
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 2, 2018

78 | P a g e

www.ijacsa.thesai.org

Software Bug Prediction using Machine Learning

Approach

Awni Hammouri, Mustafa Hammad, Mohammad Alnabhan, Fatima Alsarayrah

Information Technology Department

Mutah University, Al Karak, Jordan

Abstract—Software Bug Prediction (SBP) is an important

issue in software development and maintenance processes, which

concerns with the overall of software successes. This is because

predicting the software faults in earlier phase improves the

software quality, reliability, efficiency and reduces the software

cost. However, developing robust bug prediction model is a

challenging task and many techniques have been proposed in the

literature. This paper presents a software bug prediction model

based on machine learning (ML) algorithms. Three supervised

ML algorithms have been used to predict future software faults

based on historical data. These classifiers are Naïve Bayes (NB),

Decision Tree (DT) and Artificial Neural Networks (ANNs). The

evaluation process showed that ML algorithms can be used

effectively with high accuracy rate. Furthermore, a comparison

measure is applied to compare the proposed prediction model

with other approaches. The collected results showed that the ML

approach has a better performance.

Keywords—Software bug prediction; faults prediction;

prediction model; machine learning; Naïve Bayes (NB); Decision

Tree (DT); Artificial Neural Networks (ANNs)

I. INTRODUCTION

The existence of software bugs affects dramatically on
software reliability, quality and maintenance cost. Achieving
bug-free software also is hard work, even the software applied
carefully because most time there is hidden bugs. In addition
to, developing software bug prediction model which could
predict the faulty modules in the early phase is a real challenge
in software engineering.

Software bug prediction is an essential activity in software
development. This is because predicting the buggy modules
prior to software deployment achieves the user satisfaction,
improves the overall software performance. Moreover,
predicting the software bug early improves software adaptation
to different environments and increases the resource utilization.

Various techniques have been proposed to tackle Software
Bug Prediction (SBP) problem. The most known techniques
are Machine Learning (ML) techniques. The ML techniques
are used extensively in SBP to predict the buggy modules
based on historical fault data, essential metrics and different
software computing techniques.

In this paper, three supervised ML learning classifiers are
used to evaluate the ML capabilities in SBP. The study
discussed Naïve Bayes (NB) classifier, Decision Tree (DT)
classifier and Artificial Neural Networks (ANNs) classifier.
The discussed ML classifiers are applied to three different
datasets obtained from [1] and [2] works.

In addition to, the paper compares between NB classifier,
DT classifier and ANNs classifier. The comparison based on
different evaluation measures such as accuracy, precision,
recall, F-measures and the ROC curves of the classifiers.

The rest of this paper is organized as follow. Section 2
presents a discussion of the related work in SBP. An overview
of the selected ML algorithms is presented in Section 3.
Section 4 describes the datasets and the evaluation
methodology. Experimental results are shown in Section 5
followed by conclusions and future works.

II. RELATED WORK

There are many studies about software bug prediction using
machine learning techniques. For example, the study in [2]
proposed a linear Auto-Regression (AR) approach to predict
the faulty modules. The study predicts the software future
faults depending on the historical data of the software
accumulated faults. The study also evaluated and compared the
AR model and with the Known power model (POWM) used
Root Mean Square Error (RMSE) measure. In addition to, the
study used three datasets for evaluation and the results were
promising.

The studies in [3], [4] analyzed the applicability of various
ML methods for fault prediction. Sharma and Chandra [3]
added to their study the most important previous researches
about each ML techniques and the current trends in software
bug prediction using machine learning. This study can be used
as ground or step to prepare for future work in software bug
prediction.

R. Malhotra in [5] presented a good systematic review for
software bug prediction techniques, which using Machine
Learning (ML). The paper included a review of all the studies
between the period of 1991 and 2013, analyzed the ML
techniques for software bug prediction models, and assessed
their performance, compared between ML and statistic
techniques, compared between different ML techniques and
summarized the strength and the weakness of the ML
techniques.

In [6], the paper provided a benchmark to allow for
common and useful comparison between different bug
prediction approaches. The study presented a comprehensive
comparison between a well-known bug prediction approaches,
also introduced new approach and evaluated its performance
by building a good comparison with other approaches using the
presented benchmark.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 2, 2018

79 | P a g e

www.ijacsa.thesai.org

D. L. Gupta and K. Saxena [7] developed a model for
object-oriented Software Bug Prediction System (SBPS). The
study combined similar types of defect datasets which are
available at Promise Software Engineering Repository. The
study evaluated the proposed model by using the performance
measure (accuracy). Finally, the study results showed that the
average proposed model accuracy is 76.27%.

Rosli et al. [8] presented an application using the genetic
algorithm for fault proneness prediction. The application
obtains its values, such as the object-oriented metrics and count
metrics values from an open source software project. The
genetic algorithm uses the application's values as inputs to
generate rules which employed to categorize the software
modules to defective and non-defective modules. Finally,
visualize the outputs using genetic algorithm applet.

The study in [9] assessed various object-oriented metrics by
used machine learning techniques (decision tree and neural
networks) and statistical techniques (logical and linear
regression). The results of the study showed that the Coupling
Between Object (CBO) metric is the best metric to predict the
bugs in the class and the Line Of Code (LOC) is fairly well,
but the Depth of Inheritance Tree (DIT) and Number Of
Children (NOC) are untrusted metrics.

Singh and Chug [10] discussed five popular ML algorithms
used for software defect prediction i.e. Artificial Neural
Networks (ANNs), Particle Swarm Optimization (PSO),
Decision Tree (DT), Naïve Bayes (NB) and Linear Classifiers
(LC). The study presented important results including that the
ANN has lowest error rate followed by DT, but the linear
classifier is better than other algorithms in term of defect
prediction accuracy, the most popular methods used in
software defect prediction are: DT, BL, ANN, SVM, RBL and
EA, and the common metrics used in software defect
prediction studies are: Line Of Code (LOC) metrics, object
oriented metrics such as cohesion, coupling and inheritance,
also other metrics called hybrid metrics which used both object
oriented and procedural metrics, furthermore the results
showed that most software defect prediction studied used
NASA dataset and PROMISE dataset.

Moreover, the studies in [11], [12] discussed various ML
techniques and provided the ML capabilities in software defect
prediction. The studies assisted the developer to use useful
software metrics and suitable data mining technique in order to
enhance the software quality. The study in [12] determined the
most effective metrics which are useful in defect prediction
such as Response for class (ROC), Line of code (LOC) and
Lack Of Coding Quality (LOCQ).

Bavisi et al. [13] presented the most popular data mining
technique (k-Nearest Neighbors, Naïve Bayes, C-4.5 and
Decision trees). The study analyzed and compared four
algorithms and discussed the advantages and disadvantages of
each algorithm. The results of the study showed that there were
different factors affecting the accuracy of each technique; such
as the nature of the problem, the used dataset and its
performance matrix.

The researches in [14], [15] presented the relationship
between object-oriented metrics and fault-proneness of a class.

Singh et al. [14] showed that CBO, WMC, LOC, and RFC are
effective in predicting defects, while Malhotra and Singh [15]
showed that the AUC is effective metric and can be used to
predict the faulty modules in early phases of software
development and to improve the accuracy of ML techniques.

This paper discusses three well-known machine learning
techniques DT, NB and ANNs. The paper also evaluates the
ML classifiers using various performance measurements (i.e.
accuracy, precision, recall, F-measure and ROC curve). Three
public datasets are used to evaluate the three ML classifiers.

On the other hand, most of the mentioned related works
discussed more ML techniques and different datasets. Some of
the previous studies mainly focused on the metrics that make
the SBP as efficient as possible, while other previous studies
proposed different methods to predict software bugs instead of
ML techniques.

III. USED MACHINE LEARNING ALGORITHMS

The study aims to analyze and assess three supervised
Machine Learning algorithms, which are Naïve Bayes (NB),
Artificial Neural Network (ANN) and Decision Tree (DT). The
study shows the performance accuracy and capability of the
ML algorithms in software bug prediction and provides a
comparative analysis of the selected ML algorithms.

The supervised machine learning algorithms try to develop
an inferring function by concluding relationships and
dependencies between the known inputs and outputs of the
labeled training data, such that we can predict the output values
for new input data based on the derived inferring function.
Following are summarized description of the selected
supervised ML algorithms:

 Naïve Bayes (NB): NB is an efficient and simple
probabilistic classifier based on Bayes theorem with
independence assumption between the features. NB is
not single algorithms, but a family of algorithms based
on common principle, which assumes that the presence
or absence of a particular feature of the class is not
related to the presence and absence of any other
features [16], [17].

 Artificial Neural Networks (ANNs): ANNs are networks
inspired by biological neural networks. Neural networks
are non-linear classifier which can model complex
relationships between the inputs and the outputs. A
neural network consists of a collection of processing
units called neurons that are work together in parallel to
produce output [16]. Each connection between neurons
can transmit a signal to other neurons and each neuron
calculates its output using the nonlinear function of the
sum of all neuron’s inputs.

 Decision Tree (DT): DT is a common learning method
used in data mining. DT refers to a hierarchal and
predictive model which uses the item’s observation as
branches to reach the item’s target value in the leaf. DT
is a tree with decision nodes, which have more than one
branch and leaf nodes, which represent the decision.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 2, 2018

80 | P a g e

www.ijacsa.thesai.org

TABLE II. DS1 - THE FIRST SOFTWARE FAULTS DATASET

Di Fi Ti

Di Fi Ti

1 2 75 24 2 8

2 0 31 25 1 15

3 30 63 26 7 31

4 13 128 27 0 1

5 13 122 28 22 57

6 3 27 29 2 27

7 17 136 30 5 35

8 2 49 31 12 26

9 2 26 32 14 36

10 20 102 33 5 28

11 13 53 34 2 22

12 3 26 35 0 4

13 3 78 36 7 8

14 4 48 37 3 5

15 4 75 38 0 27

1`6 0 14 39 0 6

17 0 4 40 0 6

18 0 14 41 0 4

19 0 22 42 5 0

20 0 5 43 2 6

21 0 9 44 3 5

22 30 33 45 0 8

23 15 118 46 0 2

IV. DATASETS AND EVALUATION METHODOLOGY

The used datasets in this study are three different datasets,
namely DS1, DS2 and DS3. All datasets are consisting of two
measures; the number of faults (Fi) and the number of test
workers (Ti) for each day (Di) in a part of software projects
lifetime. The DS1 dataset has 46 measurements that involved
in the testing process presented in [1]. DS2, also taken from
[1], which measured a system faults during 109 successive
days of testing the software system that consists of 200
modules with each having one kilo line of code of Fortran.
DS2 has 111 measurements. DS3 is developed in [2], which
contains real measured data for a test/debug program of a real-
time control application presented in [18]. Tables I to III
present DS1, DS2 and DS3, respectively.

The datasets were preprocessed by a proposed clustering
technique. The proposed clustering technique marks the data
with class labels. These labels are set to classify the number of
faults into five different classes; A, B, C, D, and E. Table IV
shows the value of each class and number of instances that
belong to it in each dataset.

In order to evaluate the performance of using ML
algorithms in software bug prediction, we used a set of well-
known measures [19] based on the generated confusion
matrixes. The following subsections describe the confusion
matrix and the used evaluation measures.

TABLE III. DS2 - THE SECOND SOFTWARE FAULTS DATASET

Di Fi Ti

Di Fi Ti

Di Fi Ti

1 5 4 38 15 8 75 0 4

2 5 4 39 7 8 76 0 4

3 5 4 40 15 8 77 1 4

4 5 4 41 21 8 78 2 2

5 6 4 42 8 8 79 0 2

6 8 5 43 6 8 80 1 2

7 2 5 44 20 8 81 0 2

8 7 5 45 10 8 82 0 2

9 4 5 46 3 8 83 0 2

10 2 5 47 3 8 84 0 2

11 31 5 48 8 4 85 0 2

12 4 5 49 5 4 86 0 2

13 24 5 50 1 4 87 2 2

14 49 5 51 2 4 88 0 2

15 14 5 52 2 4 89 0 2

16 12 5 53 2 4 90 0 2

17 8 5 54 7 4 91 0 2

18 9 5 55 2 4 92 0 2

19 4 5 56 0 4 93 0 2

20 7 5 57 2 4 94 0 2

21 6 5 58 3 4 95 0 2

22 9 5 59 2 4 96 1 2

23 4 5 60 7 4 97 0 2

24 4 5 61 3 4 98 0 2

25 2 5 62 0 4 99 0 2

26 4 5 63 1 4 100 1 2

27 3 5 64 0 4 101 0 1

28 9 6 65 1 4 102 0 1

29 2 6 66 0 4 103 1 1

30 5 6 67 0 4 104 2 1

31 4 6 68 1 3 105 0 1

32 1 6 69 1 3 106 1 2

33 4 6 70 0 3 107 0 2

34 3 6 71 0 3 108 0 1

35 6 6 72 1 3 109 1 1

36 13 6 73 1 4 110 0 1

37 19 8 74 0 4 111 1 1

A. Confusion Matrix

The confusion matrix is a specific table that is used to
measure the performance of ML algorithms. Table V shows an
example of a generic confusion matrix. Each row of the matrix
represents the instances in an actual class, while each column
represents the instance in a predicted class or vice versa.
Confusion matrix summarizes the results of the testing
algorithm and provides a report of the number of True Positive
(TP), False Positives (FP), True Negatives (TN), and False
Negatives (FN).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 2, 2018

81 | P a g e

www.ijacsa.thesai.org

TABLE IV. DS3 - THE THIRD SOFTWARE FAULTS DATASET

Di Fi Ti

Di Fi Ti

Di Fi Ti

1 4 1 38 9 2 75 1 2

2 0 1 39 7 2 76 11 2

3 7 1 40 12 2 77 1 2

4 10 1 41 12 2 78 0 2

5 13 1 42 15 2 79 2 2

6 8 1 43 14 2 80 2 2

7 13 1 44 7 2 81 4 2

8 4 1 45 9 2 82 1 2

9 7 1 46 11 2 83 0 2

10 8 1 47 5 2 84 4 2

11 1 1 48 7 2 85 1 1

12 6 1 49 7 2 86 1 1

13 13 1 50 14 2 87 0 1

14 7 1 51 13 2 88 2 3

15 9 1 52 14 2 89 0 1

16 8 2 53 11 2 90 0 2

17 5 2 54 2 1 91 1 1

18 10 2 55 4 1 92 1 1

19 7 2 56 4 2 93 0 1

20 11 2 57 3 2 94 0 2

21 5 2 58 6 2 95 0 1

22 8 2 59 6 2 96 0 1

23 13 2 60 2 2 97 1 2

24 9 2 61 0 1 98 0 1

25 7 2 62 0 1 99 1 1

26 7 2 63 3 1 100 0 1

27 5 2 64 0 1 101 0 1

28 7 2 65 4 1 102 0 2

29 6 1 66 0 1 103 0 1

30 6 1 67 1 1 104 2 1

31 4 1 68 2 1 105 0 1

32 12 2 69 0 2 106 1 2

33 6 2 70 1 2 107 0 2

34 7 2 71 2 2 108 2 2

35 8 2 72 5 2 109 0 2

36 11 2 73 3 2

37 6 2 74 2 2

TABLE V. NUMBER OF FAULTS CLASSIFICATION

Faults Class Number of Faults
Number of Instances

DS1 DS2 DS3

A 0-4 30 76 57

B 5-9 5 23 33

C 10-14 5 4 18

D 15-19 2 3 1

E More than 20 4 5 0

TABLE VI. THE CONFUSION MATRIX

Predicted

Actual

Class X Class Y

Class X TP FP

Class Y FN TN

B. Accuracy

Accuracy (ACC) is the proportion of true results (both TP
and TN) among the total number of examined instances. The
best accuracy is 1, whereas the worst accuracy is 0. ACC can
be computed by using the following formula:

ACC = (TP + TN) / (TP + TN+ FP + FN) (1)

C. Precision (Positive Predictive Value)

Precision is calculated as the number of correct positive
predictions divided by the total number of positive predictions.
The best precision is 1, whereas the worst is 0 and it can be
calculated as:

Precision = TP / (TP + FP) (2)

D. Recall (True Positive Rate or Sensitivity)

Recall is calculated as the number of positive predictions
divided by the total number of positives. The best recall is 1,
whereas the worst is 0. Generally, Recall is calculated by the
following formula:

Recall = TP / (TP + FN) (3)

E. F-measure

F-measure is defined as the weighted harmonic mean of
precision and recall. Usually, it is used to combine the Recall
and Precision measures in one measure in order to compare
different ML algorithms with each other. F-measure formula is
given by:

F- measure= (2* Recall * Precision)/(Recall + Precision) (4)

F. Root-Mean-Square Error (RMSE)

RMSE is a measure for evaluating the performance of a
prediction model. The idea herein is to measure the difference
between the predicted and the actual values. If the actual value
is X and the predicted value is XP then RMSE is calculated as
follows:

 √

 ∑

 (5)

V. EXPERIMENTAL RESULTS

This study used WEKA 3.6.9, a machine learning tool, to
evaluate three ML algorithms (NB, DT and ANNs) in software
bug prediction problem. A cross validation (10 fold) is used for
each dataset.

The accuracy of NB, DT and ANNs classifiers for the three
datasets are shown in Table VI. As shown in Table VI, the
three ML algorithms achieved a high accuracy rate. The
average value for the accuracy rate in all datasets for the three
classifiers is over 93% on average. However, the lowest value
appears for NB algorithm in the DS1 dataset. We believe this is
because the dataset is small and NB algorithm needs a bigger
dataset in order to achieve a higher accuracy value. Therefore,
NB got a higher accuracy rate in DS2 and DS3 datasets, which
they are relatively bigger than the DS1 dataset.

TABLE VII. ACCURACY MEASURE FOR THE THREE ML ALGORITHMS

OVER DATASETS

Datasets NB DT ANNs

DS1 0.898 0.951 0.938

DS2 0.950 0.972 0.954

DS3 0.954 0.990 0.963

Average 0.934 0.971 0.951

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 2, 2018

82 | P a g e

www.ijacsa.thesai.org

TABLE VIII. PRECISION MEASURE FOR THE THREE ML ALGORITHMS

OVER DATASETS

Datasets NB DT ANNs

DS1 0.956 1 1

DS2 0.989 0.990 0.981

DS3 0.990 1 0.990

Average 0.978 0.996 0.990

TABLE IX. RECALL MEASURE FOR THE THREE ML ALGORITHMS OVER

DATASETS

Datasets NB DT ANNs

DS1 1 1 1

DS2 0.905 1 0.990

DS3 0.972 1 0.981

Average 0.959 1 0.990

The precision measures for applying NB, DT and ANNs
classifiers on DS1, DS2 and DS3 datasets are shown in
Table VII. Results show that three ML algorithms can be used
for bug prediction effectively with a good precision rate. The
average precision values for all classifiers in the three datasets
are more than 97%.

The third evaluation measure is the recall measure.
Table VIII shows the recall values for the three classifiers on
the three datasets. Also, herein the ML algorithms achieved a
good recall value. The best recall value was achieved by DT
classifier, which is 100% in all datasets. On the other hand, the
average recall values for ANNs and NB algorithms are 99%
and 96%, respectively.

 In order to compare the three classifiers with respect to
recall and precision measures, we used the F-measure value.
Fig. 1 shows the F-measure values for the used ML algorithms
in the three datasets. As shown the figure, DT has the highest
F-measure value in all datasets followed by ANNs, then NB
classifiers.

Finally, to evaluate the ML algorithms with other
approaches, we calculated the RMSE value. The work in [2]
proposed a linear Auto Regression (AR) model to predict the
accumulative number of software faults using historical
measured faults. They evaluated their approach with the
POWM model [20] based on the RMSE measure. The
evaluation process was done on the same datasets we are using
in this study.

Fig. 1. F-measure values for the used ML algorithms in the three
datasets.

TABLE X. RMSE VALUES FOR THE THREE ML ALGORITHMS, AR

MODEL, AND POWM MODEL

Datasets

Machine Learning Algorithms Approaches Presented in [2]

NB DT ANNs AR Model POWM Model

DS1 0.163 0.082 0.151 4.096 14.060

DS2 0.199 0.104 0.130 0.687 150.075

DS3 0.120 0.062 0.162 3.567 152.969

Table IX presents the RMSE measure for the used ML
algorithms, as well as, AR and POWM models over the three
datasets. The results show that NB, DT, and ANNs classifiers
have better values than AR and POWM models. The average
RMSE value for all ML classifiers in the three datasets is
0.130, while the average RMSE values for AR and POWM
models are 2.783 and 105.701, respectively.

VI. CONCLUSIONS AND FUTURE WORK

Software bug prediction is a technique in which a
prediction model is created in order to predict the future
software faults based on historical data. Various approaches
have been proposed using different datasets, different metrics
and different performance measures. This paper evaluated the
using of machine learning algorithms in software bug
prediction problem. Three machine learning techniques have
been used, which are NB, DT and ANNs.

The evaluation process is implemented using three real
testing/debugging datasets. Experimental results are collected
based on accuracy, precision, recall, F-measure, and RMSE
measures. Results reveal that the ML techniques are efficient
approaches to predict the future software bugs. The comparison
results showed that the DT classifier has the best results over
the others. Moreover, experimental results showed that using
ML approach provides a better performance for the prediction
model than other approaches, such as linear AR and POWM
model.

As a future work, we may involve other ML techniques and
provide an extensive comparison among them. Furthermore,
adding more software metrics in the learning process is one
possible approach to increase the accuracy of the prediction
model.

REFERENCES

[1] Y. Tohman, K. Tokunaga, S. Nagase, and M. Y., “Structural approach to
the estimation of the number of residual software faults based on the
hyper-geometric districution model,” IEEE Trans. on Software
Engineering, pp. 345–355, 1989.

[2] A. Sheta and D. Rine, “Modeling Incremental Faults of Software
Testing Process Using AR Models ”, the Proceeding of 4th International
Multi-Conferences on Computer Science and Information Technology
(CSIT 2006), Amman, Jordan. Vol. 3. 2006.

[3] D. Sharma and P. Chandra, "Software Fault Prediction Using Machine-
Learning Techniques," Smart Computing and Informatics. Springer,
Singapore, 2018. 541-549.

[4] R. Malhotra, "Comparative analysis of statistical and machine learning
methods for predicting faulty modules," Applied Soft Computing 21,
(2014): 286-297

[5] Malhotra, Ruchika. "A systematic review of machine learning
techniques for software fault prediction." Applied Soft Computing 27
(2015): 504-518.

[6] D'Ambros, Marco, Michele Lanza, and Romain Robbes. "An extensive
comparison of bug prediction approaches." Mining Software
Repositories (MSR), 2010 7th IEEE Working Conference on. IEEE,
2010.

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

DS1 DS2 DS3

NB

DT

ANNs

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 2, 2018

83 | P a g e

www.ijacsa.thesai.org

[7] Gupta, Dharmendra Lal, and Kavita Saxena. "Software bug prediction
using object-oriented metrics." Sādhanā (2017): 1-15..

[8] M. M. Rosli, N. H. I. Teo, N. S. M. Yusop and N. S. Moham, "The
Design of a Software Fault Prone Application Using Evolutionary
Algorithm," IEEE Conference on Open Systems, 2011.

[9] T. Gyimothy, R. Ferenc and I. Siket, "Empirical Validation of Object-
Oriented Metrics on Open Source Software for Fault Prediction," IEEE
Transactions On Software Engineering, 2005.

[10] Singh, Praman Deep, and Anuradha Chug. "Software defect prediction
analysis using machine learning algorithms." 7th International
Conference on Cloud Computing, Data Science & Engineering-
Confluence, IEEE, 2017.

[11] M. C. Prasad, L. Florence and A. Arya, "A Study on Software Metrics
based Software Defect Prediction using Data Mining and Machine
Learning Techniques," International Journal of Database Theory and
Application, pp. 179-190, 2015.

[12] Okutan, Ahmet, and Olcay Taner Yıldız. "Software defect prediction
using Bayesian networks." Empirical Software Engineering 19.1 (2014):
154-181.

[13] Bavisi, Shrey, Jash Mehta, and Lynette Lopes. "A Comparative Study of
Different Data Mining Algorithms." International Journal of Current
Engineering and Technology 4.5 (2014).

[14] Y. Singh, A. Kaur and R. Malhotra, "Empirical validation of object-
oriented metrics for predicting fault proneness models," Software Qual
J, p. 3–35, 2010.

[15] Malhotra, Ruchika, and Yogesh Singh. "On the applicability of machine
learning techniques for object oriented software fault prediction."
Software Engineering: An International Journal 1.1 (2011): 24-37.

[16] A.TosunMisirli, A. se Ba¸ S.Bener,“A Mapping Study on Bayesian
Networks for Software Quality Prediction”, Proceedings of the 3rd
International Workshop on Realizing Artificial Intelligence Synergies in
Software Engineering, (2014).

[17] T. Angel Thankachan1, K. Raimond2, “A Survey on Classification and
Rule Extraction Techniques for Data mining”,IOSR Journal of
Computer Engineering ,vol. 8, no. 5,(2013), pp. 75-78.

[18] T. Minohara and Y. Tohma, “Parameter estimation of hyper-geometric
distribution software reliability growth model by genetic algorithms”, in
Proceedings of the 6th International Symposium on Software Reliability
Engineering, pp. 324–329, 1995.

[19] Olsen, David L. and Delen, “ Advanced Data Mining Techniques ”,
Springer, 1st edition, page 138, ISBN 3-540-76016-1, Feb 2008.

[20] L. H. Crow, “Reliability for complex repairable systems,” Reliability
and Biometry, SIAM, pp. 379–410, 1974.

