action code of that request.

Client ID OUT Integer Client ID (Notifier object id).

Client Name OUT String Name of the client.

Request ID OUT Integer Request ID (for debugging/tracing purposes).

Payload Size OUT Integer Size of the request payload in bytes.

Transport Info Size OUT Integer Size of the transport information in bytes.

SOAP InitiatorSOAP Initiator

SOAP Get Request InfoSOAP Get Request Info

43

Aborts the request. If ‘Send Unhandled Response' is False, it does not send a response notification, not even an "Unhandled"
response when the Request handle goes out of scope. Aborting a request is useful if a SOAP request handler is registered as
Monitor handler, for example for wildcard SOAPAction. Multiple handlers may fire at the same time, but only one must send a
response notification to the client.

Exit Paths: Success, Failure

ParameterParameter DirDir TypeType RemarksRemarks

SOAP Request IN Handle Handle of the SOAP request

Send Unhandled Response IN Boolean Checkbox (default = False)

Returns an XML document containing transport specific (header) data. It allows the client to include any kind of out-of-band data in
the request. For example, for HTTP requests, this document contains the HTTP method and a list of the header elements.

TipTip—The data may be parsed every time the tool is invoked or cached. This may depend on the specified selection
namespaces. The returned document is read-only.

See SOAP ISAPI Filter Schema for schema details. If there is no transport information data, an empty document is returned and the
tool takes the ‘No Info' exit. If there is an error (Failure), an empty document is returned which can be queried with ‘XML Get Error
Info'.

Exit Paths: Success, No Info, and Failure

ParameterParameter DirDir TyTy
pepe

RemarksRemarks

SOAP
Request

IN Ha
ndl
e

Handle of the SOAP request

Selection
Namespaces

IN Stri
ng

Optional. Space delimited list of namespace declarations to be set as selection namespaces for the
XPath queries.

Preserve
Whitespace

IN Bo
ole
an

Checkbox:

False Default. Nonessential white space is ignored when parsing the payload.

True Preserve nonessential white space.

Validate On
Parse

IN Bo
ole
an

Checkbox:

False Default. Only verifies for well-formedness.

True Validates against the schema during parse.

Resolve
Externals

IN Bo
ole
an

Checkbox:

False Default. Do not resolve resolvable namespaces.

True Resolve resolvable externals (namespaces, DTDs, entity references etc.) at parse time.

Transport
Info

OUT No
de

Read-only. XML document containing transport-specific out-of-band information. Empty document if
no transport information. See Appendix A: SOAP Transport Information and Control.

SOAP Abort RequestSOAP Abort Request

SOAP Get Transport InfoSOAP Get Transport Info

44

Takes a different exit path depending on whether the SOAP request requires a response (YES) or not (NO). If the request expects a
response and the handler exits (the SOAP Request handle goes out of scope) without having invoked ‘SOAP Send Response', a
Response Notification is sent back with the ‘Unhandled' flag set to true.

Exit Paths: YES, NO

ParameterParameter DirDir TypeType RemarksRemarks

SOAP Request IN Handle Handle of the SOAP request

Parses the payload of the request into an XML document. If the ‘Validate SOAPAction' parameter is True, the tool checks the
SOAPAction field of the request against the payload. The payload data is parsed every time this tool is invoked (i.e. it is not
cached). The document is furthermore not read-only and thus may be modified as needed, for example to create the response. The
payload envelope node will still be returned, even if the SOAP Action does not match.

HeuristicHeuristic

This tool uses a heuristic to match the action code (legend: <NS> = namespace of the first body element; <MethodName> = Name
of the element [method name]):

<NS>
<NS> [<AnyCharacter>] <MethodName>
<MethodName>
[<AnyCharacter>] <MethodName>
This will catch actions such as "uri:my-uri#MyMethod", "http://soap.inin.com/e-faq", "MyMethod" etc. An empty SOAPAction
matches all methods.

SOAP Expects ResponseSOAP Expects Response

SOAP Parse Request PayloadSOAP Parse Request Payload

45

ParameterParameter DirDir TyTy
pepe

RemarksRemarks

SOAP
Request

IN Ha
ndl
e

Handle of the SOAP request

Validate
SOAPAction

IN Bo
ole
an

Checkbox:

False Don't verify SOAPAction header field against payload.

True Default. Check SOAPAction header field against method namespace and name.

Action
Validation
Mask

IN Str
ing

Optional. Mask for validation of SOAP Action.
Note: this is a future extension that has not been defined.

Selection
Namespaces

IN Str
ing

Optional. Space delimited list of namespace declarations to be set as selection namespaces the
XPath queries. If this argument not specified, just "SOAP-ENV" is mapped to the envelope namespace.
NOTE:

The "SOAP-ENV" prefix will be used irrespective of the actual prefix in the payload.

A declaration mapping "SOAP-ENV" to the envelope namespace will always be added to the
declarations, unless SOAP-ENV is already declared in the argument.

Preserve
Whitespace

IN Bo
ole
an

Checkbox:

False Default. Nonessential whitespace is ignored when parsing the payload.

True Preserve nonessential white space

Validate On
Parse

IN Bo
ole
an

Checkbox:

False Default. Only verifies for well-formedness.

True Validates against the schema during parse.

Resolve
Externals

IN Bo
ole
an

Checkbox:

False Default. Do not resolve resolvable namespaces.

True Resolve resolvable externals (namespaces, DTDs, entity references etc.) at parse time.

Payload OUT No
de

XML document with Envelope as document element. If there is an error, the document may be empty
(but not NULL), and the ‘XML Get Error Info' tool can be used to retrieve information about what
failed).

Exit PathsExit Paths

Success

Payload successfully parsed. SOAP Action matches.

Empty Payload

SOAP Payload is empty (XML document has no document element).

Wrong Action

SOAP Action validation enabled and action doesn't match.

Parse Error

A parse error occurred parsing the payload. Use ‘XML Get Error Info'.

Failure

Some other failure. Use ‘XML Get Error Info'.

46

Sends the specified payload as response to the sender of the request. To support transport specific features, the ‘Transport Control
Data' argument takes an XML node whose content will be sent back to the client. It can be used to send transport specific out-of-
band data to the client. For example, for the HTTP transport it allows to set additional header fields or specify a special status
code. See SOAP ISAPI Filter Schema for schema details. The schema itself is not part of SOAP specification.

ParameterParameter DirDir TypTyp
ee

RemarksRemarks

SOAP Request IN Han
dle

Handle of the SOAP request

Payload IN Nod
e

Node of the payload envelope to send back to the client. Must be document node or <Envelope>
document element.

Transport
Control Data

IN Nod
e

Optional. Node of an XML structure with additional transport specific control data. See Appendix A:
SOAP Transport Information and Control.

Exit PathsExit Paths

Success

Response was sent successfully.

No Response

This request does not expect a response.

Duplicate

Response for this request has already been sent.

Failure

Some other error. Check Payload node with XML Get Error Info.

Payload Processing ToolsPayload Processing Tools

Creates a new SOAP envelope. To simplify composing RPC requests, where the first child element of the <Body> element is the
method to invoke, the ‘RPC Method Name' and ‘RPC Method Namespace' argument can be used as shortcut. The same can be
achieved by invoking ‘SOAP Add Body Element' after creating the envelope. Therefore, this tool creates the following XML
document:

<?xml version="1.0" encoding="{XML Encoding}" ?>=""
<{Envelope Prefix}:Body>
 [</{RPC Method Name}>]
 </{Envelope Prefix}:Body>
</{Envelope Prefix}:Envelope>

The ‘Declare Namespaces' argument is used to declare namespaces in the envelope that will be used in other elements, such as the
xsdxsd or xsixsi prefixes for typed arguments. It keeps the size of the envelope low, as otherwise each element that uses a prefix will
contain xmlnsxmlns attributes. If the ‘RPC Method Name' argument has no namespace prefix and an ‘RPC Method Namespace' different
than """" (default namespace) is specified, a prefix will be synthesized, unless the local name starts with a ‘:: ' (which is illegal in XML,
but signals to this tool not to add a synthesized namespace prefix). Adding a prefix can greatly reduce the size of the message if
child elements are in no namespace (usually parameters are in the default namespace), as otherwise each child element would get
a xmlns=""xmlns="" attribute.

Exit Paths: Success, Failure

SOAP Send ResponseSOAP Send Response

SOAP Create EnvelopeSOAP Create Envelope

47

ParameterParameter Dir.Dir. TT
yy
pp
ee

RemarksRemarks

XML
Encoding

IN S
tr
i
n
g

Optional. Character encoding to be used for the XML document. If omitted, "UTF-8" is used. See
remarks.

Envelope
Prefix

IN S
tr
i
n
g

Optional. Namespace prefix for the envelope namespace. If not specified the default "SOAP-ENV" is
used.

Encoding
Style

IN S
tr
i
n
g

Optional. Space separated list of namespaces specifying the encoding style (value of the
‘encodingStyle' attribute). If not specified or "STANDARD" is passed as string,
"http://schemas.xmlsoap.org/soap/encoding/" is used.

The encodingStyle attribute is omitted if "NONE" is specified.

RPC Method
Name

IN S
tr
i
n
g

Optional. Fully qualified name of the method element (first child element of the body element).

If not specified, no method element will be added.

Please consult Remarks for additional details!

RPC Method
Namespace

IN S
tr
i
n
g

Optional. Namespace of the method element.

Declare
Namespaces

IN S
tr
i
n
g

Space delimited list of namespace declarations of the form xmlns:{prefix}=‘{URI}' to be declared in the
envelope. See remarks.

Selection
Namespaces

IN S
tr
i
n
g

Optional. Space delimited list of namespace declarations to be set as selection namespaces for the
XPath queries. If argument not specified, the envelope prefix and the ‘Declare Namespace' namespaces
will be set as selection namespaces.

NOTE: mapping for envelope prefix will always be added.

Envelope OUT N
o
d
e

XML document with Envelope as document element.

48

Retrieves the Body element from the SOAP envelope. A body must exist and if it can't be found, the tool exits through ‘Failure' and
attaches error information to the envelope.

Exit Paths: Success, Failure

ParameterParameter DirDir TyTy
pepe

RemarksRemarks

Envelope IN No
de

Envelope node of the SOAP payload. Can be a document node whose document element is <SOAP-
ENV:Envelope> or the node is the element itself.

Body OUT No
de

Node of the <SOAP-ENV:Body> element.

Retrieves the first body element that matches the given base name and namespace. If no namespace is specified, the first element
matching ‘Base Name' is returned. Returns the first element in the body if neither a name nor namespace is given.

Exit Paths: Success, Not Found, Failure

ParameterParameter DirDir TyTy
pepe

RemarksRemarks

Envelope IN No
de

Envelope node of the SOAP payload. Can be a document node whose document element is <SOAP-
ENV:Envelope> or the node is the element itself.

Base Name IN Stri
ng

Optional. Base name of the element to return. If no name given, the first entry in the body in
‘Namespace' is returned. This corresponds to the element of the method for RPC requests.

Namespace IN Stri
ng

Optional. Namespace of the element to return

Retrieve
Value

IN Bo
ole
an

Checkbox:

False Default. Do not retrieve value

True Return node value

Body
Element

OUT No
de

Child element of the <SOAP-ENV:Body> element that has the given base name and namespace. NULL
node if the element is not in the body.

Element
Base Name

OUT Stri
ng

Base name of the returned element

Element
Namespace

OUT Stri
ng

Namespace URI of the returned element

Value OUT Stri
ng

Value of the body element (if ‘Retrieve Value' = True)

SOAP Get BodySOAP Get Body

SOAP Get Body ElementSOAP Get Body Element

49

Adds an entry to the body of the SOAP envelope. Use the XML tools on the returned ‘Element' node to add rich contents to the
element (not just a string).

Tip—Tip— If the ‘Name' argument has no namespace prefix and a ‘Namespace' different than """" (default namespace) is specified, a
prefix will be synthesized, unless the local name starts with a ‘:: ' (which is illegal in XML, and thus signals to this tool not to add
a synthesized namespace prefix). Adding a prefix can greatly reduce the size of the message if child elements are in no
namespace, as otherwise each child element would get an xmlns=""xmlns="" attribute.

Exit Paths: Success, Failure

ParameterParameter DirDir TT
yy
pp
ee

RemarksRemarks

Envelope IN N
o
d
e

Envelope node of the SOAP payload. Can be a document node whose document element is <SOAP-
ENV:Envelope> or the node is the element itself.

Name IN St
ri
n
g

Fully qualified name of the element to create and add to the body.

Namespace IN St
ri
n
g

Optional. Namespace URI of the element. If the parameter is omitted and the name has a namespace
prefix, the tool will search in the parent elements for the namespace with the same prefix and make the
element a member of this namespace.

Encoding
Style

IN St
ri
n
g

Optional. Value of the ‘encodingStyle' attribute. Attribute is omitted if not specified or "NONE". Specify
"STANDARD" for standard namespace ("http://schemas.xmlsoap.org/soap/encoding/").

Value IN St
ri
n
g

Optional. String value to set as content of the element.

Replace
Existing Body
Element

IN B
o
ol
e
a
n

Checkbox:

False Default. Add the element as last child of the body.

True Replace first element in the body that has the same (local) name and namespace. If body
contains multiple elements with the same name and namespace, the remaining ones are not modified.

Delete All
Existing Body
Elements

IN B
o
ol
e
a
n

Checkbox:

False Default. Append to the child list of the body.

True Remove all existing elements from the body prior to adding the new element.

Body
Element

OUT N
o
d
e

Node of the element that has just been added.

SOAP Add Body ElementSOAP Add Body Element

50

Matches a space separated list of URIs against the ‘encodingStyle' attribute of the element. If the element doesn't have an
‘encodingStyle' attribute, the parent of the element is checked until an element with an ‘encodingStyle' attribute is found. If that
attribute contains any of the specified encoding style URIs, the tool returns through ‘Found' and returns the style that was found.

Tip: If the first ‘encodingStyle' attribute found along the parent chain does not contain any of the specified styles, the search does
not continue and the tool exits ‘Not Found'.

Exit Paths: Found, Not Found, Failure

ParameterParameter DirDir TypeType RemarksRemarks

Element IN Node (child) Element of the SOAP envelope to query. If document node, the document element is
queried.

Encoding Styles IN Strin
g

Space separated list of URIs to match against the ‘encodingStyle' attributes.

First Style
Found

OUT Strin
g

Encoding style namespace that was found

Element Of
Style

OUT Node XML node of the element in which the encoding style attribute was found.

Retrieves the header element from the SOAP envelope if it has one.

Exit Paths: Success, No Header, Failure

ParameterParameter DirDir TyTy
pepe

RemarksRemarks

Envelope IN No
de

Envelope node of the SOAP payload. Can be a document node whose document element is <SOAP-
ENV:Envelope> or the node is the element itself.

Header OUT No
de

Node of the <SOAP-ENV:Header> element. NULL node if the envelope contains no header.

SOAP Query Encoding StyleSOAP Query Encoding Style

SOAP Get HeaderSOAP Get Header

51

Retrieves the first header element that matches the given base name and namespace. Returns the first element in the header if
neither a name nor namespace is given. Takes ‘Not Found' exit if the envelope doesn't have a header or the element can't be found.

Exit Paths: Success, Not Found, No Header, Failure

ParameterParameter DirDir TyTy
pepe

RemarksRemarks

Envelope IN No
de

Envelope node of the SOAP payload. Can be a document node whose document element is <SOAP-
ENV:Envelope> or the node is the element itself.

Base Name IN Stri
ng

Optional. Base Name of the element to return

Namespace IN Stri
ng

Optional. Namespace of the entry to return

Retrieve
Value

IN Bo
ole
an

Checkbox:

False Do not retrieve value

True Default. Return node value

Header
Element

OUT No
de

Child element of the <SOAP-ENV:Header> element that has the given base name and namespace.
NULL node if the envelope contains no header or the element is not in the header.

Element
Base Name

OUT Stri
ng

Base name of the returned element

Element
Namespace

OUT Stri
ng

Namespace URI of the returned element

Value OUT Stri
ng

Value of the element (if ‘Retrieve Value' = True)

SOAP Get Header ElementSOAP Get Header Element

52

Returns iterator to a list of header elements filtered by the given arguments. Takes the ‘None' exit if envelope has no header or none
of the header elements matched the filter criteria.

Exit Paths: Success, None, No Header, Failure

ParameterParameter DirDir TypTyp
ee

RemarksRemarks

Envelope IN Nod
e

Envelope node of the SOAP payload. Can be a document node whose document element is <SOAP-
ENV:Envelope> or the node is the element itself.

Base Name IN Stri
ng

Optional. Only include elements with this base name.

Namespace IN Stri
ng

Optional. Only include elements in this namespace.

Must
Understand

IN Boo
lean

Optional:

False Return header entries whose ‘mustUnderstand' attribute is "0" (or no attribute is specified)

True Return header entries whose ‘mustUnderstand' attribute is "1".

Default: Don't filter on ‘mustUnderstand'

Actor URIs IN Stri
ng

Optional. Space separated list of actor URIs. Only elements whose actor attribute has one of these
namespaces is returned. If not specified, don't filter on actor namespace.

Header
Elements

OUT Nod
eIte
r

Iterator to collection of header entries. Use the ‘XML Get Next Node' tool to iterate over collection.

Count OUT Inte
ger

Number of items in the Header Entries collection

Creates a header element and adds it to the given envelope. If the envelope doesn't yet have a header, one will be inserted before
the Body element.

If the ‘Name' argument has no namespace prefix and a ‘Namespace' different than """" (default namespace) is specified, a prefix will
be synthesized, unless the local name starts with a ‘:: ' (which is illegal in XML, and thus signals to this tool not to add a synthesized
namespace prefix). Adding a prefix can greatly reduce the size of the message if child elements are in no namespace, as otherwise
each child element would get an xmlns=""xmlns="" attribute.

Exit Paths: Success, Failure

SOAP Get Header ElementsSOAP Get Header Elements

SOAP Add Header ElementSOAP Add Header Element

53

ParameterParameter DirDir TT
yy
pp
ee

RemarksRemarks

Envelope IN N
o
d
e

Envelope node of the SOAP payload. Can be a document node whose document element is <SOAP-
ENV:Envelope> or the node is the element itself.

Name IN St
ri
n
g

Fully qualified name of the header element to create and add to the header.

Namespace IN St
ri
n
g

Optional. Namespace URI of the element. If the parameter is omitted and the name has a namespace
prefix, the tool will search in the parent elements for the namespace with the same prefix and make
the element a member of this namespace.

Must
Understand

IN B
o
ol
e
a
n

Optional. Specifies the value of the ‘mustUnderstand' attribute:

False mustUnderstand="0"

True mustUnderstand="1"

Not specified: No ‘mustUnderstand' attribute is added.

Actor URI IN St
ri
n
g

Optional. Value of the ‘actor' attribute.

Encoding
Style

IN St
ri
n
g

Optional. Value of the ‘encodingStyle' attribute. Attribute is omitted if not specified or "NONE". Specify
"STANDARD" for standard namespace ("http://schemas.xmlsoap.org/soap/encoding/").

Value IN St
ri
n
g

Optional. String value to set as content of the element.

Replace
Existing
Header
Element

IN B
o
ol
e
a
n

Checkbox:

False Default. Add the element as last child of the body.

True Replace first element in the body that has the same (local) name and namespace. If body
contains multiple elements with the same name and namespace, the remaining ones are not
modified.

Delete All
Existing
Header
Elements

IN B
o
ol
e
a
n

Checkbox:

False Default. Append to the child list of the body.

True Remove all existing elements from the body prior to adding the new element.

Header
Element

OUT N
o
d
e

Node of the element that just has been inserted.

54

Retrieves fault information from the SOAP envelope. If there is no <Fault> element in the envelope, the ‘No Fault' exit is taken and
NULL elements and empty strings are returned. If the envelope is read-only, the returned elements will be read-only too.

Exit Paths: Success, No Fault, Failure

ParameterParameter DirDir TyTy
pepe

RemarksRemarks

Envelope IN No
de

Envelope node of the SOAP payload. Can be a document node whose document element is <SOAP-
ENV:Envelope> or the node is the element itself.

Fault
Element

OUT No
de

Node of the <Fault> element.

Fault Code OUT Stri
ng

Value of the <faultcode> element. It provides programmatic information about the fault.

Fault String OUT Stri
ng

Value of the <fautstring> element. It provides human readable information about the fault.

Fault Actor OUT Stri
ng

Value of the <faultactor> element. It provides the URI of the source of the fault.

Detail
Element

OUT No
de

Node of the <detail> element. It is used to transfer application specific fault information. NULL Node if
there is no <detail> element.

SOAP Get FaultSOAP Get Fault

55

Adds a <Fault> element to the envelope or replaces an existing one. If one of the mandatory fields (Fault Code, Fault Actor) is
empty, the Failure path is taken and XML Get Error Info may be used on the Envelope node to query for error reasons. If the
envelope already has a <Fault> element, the tool will remove the existing <Fault> element and replace it with the new element.

ParameterParameter DirDir TypTyp
ee

RemarksRemarks

Envelope IN Nod
e

Envelope node of the SOAP payload. Can be a document node whose document element is
<SOAP-ENV:Envelope> or the node is the element itself.

Fault Code IN Strin
g

String to set as value of the <faultcode> element. String must not be empty.

Fault String IN Strin
g

String to set as value of the <fautstring> element. Should be set to provide human readable
information.

Fault Actor IN Strin
g

Optional. String to set as value of the <faultactor> element. If argument is not specified, no
<faultactor> element is added.

Create Detail
Element

IN Bool
ean

Checkbox:

False Don't create a <detail> element

True Default. Create an empty <detail> element

NOTE: According to the SOAP spec, a <detail> element must be present if the fault is because the
<Body> could not be processed successfully.

Preserve Body
Elements

IN Bool
ean

Checkbox:

False Default. Remove all existing body elements and replace with <Fault> element

True Leave existing body elements and append <Fault> element as last child of <Body>

NOTE: When sending a fault response to the client, only the <Fault> element is allowed in the
body!

Detail Element OUT Nod
e

Returns the node of the newly created <detail> element. If ‘Create Detail Element' is False, a NULL
node is returned.

Exit Paths: Success, Failure

SOAP Set FaultSOAP Set Fault

56

Copies the request envelope and replaces all children of the <Body> element with a single <Fault> element. It thus combines the
‘SOAP Create Envelope' and ‘SOAP Set Fault' tools. The selection namespaces from the source envelope document are copied to
the response envelope document as well.

Exit Paths: Success, Failure

ParameterParameter DirDir TypTyp
ee

RemarksRemarks

Envelope IN Nod
e

Envelope node of the request SOAP payload. Can be a document node whose document element is
<SOAP-ENV:Envelope> or the node is the element itself.

Fault Code IN Stri
ng

String to set as value of the <faultcode> element. String must not be empty.

Fault String IN Stri
ng

String to set as value of the <fautstring> element. Should be set to provide human readable
information.

Fault Actor IN Stri
ng

Optional. String to set as value of the <faultactor> element. If argument is not specified, no
<faultactor> element is added.

Create Detail
Element

IN Boo
lean

Checkbox:

False Don't create a <detail> element

True Default. Create an empty <detail> element

NOTE: According to the SOAP spec, a <detail> element must be present if the fault is because the
<Body> could not be processed successfully.

Copy Header IN Boo
lean

Checkbox:

False Does not copy the <Header> element from the source envelope.

True Copies the <Header> element and its content from the source envelope.

Response
Envelope

OUT Nod
e

Document node of the response envelope

Detail
Element

OUT Nod
e

Node of the <detail> element of the <Fault> element. If ‘Create Detail Element' is False, a NULL node
is returned.

SOAP Create Fault ResponseSOAP Create Fault Response

57

This is a convenience tool for examining RPC requests. It retrieves a parameter element (child) from the first element in the <Body>
element (method in an RPC request). It returns the first element that matches all of the specified arguments. If 'Base Name',
'Namespace', and 'Index' are undefined, the first element will be returned.

For example, to retrieve the 2nd parameter from the 'Add' method in the calculator example presented in Listing 4, you would specify
"Parameter2" as name and "" as namespace, or '1' as index.

Exit Paths: Success, Not Found, Failure

ParameterParameter DirDir TypeType RemarksRemarks

Envelope IN Node Envelope node of the SOAP payload. Can be a document node whose document element is <SOAP-
ENV:Envelope> or the node is the element itself.

Base Name IN Strin
g

Optional. Base name of the parameter

Namespace IN Strin
g

Optional. Namespace of the parameter

Index IN Integ
er

Optional. Zero based index into parameters of the method. If this parameter is specified, 'Name' and
'Namespace' may be omitted, but if present must match the name and namespace of the parameter.

Retrieve
Value

IN Bool
ean

Checkbox:

FalseFalse Do not retrieve value

TrueTrue Default. Return node value

Disable retrieval of value if parameter contains a large XML document and the value is not used
(performance option).

Parameter
Element

OUT Node Parameter element

Parameter
Base Name

OUT Strin
g

Base name of the parameter element

Parameter
Namespace

OUT Strin
g

Namespace URI of the parameter element

Parameter
Index

OUT Integ
er

Zero based index of the parameter element in the child list of the method element.

Value OUT Strin
g

Value of the parameter

SOAP Get RPC ParameterSOAP Get RPC Parameter

58

This is a convenience tool for composing RPC requests or responses. It adds a parameter element to the first element in the body
of the envelope, which represents the method in RPC requests. Use the XML tools to add complex data (not just a string) to the
parameter by manipulating the returned ‘Parameter Element' node.

The <Body> element must have a child element (method element). Otherwise this tool fails. When using ‘SOAP Create Envelope',
you must add a method element using ‘SOAP Add Body Element'. The ‘SOAP Create RPC Response' tool already adds a method
element.

Exit Paths: Success, Failure

ParameterParameter DirDir TT
yy
pp
ee

RemarksRemarks

Envelope IN N
o
d
e

Envelope node of the SOAP payload. Can be a document node whose document element is <SOAP-
ENV:Envelope> or the node is the element itself.

Name IN S
tr
i
n
g

Qualified name of the parameter

Namespace IN S
tr
i
n
g

Optional. Namespace URI of the element. If the parameter is omitted and the name has a namespace
prefix, the tool will search in the parent elements for the namespace with the same prefix and make the
element a member of that namespace.

Value IN S
tr
i
n
g

Optional. Value of the parameter

Parameter
Element

OUT N
o
d
e

Node of the element that just has been added to the method element.

SOAP Add RPC ParameterSOAP Add RPC Parameter

59

This is a convenience tool for examining RPC requests. It retrieves the first child element of the SOAP <Body> element (Method
element in RPC requests). It also returns a collection containing the child elements of the method, which constitute the method
arguments. The tool exits through ‘No Method' if the body does not contain an element. It returns through <Fault> if the body
contains a <Fault> element.

Exit Paths: Success, Fault, No Method, Failure

ParameterParameter DirDir TypTyp
ee

RemarksRemarks

Envelope IN Nod
e

Envelope node of the SOAP payload. Can be a document node whose document element is <SOAP-
ENV:Envelope> or the node is the element itself.

Method
Element

OUT Nod
e

Node of the method element (first child of the Body)

Method Base
Name

OUT Strin
g

Base name of the method element

Method
Namespace

OUT Strin
g

Namespace URI of the method element

Parameters OUT Nod
eIter

Iterator to collection of RPC parameter elements. Use the ‘SOAP Get Next RPC Parameter' or ‘XML
Get Next Node' tool to iterate over collection.

Parameter
Count

OUT Integ
er

Number of items in the Parameters collection

SOAP Get RPC Method InfoSOAP Get RPC Method Info

60

This tool returns the element node at the current iterator position and returns an iterator to the next position. As the iterator is just
a variable, you can make copies at any time to remember a certain position, for example the start position. By using the same
variable as input and output iterator, you can easily iterate over the list by connecting the Success path back to this tool (after
processing the node, of course). The tool takes the ‘End' exit when the iterator points to an empty list or the iteration is complete
(list traversed to end).

The tool will fail (take the Failure exit) if the node to which ‘Parameter Iterator' points is not an element! This cannot happen if the
iterator was obtained through ‘SOAP Get RPC Method Info'.

Exit Paths: Success, End, Failure

ParameterParameter DirDir TypeType RemarksRemarks

Parameter Iterator IN NodeIte
r

Iterator to collection of parameter of a method.

Retrieve Value IN Boolea
n

Checkbox:

False Do not retrieve value

True Default. Return node value

Disable retrieval of value if value is not used and parameter may contain a large XML
document.

Next Parameter OUT NodeIte
r

Iterator pointing to next parameter in the list

Parameter Element OUT Node Node of the parameter element

Parameter Base
Name

OUT String Base name of the parameter element

Parameter
Namespace

OUT String Namespace URI of the parameter element

Value OUT String Value of the parameter

This is a convenience tool for composing the response envelope for an RPC request. It copies the source envelope and replaces
the method element in the body with an element that has the same name but "Response" added to its name. It also adds a <Result>
element as child of the method element. Usually, the type of the return value is given by the service description and doesn't need to
be included in the <Result> element. However, the service may define the type as xsd:anyTypexsd:anyType , for example for VARIANT types. In
this case, the type must be included in the argument. The ‘Return& Value Type' argument permits specifying the type of the result
value. For example, if a type of "double" is specified, the <Result> element will look as follows:

<Result xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="xsd:double">1234.567</Result>
The selection namespaces from the source envelope document are copied to the response envelope document as well. The tool
fails if the request body does not contain a method element.

Exit Paths: Success, Failure

ParameterParameter DirDir TT
yy
pp
ee

RemarksRemarks

SOAP Get Next RPC ParameterSOAP Get Next RPC Parameter

SOAP Create RPC ResponseSOAP Create RPC Response

61

Envelope IN N
o
d
e

Envelope node of the request SOAP payload. Can be a document node whose document element is
<SOAP-ENV:Envelope> or the node is the element itself.

Method
Name Mask

IN St
ri
n
g

Optional. Mask to create the name of the response method.

The string passed here may contain the following substitution tags:

%1 Namespace prefix of the first child element of the <Body> element (RPC method).

%2 Base name of the first child element of the <Body> element (RPC method).

%{ Treat everything up to closing ‘}' as XPath query to be run against the ‘Envelope' node and substitute
the value of the first node found into element name string.

%% ‘%' character

Default: "%1:%2Response".

Method
Namespace

IN St
ri
n
g

Optional. Namespace of the method element. If not specified, namespace of request method is used.

Result
Element
Name

IN St
ri
n
g

Optional. Name of the return value element (first child of the method element).

Default: "result"

Result
Element
Namespace

IN St
ri
n
g

Optional. Namespace URI of the result element. If the parameter is omitted and the name has a
namespace prefix, the tool will search in the parent elements for the namespace with the same prefix
and make the element a member of that namespace.

Return Value IN St
ri
n
g

Optional. Return value of the method. It will be set as content of the <Result> child element.

No Return
Value (void
response)

IN B
o
ol
e
a
n

Checkbox:

False Default. Add a <Result> element.

True No <Result> element is added (void method).

Copy Header IN B
o
ol
e
a
n

Checkbox:

False Default. Does not copy the <Header> element from the source envelope.

True Copies the <Header> element and its content from the source envelope.

Copy
Method
Element
Attributes

IN B
o
ol
e
a
n

Checkbox:

False Default. Don't copy attributes from request method element.

True Copy all attributes of the request method element into response method element.

Response
Envelope

OUT N
o
d
e

Document node of the response envelope

62

Method
Element

OUT N
o
d
e

Node of the response method element.

Result
Element

OUT N
o
d
e

Node of the <Result> element in the method element.

In SOAP, the type of an argument or the return value is specified by the service description and doesn't need to be included in the
payload. However, the service may define the type as xsd:anyTypexsd:anyType , for example for VARIANT types. In this case, the type must be
included in the argument. For example, if a type of "double" is specified, an element will look as follows:

<Element xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="xsd:double">1234.567</Element>.
The type may be a user defined (complex) type. For example:

<ns1:Order xmlns:ns1="uri:my-order-type"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="ns1:Order">
<ns1:Product>Watchmacallit</ns1:Product>
<ns1:Quantity>7</ns1:Quantity>
<ns1:Price>19.99</ns1:Price>
</ns1:Order>.
Please refer to http://www.w3.org/TR/xmlschema-0 or http://www.w3.org/TR/xmlschema-2 for details on the XML Schema Data
types.

ParameterParameter DirDir TyTy
pepe

RemarksRemarks

Element IN No
de

Node of an element whose Schema instance type to set

Type IN Str
ing

XSD type to declare for this element. The argument may either be just the type name or have schema
namespace prefix, such as xsd:string. If the type argument does not contain a prefix, xsd will be
used.

Type
Namespace

IN Str
ing

Optional. Namespace of the type.

Default: http://www.w3.org/2001/XMLSchema

XSI Namespace IN Str
ing

Optional. XML Schema Instance namespace.

Default:
http://www.w3.org/2001/XMLSchema-instance

XSI Namespace
Prefix

IN Str
ing

Optional. Prefix of the schema instance namespace.

Default: xsi

Declare
Namespaces in
Envelope

IN Bo
ol
ea
n

Checkbox:

False Declares the XSD and XSI namespaces in the element itself.

True Default. Declare the XSD and XSI namespaces in the Envelope element (actually, the document
element is used, as this tool may be for other purposes than SOAP).
If any of the parent elements already has a NS declaration for a prefix and the namespace URI is
different, the declaration will be added to the element, and not the Envelope.

Exit Paths: Success, Failure

SOAP Set Element TypeSOAP Set Element Type

63

http://www.w3.org/TR/xmlschema-0
http://www.w3.org/TR/xmlschema-2

Turns an element, for example an RPC parameter, into a SOAP array. The array is created for values supplied as list of strings or just
a number of empty elements that can be populated with complex data. The following is a sample array as produced by this tool
(default argument):

<Element xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 SOAP-ENC:arrayType="xsd:string[5]"
 xsi:type="SOAP-ENC:Array">
 <xsd:string>first</xsd:string>
 <xsd:string>second</xsd:string>
 <xsd:string>third</xsd:string>
 <xsd:string>fourth</xsd:string>
 <xsd:string>fifth</xsd:string>
</Element>
If the element already has child elements, they are all removed before the array elements are added. The array items may be user
defined (complex) types. Use the ‘XML Get Next Item' tool to iterate through the 'Item Elements' collection and populate the items.
For example:

<Element xmlns:ns1="uri:my-order-type"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 SOAP-ENC:arrayType="ns1:Order[3]"
 xsi:type="SOAP-ENC:Array">
 <ns1:Order>
 <ns1:Product>Watchmacallit</ns1:Product>
 <ns1:Quantity>3</ns1:Quantity>
 <ns1:Price>19.99</ns1:Price>
 </ns1:Order>
 <ns1:Order>
 <ns1:Product>Doodleany</ns1:Product>
 <ns1:Quantity>9</ns1:Quantity>
 <ns1:Price>12.49</ns1:Price>
 </ns1:Order>
 <ns1:Order>
 <ns1:Product>Ozadingdong</ns1:Product>
 <ns1:Quantity>1</ns1:Quantity>
 <ns1:Price>43.15</ns1:Price>
 </ns1:Order>
</Element>
For details on the XML Schema Data types, refer to http://www.w3.org/TR/xmlschema-0 or http://www.w3.org/TR/xmlschema-2.

Exit Paths: Success, Empty, Failure

ParameterParameter DirDir TT
yy
pp
ee

RemarksRemarks

Element IN N
o
d
e

Node of the parameter to turn into an array.

Values IN St
ri
n
g
Li
st

Optional. List of strings to set as the array items. If not specified, empty elements will be created.

SOAP Create ArraySOAP Create Array

64

http://www.w3.org/TR/xmlschema-0
http://www.w3.org/TR/xmlschema-2

Size IN In
te
g
er

Optional. Size of the array. If not specified, the length of the ‘Values' list specifies the size. If both a
‘Values' and ‘Size' argument are given, the ‘Size' has precedent and either not all items of the ‘Values'
list are included or the array is padded with elements containing the ‘Default Value'.

Default
Value

IN St
ri
n
g

Optional. Default array item value for padding items (if ‘Size' is larger than size of ‘Values' or no ‘Values'
defined).

Default: No value (padding elements will be empty)

Array Type IN St
ri
n
g

Optional. Type of the array. The argument may either be just the type name or have schema namespace
prefix, such as xsd:string. If the type argument does not have a prefix, xsd will be used.

Default: xsd:string

Type
Namespace

IN St
ri
n
g

Optional. Namespace of the array type.

Default: http://www.w3.org/2001/XMLSchema

Encoding
Prefix

IN St
ri
n
g

Optional. Prefix of the encoding namespace (http://schemas.xmlsoap.org/soap/encoding/).

Default: SOAP-ENC

Item
Element
Name

IN St
ri
n
g

Optional. Qualified name of the array items.

Default: Qualified array type (thus, the default item element name is xsd:string).

Item
Element
Namespace

IN St
ri
n
g

Optional. Namespace of the array items.

Default: Namespace of the prefix of ‘Item Element Name'. If no prefix, empty namespace.

XSI
Namespace

IN St
ri
n
g

Optional. XML Schema Instance namespace.

Default:
http://www.w3.org/2001/XMLSchema-instance

XSI
Namespace
Prefix

IN St
ri
n
g

Optional. Prefix of the schema instance namespace.

Default: xsi

Include XSI
Type
Declaration

IN St
ri
n
g

Checkbox:

False Do not add a type declaration for the array.

True Default. Add XSI type declaration for the SOAP Array. If all parameters are default the declaration
is:
xsi:type="SOAP-ENC:Array".

Declare
Namespaces
in Envelope

IN B
o
ol
e
a
n

Checkbox:

False Declares the namespaces in the element itself.

True Default. Declare the namespaces in the Envelope element (if they aren't already). If any of the
parent elements already has a NS declaration for a prefix and the namespace URI is different, the
declaration will be added to the element, and not the Envelope.

65

Return Item
Element
Collection

IN B
o
ol
e
a
n

Checkbox:

False Does not return collection of array items (‘Array Items' is returned as NULL).

True Default. Return collection ‘Array Items' containing all items of the array.

Item
Elements

OUT N
o
d
eI
te
r

Iterator pointing to first element of a collection containing the nodes of the array items.

Count OUT In
te
g
er

Number of items in the array.

NOTE: this value is returned, even if ‘Return Item Collection' is False.

Invocation ToolsInvocation Tools

This tool issues an HTTP request to the specified URL with the SOAP request envelope as payload. The response body is parsed
and returned as response envelope. The URL may have the following format (also see RFC2396 at http://www.rfc.net/rfc2396.html):

['http://'] <host> [':' <port>] ['/' <path> ['?' <query>]]
The (UNICODE) string passed as URL is converted to UTF-8 and invalid characters in the resulting string are escaped according to
RFC2396 (%<hexvalue>). The structure of the request sent to the host will be as follows:

'POST ' <path> ' HTTP/1.1' CRLF
'Host: ' <host> [':' <port>] CRLF
'Content-Type: text/xml; charset="' <charset> '"' CRLF
'Content-Length: ' <bodysize> CRLF
'SOAPAction: "' <SOAPAction> '"' CRLF
[<additional headers>]
CRLF
<SOAP envelope body>
The ‘Additional HTTP Headers' parameter can be used to supply additional HTTP header elements. The headers must have the form
{<name> ' :' <value> [CR] LF }* The header elements in this argument have precedence over the default headers generated by the
tool. Thus, if the ‘Additional HTTP Headers' parameter contains a ‘Content-Length header, it will be used (with potentially
unexpected results, of course).

The response body will be parsed and returned as ‘Response Envelope' if the content type is text/xml. Otherwise, the body is
returned in ‘Raw Response Body' and an empty document node is returned as ‘Response Envelope'. This document node can be
queried for information about what went wrong.

This tool maintains a global cache of the most recently resolved and successfully connected host addresses to improve
performance. Each address resolution is kept for at most 5 minutes.

Exit PathsExit Paths

Success

Request was processed successfully (2xx code) and body is valid XML.

SOAP Fault

Response body contains a <Fault> element.

EmptyResponse

SOAP HTTP RequestSOAP HTTP Request

66

http://www.rfc.net/rfc2396.html

Response body was empty and the HTTP status code was 2xx. Some servers use this to signal success for methods with
no result (void).

Unknown Host

Invalid or unknown hostname (DNS lookup failed)

Connection Error

Unable to establish connection to server: connection failed or existing connection was lost prematurely.

HTTP Error

HTTP error (3xx, 4xx, 5xx) and it was not a SOAP Fault.

Parse Error

Error parsing the returned XML payload (status was 200 or 500).

Timeout

The request timed out.

Size Limit

The response data exceeded the size limit.

Failure

Some other failure. Use ‘XML Get Error Info' on the ‘Response Envelope' to obtain more information.

ParameterParameter DirDir TT
ypyp
ee

RemarksRemarks

Request
Envelope

IN N
od
e

XML Node of the SOAP envelope to send. Can be document node or <Envelope> element node.

URL IN St
rin
g

URL of the request. See remarks for details.

SOAP Action IN St
rin
g

Optional. String to be passed as SOAPAction header. The string passed here may contain the
following substitution tags:

%1 Namespace of the first child element of the <Body> element (RPC method).

%2 Base name of the first child element of the <Body> element (RPC method).

%{ Treat everything up to closing ‘}' as XPath query to be run against the ‘Request Envelope' node and
substitute the value of the first node found into the SOAPAction string.

%% ‘%' character

If this argument is not specified, the following mask will be used as default: "%1#%2".
The value "NONE" may be specified to suppress addition of the SOAPAction header.

Additional
HTTP Headers

IN St
rin
g

Optional. Additional HTTP Headers, separated by LF characters (\n). See remarks for details.

Selection
Namespaces

IN St
rin
g

Optional. Selection namespaces to set in response envelope document.

Default: Copy selection namespaces from request envelope document.

Timeout IN Int
eg
er

Optional. Maximum time the request may take before timing out (in milliseconds).

-1 à Never timeout.

Default: 60000 (60 seconds)

67

Max Response
Size

IN Int
eg
er

Optional. Size limit of the response data. If the data returned by the server exceeds this limit, the
data is not processed and the tool fails. This prevents denial of service attacks. Default: 1MB.

Escape URL IN B
o
ol
ea
n

Checkbox:

False URL is already escaped.

True Default. Escape invalid characters in the URL with %<hexvalue> according to RFC2396.

Always Return
Raw Response
Body

IN B
o
ol
ea
n

Checkbox:

False Default. Do not return raw response body.

True Returns the raw data of the response body as string (‘Raw Response Body).

Response
Envelope

OUT N
od
e

Document node of the response envelope. If an error occurred, an empty document is returned which
can be queried using ‘XML Get Error Info'.

Status Code OUT Int
eg
er

HTTP status code of the response (e.g. 200, 500, etc).

Status Text OUT St
rin
g

HTTP status text of the response (e.g. "OK", "Internal Server Error", etc.)

Response
Headers

OUT St
rin
g

HTTP Headers returned by the server, separated by a LF (\n).

Raw Response
Body

OUT St
rin
g

Raw data of the response body (data that is parsed as response envelope). This string is only
returned if the ‘Always Return Raw Response Body' parameter is True, an error occurs, or the
response content type is not XML.

68

Helper ToolsHelper Tools

Converts the string (which is UNICODE) into the specified character set (default = UTF-8) and encodes the resulting data into a
Base64 string. Characters that cannot be translated to the destination character set will be represented as ‘?'. Wide character sets,
such as UTF-16 are currently not supported. SOAP does not mandate a maximum line width for base64 encoded data. Some other
protocols, such as MIME, do.

Exit Paths: Success, Failure

ParameterParameter DirDir TypeType RemarksRemarks

Data IN String String to encode Base64

Character Set IN String Optional. Character set to convert data into before encoding. Default: ‘UTF-8'

Max Line Width IN Integer Optional. Maximum width of a line in characters.

–1 = unlimited (default).

Line Separator IN String Optional. String inserted as line separator.

Default: "\r\n" (CR/LF)

Encoded Data OUT String String after encoding data Base64

Decodes the base64 encoded string into the binary representation and converts it to UNICODE based on the specified character set.
Thus, the character set argument specifies the character set of the base-64 encoded data.

Exit Paths: Success, Failure

ParameterParameter DirDir TypeType RemarksRemarks

Encoded Data IN String Base64 encoded data

Character Set IN String Optional. Character set of the base64 encoded data. Default: ‘UTF-8'

Decoded Data OUT String Data after decoding from Base64 and transforming from ‘Character Set' to UNICODE.

SOAP Base64 EncodeSOAP Base64 Encode

SOAP Base64 DecodeSOAP Base64 Decode

69

Reads the specified file as binary data and encodes it into a base64 string. Encoding a file prepares it for transport inside a SOAP
payload. For example, a SOAP request might encode a wave file, and send it to CIC server. SOAP does not mandate a maximum line
width for base64 encoded data. Some other protocols, such as MIME, do. This tool can be used to send any kind of data through
SOAP requests. For example, you could encode a wave file.

Exit Paths: Success, File Not Found, Access Denied, Failure

ParameterParameter DirDir TypeType RemarksRemarks

Filename IN String Filename and path of the file to encode

Max Line Width IN Integer Optional. Maximum width of a line in characters.

–1 = unlimited (default).

Line Separator IN String Optional. String inserted as line separator.

Default: "\r\n" (CR/LF)

Encoded Data OUT String Base64 encoded content of the file

Decodes the base64 encoded string into the binary representation and writes the data to the specified file as binary data.

Exit Paths: Success, Access Denied, Failure

ParameterParameter DirDir TypeType RemarksRemarks

Encoded Data IN String Base64 encoded data

Filename IN String Filename and path of the file to which to write the decoded data.

Append To Existing File IN Boolean Checkbox:

False Default. Create new file or truncate existing file.

True Create new file or append to existing file.

SOAP Base64 Encode FileSOAP Base64 Encode File

SOAP Base64 Decode To FileSOAP Base64 Decode To File

70

Appendix C: Structure of IP Notification MessagesAppendix C: Structure of IP Notification Messages
For the purpose of the SOAP implementation, message transport is not limited to any kind of protocol. SOAP requests are sent as
notifications containing payload data as well as transport-specific out-of-band information. As HTTP is most frequently used as
transport for SOAP requests through the internet, an ISAPI listener is provided (see SOAP ISAPI Listener Task for IIS). However, any
kind of client who "talks" Notifier could issue SOAP requests. For example, a COM object that allows to directly send SOAP packets
to CIC.

HTTP and Notifier protocols transport SOAP messages between HTTP and Notifier protocols transport SOAP messages between components in the CIC environment.components in the CIC environment.

Since Interaction Processor does not directly support Notifier requests, notifications are used to emulate the request/response
mechanism. The SOAP request notifications use CIC's eSOAP_REQUEST_OBJECT object type and an object ID that identifies the
client. The notification event ("Initiator Event") can either be explicitly specified or the SOAPAction is will be used as default. The
response is sent back to the client with the object type eSOAP_RESPONSE_OBJECT. The object ID uniquely identifies the client and
is used to send the response back to the right client. The clients use GetNotifierSequenceNumber to obtain a unique identifier to
identify themselves. Clients that do not expect a response must set the ‘Respond' flag in the request data block to ‘false'. The
Message data of the request and response have the following structure.

71

Request Message StructureRequest Message Structure

Field NameField Name TypeType DescriptionDescription

Version int 2 (Version number of the message structure).

RequestId DWORD Request identifier specified by the client to identify the response. The server must send it back in
the response.

ClientName string Name of the client

Respond bool False Server must not send a response back to the client.

True Server must send a response to the client.

InitiatorEvent string String of the notification Event-ID. Often same as SOAPAction.

SOAPAction string SOAP Action name

TransportInfoSize DWORD Size in bytes of the transport information data block

TransportInfoData BYTE[] Transport information data. This is an XML document that encodes transport specific information.
For example, for HTTP it contains the verb as well as the HTTP header fields. The default character
set is UTF-8, but the data block may contain an XML declaration with the appropriate encoding
attribute.

This field may be omitted (Size = 0). See SOAP ISAPI Filter Schema for schema details.

PayloadSize DWORD Size in bytes of the SOAP payload data block

PayloadData BYTE[] This is the data of the SOAP envelope. The default character set is UTF-8, but the data block may
contain XML declaration with the appropriate encoding attribute.

72

Response Message StructureResponse Message Structure

Field NameField Name TypeType DescriptionDescription

Version int 2 (Version number of the message structure).

RequestId DWORD Request identifier specified by the client to identify the response. The server fills this slot with
the value in the request data.

ResultCode enum Enumeration indicating how the request was processed.

Succeeded (0)

The SOAP request was processed successfully and without fault.

Failed (1)

The SOAP request failed. This flag is set by the ‘SOAP Send Response' tool when the body
contains a <Fault> element. A client can thus check for a failed request without having to
unpack the payload.

Unhandled (2)

The Initiator fired, but the handler did not invoke ‘SOAP Send Response' to return a response
(the ‘SOAP Request' handle went out of scope).
The payload and transport control data are empty.

TransportControlSize DWORD Size in bytes of the transport control data block

TransportControlData BYTE[] Transport control data. This is an XML document that contains transport specific out-of-band
control data. For example, for HTTP it contains additional HTTP header fields or status codes
to convey special failures. The default character set is UTF-8, but the data may contain an XML
declaration with the appropriate encoding attribute. Data block may be empty.

PayloadSize DWORD Size in bytes of the SOAP response payload data block. The default character set is UTF-8, but
the data may contain an XML declaration with the encoding attribute.

PayloadData BYTE[] This is the data of the SOAP response envelope. The data block is empty if the ‘Unhandled' flag
is set.

73

Appendix D: SOAP ISAPI Listener Fault MessagesAppendix D: SOAP ISAPI Listener Fault Messages
This appendix lists fault messages returned by the SOAP ISAPI Listener. For general information about SOAP Faults, refer to section
4.4 of the SOAP Specification at W3C. The URL is http://www.w3.org/TR/SOAP/. SOAP ISAPI Listener may return the following
codes:

Client.ContentType

Unsupported Content-Type specified. Expecting "text/xml" or "application/xml".

Client.ContentLength

The 'Content-Length' field of the HTTP header does not match the length of the data sent by client.

Client.SOAPAction

The HTTP header does not contain a 'SOAPAction' header field.

Client.PayloadSize

The SOAP payload exceeds the maximum size limit configured for the server.

Server.TooBusy

Server is too busy—too many requests are currently pending.

Server.SOAPAction

The SOAPAction is not recognized by the server (e.g. it doesn't match any filter rules).

Server.NotifierConnection

SOAP ISAPI Listener was unable to establish a Notifier connection with the CIC server to forward the request.

Server.RequestTimeout

The request was not processed by the CIC server in the allotted time.

Server.NotifierConnectionLost

The SOAP ISAPI Listener lost the Notifier connection while waiting for the request to be processed by the CIC server.

Server.Switchover

A Switchover was initiated while waiting for the request to be processed. The response was lost.

Server.Error

A general error occurred while server was waiting for request to be processed.

Server.Unhandled

The request was not processed by the CIC server (i.e. a handler was initiated but did not send a response with the SOAP
Send Response tool).

Server.Shutdown

The web server was shut down (ISAPI unloaded) while the request was being processed by the CIC server.

74

http://www.w3.org/TR/SOAP/

GlossaryGlossary
This section explains special terms used in this documentation.

One of the many applications that make up the CIC server. These applications have names like manager, server, and services. For
example, Queue Manager, Fax Server, and Directory Services are all CIC modules.

Microsoft's Component Object Model. The COM specification helps developers create component software that is compatible with
a variety of languages, including C, ADA, Delphi, Java, and Visual Basic.

Customer Interaction Center offers comprehensive interaction management covering not only telephone calls, faxes, and e-mail
messages, but also Internet text chats, Web callback requests, and voice over IP calls. Using CIC and the PureConnect platform,,
enterprises, contact centers, and service providers can centralize the processing of all customer interactions and provide a new
level of service and consistency.

Denial of Service (DoS) attacks are attempts to overload a networked computer system so that it crashes, disconnects from the
network, or becomes so overloaded that it cannot respond to legitimate requests.

Document Type Definition. A DTD defines the XML tags that can be used in an XML document, the order in which tags may appear,
and limited information about data types. A DTD can be part of an XML document or can be referenced as an external file. The
validating XML parser compares the DTD to the XML document and flags any errors. DTDs have been deprecated in favor of XML
Schemas.

A program built in Interaction Designer that performs some action or actions in response to the occurrence of some event. A
handler is a collection of steps organized and linked to form a logical flow of actions and decisions. Handlers are similar in
structure to a detailed flowchart. Handlers can start other handlers called subroutines. A handler contains only one initiator step
which identifies the type of event that will start the handler.

All COM functions and interface methods return a value of the type HRESULT, which stands for 'result handle'. HRESULT returns
success, warning, and error values. HRESULTs are 32-bit values with several fields encoded in the value. In Visual Basic, a zero
result indicates success and a non-zero result indicates failure. Common HRESULT values are:

CIC ModuleCIC Module

COMCOM

Customer Customer Interaction Center (CIC)Interaction Center (CIC)

Denial Denial of Service Attackof Service Attack

DTDDTD

HandlerHandler

HRESULT CodesHRESULT Codes

75

ValueValue ErrorError MeaningMeaning

0x8000FFFF E_UNEXPECTED Unexpected failure.

0x80004001 E_NOTIMPL Not implemented.

0x8007000E E_OUTOFMEMORY Ran out of memory.

0x80070057 E_INVALIDARG One or more arguments are invalid.

0x80004002 E_NOINTERFACE No such interface supported.

0x80004003 E_POINTER Invalid pointer.

0x80070006 E_HANDLE Invalid handle.

0x80004004 E_ABORT Operation aborted.

0x80004005 E_FAIL Unspecified error.

0x80070005 E_ACCESSDENIED General access denied error.

0x80000001 E_NOTIMPL Not implemented.

0x80020001 DISP_E_UNKNOWNINTERFACE Unknown interface.

0x80020003 DISP_E_MEMBERNOTFOUND Member not found.

0x80020004 DISP_E_PARAMNOTFOUND Parameter not found.

0x80020005 DISP_E_TYPEMISMATCH Type mismatch.

0x80020006 DISP_E_UNKNOWNNAME Unknown name.

0x80020007 DISP_E_NONAMEDARGS No named arguments.

0x80020008 DISP_E_BADVARTYPE Bad variable type.

0x80020009 DISP_E_EXCEPTION Exception occurred.

0x8002000A DISP_E_OVERFLOW Out of present range.

0x8002000B DISP_E_BADINDEX Invalid index.

0x8002000C DISP_E_UNKNOWNLCID Unknown LCID.

0x8002000D DISP_E_ARRAYISLOCKED Memory is locked.

0x8002000E DISP_E_BADPARAMCOUNT Invalid number of parameters.

0x8002000F DISP_E_PARAMNOTOPTIONAL Parameter not optional.

0x80020010 DISP_E_BADCALLEE Invalid callee.

0x80020011 DISP_E_NOTACOLLECTION Does not support a collection.

Hypertext Markup Language (HTML) is the markup language used to create World Wide Web pages.

HTMLHTML

IDispatch IDispatch InterfaceInterface

76

The IDispatch interface provides a late-bound mechanism that can be used to access information about the methods or properties
of an object.

The first step in a handler that waits for a specific type of event to occur. When that event occurs, the Interaction Processor starts
an instance of any handler whose initiator is configured for that event. An initiator is a required step that starts a handler. There can
be only one Initiator in a handler. Initiator names describe the kind of event used to start a handler. Initiators can pass information
from the event into variables that can be used within a handler. Subroutine initiators are not configured to watch for an event.
Rather, they start when called from another handler.

The CIC graphical application development tool for creating, debugging, editing, and managing handlers and subroutines.

Interaction Processor is the event processing subsystem of Customer Interaction Center that starts instances of handlers when an
event occurs.

Every COM component implements an internal interface named IUnknown. Client applications can use the IUnknown interface to
retrieve pointers to the other interfaces supported by the component.

A method is a software subroutine that performs some type of data processing on an object in a computer system. Methods are
sometimes called functions. Data can be passed when methods are called to perform some kind of work. For example, you might
call a method named GetStockPrice and pass it a stock symbol to receive the current stock price as the return value.

Since XML allows tags and attributes to be defined as needed, name collisions occur when the same name is assigned to a tag or
an attribute, in different databases. For example, a teacher might define an element named "Grade" to represent a student's score. In
the context of an agricultural operation, "Grade" could have a different meaning, as in "Grade A" eggs.

Namespaces resolve collision issues by associating XML attribute and element names with a specific context, or "namespace". A
namespace is an identifier that helps computer programs determine whether identically named elements refer to the same type of
data. Using namespaces, a program can determine that a data element named "Grade" in the "Schoolwork" namespace is different
from an element called "Grade" in the "EggQuality" namespace.

The CIC module that acts as a communication center for all other modules. Notifier listens for events generated by other modules
and notifies other interested modules that the event has occurred. Notifier uses a publish-and-subscribe paradigm.

A SOAP package contains information needed to invoke a web service.

A payload contains data in XML format that is passed to or from a function. Request payloads contain everything needed to execute
a function, including data and arguments passed as parameters. Response payloads contain the values that are returned from a

InitiatorInitiator

Interaction Interaction DesignerDesigner

Interaction Interaction Processor (IP)Processor (IP)

IUnknown IUnknown InterfaceInterface

MethodMethod

NamespaceNamespace

NotifierNotifier

PackagePackage

PayloadPayload

77

function.

Processing instructions are read by application-level code (such as parsers) and are used to communicate information without
changing the content of an XML document. For example, <?xml version="1.0"?> is a processing instruction that indicates that a
document conforms to XML 1.0 specifications.

Processing instructions use <?target declaration ?> notation; where target is the name of the application that should process the
instruction, and declaration is an instruction or identifier that is meaningful to the application. In the above example, xml is a
reserved target that identifies XML parsers.

A protocol is a set of rules that one computer uses to communicate with another.

XML Schema are the successor to DTDs for XML. XML schemas describe method calls, and can recognize and enforce data-types,
inheritance, and presentation rules. A schema can be part of an XML document or can be referenced as an external file.

Simple Object Access Protocol. SOAP is an XML-based protocol that requests or receives information from peer computers in a
decentralized, distributed network. SOAP defines the minimal set of conventions that are needed to invoke code using XML and
HTTP.

SOAP is used to invoke methods on servers, services, components and objects in another computer. SOAP specifies the XML
vocabulary needed to specify method parameters, return values, and exceptions.

Transmission Control Protocol/Internet Protocol.

The definition of a single action that can be performed within a handler. This definition includes name, label, runtime information
(DLL and function), possible return codes, and parameters. Tools dragged into a handler become steps in that handler.

A valid XML document conforms to a document structure defined by a schema or DTD (Document Type Definition). Valid
documents are well-formed documents that have a DTD or schema applied to them.

A vocabulary is the set of tags and attributes that are used in an XML document.

A web service is a method that can be invoked across the Internet. A web service can perform virtually any data processing activity,
ranging from simple information lookups to complicated business transactions. SOAP is frequently employed to invoke web
services.

Processing Processing InstructionInstruction

ProtocolProtocol

SchemaSchema

SOAPSOAP

TCP/IPTCP/IP

ToolTool

ValidValid

VocabularyVocabulary

Web ServiceWeb Service

78

Well-formed documents follow the rules of XML.

Web Services Description Language—an XML-based language that defines the functionality offered by a web service and how to
access it. WSDL makes it possible to describe services on CIC so that a worldwide audience can find and use them. WSDL
describes a service, the parameters required to invoke it, and the location of the endpoint where the service can be accessed.

Extensible Markup Language. XML provides a structured way to define data in plain text format, so that data can be exchanged
between computers.

Extensible Style Language (XSL) is a specification used to transform XML documents into HTML. XSL Transformation (XSLT)
provides similar functionality that transforms XML data into a different XML structure.

Well-FormedWell-Formed

WSDLWSDL

XMLXML

XSL/XSLTXSL/XSLT

79

Change logChange log
transfer content from revisions topic to this topic

DateDate ChangesChanges

26-September-2019 Simplified the description of how XML compares to HTML.

06-November-2019 Clarified that the ICServer2 tag must be used to get SOAP Listener to work in a switchover environment.

80

	Table of Contents
	CIC and SOAP API Developer's Guide overview
	Audience
	Organization of Material
	Related Documentation
	Recommended Web Links

	Introduction to SOAP in the CIC Environment
	What is SOAP?
	Who uses CIC's SOAP functionality?
	SOAP's Request/Response Model
	Web Services
	Requests and Responses are XML Documents

	What is XML?
	What is the relationship between XML and markup languages, such as HTML or SGML?
	XML Parsers
	Viewing XML in Internet Explorer or Edge

	Comparing XML to HTML
	Other features of XML

	Structure of an XML file
	Listing 1: Sample XML File
	XML Declaration
	Rules that govern tags
	The Root Element
	Child Elements

	Structure of SOAP Messages
	Envelope Section
	Header Section
	Body Section
	Request Messages
	Listing 4: Request to Invoke Add Method

	Response Messages
	Listing 5: Response from the Add Method

	Fault Messages

	CIC's SOAP Components
	SOAP Tools in Interaction Designer
	Initiator Tools
	Request Tools
	Payload Processing Tools
	Invocation Tools
	Helper Tools

	The SOAP Tracer Utility
	Starting SOAP Tracer
	Command Line Arguments
	SOAP Tracer's User Interface
	Menu Commands
	Toolbar

	SOAP ISAPI Listener Task for IIS
	What is a Listener?
	What is ISAPI?
	What is an endpoint?

	SOAP Notifier COM Objects
	ISoapConnector: the MSSOAP Notifier Connector
	Properties

	Install and Configure SOAP ISAPI Listener
	Installation and configuration pre-planning
	Install SOAP Listener
	Post-installation procedures
	I3SOAPISAPIConfig.xml Filter File Format
	<ICServers>
	<Defaults>

	<Rules>

	Sample I3SOAPISAPIConfig File
	Forward only supported SOAPActions to CIC

	Configuring IC SOAP Listener to work with IC 4.0 and 2015 or later
	Update the IC User Configuration
	Update the Registry
	Update Environment Variables
	Update IIS Settings
	Additional steps for switchover pairs

	Additional configuration steps required for SOAP Listener when using IIS7
	SOAP ISAPI Filter Schema
	Reinstall/Uninstall SOAP Listener

	Install SOAP Notifier COM
	Reinstall/Uninstall SOAP Notifier COM Components

	Appendix A: SOAP Transport Information and Control
	HTTP Transport
	Request (Transport Info)
	HTTP Element Attributes
	Request Transport Example

	Response (Transport Control)
	Response Transport Example

	Appendix B: SOAP Tools
	Initiator Tools
	SOAP Initiator

	Request Tools
	SOAP Get Request Info
	SOAP Abort Request
	SOAP Get Transport Info
	SOAP Expects Response
	SOAP Parse Request Payload
	Heuristic
	Exit Paths

	SOAP Send Response
	Exit Paths

	Payload Processing Tools
	SOAP Create Envelope
	SOAP Get Body
	SOAP Get Body Element
	SOAP Add Body Element
	SOAP Query Encoding Style
	SOAP Get Header
	SOAP Get Header Element
	SOAP Get Header Elements
	SOAP Add Header Element
	SOAP Get Fault
	SOAP Set Fault
	SOAP Create Fault Response
	SOAP Get RPC Parameter
	SOAP Add RPC Parameter
	SOAP Get RPC Method Info
	SOAP Get Next RPC Parameter
	SOAP Create RPC Response
	SOAP Set Element Type
	SOAP Create Array

	Invocation Tools
	SOAP HTTP Request
	Exit Paths

	Helper Tools
	SOAP Base64 Encode
	SOAP Base64 Decode
	SOAP Base64 Encode File
	SOAP Base64 Decode To File

	Appendix C: Structure of IP Notification Messages
	Request Message Structure
	Response Message Structure

	Appendix D: SOAP ISAPI Listener Fault Messages
	Glossary
	CIC Module
	COM
	Customer Interaction Center (CIC)
	Denial of Service Attack
	DTD
	Handler
	HRESULT Codes
	HTML
	IDispatch Interface
	Initiator
	Interaction Designer
	Interaction Processor (IP)
	IUnknown Interface
	Method
	Namespace
	Notifier
	Package
	Payload
	Processing Instruction
	Protocol
	Schema
	SOAP
	TCP/IP
	Tool
	Valid
	Vocabulary
	Web Service
	Well-Formed
	WSDL
	XML
	XSL/XSLT

	Change log

