‘Software Design and Development Conference 2015

Software Architecture Patterns

Mark Richards

Hands-on Software Architect

Author of Enterprise Messaging Video Series (O'Reilly)

Author of Java Message Service 2nd Edition (O'Reilly)

Co-author of Software Architecture Fundamentals Video Series (O'Reilly)

{SDD)} 2%5.... oo

Barbican Centre, London, 11-15 May 2015

Software Architecture Fundamentals Video Series
Enterprise Messaging Video Series

OREILLY OREILLY OREILLY OREILLY"
SOFTWARE ARCHITECTURE SERIES SOFTWARE ARCHITECTURE SERIES SOFTWARE ARCHITECTURE SERIES SOFTWARE ARCHITECTURE SERIES
Software Software Software Software
Architecture Architecture Architecture Architecture
Fundamentals: Fundamentals: Fundamentals Fundamentals
Part1: Part 2: Part 3 Part 4
Understanding Takinga Sl A
the Basics Deeper Dive Productivity, & Communications &Buildinga Tech Radar
Neal Ford, Mark Richards Neal Ford, Mark Richards Neal Ford, Mark Richards Neal Ford, Mark Richards
VIDEO VIDEO VIDEO VIDEO
OREILLY O'REILLY"
SOFTWARE ARCHITECTURE SERIES SOFTWARE ARCHITECTURE SERIES

Enterprise
Messaging

JMS11 & JMS2.0
Fundamentals

Enterprise
Messaging
with JMS

Advanced Topics
& Spring JMS

Mark Richards — B8 NG BT
Mark Richards

VIDEO VIDEO

agenda

introduction

layered architecture pattern
event-driven architecture pattern
microkernel architecture pattern

space-based architecture pattern

Software Architecture
Pattern Analysis

module

module module

module

ey, §

module module module

module

module

module

module

module

module ’ | :
S\ AN
medule - r "module
- module \ module .'
module ‘4 »
‘." module

m pwrs® module
module

module

module
module module

module module
module

module
module

module module

component

module module

module module

module module

component

an encapsulated unit of software
consisting of one or more
modules that has a specific role
and responsibility in the system

component
component

component

component

component

component

component

component

how are components classified?
how do components interact?
does the architecture scale?

how responsive is the architecture?

is there a logical flow to the components?
what are the deployment characteristics?

how does the architecture respond to change?
is the architecture extensible and if so how?

how maintainable is the architecture?

architecture patterns help define the basic
characteristics and behavior of the

plug-in plug-in
module module

plug-in plug-in
module module

presentation layer component | component

business layer component component | component

persistence layer component - component

database layer

lightweight facade or proxy

service component service component service component

application

[e

business services

message bus
process choreographer

service orchestrator

enterprise services

application services s infrastructure services ([

pipe
producer transformer transformer

tester

processing unit processing unit processing unit

virtualized middleware

messaging
grid

event emmmd

process S

process

process A o

data grid

processing | deployment
grid manager

—
) —

event

topic \

—

— /
event s process
topic

r— / process
[=——4]

event —

topic process

layered architecture

presentation Iayer component component component

bUSineSS |aye|‘ component component component

pel’SiStence |ayer component component component

database layer

layered architecture

request
(R

presentation Iayer component component component CLOSED

business |ayer cc mponent component component CLOSED

persistence |ayer component component component CLOSED

database layer CLOSED

layered architecture

presentation Iayer component component component

bUSineSS |ayer component component component

e

pel’SiStence |ayer component component component

database layer

separation of concerns

layered architecture

presentation |ayer component component component

bUSineSS |ayer component component component

pel’SiStence |ayer component component component

database layer

layers of isolation

layered architecture
hybrids and variants

presentation Iayer component component component

bUSineSS |aye|‘ component component component
services Iayer component component component

database layer

layered architecture

hybrids and variants

presentation layer
business layer

services layer

persistence layel

database layer

component

component

component

component

component

component

component

component

component

component

component

component

CLOSED

CLOSED

CLOSED

CLOSED

layered architecture
hybrids and variants

presentation Iayer‘ component component component

bUSineSS |ayer component component component

+ +
C (=
() O
C C
(o) o
o o
£ S
(o) o
O (8]

pel’SiStence |ayer component component component

database layer

layered architecture
hybrids and variants

presentation Iayer component component component

A
E
)
=

bUSineSS |aye|‘ component component component

component

4+
C
()
C
g

.
£
o
O

pel"SiStence |aye|“ component component component

database layer

layered architecture

considerations

good general purpose architecture and a good
starting point for most systems

watch out for the architecture sinkhole
anti-pattern

tends to lend itself towards monolithic
applications

layered architecture

overall agility ’I

deployment ,I
testability |‘==

performance ,l
scalability |
development |‘§
complexity Y 5

loose coupling 8t

analysis

presentation layer

business layer

persistence layer

database layer

event-driven architecture

—
A —> —> event —) (= process
event processor event
queue topic \
N
— /

process

—

=== [— === «—— @@

event event event event > process
topic

topic topic topic
/ 1
— / process
&
B
topic process

mediator topology broker topology

event-driven architecture

mediator topology

—

— event
event .
| event g mediator
queue
L / S
| |
event event
channel channel
event event event event event

processor processor

processor processor processor

module module module module module module module module module module

module module module module

module module module module module module

event-driven architecture

mediator topology

event
channel

O\

event event
processor processor

module module module

module module module

processor

—>
SR

event
channel

[\

event event
processor processor

module module module

module module module

event-driven architecture

you move...
process engine

change update adjust notify
change s update adjust notify
address claims claims insured

customer quote claims adjustment J notification
process process process process process

event-driven architecture

broker topology

| event
event) [) pFOCGSSOI’
event m m
channel :
event
processor —
- O €
event
channel

event-driven architecture

broker topology

- event
— processor
event module el
channel
module module
event event
processor - processor
| S
module module event module module
. channel T
event event
processor == — processor
module module ﬁ event module module
modde | mode 'channel T G

S J

event-driven architecture

you
moved!

e CUstomer process

change
you move... address

— change

address

quote process

claims process

> upcolate
I l claims

recalc update

claims

quote

notification process adjustment process

event-driven architecture

considerations

contract creation, maintenance,
and versioning can be difficult

must address remote process
availability or unresponsiveness

Reconnecting

= reconnection logic on server restart
.| or failure must be addressed

event-driven architecture
analysis

overall agility |‘=e

deployment |‘=a
testability "

performance yfz

scalability |‘=e
development "

complexity ,l
loose coupling |‘=a

microkernel architecture

(a.k.a. plug-in architecture pattern)

plug-in
component

plug-in
component

plug-in
component

plug-in
component

plug-in
component

plug-in
component

microkernel architecture

architectural components

plug-in
module

minimal functionality to run system
general business rules and logic

no custom processing

standalone independent module

specific additional rules or logic

microkernel architecture

microkernel architecture

source validation tool

read source files

check header check sql
standards t g) j.- calls
J Jg\a \
check .z . check audit
interceptors | writes
check A, check other
contract t A 4 2.' stuff
standards | validation report §)

microkernel architecture

claims processing

NH
.\ module

CA
module

TX
module

" module module

|

microkernel architecture

registry

registry
1: <location>, <contract>
2: <location>, <contract>
plug-in 3: <Iocat!on>, <contract> plug-in
4: <location>, <contract>
component 1 component 3

core system

plug-in plug-in
component 2 component 4

microkernel architecture
registry

static {
pluginRegistry.put(NAMING, "ValidatorNamingPlugin");
pluginRegistry.put(SYSOUT, "ValidatorSysoutPlugin");
pluginRegistry.put(AUDIT, "ValidatorAuditPlugin");
pluginRegistry.put(TODO, "ValidatorTodoPlugin");
pluginRegistry.put(COMMENTS, "ValidatorCommentsPlugin");
pluginRegistry.put(SVC_CALLS, null);

microkernel architecture

registry

private String executeChecks(String moduleName) throws Exception {
for (Map.Entry<String, String> entry : pluginRegistry.entrySet()) {
1f (entry.getValue() !'= null) {
Class<?> ¢ = (Class.forName(PLUGIN_PKG + entry.getValue());
Constructor<?> con = c.getConstructor();
ValidatorPlugin plugin = (ValidatorPlugin)con.newInstance();
data = plugin.execute(data);

microkernel architecture

plug-in contracts

plug-in plug-in
component 1 component 3

core system

plug-in plug-in
component 2 component 4

microkernel architecture

plug-in contracts

public class ValidatorData {

public String moduleName; //1input
public List<String> moduleContents; //input
public String validationResults; //output

}

public interface ValidatorPlugin {
public ValidatorData execute(ValidatorData data);

}

microkernel architecture

considerations

can be embedded or used as part of
another pattern

great support for evolutionary design
and incremental development

great pattern for product-based
applications

microkernel architecture
analysis

overall agility |‘=s

deployment ":2 plug-in plug-in
i module module
testability |‘=a

performance |‘§=
scalability ,'
development |‘=3
complexity &
loose coupling |‘=s

space-based architecture

let's talk about scalability for a moment...

web server

—
—

web server md 2pPp server

md web carver

e
-

md web server

web server md 3PP server

—> apn server

4 2pp server

md 3PP server

>
—

web server

space-based architecture

processing unit processing unit processing unit

virtualized middleware

messaging

processing = deployment
grid grid manager

data grid

space-based architecture

architectural components

processing unit @ processing unit processing unit

=

virtualized middieware

data grid

‘ messaging
grid grid manager

processing = deployment ’

space-based architecture

processing unit

processing unit

module module module

EEEEEEEEEN
in memory data

data replication engine

space-based architecture

middleware

messaging
grid

data grid

processing
elgle

deployment
manager

space-based architecture
middleware

-~ manages input request and session
grid

data grid

processing
grid

virtualized middleware

deployment

Mmanager

space-based architecture

middleware

manages data replication between
processing units

messaging
grid

data grid

processing
grid

virtualized middleware

data grid

deployment

Mmanager

space-based architecture

middleware

manages distributed

mess:?\dging request processing
gri

data grid

processing
grid

deployment
manager

space-based architecture

middleware

manages dynamic processing unit
deployment

processing unit processing unit

messaging
e]gle

data grid

processing
e]gle

virtualized middleware

deployment
manager

deployment
manager

space-based architecture

product implementations

javaspaces

gigaspaces

ibm object grid
gemfire
ncache

oracle coherence

space-based architecture

it 1 S a | | a bo ut Va ria b | e SCa | a bi | ity. .. processing unit processing uni processing unit

good for applications that have -

variable load or inconsistent peak

virtualized middleware

times

not a good fit for traditional large-scale relational
database systems

relatively complex and expensive pattern to implement

space-based architecture
analysis

overall agility |‘=a
deployment |‘___.=.

testability ’l
performance &
scalability =

development =
complexity &

Software Architecture
Patterns

Mark Richards

Independent Consultant
Hands-on Software Architect
Published Author / Conference Speaker

http://www.wmrichards.com
http://www.linkedin.com/pub/mark-richards/0/121/5b9

