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Abstract—Software Bug Prediction (SBP) is an important 

issue in software development and maintenance processes, which 

concerns with the overall of software successes. This is because 

predicting the software faults in earlier phase improves the 

software quality, reliability, efficiency and reduces the software 

cost. However, developing robust bug prediction model is a 

challenging task and many techniques have been proposed in the 

literature. This paper presents a software bug prediction model 

based on machine learning (ML) algorithms. Three supervised 

ML algorithms have been used to predict future software faults 

based on historical data. These classifiers are Naïve Bayes (NB), 

Decision Tree (DT) and Artificial Neural Networks (ANNs). The 

evaluation process showed that ML algorithms can be used 

effectively with high accuracy rate. Furthermore, a comparison 

measure is applied to compare the proposed prediction model 

with other approaches. The collected results showed that the ML 

approach has a better performance.  
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I. INTRODUCTION 

The existence of software bugs affects dramatically on 
software reliability, quality and maintenance cost. Achieving 
bug-free software also is hard work, even the software applied 
carefully because most time there is hidden bugs. In addition 
to, developing software bug prediction model which could 
predict the faulty modules in the early phase is a real challenge 
in software engineering. 

Software bug prediction is an essential activity in software 
development. This is because predicting the buggy modules 
prior to software deployment achieves the user satisfaction, 
improves the overall software performance. Moreover, 
predicting the software bug early improves software adaptation 
to different environments and increases the resource utilization. 

Various techniques have been proposed to tackle Software 
Bug Prediction (SBP) problem. The most known techniques 
are Machine Learning (ML) techniques. The ML techniques 
are used extensively in SBP to predict the buggy modules 
based on historical fault data, essential metrics and different 
software computing techniques. 

In this paper, three supervised ML learning classifiers are 
used to evaluate the ML capabilities in SBP. The study 
discussed Naïve Bayes (NB) classifier, Decision Tree (DT) 
classifier and Artificial Neural Networks (ANNs) classifier. 
The discussed ML classifiers are applied to three different 
datasets obtained from [1] and [2] works. 

In addition to, the paper compares between NB classifier, 
DT classifier and ANNs classifier. The comparison based on 
different evaluation measures such as accuracy, precision, 
recall, F-measures and the ROC curves of the classifiers.     

The rest of this paper is organized as follow. Section 2 
presents a discussion of the related work in SBP. An overview 
of the selected ML algorithms is presented in Section 3. 
Section 4 describes the datasets and the evaluation 
methodology. Experimental results are shown in Section 5 
followed by conclusions and future works. 

II. RELATED WORK 

There are many studies about software bug prediction using 
machine learning techniques. For example, the study in [2] 
proposed a linear Auto-Regression (AR) approach to predict 
the faulty modules. The study predicts the software future 
faults depending on the historical data of the software 
accumulated faults. The study also evaluated and compared the 
AR model and with the Known power model (POWM) used 
Root Mean Square Error (RMSE) measure. In addition to, the 
study used three datasets for evaluation and the results were 
promising. 

The studies in [3], [4] analyzed the applicability of various 
ML methods for fault prediction. Sharma and Chandra [3] 
added to their study the most important previous researches 
about each ML techniques and the current trends in software 
bug prediction using machine learning. This study can be used 
as ground or step to prepare for future work in software bug 
prediction. 

R. Malhotra in [5] presented a good systematic review for 
software bug prediction techniques, which using Machine 
Learning (ML). The paper included a review of all the studies 
between the period of 1991 and 2013, analyzed the ML 
techniques for software bug prediction models, and assessed 
their performance, compared between ML and statistic 
techniques, compared between different ML techniques and 
summarized the strength and the weakness of the ML 
techniques.  

In [6], the paper provided a benchmark to allow for 
common and useful comparison between different bug 
prediction approaches. The study presented a comprehensive 
comparison between a well-known bug prediction approaches, 
also introduced new approach and evaluated its performance 
by building a good comparison with other approaches using the 
presented benchmark. 
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D. L. Gupta and K. Saxena [7] developed a model for 
object-oriented Software Bug Prediction System (SBPS). The 
study combined similar types of defect datasets which are 
available at Promise Software Engineering Repository. The 
study evaluated the proposed model by using the performance 
measure (accuracy). Finally, the study results showed that the 
average proposed model accuracy is 76.27%. 

Rosli et al. [8] presented an application using the genetic 
algorithm for fault proneness prediction. The application 
obtains its values, such as the object-oriented metrics and count 
metrics values from an open source software project. The 
genetic algorithm uses the application's values as inputs to 
generate rules which employed to categorize the software 
modules to defective and non-defective modules. Finally, 
visualize the outputs using genetic algorithm applet. 

The study in [9] assessed various object-oriented metrics by 
used machine learning techniques (decision tree and neural 
networks) and statistical techniques (logical and linear 
regression). The results of the study showed that the Coupling 
Between Object (CBO) metric is the best metric to predict the 
bugs in the class and the Line Of Code (LOC) is fairly well, 
but the Depth of Inheritance Tree (DIT) and Number Of 
Children (NOC) are untrusted metrics. 

Singh and Chug [10] discussed five popular ML algorithms 
used for software defect prediction i.e. Artificial Neural 
Networks (ANNs), Particle Swarm Optimization (PSO), 
Decision Tree (DT), Naïve Bayes (NB) and Linear Classifiers 
(LC). The study presented important results including that  the 
ANN has lowest error rate followed by DT, but the linear 
classifier is better than other algorithms in term of defect 
prediction accuracy, the most popular methods used in 
software defect prediction are: DT, BL, ANN, SVM, RBL and 
EA, and the common metrics used in software defect 
prediction studies are: Line Of Code (LOC) metrics, object 
oriented metrics such as cohesion, coupling and inheritance, 
also other metrics called hybrid metrics which used both object 
oriented and procedural metrics, furthermore the results 
showed that most software defect prediction studied used 
NASA dataset and PROMISE dataset. 

Moreover, the studies in [11], [12] discussed various ML 
techniques and provided the ML capabilities in software defect 
prediction. The studies assisted the developer to use useful 
software metrics and suitable data mining technique in order to 
enhance the software quality. The study in [12] determined the 
most effective metrics which are useful in defect prediction 
such as Response for class (ROC), Line of code (LOC) and 
Lack Of Coding Quality (LOCQ). 

Bavisi et al. [13] presented the most popular data mining 
technique (k-Nearest Neighbors, Naïve Bayes, C-4.5 and 
Decision trees). The study analyzed and compared four 
algorithms and discussed the advantages and disadvantages of 
each algorithm. The results of the study showed that there were 
different factors affecting the accuracy of each technique; such 
as the nature of the problem, the used dataset and its 
performance matrix. 

The researches in [14], [15] presented the relationship 
between object-oriented metrics and fault-proneness of a class. 

Singh et al. [14] showed that CBO, WMC, LOC, and RFC are 
effective in predicting defects, while Malhotra and Singh [15] 
showed that the AUC is effective metric and can be used to 
predict the faulty modules in early phases of software 
development and to improve the accuracy of ML techniques. 

This paper discusses three well-known machine learning 
techniques DT, NB and ANNs. The paper also evaluates the 
ML classifiers using various performance measurements (i.e. 
accuracy, precision, recall, F-measure and ROC curve). Three 
public datasets are used to evaluate the three ML classifiers. 

On the other hand, most of the mentioned related works 
discussed more ML techniques and different datasets. Some of 
the previous studies mainly focused on the metrics that make 
the SBP as efficient as possible, while other previous studies 
proposed different methods to predict software bugs instead of 
ML techniques. 

III. USED MACHINE LEARNING ALGORITHMS 

The study aims to analyze and assess three supervised 
Machine Learning algorithms, which are Naïve Bayes (NB), 
Artificial Neural Network (ANN) and Decision Tree (DT). The 
study shows the performance accuracy and capability of the 
ML algorithms in software bug prediction and provides a 
comparative analysis of the selected ML algorithms. 

The supervised machine learning algorithms try to develop 
an inferring function by concluding relationships and 
dependencies between the known inputs and outputs of the 
labeled training data, such that we can predict the output values 
for new input data based on the derived inferring function. 
Following are summarized description of the selected 
supervised ML algorithms: 

 Naïve Bayes (NB): NB is an efficient and simple 
probabilistic classifier based on Bayes theorem with 
independence assumption between the features. NB is 
not single algorithms, but a family of algorithms based 
on common principle, which assumes that the presence 
or absence of a particular feature of the class is not 
related to the presence and absence of any other 
features [16], [17]. 

 Artificial Neural Networks (ANNs): ANNs are networks 
inspired by biological neural networks. Neural networks 
are non-linear classifier which can model complex 
relationships between the inputs and the outputs. A 
neural network consists of a collection of processing 
units called neurons that are work together in parallel to 
produce output [16]. Each connection between neurons 
can transmit a signal to other neurons and each neuron 
calculates its output using the nonlinear function of the 
sum of all neuron’s inputs. 

 Decision Tree (DT): DT is a common learning method 
used in data mining. DT refers to a hierarchal and 
predictive model which uses the item’s observation as 
branches to reach the item’s target value in the leaf. DT 
is a tree with decision nodes, which have more than one 
branch and leaf nodes, which represent the decision. 
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TABLE II. DS1 - THE FIRST SOFTWARE FAULTS DATASET  

Di Fi Ti 

 

Di Fi Ti 

1 2 75 24 2 8 

2 0 31 25 1 15 

3 30 63 26 7 31 

4 13 128 27 0 1 

5 13 122 28 22 57 

6 3 27 29 2 27 

7 17 136 30 5 35 

8 2 49 31 12 26 

9 2 26 32 14 36 

10 20 102 33 5 28 

11 13 53 34 2 22 

12 3 26 35 0 4 

13 3 78 36 7 8 

14 4 48 37 3 5 

15 4 75 38 0 27 

1`6 0 14 39 0 6 

17 0 4 40 0 6 

18 0 14 41 0 4 

19 0 22 42 5 0 

20 0 5 43 2 6 

21 0 9 44 3 5 

22 30 33 45 0 8 

23 15 118 46 0 2 

IV. DATASETS AND EVALUATION METHODOLOGY 

The used datasets in this study are three different datasets, 
namely DS1, DS2 and DS3. All datasets are consisting of two 
measures; the number of faults (Fi) and the number of test 
workers (Ti) for each day (Di) in a part of software projects 
lifetime. The DS1 dataset has 46 measurements that involved 
in the testing process presented in [1]. DS2, also taken from 
[1], which measured a system faults during 109 successive 
days of testing the software system that consists of 200 
modules with each having one kilo line of code of Fortran. 
DS2 has 111 measurements. DS3 is developed in [2], which 
contains real measured data for a test/debug program of a real-
time control application presented in [18]. Tables I to III 
present DS1, DS2 and DS3, respectively. 

The datasets were preprocessed by a proposed clustering 
technique. The proposed clustering technique marks the data 
with class labels. These labels are set to classify the number of 
faults into five different classes; A, B, C, D, and E. Table IV 
shows the value of each class and number of instances that 
belong to it in each dataset. 

In order to evaluate the performance of using ML 
algorithms in software bug prediction, we used a set of well-
known measures [19] based on the generated confusion 
matrixes. The following subsections describe the confusion 
matrix and the used evaluation measures. 

TABLE III. DS2 - THE SECOND SOFTWARE FAULTS DATASET 

Di Fi Ti 

 

Di Fi Ti 

 

Di Fi Ti 

1 5 4 38 15 8 75 0 4 

2 5 4 39 7 8 76 0 4 

3 5 4 40 15 8 77 1 4 

4 5 4 41 21 8 78 2 2 

5 6 4 42 8 8 79 0 2 

6 8 5 43 6 8 80 1 2 

7 2 5 44 20 8 81 0 2 

8 7 5 45 10 8 82 0 2 

9 4 5 46 3 8 83 0 2 

10 2 5 47 3 8 84 0 2 

11 31 5 48 8 4 85 0 2 

12 4 5 49 5 4 86 0 2 

13 24 5 50 1 4 87 2 2 

14 49 5 51 2 4 88 0 2 

15 14 5 52 2 4 89 0 2 

16 12 5 53 2 4 90 0 2 

17 8 5 54 7 4 91 0 2 

18 9 5 55 2 4 92 0 2 

19 4 5 56 0 4 93 0 2 

20 7 5 57 2 4 94 0 2 

21 6 5 58 3 4 95 0 2 

22 9 5 59 2 4 96 1 2 

23 4 5 60 7 4 97 0 2 

24 4 5 61 3 4 98 0 2 

25 2 5 62 0 4 99 0 2 

26 4 5 63 1 4 100 1 2 

27 3 5 64 0 4 101 0 1 

28 9 6 65 1 4 102 0 1 

29 2 6 66 0 4 103 1 1 

30 5 6 67 0 4 104 2 1 

31 4 6 68 1 3 105 0 1 

32 1 6 69 1 3 106 1 2 

33 4 6 70 0 3 107 0 2 

34 3 6 71 0 3 108 0 1 

35 6 6 72 1 3 109 1 1 

36 13 6 73 1 4 110 0 1 

37 19 8 74 0 4 111 1 1 

A. Confusion Matrix 

The confusion matrix is a specific table that is used to 
measure the performance of ML algorithms. Table V shows an 
example of a generic confusion matrix. Each row of the matrix 
represents the instances in an actual class, while each column 
represents the instance in a predicted class or vice versa. 
Confusion matrix summarizes the results of the testing 
algorithm and provides a report of the number of True Positive 
(TP), False Positives (FP), True Negatives (TN), and False 
Negatives (FN). 
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TABLE IV. DS3 - THE THIRD SOFTWARE FAULTS DATASET 

Di Fi Ti 

 

Di Fi Ti 

 

Di Fi Ti 

1 4 1 38 9 2 75 1 2 

2 0 1 39 7 2 76 11 2 

3 7 1 40 12 2 77 1 2 

4 10 1 41 12 2 78 0 2 

5 13 1 42 15 2 79 2 2 

6 8 1 43 14 2 80 2 2 

7 13 1 44 7 2 81 4 2 

8 4 1 45 9 2 82 1 2 

9 7 1 46 11 2 83 0 2 

10 8 1 47 5 2 84 4 2 

11 1 1 48 7 2 85 1 1 

12 6 1 49 7 2 86 1 1 

13 13 1 50 14 2 87 0 1 

14 7 1 51 13 2 88 2 3 

15 9 1 52 14 2 89 0 1 

16 8 2 53 11 2 90 0 2 

17 5 2 54 2 1 91 1 1 

18 10 2 55 4 1 92 1 1 

19 7 2 56 4 2 93 0 1 

20 11 2 57 3 2 94 0 2 

21 5 2 58 6 2 95 0 1 

22 8 2 59 6 2 96 0 1 

23 13 2 60 2 2 97 1 2 

24 9 2 61 0 1 98 0 1 

25 7 2 62 0 1 99 1 1 

26 7 2 63 3 1 100 0 1 

27 5 2 64 0 1 101 0 1 

28 7 2 65 4 1 102 0 2 

29 6 1 66 0 1 103 0 1 

30 6 1 67 1 1 104 2 1 

31 4 1 68 2 1 105 0 1 

32 12 2 69 0 2 106 1 2 

33 6 2 70 1 2 107 0 2 

34 7 2 71 2 2 108 2 2 

35 8 2 72 5 2 109 0 2 

36 11 2 73 3 2 

37 6 2 74 2 2 

TABLE V. NUMBER OF FAULTS CLASSIFICATION 

Faults Class Number of Faults 
Number of Instances 

DS1 DS2 DS3 

A 0-4 30 76 57 

B 5-9 5 23 33 

C 10-14 5 4 18 

D 15-19 2 3 1 

E More than 20 4 5 0 

TABLE VI. THE CONFUSION MATRIX 

 
Predicted 

Actual 

Class X Class Y 

Class X TP FP 

Class Y FN TN 

 

B. Accuracy  

Accuracy (ACC) is the proportion of true results (both TP 
and TN) among the total number of examined instances. The 
best accuracy is 1, whereas the worst accuracy is 0. ACC can 
be computed by using the following formula: 

ACC = (TP + TN) / (TP + TN+ FP + FN)                      (1) 

C. Precision (Positive Predictive Value)  

Precision is calculated as the number of correct positive 
predictions divided by the total number of positive predictions. 
The best precision is 1, whereas the worst is 0 and it can be 
calculated as:  

Precision = TP / ( TP + FP )                          (2)  

D. Recall (True Positive Rate or Sensitivity) 

Recall is calculated as the number of positive predictions 
divided by the total number of positives. The best recall is 1, 
whereas the worst is 0. Generally, Recall is calculated by the 
following formula: 

Recall = TP / ( TP + FN )                         (3)  

E. F-measure 

F-measure is defined as the weighted harmonic mean of 
precision and recall. Usually, it is used to combine the Recall 
and Precision measures in one measure in order to compare 
different ML algorithms with each other. F-measure formula is 
given by:  

F- measure= (2* Recall * Precision)/(Recall + Precision)     (4) 

F. Root-Mean-Square Error (RMSE) 

RMSE is a measure for evaluating the performance of a 
prediction model. The idea herein is to measure the difference 
between the predicted and the actual values. If the actual value 
is X and the predicted value is XP then RMSE is calculated as 
follows: 

     √
 

 
 ∑           

                (5) 

V. EXPERIMENTAL RESULTS 

This study used WEKA 3.6.9, a machine learning tool, to 
evaluate three ML algorithms (NB, DT and ANNs) in software 
bug prediction problem. A cross validation (10 fold) is used for 
each dataset.  

The accuracy of NB, DT and ANNs classifiers for the three 
datasets are shown in Table VI. As shown in Table VI, the 
three ML algorithms achieved a high accuracy rate. The 
average value for the accuracy rate in all datasets for the three 
classifiers is over 93% on average. However, the lowest value 
appears for NB algorithm in the DS1 dataset. We believe this is 
because the dataset is small and NB algorithm needs a bigger 
dataset in order to achieve a higher accuracy value. Therefore, 
NB got a higher accuracy rate in DS2 and DS3 datasets, which 
they are relatively bigger than the DS1 dataset. 

TABLE VII. ACCURACY MEASURE FOR THE THREE ML ALGORITHMS 

OVER DATASETS 

Datasets NB DT ANNs 

DS1 0.898 0.951 0.938 

DS2 0.950 0.972 0.954 

DS3 0.954 0.990 0.963 

Average 0.934 0.971 0.951 
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TABLE VIII.  PRECISION MEASURE FOR THE THREE ML  ALGORITHMS 

OVER DATASETS 

Datasets NB DT ANNs 

DS1 0.956 1 1 

DS2 0.989 0.990 0.981 

DS3 0.990 1 0.990 

Average 0.978 0.996 0.990 

TABLE IX.   RECALL MEASURE FOR THE THREE ML ALGORITHMS OVER 

DATASETS 

Datasets      NB DT ANNs 

DS1 1 1 1 

DS2 0.905 1 0.990 

DS3 0.972 1 0.981 

Average  0.959 1 0.990 

The precision measures for applying NB, DT and ANNs 
classifiers on DS1, DS2 and DS3 datasets are shown in 
Table VII. Results show that three ML algorithms can be used 
for bug prediction effectively with a good precision rate. The 
average precision values for all classifiers in the three datasets 
are more than 97%. 

The third evaluation measure is the recall measure. 
Table VIII shows the recall values for the three classifiers on 
the three datasets. Also, herein the ML algorithms achieved a 
good recall value. The best recall value was achieved by DT 
classifier, which is 100% in all datasets. On the other hand, the 
average recall values for ANNs and NB algorithms are 99% 
and 96%, respectively. 

 In order to compare the three classifiers with respect to 
recall and precision measures, we used the F-measure value. 
Fig. 1 shows the F-measure values for the used ML algorithms 
in the three datasets. As shown the figure, DT has the highest 
F-measure value in all datasets followed by ANNs, then NB 
classifiers. 

Finally, to evaluate the ML algorithms with other 
approaches, we calculated the RMSE value. The work in [2] 
proposed a linear Auto Regression (AR) model to predict the 
accumulative number of software faults using historical 
measured faults. They evaluated their approach with the 
POWM model [20] based on the RMSE measure. The 
evaluation process was done on the same datasets we are using 
in this study. 

 

Fig. 1. F-measure values for the used ML algorithms in the three 
datasets. 

TABLE X. RMSE VALUES FOR THE THREE ML ALGORITHMS, AR 

MODEL, AND POWM MODEL  

 

Datasets 

Machine Learning  Algorithms Approaches Presented in [2] 

NB DT ANNs AR Model POWM Model 

DS1 0.163 0.082 0.151 4.096 14.060 

DS2 0.199 0.104 0.130 0.687 150.075 

DS3 0.120 0.062 0.162 3.567 152.969 

Table IX presents the RMSE measure for the used ML 
algorithms, as well as, AR and POWM models over the three 
datasets. The results show that NB, DT, and ANNs classifiers 
have better values than AR and POWM models. The average 
RMSE value for all ML classifiers in the three datasets is 
0.130, while the average RMSE values for AR and POWM 
models are 2.783 and 105.701, respectively. 

VI. CONCLUSIONS AND FUTURE WORK 

Software bug prediction is a technique in which a 
prediction model is created in order to predict the future 
software faults based on historical data. Various approaches 
have been proposed using different datasets, different metrics 
and different performance measures. This paper evaluated the 
using of machine learning algorithms in software bug 
prediction problem. Three machine learning techniques have 
been used, which are NB, DT and ANNs. 

The evaluation process is implemented using three real 
testing/debugging datasets. Experimental results are collected 
based on accuracy, precision, recall, F-measure, and RMSE 
measures. Results reveal that the ML techniques are efficient 
approaches to predict the future software bugs. The comparison 
results showed that the DT classifier has the best results over 
the others. Moreover, experimental results showed that using 
ML approach provides a better performance for the prediction 
model than other approaches, such as linear AR and POWM 
model. 

As a future work, we may involve other ML techniques and 
provide an extensive comparison among them. Furthermore, 
adding more software metrics in the learning process is one 
possible approach to increase the accuracy of the prediction 
model. 
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