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ABSTRACT:  
 

Software defect prediction is a sub class of software engineering process which is used to 
determine the defects in the software modules. Its important task is to achieve reliable software 
and identify the defects before the delivery of software. This work highlights the applicability of 
machine learning methods to determine defects in software module. In this work, supervised and 
unsupervised machine learning techniques are adopted for defect prediction. These are bagging, 
K-means, AdaBoost, random forest, and K-harmonic means (KMH). The aim of this work is to 
identify which method is more suitable for defect prediction in software. The performance of these 
methods is evaluated using nine benchmark defect predication datasets. Simulation results showed 
that supervised machine learning techniques has state of art result for defect prediction as 
compared to unsupervised machine learning techniques. 

 
Keywords: Software, Defects, Supervised Learning, Unsupervised Learning, AdaBoost, 
Bagging, Random Forest, K-means, K-harmonic means. 

 

[1] INTRODUCTION  

In present time, software’s play significant role in human life. Day to day work is carried out 

using software enabled system. So, the quality of software become an important concern for 

software developers. If, any of the module of a software is faulty, then the working of the 

software is affected and leads to unpredictable behaviour. During the development cycle of 

software process, some bugs or faults can be induced and these faults tend to defects in software. 

In turn, the quality of software can be degraded and sometimes lead to failure of the software. 

The main reason behind these faults is human action. These faults and defects can be described 

as follows-  a fault and defect in software are human errors that are mistakenly embedded during 

the development of software of product. It can be interpreted as a programmer can build a 

program, but forget to use initialization bracket, data type, use duplicate variable etc. Due to 

above mentioned mistake, the program does not run successfully and might give some error 

during compilation time. A defect or fault can be described as incorrect code; data definition etc. 

which can occur in software and hardware of a system. The defect can lead to the failure of 

software.  To detect the defects in software module is one of the rigorous task and requires lot of 

time, effort and manpower. So, software defect prediction is the sub part of the software quality 

that can predict the defects in software modules and ensure quality of software. It can also help 

to develop the software in timely manner. The key advantages of defect prediction are 

highlighted below [1].  

• To improve and enhance the system quality and reliability. 

• Rearrangement and refactoring of software modules during the maintenance phase, if 

required.  

• It is also helpful to choose best alternative design during design phase.  
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• To ensure the stability and higher assurance of developed software. 

• Time and effort devoted during the code review process is effectively reduced using 

software fault prediction. 

Due to above mentioned key points, software defect prediction becomes a good research 

activity. In last few spans, this problem attracted wide attention from research community. Large 

numbers of defect prediction methods or techniques are developed by various researchers. The 

experimental and theoretical methods can be developed to find optimum solution for software 

defect prediction problems. Some of the most popular predication methods are NB, DT, NN, 

SVM, LR, and Random Forest etc. Several soft computing approaches are also applied for defect 

prediction like- ANFIS, ELM, weighted ELM and so on. During the extensive literature review, 

it is observed that the applicability of supervised and unsupervised machine learning algorithm 

for software defect prediction is an active area of research or debt [2-4]. Researcher also adopted 

supervised and unsupervised machine learning methods for defect prediction [2-3]. Initially, 

researchers explored the supervised machine learning algorithm for software defect prediction 

[5-7]. But, these methods work well in the presence of historical data. These methods require lot 

of training data for accurate prediction of defects. In meanwhile, some researchers also focused 

on the applicability of the unsupervised machine learning methods for defect prediction [6, 8]. 

These methods are quite useful in absence of historical data. Other points that make 

unsupervised technique more beneficial are simple implementation, no training data required, 

ease to use with new project and less computational time as compared to supervised machine 

learning method. Hence, the aim of this research work is to compare the performances of 

different supervised and unsupervised machine learning methods and determine which method is 

more suitable for software defect predication. So, for this work, Adaboost, Bagging, Random 

tree, IBK, K-means, EM and K-harmonic means clustering methods are applied for accurate 

prediction of software defects.  Adaboost, Bagging, Random tree and IBK methods are classified 

as supervised machine learning techniques.  Rest of methods are classified as unsupervised 

machine learning techniques. The performances of these methods are evaluated using several 

benchmark datasets downloaded from PROMISE repository. Rest of paper is organized as 

follows- Section 2 presents the reported work in field of software defect predication. Sections 3 

and 4 present the supervised and unsupervised techniques adopted for defect predication. The 

simulation results are demonstrated in section 5. The entire work is summarized in section 6. 

 
[2] RELATED WORKS 

Rong et al., [9] applied SVM model to predict the software defects. In this work, authors 

optimize the parameters of SVM using bat algorithm, called CBA-SVM. The simulation results 

are taken over standard bench mark defect prediction datasets. It is stated that the CBA-SVM 

model gives more promising results in comparison to other algorithms. 

Mausaa and Grbaca considered genetic programming method to detect the software defects [10]. 

The genetic programming method integrates with different selection strategies for handling 

population diversity. Moreover, colonization and migration operators are also integrated with 

genetic programming method. The performance of the proposed method is evaluated on standard 

defect prediction datasets, downloaded from UCI repository. Authors claimed that genetic 

programming method obtains promising results for defect prediction problems. 
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Ozturk et al., [11] investigated the performance of clustering algorithms for defect prediction. In 

this work, four variants of K-mean clustering algorithm are taken into consideration. The 

performance of these variants is tested on four real life datasets. Authors claimed that K-mean++ 

variant gives better results than other K-mean variants.   

Ni et al., [12] explored the multi objective algorithm to determine defects in software. In this 

work, Pareto based concept was consider to handle defect prediction problem. The proposed 

algorithm consider two objective functions in terms of minimization and maximization. 

RELINK and PROMISE datasets are used to evaluate the performance of proposed algorithm 

and gives quality results. 

Xu et al., [13] developed a subset selection model to address the defect prediction problem. In 

first stage, the proposed model considers sparse modelling selection method to select the initial 

model from historical datasets. In second stage, dissimilarity based sparse representation is used 

to refine the selected subset. Moreover, extreme machine learning classifier is adopted to 

classify the datasets.  Simulation results showed that two stage model gives improved results as 

compared to eleven defect prediction models. 

Malhotra and Kamal examined the performance of oversampling method to detect the accurate 

defects in imbalanced datasets [14]. In their work, five oversampling methods are used to detect 

the defects.  Further, in this work a new oversampling method called SPIDER3 is also proposed 

for imbalanced defect prediction datasets. The performance of above mentioned methods is 

evaluated using twelve imbalanced NASA repository datasets. The simulation results stated that 

integration of oversampling method with machine learning classifiers improves the performance 

of these algorithms.  

Singh et al., [15] developed an automatic framework to extract the fuzzy rules for software 

defects. The proposed model has capability to determine attributes of faults. Initially, the model 

assumed that every attribute is a useless feature. The performance of the proposed framework is 

investigated on publically available software defect datasets.  It is seen that the proposed model 

is capable to find fuzzy rules for software faults. 

Chen et al., [16] considered the data dimension to improve the accuracy rate and developed a 

multi-view transfer learning method. The proposed method can also work with heterogeneous 

data.  In the proposed model, class labels are learned using neural network approach. Authors 

claimed that the proposed model provides state of art prediction results. 

Balogun et al., [17] applied several clustering techniques on software defect prediction problem 

and provided a comparative performance analysis of these techniques. In this work, K-mean, X-

mean, hierarchal clustering, density based clustering and Expectation minimization methods are 

considered for defect prediction problem. The performance of these techniques is evaluated 

using eight benchmark dataset. It is noticed that first clustering method provides optimum results 

than other clustering methods.  

Bowes et al., [18] evaluated the performance of several classifiers to detect defects. These 

classifiers are RF, NB, RPart and SVM. The standard dataset from NASA, open source and 

commercial are considered for defect prediction. Authors claimed that although all classifiers 

have similar performance for defect prediction, but these classifiers indentify different set of 

defects. 

It is observed that suitability of supervised and unsupervised methods for defect prediction is an 

active area of research. Chen et al.,[19] focussed on above mentioned research area. In their 

work, two unsupervised and eleven supervised methods are selected to evaluate rank of module. 

It is noticed that unsupervised method can be worked as baseline method for defect prediction. 
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To minimize the classification cost, Siers and Islam developed cost sensitivity classification 

technique called CSVoting for defect prediction [20]. The proposed technique is an ensemble 

method of decision tree approach. The proposed technique is tested over six defects datasets. 

Authors claimed that CSVoting method provides superior results than compared methods.  

Ji et al., [21] applied an improved Naive Bayes algorithm with kernel density estimation to 

improve accuracy rate for defect prediction. The performance of improved Naive Bayes 

algorithm is tested on ten NASA repository defect datasets. Simulation results are compared 

with NB, SVM, Random Forest and logistic regression techniques and NB with kernel 

estimation gives superior results.  

Machine learning methods for defect prediction is presented [22]. In this work, ANFIS, ANN 

and SVM are considered to detect the software defects in efficient manner. The performances of 

these methods are evaluated using PROMISE repository defect datasets. It is observed that ANN 

obtains slightly better results than ANFIS, whereas, SVM exhibits worst performance among all 

three methods.  

Lamba et al., [23] applied several machine learning methods for bug prediction. The methods are 

linear regression, RF, NN, SVM and DT. The performances of these algorithms are evaluated 

using standard defect prediction datasets. It is revealed that SVM method outperforms among all 

other methods for bug prediction.   

Ji et al., [24] proposed a weighted NB classifier based on the concept of information diffusion. 

Further, six weight assignment methods are considered to determine optimum weight of 

features. The performance of weighted Naive bayes is examined over ten defect prediction 

datasets. These datasets are taken from PROMISE repository. Authors claimed that proposed 

improvements significantly improves detection rate of defects. 

Laradji et al., [25] developed an ensemble learning method for accurate prediction of software 

defects. In this work, feature selection technique is integrated with ensemble classifier. The aim 

of feature selection technique is to handle imbalance data and redundancy feature. The 

benchmark software defect prediction datasets are considered to evaluate the performance of 

proposed classifiers. The simulation results showed that greedy forward selection method 

performs better than other feature selection methods.      

To reduce the decision cost, Li et al., [26] developed a decision framework for software defects. 

In proposed framework, three way decision and ensemble learning is integrated to predict 

software defects. It is revealed that the proposed frame work provides better prediction accuracy. 

Liu et al. Developed two phase transfer learning model to overcome the limitation associated 

with TCA+ [27].  In first phase, source project estimator is developed to select the source project 

with higher distribution similarity. In second phase, leverage TCA+ model is used to make 

prediction model. The performance of model is evaluated on forty two defect datasets. It is 

observed that proposed two phase learning model significantly improves the defect prediction 

accuracy. A review on machine learning techniques adopted for defect prediction is reported in 

[28].  

Marjuni et al., [29] applied the unsupervised approach for software defect prediction due to 

absence of historical data. In their work, signed Laplace spectral classifier is used to predict 

defects. The simulation results stated that proposed signed classifier significantly improve the 

performance of unsupervised method. 
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Marjuni et al., [30] developed LM based classifier to improve the reliability of decision making. 

In their work, two variants of weighted ELM are proposed to handle the software defect 

prediction. Both the variants use the concept of reject option when classification is performed. 

The performance of classifiers is evaluated on standard datasets. It is concluded that rejoEM 

provides better result as compared to other ELM based classifiers.     

Mori and Uchihira developed a superposed Naive bayes to determine the defects in software 

[31]. Simulations results are taken on thirteen datasets. It is noticed that superposed NB provides 

a balance between accuracy and interpretability. 

Ryu and Biak developed a multi-objective NB classifier for measuring defects in software [32]. 

In their work, three objectives are considered for addressing the class imbalance issue. The 

multi-objective NB provides more promising results in comparison to single and multi-objective 

approaches.  

To handle the software fault prediction task, Erturk and Sezerb developed an iterative defect 

prediction model based on hybrid approach for identification of defects in software[33]. The 

proposed model works in two modules. In first module, fuzzy inference system is used to make 

initial prediction. Whereas, in second module, data driven methods are employed to measure 

final outcome. Several benchmark datasets are downloaded from PROMISE. Simulation results 

indicated that iterative model significantly identifies the defect in software modules. 

Wang et al., [34] employed multiple kernels leaning to predict the defects in software. 

Moreover, the multiple kernel learning is embedding with ensemble learning for accurate 

prediction. It is revealed that the combination of multiple kernel learning and ensemble classifier 

achieves higher accuracy rate.  

Wei et al., [35] adopted support vector machine and local tangent space alignment, called LTSA-

SVM to detect defects in software. In the proposed method, SVM works as baseline classifier to 

predict defects in software. While, the user defined parameters of SVM are optimized using grid 

search and ten cross fold validation technique. The LTSA method is applied to extract the 

features of dataset. The simulation results are compared with simple SVM, LLE-SVM and it is 

noticed that LTSA-SVM provides more promising results than other methods. 

Xu et al., [36] developed a prediction model to determine defects in software datasets. The 

proposed defect prediction model is combination of kernel PCA and weighted extreme machine 

learning. In their work, kernel PCA is applied to determine the optimum features from data. The 

work of WEML is to predict the defects using reduced dataset. Forty four projects are 

considered in this work, out of forty four projects, thirty four projects are chosen form 

PROMISE repository, while ten are selected from NASA repository. The proposed model 

obtains better results compared to similar models.  

Yadav et al. developed a fuzzy based approach to handle the software defects during the 

development cycle of software [37]. The proposed approach is tested using twenty real life 

datasets.  It is revealed that accuracy of proposed approach is near to actual defect prediction 

rate. 

Yousef applied the data mining algorithms for defects prediction [38]. In their work, three data 

mining algorithms i.e. NB, NN and DT are adopted for same. The performances of these 

algorithms are evaluated using defect datasets from NASA repository. It is observed that NB 

outperforms than NN and DT algorithms. 
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[3] SUPERVISED MACHINE LEARNING METHODS 

 

This section presents the supervised machine learning techniques adopted for software defect 

predication. 

3.1 AdaBoost 

AdaBoost is an ensemble classifier worked with a set of classifiers [39].  This algorithm 

processes the classifiers in sequential manner, whereas bagging algorithm can process the 

classifier in parallel fashion. Moreover, the   AdaBoost algorithm has capability to change the 

weights of training instances. The aim of this strategy is to minimize the expected error over 

different input. For given a training set X, initially specify the number of trails i.e. T. After that T 

weighted training sets are computed from X such as S_1,S_2,…..S_T and describe the T classifier 

for weighted training sets like C_1,C_2,…..C_T . The algorithmic steps of AdaBoost algorithm 

are mentioned below. 

 

 

Algorithm 1: Steps of AdaBoost Algorithm 

Step 1 Initialize the input training set (X), inducer (M)  and integer trails (N) 

Step 2 =X // instance weight to be 1 

Step 2 for i=1 to N 

{ 

Step 3   

Step 4 = arg max  

Step 5 If  

Step 6 
 

Step 7 For each , if  then weight = weight  

Step 8 Normalize the weight of training instances. 

 } 

Step 9 C*(x)= arg max   

Step 10 Compute final outcome 

 
 

3.2 Bagging 

Breiman developed the Bagging algorithm in 1996 based on the different bootstrap samples [40]. 

It is extension of the bootstrap algorithm which is developed by Efron & Tibshirani in 1993. The 

bootstrap sample can be computed using uniform distribution m instances from the training set. 

Moreover, T bootstrap sample such as  is determined using training set 

replacement. Further, a classifier  is designed for each bootstrap sample. The complete 
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classifier C is formed using . The final outcome of classifier C is computed 

through sub classifiers . The algorithmic steps of bagging classifier is listed below. 

 
 

Algorithm 2: Steps of Bagging Algorithm 

Step 1 Initialize the input training set (X), inducer (M)  and number of bootstrap samples 

(N) 

Step 2 for i=1 to N 

{ 

Step 3  = bootstrap sample X 

Step 4  

} 

Step 5 C(x)= arg max  // measuring class label 

Step 6 Compute final outcome 

 
 

3.3 Random Forest 

Random Forest is an ensemble classifier developed by Breiman [41]. This classifier consists of k 

number of decision tree. The decision tree is designed using the bootstrap method. In each 

iteration, the candidate solution is selected from a set of variables in random fashion. Further, a 

tree is constructed using bagging method. The algorithm steps of random forest technique are 

highlighted below.     

 

Algorithm 3: Steps of Random Forest 

Step 1 Divide the training set (X) into K subsets such as   

Step 2 Construct the decision tree using C 4.5 method for each training subset  and 

K number of decision tree is formed for K number of training subsets.  

Step 3 Combined K decision tree in Random forest model using following equation.  

T(X, j)  

Step 4 Compute final outcome 

 

 

[4] UNSUPERVISED MACHINE LEARNING METHODS  

 

This section presents the unsupervised machine learning techniques considered for software 

defect predication. 

4.1 K-Means 

K-means is one of popular unsupervised machine learning method [42]. This algorithm is 

initially applied to analysis the multi variety data. This algorithm is widely adopted to solve 
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large number of engineering problems such as clustering, feature selection, dimension reduction, 

image segmentation etc. This algorithm works with the predefined number of clusters. 

Moreover, the distance function is used to compute the closeness between data objects. The 

algorithmic steps of the k-means algorithm are given as. 

 

Algorithm 4: Steps of K-means algorithm 

Step 1 Initially upload the dataset and defined the number of clusters (K)   

Step 2 Determine the K number of clusters from dataset in random order.  

Step 3 Compute the objective function values i.e. sum of squared error using 

K number of clusters with each data object. 

Step 4 Allocate the data objects to clusters . 

Step 5 Compute the mean value of each cluster 

Step 6 Update the initial cluster centres using new mean values 

Step 7 Repeat the steps 3-6, until optimized results is not obtained 

 

 

4.2 K-harmonic Mean 

K-harmonic mean is a variant of K-means algorithm [43]. In K-mean algorithm, arithmetic mean 

is used to compute the new cluster centres. Whereas, in K-harmonic mean, harmonic mean is 

used to compute the new cluster centres instead of arithmetic mean.  The K-harmonic mean gives 

higher convergence rate as compared to K-means. The steps of K-harmonic mean algorithm is 

listed below. 

 

Algorithm 5: Steps of K-Harmonic Mean algorithm 

Step 1 Initially upload the dataset and defined the number of clusters (K)   

Step 2 Determine the K number of clusters from dataset in random order.  

Step 3 Compute the objective function values i.e. sum of squared error using K number of 

clusters with each data object. 

Step 4 Allocate the data objects into clusters  

Step 5 Compute the membership function and weight values for each data objects. 

Step 6 Update the initial cluster centres using harmonic mean and weight of data objects. 

Step 7 Repeat the steps 3-6, until there is no change in cluster centres. 

Step 8 Obtain the optimized cluster centres. 

 

 

 

[5] RESULTS AND DISCUSSION 
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This section presents the experimental results of supervised and unsupervised machine learning 

approaches. The performances of these approaches are tested on a set of benchmark software 

defect datasets. The defect datasets are taken from the NASA and PROMISE repositories. These 

datasets are CM1, JM1, KC3, MC1, MC2, PC1, PC2, PC3 and PC4. These datasets are widely 

adopted to evaluate the performance of newly designed classifiers.  Moreover, accuracy, 

precision and recall are considered as performance metrics to evaluate the performance of 

supervised and unsupervised machine learning techniques.  The simulation results of supervised 

and unsupervised machine learning techniques are reported in tables 1-3 using accuracy, 

precision and recall parameters. Table 1 illustrates the results of bagging, AdaBoost, random 

forest, k-means and KHM techniques using all datasets. It is noticed that random forest technique 

providers better results than bagging, AdaBoost, k-means and KHM techniques. It is also 

observed that K-means technique exhibits the worst results among all techniques.   

 

Table 1: Comparison of supervised and unsupervised machine learning techniques using accuracy 

parameter 

 

Datasets Bagging AdaBoost Random Forest K-Mean KHM 

CM1 79 76 82 77 81 

JM1 88 85 86 82 84 

KC3 95 93 96 88 90 

MC1 69 72 75 67 71 

MC2 89 85 88 83 86 

PC1 94 92 95 92 93 

PC2 83 81 87 77 79 

PC3 86 87 89 78 80 

PC4 91 92 94 89 90 

Avg. Accuracy 86 85 88 81 84 

 

The simulation results of the precision parameter are reported in Table 2. It is seen that random 

forest technique have higher precision rate as compared to other techniques. Again, K-means 

technique obtains lesser precision rate in comparison to other machine learning techniques. Table 

3 demonstrates the simulation results of the recall parameter. Recall parameter is inversely 

proportional to the precision parameters. This parameter also signifies the strength of the 

technique. If the value of recall parameter is higher than 0.5, then it is said that the particular 

technique is good for prediction. It is observed that the AdaBoost technique obtains higher recall 

values for defect prediction.  

 

Table 2: Comparison of supervised and unsupervised machine learning techniques using precision 

parameter 

Datasets Bagging AdaBoost Random Forest K-Mean KHM 

CM1 0.75 0.78 0.87 0.79 0.82 

JM1 0.78 0.73 0.74 0.68 0.71 
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KC3 0.90 0.85 0.94 0.81 0.79 

MC1 0.74 0.69 0.82 0.73 0.80 

MC2 0.71 0.67 0.83 0.72 0.74 

PC1 0.88 0.90 0.91 0.86 0.87 

PC2 0.89 0.86 0.84 0.78 0.81 

PC3 0.84 0.85 0.89 0.82 0.85 

PC4 0.83 0.81 0.87 0.79 0.84 

Avg. Precision 0.81 0.79 0.86 0.78 0.80 

Table 3: Comparison of supervised and unsupervised machine learning techniques using recall parameter 

Datasets Bagging AdaBoost Random Forest K-Mean KHM 

CM1 0.62 0.65 0.59 0.68 0.73 

JM1 0.68 0.71 0.61 0.69 0.67 

KC3 0.73 0.69 0.67 0.72 0.69 

MC1 0.74 0.76 0.74 0.78 0.71 

MC2 0.67 0.68 0.71 0.72 0.69 

PC1 0.64 0.72 0.68 0.64 0.66 

PC2 0.69 0.73 0.63 0.65 0.62 

PC3 0.72 0.76 0.66 0.77 0.74 

PC4 0.66 0.74 0.71 0.76 0.68 

Avg. Recall 0.68 0.72 0.67 0.71 0.69 

 

 

 

 

Fig. 1: depicts comparison of the average accuracy of supervised and unsupervised techniques 
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Fig. 2: depicts comparison of the average precision of supervised and unsupervised techniques 

 

Fig. 3: shows the average recall comparison of supervised and unsupervised techniques 

Figs. 1-3 show the graphical representation of the average accuracy, average precision and 

average recall parameter using bagging, AdaBoost, random forest, K-means and KHM 

techniques. Moreover on the analysis of Tables 1-3, it is concluded that the supervised machine 

techniques provides better performance than unsupervised machine learning techniques. Overall, 

random forest technique predicts more defects than all other technique. Whereas, among 

unsupervised machine learning techniques, KMH provides better result than K-means algorithm 

 

[6] CONCLUSION 

This paper presents the comparative analysis between supervised and unsupervised machine 

learning techniques and tries to identify which machine learning techniques are better for 

software defects prediction. The performance of these techniques is evaluated on nine benchmark 

software defect prediction dataset. These datasets are downloaded from NASA repository. In this 

work, accuracy, recall and precision metrics are considered to evaluate the performance of 

machine learning techniques. From the experimental results, it is noticed that random forest 

technique provides better results for most of defect prediction datasets as compared to other 



 

SOFTWARE DEFECTS PREDICTION USING SUPERVISED AND UNSUPERVISED MACHINE 

LEARNING APPROACHES: A COMPARATIVE PERFORMANCE ANALYSIS 

 

 Richa Vats , Dr. Arvind Kumar 
 

12 

techniques. Further, it is observed that among unsupervised techniques KMH provides good 

results for defect prediction. The simulation results also stated that the performance of supervised 

machine learning techniques is better than unsupervised machine learning techniques. Finally, it 

is concluded that supervised machine learning techniques are more suitable to indentify defects in 

software as compared to unsupervised machine learning techniques.   
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