
Information Systems Education Journal (ISEDJ) 17 (5)
ISSN: 1545-679X October 2019

©2019 ISCAP (Information Systems and Computing Academic Professionals) Page 4

https://isedj.org/; http://iscap.info

Software Concepts Emphasized in

Introductory Programming Textbooks

Kirby McMaster, Ret.

kmcmaster@weber.edu

Brian Rague

brague@weber.edu

School of Computing
Weber State University

Ogden, UT 84408

Samuel Sambasivam
ssambasivam@apu.edu

Department of Engineering and Computer Science
Azusa Pacific University

Azusa, CA 91702

Stuart L. Wolthuis

stuart.wolthuis@byuh.edu
Faculty of Mathematics and Computing

Brigham Young University – Hawaii
Laie, HI 96762

Abstract

In this research study, we performed a content analysis of selected introductory programming textbooks
for three languages to examine which software development concepts are emphasized in these books.

Our goal was to determine which concepts are considered to be most representative of software
development based on the topics emphasized by the textbook authors. We counted how often
programming words appeared in samples of C++, Java, and Python books. We discovered which
concepts are consistently supported for all three languages. We also noted those concepts that are

favored by just one or two languages. Our summarized results lead to several conclusions that are
relevant to the choice of a language for an introductory programming course.

Keywords: Java; C++; Python; programming; CS1; CS2; content analysis;

1. INTRODUCTION

Two current questions in Computer Science are:

(1) What concepts should be taught in an

introductory programming course, and (2) What
language should be taught in the course? Debate

on these questions has continued for decades,
with no clear resolution in sight (Brilliant &

Information Systems Education Journal (ISEDJ) 17 (5)
ISSN: 1545-679X October 2019

©2019 ISCAP (Information Systems and Computing Academic Professionals) Page 5

https://isedj.org/; http://iscap.info

Wiseman, 1996; Siegfried, Chays, & Herbert,

2008; CC 2001; CSC 2013). The two questions
are related, in that various programming
languages historically have been designed based

on differing conceptual frameworks.

The early years of computing saw advances in
programming from machine language to
assembly language to higher-level languages
(such as FORTRAN and COBOL). The ability to
give instructions to a computer in a language
closer to the problem domain is one of the

greatest inventions in computing. When
employees learned how to program within the
work environment, little attention was paid to
sound programming concepts and practices
because of the coding flexibility afforded by

higher-level languages.

As the next generation of higher-level languages
was developed (e.g. Algol and PL/I), designers
took advantage of previous experience to
consider a wider range of language options.
During this period, a few languages were
developed specifically for teaching programming
(e.g. Basic and Pascal). The availability of

languages designed for a variety of purposes
encouraged teachers to present programming
concepts beyond simple language-specific syntax
features.

Languages were developed using different
computational models, including functional
languages (e.g. LISP, Haskell, Scheme) and

logical languages (e.g. Prolog). In the relational
database world, procedural languages (e.g.
relational algebra) and non-procedural languages
(e.g. SQL) were considered and implemented.
Structured programming concepts were
promoted as best practices to develop and

maintain evolving complex business applications.

Object-oriented languages C++, Java and Python
evolved from C or special purpose web and
scripting languages. In the current academic
environment, the above three object-oriented
languages are among the most popular
candidates for teaching introductory

programming (Guo, 2014).

The decision about which programming paradigm

to teach beginning students influences the choice
of introductory language. The paramount
question for an effective introductory
programming course remains "What concepts to
teach?", followed by "Which language best

supports these concepts?". The increased
demand for programming courses for liberal arts
students has led to the development of what are
termed CS0 courses (Sooriamurthi, 2010). The
preferred programming language for a CS1 or

CS2 course for Computer Science majors is often

different from the language taught to non-majors
(Hertz, 2010).

1.1 Purpose of this Research

Many research studies have been performed in
recent years on which language is best for an
introductory programming course (de Raadt,
Watson, & Toleman, 2002). In an effort to
contribute to this discussion, our research
focuses on C++, Java, and Python, which are
common CS1 and CS2 languages. Rather than

argue the merits of these languages for teaching
programming, we performed a content analysis
(Krippendorff, 2012) of C++, Java, and Python
textbooks to determine how well they support
teaching fundamental programming concepts.

Our primary assumptions are that the framework

of the author is reflected by the words used
frequently in the textbook, and that the
framework of interest is one that is appropriate
for an introductory programming course. From
the author's choice of words, we can judge how
well the textbook will contribute to the generally
recognized objectives of an introductory

programming course.

2. METHODOLOGY

This section of the paper describes the
methodology used to collect word frequency data
from selected C++, Java, and Python textbooks.
The words we are searching for represent

important concepts for an introductory

programming course. In this study, we did not
start with an initial list of concepts. We recorded
all words we found in the books, and eliminated
those that did not relate to computer
programming.

2.1 Sample of Textbooks

We collected a sample of 5 C++ books, 5 Java
books, and 7 Python books. We included more
Python books because they tended to be shorter.
We wanted our sample to include popular books
in all three languages. To reduce research costs,
we chose textbooks that were available on the
Internet and could be downloaded as PDF files.

For example, we obtained C++ books by Prata
(2005) and Lafore (2002), Java books by Schildt

(2007) and Wu (2010), and Python books by Lutz
(2011) and Zelle (2002). Overall, we obtained a
fairly representative sample of books, but some
were older editions.

2.2 Convert PDF Files to Text Files

To perform word searching and counting, Adobe
Reader provides a menu option to convert the
contents of a PDF file into a text file. We used

Information Systems Education Journal (ISEDJ) 17 (5)
ISSN: 1545-679X October 2019

©2019 ISCAP (Information Systems and Computing Academic Professionals) Page 6

https://isedj.org/; http://iscap.info

Adobe Reader to create a text file for each of the

textbooks in our study.

We noticed that the text file versions of the books
included many character strings containing digits,

punctuation, and other non-alphabetic symbols.
To simplify our counting of concept words, we
wrote a Python program that (after changing
C++ to CPP) removed all non-letter symbols
except apostrophes, and replaced them with
blank characters.

We included apostrophes to allow contractions

(e.g. don't, g'day) to be counted as words. We
considered allowing hyphens, but they were not
used consistently by the authors (e.g. floating-
point vs. floating point). Our Python program also
converted all letters to lower-case.

Since we were searching for words that represent

programming concepts, our Python program
included a function to remove most of the words
on Fry's list of 100 most frequent English words
(UEN, 2015). A few of Fry's top 100 words can be
interpreted in a programming context (e.g.
number, long), which we retained. Instead, we
modified the frequent word list to include some

non-programming words from Fry's second 100
words (e.g. only, most). The total number of
distinct words on our common word list was 110.
By screening out common words, we shrunk the
number of original words by more than 40%.

In the Python program, we also added a second

function to convert many plural nouns and verbs

to singular form. This reduced the number of
distinct words further, since only the singular
forms appeared in the generated text files. Our
Python program provided a filtered set of text
files consisting only of letters (and apostrophes),
blanks, and substantially fewer words.

2.3 Word Groups for Concepts
A single programming concept can be expressed
in more than one form. For example, a noun
concept can be presented in singular or plural
form (e.g. variable, variables). Verbs can also be
written in singular or plural form, as well as with
various tenses (e.g. solve, solves, solved,

solving). Often, the same concept is described by
both a noun and a verb (e.g. inheritance, inherit).

In some cases, synonyms representing similar
ideas can be used to represent a concept (e.g.
record, structure). Some concepts are written not
as a single word but as a sequence of words (e.g.
structured programming).

Our goal was to count how often an author
referred to a programming concept, but our
counting software was designed to count
individual words. For this reason, we defined a

word group for each concept. In this study, a

word group consists of a set of nouns and verbs
that represent the same concept. We occasionally
included synonyms in the same word group. To

get a textbook count for a concept, we summed
the frequencies for each of the words in the word
group.

2.4 Word Counts and Word Rates
We used a program called TextSTAT (Huning,
2007) to obtain word counts for all words in our

modified text files. With TextSTAT, a "Corpus" is
created to hold a list of text files to examine
simultaneously. We defined a corpus for each
programming language: C++, Java, and Python.
We linked each corpus to the transformed
textfiles for the language. The total word counts

for the three languages were nearly the same,
having about 900,000 words for each language.
We recorded the frequencies for each word and
combined them into counts for word groups.

Although total word counts were close for each
language, the sets of textfiles for each language
do contain different total numbers of words. The

Java books have a slightly greater total word
count than the Python and C++ books. To
standardize the counts, we converted each word
count for a concept to a word rate. The rate we

chose was "per 100,000 words". That is, we

divided the concept word count by the total
number of words in the set of textfiles for the
language, and then multiplied by 100,000.

For example, the 5 C++ textfiles contained a total
of 868,902 words. The word count for object in
these files is 10,264. This count is rescaled to a

word rate as shown below:

word rate = (10,264/868,902) * 100,000 =
1,181.3

This indicates that the object concept is
mentioned 1,181.3 times per 100,000 words in
the C++ files. Word rates were calculated for

each concept in each language.

3. ANALYSIS OF DATA

The purpose of this research is to distinguish the
frequency in which programming concepts

appear in textbooks for C++, Java, and Python.
For every concept, we counted the number of
occurrences of each word group member in the

textbooks. Prior to obtaining the results
presented below, our samples of textbook words
were filtered by replacing non-letter characters
with blanks, removing common English words,
and converting plural nouns and verbs to singular
form.

Information Systems Education Journal (ISEDJ) 17 (5)
ISSN: 1545-679X October 2019

©2019 ISCAP (Information Systems and Computing Academic Professionals) Page 7

https://isedj.org/; http://iscap.info

3.1 Word Frequency Distributions

Selected statistics for the word frequency
distribution for each language are shown in Table
1 (all tables located in the appendices). The

samples consisted of 868,902 C++ words,
939,851 Java words, and 902,702 Python words.
Most of these words are repeated multiple times
in the textbooks. For example, in the C++
sample, the maximum frequency word is
function, which appears 18,073 times. The
maximum frequency words are class (18,009

times) in the Java books and python (10,946
times) in the Python books.

The TextSTAT program uses the term word form
to refer to a specific word string, such as object,
that represents one word. The total number of

word forms for each language are given in Table

1. Note that the Java sample has the greatest
number (26,587) of word forms and also the
greatest number of word forms (11,120) that
appear just once.

A surprisingly large number of words have a
frequency of 1. Many of these words were not
actual words, but consisted of several words

concatenated together into a single string. We
suspect that this anomaly is due to an imperfect
conversion of PDF files into text files and the
extensive use of variable names in programming
texts.

When we checked word counts for each of the 5
Java books separately, we observed that one of

the books had a noticeably larger number of
words having a frequency of 1. Since we are
looking for frequent words that represent
programming concepts, words that appear only
once should have little effect on the word counts
of interest. However, a large number of

unduplicated words can slightly bias the word
rates calculated from word counts. Rather than
remove this Java book having the large number
of distinct words, we chose to ignore all words
having a frequency of 1 when performing our
word rate calculations. This reduced the total
word counts for C++, Java, and Python to the

values shown on the bottom line of Table 1.

3.2 Word Rate Distribution

Since our focus in this paper is on frequent words
in the textbooks, we need to provide a criterion
for determining if a word is frequent. The actual
word frequencies range from 1 up to a maximum
for each language. In C++ the maximum

frequency is 18,073 for function. Because the
total word counts differ for each language, we
rescaled word frequencies into word rates as
described above. Our criterion for defining
frequent words involves setting a threshold word
rate for frequent words.

Table 2 describes the distributions for C++, Java,

and Python in terms of word rate intervals. If a
frequent word were defined to be one with a word
rate above 800 (words per 100,000 words), then

there would be 10 + 7 + 3 = 20 frequent words
(not all distinct). These 20 frequent words are not
uniform across languages. For example, the word
object has word rates above 800 for C++ and
Java, but not Python.

In this paper, we chose to define a frequent word
as one with a word rate above 250. This gives us

a reasonable number of words to study for each
language and across languages.

Not all frequent words are programming words.
The words example, chapter, using, and same
are frequent for all three languages, but we do

not interpret these words as programming

concepts.

3.3 Consistently Frequent Concepts
We further define a word to be consistently
frequent when it is frequent for all three
languages. The consistently frequent
programming words, together with their word
rates for C++, Java, and Python, are listed in

Table 3. The words are ordered by decreasing
average word rate. Because these words are used
frequently by authors for all three languages,
they represent a measure of agreement on
important programming concepts irrespective of
language.

The most frequent programming word across all

three languages is class, which is a keyword for
each language (shown in bold) and also the most
frequent Java programming word. The most
frequent C++ programming word is function. The
most frequent Python word is python. However,
function and python are not consistently

frequent. Of the 16 programming words in Table
3, the C++ word rates are highest for 7 words, 3
words have the highest rates for Java, and the
remaining 6 words have the highest rates for
Python.

The OOP words class and object have very high
rates for C++ and Java. This suggests a

substantial emphasis on OOP in the Java and
C++ books. For most Table 3 words, the rates for

C++ and Java are fairly similar.

The frequent word type has a lower word rate for
Python, where data types are dynamic and are
not explicitly defined. The frequent word list has
a higher word rate in Python because (variable

size) lists are used in place of (fixed size) arrays.
File has a higher Python word rate, perhaps due
to the emphasis on multimedia in some Python
books.

Information Systems Education Journal (ISEDJ) 17 (5)
ISSN: 1545-679X October 2019

©2019 ISCAP (Information Systems and Computing Academic Professionals) Page 8

https://isedj.org/; http://iscap.info

Six of the Table 3 words (value, string, type,

number, data, list) refer to data characteristics
and data structures. Three of the words
(program, code, line) represent program

segments. Name can refer to data (e.g.
variables) or program components (e.g.
functions).

3.4 Language Dependent Concepts
A number of programming words are frequent in
one or two languages but not the third. For
example, function is a frequent word in C++ and

Python, but not in Java. We refer to these words
as language-dependent programming concepts.
These words reflect variation between languages
about words that are important. Table 4 lists 18
programming words that have a word rate range

(high minus low) above 275 and at least one word

rate below 150.

For example, the word reference has word rates
of 213.4 for C++, 85.3 for Java, and 209.7 for
Python. This word is not included in Table 4
because the range of word rates is below 275.
The purpose of this constraint is to highlight
words with language rate disparities that are

meaningful.

Excluding language names cpp (representing
C++), java, and python, the Table 4 words
include 3 C++ keywords, 4 Java keywords, and 1
Python keyword. Being a keyword can have some
effect on word rates, especially if the word is used
in sample code (e.g. public in C++ and Java). The

importance of some keywords (like class)
extends throughout programming. We now direct
our attention to Table 4 words that are not
keywords.

In C++ books, method is often replaced by the
two-word term member function to designate

functions that are part of a class. This can explain
the high C++ rates for function and member.
C++ uses a compiler, while Java and Python use
a run-time environment or interpreter.

In C++ and Java, an array is more frequent than
a (linked) list. Pointers are common in C and C++
for indirect addressing. Declaration of variables is

required in C++ and Java, but not in Python.
Threads and events are built into the Java

language, but not C++.

If the language in a programming course
switches from C++ to Java, then some of the
frequent C++ concepts will not be well-supported
in the Java books. Similarly, if the language

switch is made from Java to Python, more
programming concepts will be lost.

3.5 Less Frequent Concepts

We have presented programming words that
have a word rate above 250 for at least one
language. In this section, we examine selected

non-frequent words representing concepts from
object-oriented programming, structured
programming, and software engineering. We
might expect a majority of these concepts to be
included in the content of an introductory
programming course.

Object-oriented programming concepts have

appeared often in Table 3 and Table 4. The OOP
words class and object have high word rates in all
three languages. In Table 5A, we show word rates
for 3 defining characteristics of OOP.

Encapsulation and polymorphism have low word

rates for all three languages. Inheritance does

get some respect from C++ authors, with a word
rate above 100. Maybe there is more discussion
of class hierarchies in the C++ books.
Encapsulation certainly should have higher rates,
since it is a critical concept in modular
programming and especially for classes.
Polymorphism is difficult enough to pronounce

much less explain in a textbook.

Table 5B lists 10 structured programming
concepts. The first four Table 5B words--
sequence, selection, iteration, and recursion--are
the formal names for classic control structures.
The next two words, branch and loop, are
informal terms for selection and iteration,

respectively. In all three languages, loop is much
more frequent than iteration, but branch is not a
popular substitute for selection.

The block concept has been central to structured
programming since the days of Algol. Word rates
for block are near 100 for C++ and Java, but

smaller for Python. Python uses indentation
instead of special symbols (e.g. braces) to
designate the start and end of a block (or
paragraph). The words argument and parameter
are closely related. Argument is a frequent word
for C++, but parameter has word rates below 200
for all three languages.

Procedure is a forgotten term in current language
textbooks, perhaps due to the residual effects of

the decision by C language designers to
implement only functions. This design decision
persists in C++, Java, and Python for various
reasons.

The 16 software engineering concepts in Table

5C include project stages, activities, and
byproducts that do not directly involve writing
code. This list includes the frequent Java word
implementation and the frequent C++ and

Information Systems Education Journal (ISEDJ) 17 (5)
ISSN: 1545-679X October 2019

©2019 ISCAP (Information Systems and Computing Academic Professionals) Page 9

https://isedj.org/; http://iscap.info

Python word error. These words were not

included in Table 4 because their range of word
rates was below 200. We might expect some of
these concepts to receive less emphasis in an

introductory programming course.

The first four words--analysis, design,
implementation, and maintenance--describe the
stages of the traditional software development
life cycle (SDLC). Implementation (which
includes writing code) has word rates between
102.6 and 252.7 for all three languages. Design

has a word rate above 100 in the Java books.
Maintenance and quality are almost an
afterthought in all textbooks. Based on these
books, don't hire an introductory programmer to
do maintenance.

Additional observations about the software

development word rates include the following. In
software development, requirements and
specifications are usually discussed together, in
response to a problem request from a client. One
formal SDLC document that is often prepared is
a Software Requirements Specification (IEEE,
1998).

The word documentation does not appear often
in C++ books (rate just above 25), but it does in
Python books (rate almost 200). What does this
say about the mindset of the authors of these
textbooks? From our experience, many computer
programmers do not like to document their work.

The word rates for abstraction are very low. The

term may be too general to be used frequently in
introductory programming books. This thought
ignores arguments presented in the article "Is
Abstraction the Key to Computing?" (Kramer,
2007).

The model (and modeling) concept has rates

below 100, which appears low considering that
most design work requires some form of
modeling for both code and data. Modeling is the
realization of abstraction. In introductory
courses, much of the design work is usually
provided by the instructor. The students focus on
writing the programs.

Algorithm has a C++ word rate of almost 160,

indicating that C++ books spend a reasonable
amount of time explaining the nature of
algorithms. Maybe this is one reason why C++
has a reputation for being "harder" than Java and
Python.

The word rates for test are above 100, but the

rates for debug are near 0. One possible
explanation for this difference is that test does
not imply that the programmer made a mistake,
whereas debug suggests that something needs to

be fixed. On the other hand, error has word rates

that almost qualify it as a consistently frequent
word. In commercial software development
organizations, initial debugging is usually

performed by the developers who write the code.
Formal testing is more likely to be performed by
specialized test groups, especially when a suite of
tests must be re-run whenever the code is
changed.

As a special note, if you want to teach students
about functional decomposition or data

decomposition, don't use one of these books.
Word rates can't get much lower than 0.3.

4. SUMMARY AND CONCLUSIONS

The choice of programming language for an

introductory Computer Science course influences
the concepts that will be emphasized in the

course. Discussion about which concepts to
teach in a first course and what language best
supports these concepts continues among faculty
and professional organizations. This discussion
has often led to the conclusion that no language
is best for all situations (CSC, 2013). Our work
attempts to contribute to this dialog by revealing

which programming concepts are supported in
textbooks for C++, Java, and Python.

We gathered a sample of textbooks that were
restricted to those available in PDF format,
converted the contents into text files, and then
screened the files to remove or transform

unnecessary material. We counted how often

words that represent programming concepts
appeared in the books, and then converted the
frequencies into word rates. From the
transformed data, we draw several conclusions.

A word is defined to be frequent for a language if
its word rate is at least 250 per 100,000 words in

the textbooks for that language. We found 16
programming words that are frequent for all
three languages. Two of the words with the
highest rates are class and object, which are
central concepts for object-oriented
programming. This list of concepts that are
supported across languages is a good start for an

introductory programming course.

We next searched for words that were frequent in
one or two languages, but not all three. These
words highlight differences between the
languages. The word function is very frequent in
C++ and Python, but not in Java. Java prefers
the term method. Java considers all functions

(and all code) to occur within a class. C++ uses
the combined term member function for functions
within a class, but C++ (and Python) allow
functions to be defined outside of a class.

Information Systems Education Journal (ISEDJ) 17 (5)
ISSN: 1545-679X October 2019

©2019 ISCAP (Information Systems and Computing Academic Professionals) Page 10

https://isedj.org/; http://iscap.info

With its history from C, C++ provides explicit

indirect addressing using pointers. Java makes
indirect addressing implicit through the use of
references. C++ and Java provide fixed size

arrays as a common data structure. Python uses
variable size lists (without mentioning the word
linked). C++ and Java have a character data
type, whereas characters in Python are
represented as strings of length 1. Each language
provides support for the above concepts, using
possibly a different name, and sometimes

involving a different underlying implementation
(e.g. arrays vs. lists).

Among the other concepts, Java supports threads
and events for real-time programming. C++ and
Java, but not Python, require a declaration (name

and type) for variables before they can be used.in

a program. For words that are frequent in two
languages, many of the word rates for C++ and
Java are comparable. C++ and Java books seem
to provide similar support for most of the
frequent programming concepts. Python provides
less support.

We also examined a selection of object-oriented

programming, structured programming, and
software development words that did not appear
on our most frequent word lists. On a word-by-
word basis, many of the comparative word rates
are interesting, with several results standing out.
Longer technical words (e.g. polymorphism,
iteration, requirement, and decomposition)

tended to have lower word rates, but there are

exceptions (e.g. selection vs. branch). Word rate
differences for test, debug, and error are hard to
explain. Hopefully, the extremely low rates for
abstraction, maintenance, and quality do not
persist into more advanced programming

textbooks.

Finally, both C++ and Java books provide
reasonable support for most of the frequent
programming concepts. Python provides less
support. The ultimate choice of language for an
introductory programming course must be based
on considerations beyond textbook coverage of

important concepts.

4.1 Future Research

Planned future research activities include:

1. Replicate this study with a larger, more
representative sample of textbooks.

2. Examine variation in word rates between books
within the same language.

3. Perform a similar study comparing textbooks
for other candidate languages for an introductory
programming course (e.g. PERL, Ruby,
Javascript, Ada, Scheme).

5. REFERENCES

Brilliant, S. S., & Wiseman, T. R. (1996, March).
The first programming paradigm and
language dilemma. In ACM SIGCSE

Bulletin (Vol. 28, No. 1, pp. 338-342). ACM.

Curricula, C. (2001). Computer Science. Final
Report, December, 15, 2001.

Joint, A. C. M. (2013). IEEE-CS Task Force on
Computing Curricula. Computer science
curricula.

De Raadt, M., Watson, R., & Toleman, M. (2002).

Language trends in introductory
programming courses. In Proceedings of the
2002 Informing Science+ Information
Technology Education Joint Conference

(InSITE 2002) (pp. 229-337). Informing
Science Institute.

Guo, P. (2014). Python is now the most popular
introductory teaching language at top us
universities. BLOG@ CACM, July, 47.

Hertz, M. (2010, March). What do CS1 and CS2
mean?: investigating differences in the early
courses. In Proceedings of the 41st ACM
technical symposium on Computer science

education (pp. 199-203). ACM.

Huning, M. (2007). TextSTAT 2.7 User’s
Guide. TextSTAT, created by Gena Bennett.

IEEE Computer Society. Software Engineering

Standards Committee, & IEEE-SA Standards
Board. (1998). IEEE recommended practice
for software requirements specifications.

Institute of Electrical and Electronics
Engineers.

Kramer, J. (2007). Is abstraction the key to
computing?. Communications of the
ACM, 50(4), 36-42.

Krippendorff, K. (2012). Content Analysis: An

Introduction to Its Methodology, 3rd Ed.
SAGE Publications.

Lafore, R. (2002). Object-Oriented Programming
in C++ (4th ed). Sams Publishing.

Lutz, M. (2011). Programming Python (4th ed).

O'Reilly Media.

Prata, S. (2005). C++ Primer Plus (5th ed).

Sams Publishing.

Schildt, H. (2007). Java The Complete
Reference, 7th Ed. McGraw-Hill.

Siegfried, R. M., Chays, D., & Herbert, K. (2008,
July). Will there ever be consensus on cs1?.
In FECS (pp. 18-23).

Information Systems Education Journal (ISEDJ) 17 (5)
ISSN: 1545-679X October 2019

©2019 ISCAP (Information Systems and Computing Academic Professionals) Page 11

https://isedj.org/; http://iscap.info

Sooriamurthi, R. (2010). The essence of object

orientation for CS0: concepts without
code. Journal of Computing Sciences in
Colleges, 25(3), 67-74.

UEN (2015). High Frequency Words--Fry Instant
Words. Utah Education Network. Retrieved
Feb 21, 2017 from http://www.uen.org/

UEN (2018). k-2educator/word_lists.shtml Utah

Education Network. Retrieved Feb 21, 2017
from http://www.uen.org/

Wu, C. T. (2010). An Introduction to Object-

Oriented Programming with Java (5th ed).
McGraw-Hill.

Zelle, J. (2002). Python Programming: An
Introduction to Computer Science. Wartburg
College Printing Services.

Information Systems Education Journal (ISEDJ) 17 (5)
ISSN: 1545-679X October 2019

©2019 ISCAP (Information Systems and Computing Academic Professionals) Page 12

https://isedj.org/; http://iscap.info

Appendices

Table 1: Word Frequency Distribution Summary

Statistic C++ Java Python

Textbooks 5 5 7

Authors 6 8 10

Total Words 868,902 939,851 902,702

Max Count 18,073

function

18,009

class

10,946

python

Min Count 1 1 1

Word Forms 17,328 26,587 21,644

Forms: count>1 11,716 15,467 14,620

Forms: count=1 5,612 11,120 7,024

PctForms:count=1 32.4% 41.8% 32.5%

*Words:count>1 863,286 928,749 895,678

 * Used to calculate word rates

Table 2: Word Forms by Word Rate

Word Rate C++ Java Python

800.0+ 10 7 3

400.0 - 799.9 18 15 19

200.0 - 399.9 49 40 43

100.0 - 199.9 97 121 113

50.0 - 99.9 190 218 228

25.0 - 49.9 326 325 372

* Words: count>1 863,286 928,749 895,678

 * Used to calculate word rates

Information Systems Education Journal (ISEDJ) 17 (5)
ISSN: 1545-679X October 2019

©2019 ISCAP (Information Systems and Computing Academic Professionals) Page 13

https://isedj.org/; http://iscap.info

Table 3: Consistently Frequent Programming Concepts

 (Rate > 250 for all 3 languages)

 Rates for keywords are shown in bold

 C++ Java Python

 Concept Rate Rate Rate Mean

1 class 1,929.0 1,939.1 641.9 1,503.33

2 object 1,188.9 1,163.7 629.2 994.0

3 value 1,019.1 835.8 675.0 843.3

4 program 890.1 913.1 688.4 830.8

5 string 855.0 857.1 529.2 747.1

6 type 861.7 782.7 370.7 671.7

7 file 571.3 551.4 890.4 671.0

8 line 450.8 498.9 611.8 520.5

9 number 597.7 543.6 415.9 519.1

10 name 493.1 481.7 580.0 518.3

11 call 552.1 486.3 494.6 511.0

12 data 523.5 412.0 394.3 443.3

13 list 302.1 358.1 568.2 409.5

14 code 374.7 310.5 433.0 372.7

15 element 443.9 254.6 288.6 329.0

16 input 267.0 251.6 296.0 271.5

Information Systems Education Journal (ISEDJ) 17 (5)
ISSN: 1545-679X October 2019

©2019 ISCAP (Information Systems and Computing Academic Professionals) Page 14

https://isedj.org/; http://iscap.info

Table 4: Language-Dependent Concepts
 at least 1 rate < 150, and range > 275

 Rates for keywords are shown in bold

 C++ Java Python

 Concept Rate Rate Rate Range

1 function 2,093.5 58.4 696.8 2,035.1

2 python 3.5 0.1 1,222.1 1,222.0

3 cpp 1,192.2 0.0 0.2 1,192.2

4 java 11.8 1,072.5 61.0 1,060.7

5 member 719.8 119.7 24.5 695.4

6 operator 776.6 146.9 133.2 643.4

7 array 641.4 486.7 34.4 607.0

8 public 197.7 621.0 38.9 582.1

9 pointer 551.0 17.3 11.3 539.8

10 module 10.5 5.7 461.2 455.5

11 thread 0.8 414.9 210.0 414.1

12 constructor 395.8 268.8 49.1 346.7

13 event 8.2 336.7 132.7 328.5

14 declaration 333.0 213.2 19.1 313.9

15 static 163.1 329.4 17.9 311.5

16 compiler 300.6 72.5 8.0 292.6

17 import 1.3 185.3 291.5 290.2

18 interface 64.9 341.0 161.7 276.1

Table 5A: Object-Oriented Programming Concepts

 OOP

Concepts

C++

Rate

Java

Rate

Python

Rate

Mean

1 encapsulation 6.3 5.4 5.9 5.9

2 inheritance 129.4 45.1 29.9 68.1

3 polymorphism 28.7 17.7 6.1 17.5

Information Systems Education Journal (ISEDJ) 17 (5)
ISSN: 1545-679X October 2019

©2019 ISCAP (Information Systems and Computing Academic Professionals) Page 15

https://isedj.org/; http://iscap.info

Table 5B: Structured Programming Concepts

 StructProg C++ Java Python

 Concepts Rate Rate Rate Mean

1 sequence 98.0 97.7 121.8 105.8

2 selection 38.3 45.8 44.4 42.8

3 iteration 22.5 18.8 18.8 20.0

4 recursion 24.6 30.9 17.1 24.2

5 branch 3.2 6.9 4.1 4.8

6 loop 215.8 174.0 165.9 185.2

7 block 95.6 100.7 48.3 81.5

8 argument 436.8 181.8 184.6 267.7

9 parameter 154.2 179.2 116.7 150.0

10 procedure 3.6 6.4 4.8 4.9

Information Systems Education Journal (ISEDJ) 17 (5)
ISSN: 1545-679X October 2019

©2019 ISCAP (Information Systems and Computing Academic Professionals) Page 16

https://isedj.org/; http://iscap.info

Table 5C: Software Engineering Concepts

 Software Dev

Concepts

C++

Rate

Java

Rate

Python

Rate

Mean

1 analysis 10.8 11.4 16.7 13.0

2 design 74.6 112.1 45.7 77.5

3 implementation 147.3 252.7 102.6 167.5

4 maintenance 3.2 2.3 3.7 3.1

5 problem 128.2 123.9 94.3 115.5

6 requirement 24.1 11.5 14.6 16.7

7 specification 89.9 147.7 92.3 110.0

8 abstraction 7.4 6.2 4.8 6.2

9 model 41.7 80.8 50.8 57.8

10 algorithm 159.5 77.3 68.2 101.7

11 decomposition 0.1 0.3 0.1 0.2

12 test 122.1 136.1 122.1 155.8

13 debug 12.2 5.1 8.2 8.5

14 error 242.9 198.8 214.5 218.7

15 documentation 26.6 89.6 195.9 104.0

16 quality 4.3 2.9 3.1 3.4

