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Software Architecture
Pattern Analysis
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component

an encapsulated unit of software
consisting of one or more
modules that has a specific role
and responsibility in the system
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how are components classified?
how do components interact?
does the architecture scale?

how responsive is the architecture?

is there a logical flow to the components?
what are the deployment characteristics?

how does the architecture respond to change?
is the architecture extensible and if so how?

how maintainable is the architecture?



architecture patterns help define the basic
characteristics and behavior of the
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layered architecture
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layered architecture
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layered architecture
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layered architecture
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layered architecture
hybrids and variants
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layered architecture

hybrids and variants
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layered architecture
hybrids and variants
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layered architecture
hybrids and variants
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layered architecture

considerations

good general purpose architecture and a good
starting point for most systems

watch out for the architecture sinkhole
anti-pattern

tends to lend itself towards monolithic
applications



layered architecture
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event-driven architecture
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event-driven architecture
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event-driven architecture
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event-driven architecture

you move...
process engine
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event-driven architecture
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event-driven architecture
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event-driven architecture
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event-driven architecture

considerations

contract creation, maintenance,
and versioning can be difficult

must address remote process
availability or unresponsiveness

Reconnecting

= reconnection logic on server restart
.| or failure must be addressed
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microkernel architecture

(a.k.a. plug-in architecture pattern)

plug-in
component

plug-in
component

plug-in
component

plug-in
component

plug-in
component

plug-in
component




microkernel architecture

architectural components

plug-in
module

minimal functionality to run system
general business rules and logic

no custom processing

standalone independent module

specific additional rules or logic
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microkernel architecture
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microkernel architecture
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microkernel architecture

registry

registry
1: <location>, <contract>
2: <location>, <contract>
plug-in 3: <Iocat!on>, <contract> plug-in
4: <location>, <contract>
component 1 component 3

core system
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component 2 component 4




microkernel architecture
registry

static {
pluginRegistry.put(NAMING, "ValidatorNamingPlugin");
pluginRegistry.put(SYSOUT, "ValidatorSysoutPlugin");
pluginRegistry.put(AUDIT, "ValidatorAuditPlugin");
pluginRegistry.put(TODO, "ValidatorTodoPlugin");
pluginRegistry.put(COMMENTS, "ValidatorCommentsPlugin");
pluginRegistry.put(SVC_CALLS, null);



microkernel architecture

registry

private String executeChecks(String moduleName) throws Exception {
for (Map.Entry<String, String> entry : pluginRegistry.entrySet()) {
1f (entry.getValue() !'= null) {
Class<?> ¢ = (Class.forName(PLUGIN_PKG + entry.getValue());
Constructor<?> con = c.getConstructor();
ValidatorPlugin plugin = (ValidatorPlugin)con.newInstance();
data = plugin.execute(data);



microkernel architecture

plug-in contracts

plug-in plug-in
component 1 component 3

core system

plug-in plug-in
component 2 component 4




microkernel architecture

plug-in contracts

public class ValidatorData {

public String moduleName; //1input
public List<String> moduleContents; //input
public String validationResults; //output

}

public interface ValidatorPlugin {
public ValidatorData execute(ValidatorData data);

}



microkernel architecture

considerations

can be embedded or used as part of
another pattern

great support for evolutionary design
and incremental development

great pattern for product-based
applications




microkernel architecture
analysis
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space-based architecture

let's talk about scalability for a moment...
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space-based architecture

processing unit processing unit processing unit

virtualized middleware

messaging

processing = deployment
grid grid manager

data grid




space-based architecture

architectural components

processing unit @ processing unit processing unit
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space-based architecture

processing unit

processing unit

module module module
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space-based architecture

middleware
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space-based architecture
middleware

-~ manages input request and session
grid

data grid

processing
grid

virtualized middleware

deployment

Mmanager




space-based architecture

middleware

manages data replication between
processing units
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space-based architecture
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space-based architecture

middleware

manages dynamic processing unit
deployment
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space-based architecture

product implementations

javaspaces

gigaspaces

ibm object grid
gemfire
ncache

oracle coherence



space-based architecture
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good for applications that have -

variable load or inconsistent peak

virtualized middleware

times

not a good fit for traditional large-scale relational
database systems

relatively complex and expensive pattern to implement
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