
Social Sites Research Through CourseRank

Benjamin Bercovitz, Filip Kaliszan, Georgia Koutrika,
Henry Liou, Aditya Parameswaran, Petros Venetis,
Zahra Mohammadi Zadeh, Hector Garcia-Molina

Computer Science Department, Stanford University, California, USA
{berco, kaliszan, koutrika, liouh, adityagp, venetis, zahram, hector}@stanford.edu

ABSTRACT
Social sites such as FaceBook, Orkut, Flickr, MySpace and many
others have become immensely popular. At these sites, users share
their resources (e.g., photos, profiles, blogs) and learn from each
other. On the other hand, higher education applications help stu-
dents and administrators track and manage academic information
such as grades, course evaluations and enrollments. Despite the
importance of both these areas, there is relatively little research on
the mechanisms that make them effective. Apart from being both
a successful social site and an academic planning site, CourseRank
provides a live testbed for studying fundamental questions related
to social networking, academic planning, and the fusion of these
areas. In this paper, we provide a system overview and our main
research efforts through CourseRank.

1. INTRODUCTION
A growing number of social sites can be found on the Web en-

abling people to share different kinds of resources, such as: photos
(e.g., Flickr [4]), URLs (e.g., Del.icio.us [3]), blogs (e.g., Techno-
rati [17]), and so forth. These sites differ from the open Web in that
they tend to foster communities of registered users that contribute
regularly and are controlled by some entity that can set up “rules”
of engagement.

The increasing popularity of these systems has motivated a num-
ber of studies (e.g., [2, 5, 6]) that have mainly focused on under-
standing the usage and evolution of these systems as well as a num-
ber of efforts on harvesting social knowledge for tasks, such as re-
source recommendations [13, 14, 18], expert and community iden-
tification [10, 19] and ontology induction [16]. Still, there are many
unanswered questions about how people interact and what services
should and can be offered in social sites. During the summer of
2007, we decided that if we wanted to investigate social sites, we
needed to have our own site. The result of our effort is CourseRank,
a social site where Stanford students can review courses and plan
their academic program.

By focusing on an academic site, not only can we study social
sharing and networking, but we can also study an important ap-
plication area for database systems that has seen little research:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

higher-education applications. There are over 6000 Universities
in the USA alone, with over 15M college students, most of whom
use software to track courses that they take. Several companies,
including Red Lantern (DARS), Jenzabar, Datatel, and PeopleSoft
(Oracle), have products for course planning (but not centered on
a student community). Thus, our work “kills two birds with one
stone”, investigating not just social sites, but an interesting and
important application beyond “sharing videos and chatting about
movies” as in many current social sites.

In the next section we describe the current CourseRank system
and what sets it apart from other social sites. Then, in Section 3, we
give an overview of our research work in CourseRank. In Section
4, we discuss evaluating social aspects of the system.

2. COURSERANK SYSTEM DESCRIPTION
Using CourseRank, students can search for courses of interest,

evaluate courses taken and receive personalized recommendations
based on what other students have taken and liked. Faculty can
also add comments to their own courses, and can see how their
class compares to other classes. CourseRank has been successful
(it is already used by more than 10,000 students in Stanford, out
of a total of about 14,000 students) because in addition to features
common to other social sites, it provides special tools geared to the
academic domain. For instance, Figure 1 shows two CourseRank
screen shots: on the left is part of a course description page, while
on the right is the 4-year course planner that helps students structure
their courses over multiple years.

In addition, unlike other social sites, it provides access to three
types of information:
• Official Stanford Data. We have access to official information,

including course descriptions and schedules, and results of the
official course evaluations conducted by the university.
• Personal Information. Students provide personal information

(e.g., their class, major), the courses they have already taken
and their grades.
• Evaluations. Students can evaluate courses they have taken and

enter comments. This component is similar to what commercial
sites offer, e.g., for rating and reviewing books at Amazon.com.

3. DATA-CENTERED SERVICES
In CourseRank, unlike other public course evaluation sites (e.g.,

RateMyProfessors.com) and social sites, we have access to much
richer data: In addition to basic information (what courses did a stu-
dent take, and which he liked), we have other types of information:
what grade did the student get, how the courses interrelate (needed
for major, pre-requisites), and user profiles (major, class, ...). This
rich data gives us the opportunity to develop novel types of data-

Figure 1: CourseRank Screen Shots: course description (left), course planner (right).

centered services, where the user interacts mainly with the data
the system has collected from all users. These services include:
a recommendation engine that lets students personalize their rec-
ommendations; a requirements service that checks if students have
met program requirements, and incorporates missing courses into
recommendations; a novel interface that facilitates discovery of un-
expected resources. For each service we explore models for rep-
resenting information (e.g., course requirements), algorithms and
options for implementing them, desirable user interfaces, expected
performance, and social implications.

In this section, we drill-down in more detail into these services,
to illustrate the types of challenges we address and the types of
solutions that emerge from our work.

3.1 Flexible Recommendations
Social networking and commerce sites often provide recommen-

dation services. For instance, MovieLens [12] recommends movies
to watch, while Amazon [11] recommends books to buy. Rec-
ommendations are also important in CourseRank, and there are
many more recommendation challenges than in a traditional site. In
CourseRank, there are multiple dimensions to recommend (courses,
quarters, majors, instructors), and there are multiple ways to recom-
mend them. For example, a course recommendation can be based
on what “similar” students have taken, where similarity is based
on liking the same courses, or getting the same grades, or being in
the same major. The recommendations can also be based on what
courses are needed for graduation, or on what is available when the
student has free time in the week. The same course can be offered
at different times, with different instructors, teaching assistants, and
textbooks. In addition, courses (unlike books or movies) often need
to be taken in a certain order or must satisfy certain constraints.

For this purpose, we have developed a flexible recommenda-
tion service that allows recommendations to be easily defined, cus-
tomized, and processed. The engine gives not one canned recom-
mendation (as most current systems do [1]), but the flexibility to
specify what is desired. Our goal is to allow a student to specify
their goal (courses, quarters, instructors, ...), the basis of recom-
mendations (grade similarity, evaluation similarity, ...) and filtering
conditions (e.g., I am looking of a biology class that satisfies my

science requirement).
A given recommendation approach can be expressed declara-

tively as a high-level workflow over structured data and then ex-
ecuted by the underlying engine. Our view is that a site adminis-
trator declaratively expresses a suite of workflows; then students
can select a workflow, and provide parameters to it. For example,
parameters may specify courses the student is interested in or peer
students with whom to get compared.

We now describe our flexible recommendation model, FlexRecs
(presented at the SIGMOD Conference [7].) Since CourseRank
data is currently relational, we start with a relational algebra repre-
sentation of workflows, containing traditional relational operators
such as select, project and join, plus new recommendation opera-
tors that generate or combine recommendations. At the heart of
these new operators is a special recommend operator, which takes
as input a set of tuples and ranks them by comparing them to an-
other set of tuples. The operator may call upon functions in a li-
brary that implement common tasks for recommendations, such as
computing the Jaccard or Pearson similarity of two sets of objects.
The operator may be combined with other recommendation and
traditional relational operators.

To illustrate FlexRecs, suppose that our information on courses,
students and evaluations is stored in the following three relations.
(Even though we continue to focus on academic planning, our model
is generic and can be used in any recommendation scenario.)

Courses(CourseID, DepID, Title, Description, Units, Url)
Students(SuID, Name, Class, GPA)
Comments(SuID, CourseID, Year, Term, Text, Rating, Date)

Assume that we want to compute course recommendations for a
student with id 444 based on the ratings of similar students. In this
case we assume that two students are similar if their course ratings
are similar. In order to build recommendations, we have a library of
comparison functions (e.g., to compare course ratings, course top-
ics, student names, etc), such as Pearson’s, and Jaccard index, and
for aggregations, such as average and weighted average. For our ex-
ample, we will compute similarity between two students by taking
the inverse Euclidean distance of their course ratings. Furthermore,
we compute the final course ratings by taking the weighted average

Figure 2: Sample workflow (left) and generated SQL plan (right).

of course ratings by students who are similar to student 444.
We can express the desired recommendations using the workflow

represented by the expression tree shown in Figure 2 (left), which
is composed of traditional select, project, join operators, and it also
contains some new operators that we describe below.

Ideally, we would like to represent our application entities with
a single relation. For instance, a tuple in such a relation could con-
tain base information on a student (e.g., name), plus the courses a
student has taken. For this purpose, we use an extend operator (ε)
that generates a virtual 2-level nested relation. This operator allows
“extending” each tuple from one relation with the set of joining tu-
ples from a different relation. In our example workflow, students
are extended with their course ratings, so that the set of ratings for
each student can be “viewed” as another attribute of the student by
subsequent operators in the workflow irrespective of the database
schema. Hence, it would be just as easy to compare students based
on their name (a normal attribute) or based on their ratings (an ex-
tended attribute). In a sense, extended relations can be thought of
as “views” that group together information related to an individual
entity and represent it as a single tuple.

We observe that recommendations are based on comparisons (e.g.,
courses are rated against student ratings, students are compared to
a student based on their ratings in order to find similar students, and
so forth). For this purpose, we use the recommend operator (.cf),
which rates the tuples of a set by comparing them to the tuples of
another set using a comparison function cf . Our example workflow
has two recommend operators. The lower one finds similar students
to the student with id 444 using the inverse Euclidean distance of
their ratings. The upper one finds courses recommended by these
students taking a weighted average of their ratings.

In addition, we may want to combine recommendations gener-
ated through two different processing paths into one. For exam-
ple, we may want to combine the course recommendations gener-
ated using our example workflow with courses that are required for
graduating, and provide one recommendation. For this purpose, we
use the blend operator (βM). Different blending methods are part
of the system library.

We have built a FlexRecs engine in Java that compiles and ex-
ecutes workflows on top of the CourseRank MySQL database. To
illustrate, Figure 2 (right) shows the compiled plan (Queries Q1,
Q2, Q3) for our sample workflow. Notice how the early queries
produce in-memory temporary results for the latter queries. Also
note how the workflow is now executable by standard SQL queries.
Handling the full suite of FlexRecs operators is more challenging
than what this simple example illustrates.

In summary, FlexRecs is a way to express recommendation strate-
gies more compactly and clearly than using, say SQL or Java. FlexRecs
makes it possible to offer users (in any social site) a variety of rec-
ommendation strategies, that can be easily tailored to their inter-

ests. In CourseRank we have been able to quickly modify existing
workflows to experiment with a variety of recommendation strate-
gies. There is, of course, still much remaining work, for instance:
• Optimization. Implementing the new operators inside the database

engine will enable the implementation of special workflow opti-
mization schemes. For example, we may be able to push down
selections and change the order of recommendation operators
or dynamically define what comparisons should be performed
in order to achieve a good trade-off between recommendation
efficiency and effectiveness.
• User Interface. Developing appropriate user interfaces that will

allow users to specify the kind of recommendations they want
is also very challenging. We plan to develop and evaluate dif-
ferent interfaces for students to select workflows and provide
parameters. Such an interface will allow users to specify their
target (e.g., courses, instructors, majors, quarters), filtering con-
ditions (e.g., biology courses, engineering majors), and the ba-
sis for the recommendation (students with similar grades, with
similar tastes, and so forth).
• Other Applications and Non-Relational Data. We will explore

how FlexRecs can be extended to support non-relational data
(e.g., XML, Jason) and other recommendation applications.

3.2 Course Requirements
In order to graduate students must satisfy a set of requirements.

For example, a Computer Science (CS) major at Stanford must sat-
isfy a set of sub-requirements, one of which is the math requirement
(simplified):
• The student must complete Math 41 and 43, or as an alternative

Math 19, 20, 21.
• The student must complete either CS 103X or the pair CS 103A,

103B.
• The student must complete two electives out of the set Math 51,

103, 108, ... CS 156, 157, Completion of Math 52 and Math
53 will together count as one Math elective. Restrictions: Math
51 and 103, or Math 51 and CME 100, or ... may not be used
in combination to satisfy the Math electives requirement.
• The total units for Math courses should be 23 or greater.

A system like CourseRank needs to understand such relation-
ships in order to (a) help students manage their courses (e.g., am
I done with the foreign-language requirement?), and (b) improve
recommendations (e.g., course x is highly recommended for you
because it helps you complete your major requirements faster).

Achieving this functionality involves at least three challenges:
(a) we need a language for describing the requirements commonly
seen at universities; (b) we need algorithms for efficiently checking
if requirements have been satisfied (and for explaining what parts

have not been satisfied); and (c) ways to translate our knowledge
of what courses help a student complete requirements into recom-
mendations for the student.

University requirements are quite diverse, so they represent the
ideal testing ground to understand recommendations in the face of
complex constraints. Simply capturing the requirements in a suc-
cinct and usable form is one of the challenges. (Several commer-
cial products provide ways of capturing academic requirements, but
their models are so complex that they are not widely used.) Fur-
thermore, it turns out that efficiently checking satisfaction is not
trivial. One complexity is that a course a may appear in multiple
sub-requirements, and it can only be used to satisfy one of the sub-
requirements (see example below). Furthermore, there are often
exceptions to rules, units that taken courses must add up to, pre-
requisites for courses, and so on.

In general, we have shown that checking such complex con-
straints is NP-hard [15]. However, we have identified a sub-class of
requirements that in practice is at the core of most actual require-
ments and that can be checked efficiently. We next illustrate this
class and one efficient checking algorithm that can form the basis
of a more general scheme.

In the sub-class, requirements are a conjunction of sub-requirements,
where each sub-requirement Ri is of the form take ki from
Si. Here Si is a set of courses, and ki > 0. Note that Si ∩ Sj need
not be empty, i.e., there could be courses that are common to the
two sub-requirements as well, e.g., the database systems principles
course could be both in the theory and systems sub-requirements.
However, a taken course can be counted towards only one sub-
requirement.

To illustrate requirements and our algorithm, say students must
satisfy these three sub-requirements:
• R1: take 1 from {a, p}
• R2: take 2 from {p, d, i}
• R3: take 1 from {i, o}.

A student who has taken courses {a, p, i, o} has satisfied the re-
quirement. Another student, say Bob, who has only taken {p, d, o}
has not satisfied the requirement.

Our checking (and recommendations) algorithm is based on build-
ing a flow graph, as illustrated in Figure 3(left). The courses are
divided into two groups representing the courses taken by Bob (left
top oval), and the not-taken courses (left bottom oval). Each course
is connected to the sub-requirements it helps satisfy. Each link has
two numbers associated with it. The first is a maximum capacity.
The capacity is 1 for all links except those connecting to the target
t, in which case the capacity is the “take k” value associated with
the sub-requirement. The second number is a cost (in square brack-
ets), which is used only for links from the source s to a not-taken
course. For now, assume these costs are 1.

It turns out that if we run a min-cost max-flow algorithm on this
graph we can not only check if Bob has satisfied the requirements,
but we can also obtain the smallest set of not-taken courses that
are needed. In particular, if there is a feasible flow of magnitude∑

j kj , then there is an assignment of courses to sub-requirements
such that each sub-requirement is satisfied. (The converse is also
true.) If no not-taken courses are used (i.e., have a non-zero flow
in the solution), then Bob has satisfied the requirements. If not,
then the used not-taken courses represent the smallest set of courses
needed, i.e., courses we can recommend to Bob. In this example,
Bob has only taken 3 courses, so some of the not-taken courses are
needed. The algorithm uses course i, achieving a max-flow of 4 to
t, at a min-cost of only 1. Thus, Bob is recommended course i. It
can be shown [15] that the complexity of checking/recommending

courses in this fashion isO((cr+m)2
∑

j kj), where c is the num-
ber of courses, m is the number of sub-requirements, and each
course appears in at most r sub-requirements. Thus, this approach
is relatively efficient.

We can take this approach one step further by assigning to not-
taken courses costs that reflect their “inverse desirability”. That is,
using traditional recommendation schemes, we can assign to each
course c a score sc(c) (between 0 and 1) that represents its utility
based on grades of similar students, popularity, ratings, prerequi-
sites being satisfied, etc. Then we can use 1 − sc(c) as the cost of
a course, and the min-cost max-flow algorithm will give us a set of
not-taken courses that (a) contains the smallest feasible number of
courses, and (b) among the smallest feasible sets, has the highest
aggregate score. Thus, we can now recommend courses that both
help meet requirements and are desirable. To complete our exam-
ple, say given Bob’s grades and tastes, course a has a score of 0.9
(very desirable), while i has a score of 0.5 (less desirable). In this
case, the recommendation changes from i to a. (When the costs
were equal, R1 was satisfied by p and R2 by i, d. Now, R1 is
satisfied by a and R2 by p, d.)

Our network flow solution can be extended to handle additional
types of constraints [15]. It can also be used as an initial filter-
ing step when more complex constraints exist. That is, we can
generate solutions that satisfy the constraints we can handle effi-
ciently, and then check if the resulting assignments of courses to
sub-requirements also satisfy the more complex constraints (e.g.,
do the units add up?). If the complex constraints are not met, then
we can do more sophisticated (and expensive) searching (which we
believe will be rare).

Clearly, there is still substantial work to be done:
• Recommendation Evaluation. Using actual requirements from

a variety of programs and the courses taken by students, we will
determine how efficient and useful each checking/recommendation
approach is.
• Prerequisites. We will incorporate prerequisites into our frame-

work. For instance, we may not want to recommend course a if
course b needs to be taken first, unless we can also incorporate
b into our recommendation.
• Other domains. We will apply/extend our requirement model

and algorithms to other settings. For example, say a banker
wants to recommend an investment portfolio to a customer,
with constraints on the type of investments and amounts. What
constraints appear here (perhaps similar to course constraints)?
How can we make recommendations with such constraints?

3.3 Course Cloud
In order to facilitate course planning, CourseRank offers two tra-

ditional interfaces: one for browsing courses based on department
and a keyword-based search interface. Keywords are searched in
the title and the description of courses.

When browsing courses based on department, students have to
sift through long lists of courses and read their descriptions in order
to discover courses of interest. Many courses may cover common
topics and different departments may offer courses on similar topics
making locating and sorting out the available options very tedious.
On the other hand, keyword searching offers more flexibility but
users still need to figure out the right search keywords, not always
an easy task. Furthermore, users often want to search beyond the
immediate course description. For example, if a student searches
for “Java”, he may be interested not only in courses that explicitly
mention this word in their title or description, but also in courses
with implicit references to “Java”, such as in their comments.

Figure 3: Example flow graph (left); Example Course Cloud (right).

CourseCloud (presented at EDBT 2009 [9]) is an improved search
service, especially targeted at the discovery of unexpected but use-
ful courses or other resources (as opposed to searching for a specific
course with known characteristics). CourseCloud uses three main
ideas: (a) in addition to search results, the service presents a “tag
cloud” where users can see unexpected terms that may be of inter-
est. In this case, the “tags” are not traditional tags added by users,
but terms from the database that are explicitly or implicitly con-
nected to the search results. (b) CourseCloud searches for terms
(keywords entered by user or tags) in data related to courses (e.g.,
student comments), not just in the course records. (c) CourseCloud
uses the tags for navigation and search refinement. Our initial expe-
rience with this prototype shows that for some students it provides
a very useful service.

Figure 3(right) illustrates the CourseCloud interface, after the
student has typed in the keyword “art”. The left display shows
courses related to the search, that have “art” in their description or
in “nearby” records (e.g., in comments). On the left is the tag cloud,
providing many diverse concepts related to “art” that are found in
the matching courses, such as “performance”, “art production”, and
“Renaissance”. For example, the term “performance” is found in
many user comments that refer to “art” courses with live perfor-
mances. The data cloud conveniently categorizes courses in a di-
gestible way under different concepts. Thus the student can find
out that there are courses offered not only by the ART HISTORY
program (identified by the course code in the results) but also from
other programs that address other aspects, such as the DRAMA or
HUMANITIES programs.

When the student clicks on a tag, say “architecture”, the system
adds the term to the search and displays new results and a new
cloud, allowing the student to drill-down. Some of the new tags,
like "Byzantine art” or “religious art” may be unexpected to the
student, allowing the discovery of courses the student might not
have thought of.

Even though tag clouds are popular on some web sites, there has
been little research on them, and to our knowledge, no work on us-
ing them to explore non-tagged content. There are many important
questions to investigate related to this type of service:
• Tag selection. In [9] we explore some initial techniques that

show promise in identifying the terms users find most useful.
There are many other options that need to be evaluated in terms
of coverage, diversity, overlap, and other aspects.
• Personalization. Displaying the most popular tags is not hard,

but displaying tags that are “personalized” to a user is much
more challenging. We will study the performance of various

tag selection schemes that adapt to the needs and preferences
of a particular user.

4. SOCIAL IMPACT
In a social networking site, users interact not just with the com-

puter, but with each other. CourseRank provides a living laboratory
for studying or revisiting human interactions in the specific context
of an electronic academic community.

We briefly summarize two results we have obtained using Course-
Rank. Details on how these two results were obtained, plus addi-
tional results can be found in [8], published in ICWSM 2009.
Are users of social sites truthful? Users at social sites provide a
lot of information about themselves, e.g., their gender, age, inter-
ests, and so on. How reliable is all this information? There is
seldom a way to verify the authenticity of user provided data, and
anecdotally we know the some users lie about their age or gen-
der. However, CourseRank gives an opportunity to verify some of
the information users provide. For example, Figure 4(left) shows
two grade distributions for students in the Engineering School at
Stanford. The top one is the official distribution, provided to us
by the registrar. It shows how many students received a particu-
lar grade in a period. The bottom distribution uses self-reported
grades, which the students enter into CourseRank as they plan their
academic program. We have fewer self-reported grades, but overall
the distributions follow very similar patterns. This result suggests
that on aggregate users are giving us very accurate grade informa-
tion. Of course, users have an incentive to give good data, since
the data helps them plan their program. Additional experiments are
needed to understand if there is a grade bias in some circumstances
(e.g., in popular or large courses) or for other type of information.
Are raters objective? Many universities use course evaluations to
evaluate and promote professors, and university administrators fre-
quently argue that such evaluations are unbiased. That is, a profes-
sor cannot improve his ratings by giving out higher grades. How-
ever, Figure 4(right) shows a clear correlation between the grade
a student receives and the rating he gives to the course. For each
possible grade (horizontal axis), the vertical axis shows the average
course rating given by students that earned that grade. (User ratings
range from the lowest rating of 1 to the highest of 5.) In this case
the grades are self reported, as discussed above. Of course, this
result does not prove that instructors can improve their ratings by
giving out higher grades, it only shows a correlation. But we plan
to shed more light on this issue by examining the written comments
left with the course evaluations, and by comparing the ratings and
grades of a student in different courses.

Figure 4: Sample results: Truthfulness (left); Objectiveness (right).

There are several interesting questions to study, such as:
• Community effect. What role does community size and corpus

size play in user behavior? In CourseRank we have a variety
of communities with varying characteristics (e.g., departments
with few or many students, departments that offer many or few
courses). Are students in smaller communities more or less
active? Do they behave differently?
• Incentives. How can we incentivize students to evaluate more

courses, or to give comments that are more constructive? In
the early stages of CourseRank, we raffled an iPod to get users
to try the site. Can similar techniques be used? What is their
impact?

5. CONCLUSIONS AND FUTURE WORK
Our goal is to continue to extend CourseRank so it becomes a

comprehensive resource for all aspects of academic life, providing
new services for students and faculty to plan, discuss and evalu-
ate courses, textbooks, departments, academic programs, campus
events, and so on. In addition, there are many interesting ques-
tions that can be addressed, regarding how students use the site,
the veracity of user provided data, the usefulness of our course rec-
ommendations, and so on. We will continue to use CourseRank
as a live testbed for fundamental research into social systems, de-
veloping and evaluating the algorithms and services that drive such
systems. At the same time, CourseRank has been spun out of our
lab as a company, and the system is being deployed at other univer-
sities.

One of the strengths of our project is that we have a concrete
application (student academic planning) with many actual users as
well as rich and interesting data. In spite of our focus on this ap-
plication, we believe that much of our work will be applicable to
other applications, and indeed, a concurrent goal of our project is
to explore other domains and applications. For instance, several
companies have expressed interest in using CourseRank as a start-
ing point for a “corporate social site” where employees discover
resources and plan projects. Many of the services we will explore
(e.g., recommendations, questions/answer) would be applicable in
such a system.

6. REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Toward the next generation

of recommender systems: A survey of the state-of-the-art
and possible extensions. IEEE Transactions on Knowledge
and Data Engineering, 17(6):734–749, 2005.

[2] C. Brooks and N. Montanez. Improved annotation of the
blogosphere via autotagging and hierarchical clustering. In
Proceedings of the 15th International Conference on World
Wide Web, 2006.

[3] Del.icio.us: url: http://del.icio.us/.
[4] Flickr: url: http://www.flickr.com/.

[5] S. Golder and B. A. Huberman. Usage patterns of
collaborative tagging systems. Journal of Information
Science, 32(2):198–208, 2006.

[6] V. Gomez, A. Kaltenbrunner, and V. Lopez. Statistical
analysis of the social network and discussion threads in
slashdot. In Proceedings of the 17th International
Conference on World Wide Web, 2008.

[7] Georgia Koutrika, Benjamin Bercovitz, and Hector
Garcia-Molina. Flexrecs: Expressing and combining flexible
recommendations. In SIGMOD Conference, 2009.

[8] Georgia Koutrika, Benjamin Bercovitz, Filip Kaliszan,
Henry Liou, and Hector Garcia-Molina. Courserank: A
closed-community social system through the magnifying
glass. In Third International Conference on Weblogs and
Social Media (ICWSM), 2009.

[9] Georgia Koutrika, Z. Mohammadi Zadeh, and Hector
Garcia-Molina. Data clouds: Summarizing keyword search
results over structured data. In 12th International Conference
on Extending Database Technology (EDBT), 2009.

[10] X. Li, L. Guo, and Y. Zhao. Tag-based social interest
discovery. In Proceedings of the 17th International
Conference on World Wide Web, 2008.

[11] G. Linden, B. Smith, and J. York. Amazon.com
recommendations: Item-to-item collaborative filtering. IEEE
Internet Computing, Jan/Feb 2003.

[12] B.N. Miller, I. Albert, S.K. Lam, J.A. Konstan, and J. Riedl.
Movielens unplugged: Experiences with an occasionally
connected recommender system. In IntŠl Conf. Intelligent
User Interfaces, 2003.

[13] G. Mishne. Autotag: collaborative approach to automated tag
assignment for weblog posts. In Proceedings of the 15th
International Conference on World Wide Web, 2006.

[14] T. Ohkura, Y. Kiyota, and H. Nakagawa. Browsing system
for weblog articles based on automated folksonomy. In
Proceedings of the WWW 2006 Workshop on the Weblogging
Ecosystem: Aggregation, Analysis and Dynamics, 2006.

[15] Aditya Parameswaran, Petros Venetis, and Hector
Garcia-Molina. Recommendation systems with complex
constraints: A courserank perspective. In Stanford InfoLab
Technical Report, available at
http://ilpubs.stanford.edu:8090/909/, 2009.

[16] P. Schmitz. Inducing ontology from flickr tags. In Collab.
Web Tagging Workshop in conj. with WWW2006.

[17] technorati: url: http://www.technorati.com/.
[18] Z. Xu, Y. Fu, J. Mao, and D. Su. Towards the semantic web:

Collaborative tag suggestions. In Collab. Web Tagging
Workshop in conj. with WWW2006.

[19] J. Zhang, M.S. Ackerman, and L. Adamic. Expertise
networks in online communities: Structure and algorithms.
In WWW, 2007.

