
IJRETS: International Journal of Research in Engineering, Technology

and Science,
Volume XIII, Issue VIII, January. 2021

Richa Vats , Dr. Arvind Kumar 1

SOFTWARE DEFECTS PREDICTION USING SUPERVISED AND

UNSUPERVISED MACHINE LEARNING APPROACHES: A

COMPARATIVE PERFORMANCE ANALYSIS

Richa Vats , Dr. Arvind Kumar

SRM University, Delhi-NCR, Sonepat, Haryana, 131029, India
ritzi1606@gmail.com, k.arvind33@gmail.com

ABSTRACT:

Software defect prediction is a sub class of software engineering process which is used to
determine the defects in the software modules. Its important task is to achieve reliable software
and identify the defects before the delivery of software. This work highlights the applicability of
machine learning methods to determine defects in software module. In this work, supervised and
unsupervised machine learning techniques are adopted for defect prediction. These are bagging,
K-means, AdaBoost, random forest, and K-harmonic means (KMH). The aim of this work is to
identify which method is more suitable for defect prediction in software. The performance of these
methods is evaluated using nine benchmark defect predication datasets. Simulation results showed
that supervised machine learning techniques has state of art result for defect prediction as
compared to unsupervised machine learning techniques.

Keywords: Software, Defects, Supervised Learning, Unsupervised Learning, AdaBoost,
Bagging, Random Forest, K-means, K-harmonic means.

[1] INTRODUCTION

In present time, software’s play significant role in human life. Day to day work is carried out

using software enabled system. So, the quality of software become an important concern for

software developers. If, any of the module of a software is faulty, then the working of the

software is affected and leads to unpredictable behaviour. During the development cycle of

software process, some bugs or faults can be induced and these faults tend to defects in software.

In turn, the quality of software can be degraded and sometimes lead to failure of the software.

The main reason behind these faults is human action. These faults and defects can be described

as follows- a fault and defect in software are human errors that are mistakenly embedded during

the development of software of product. It can be interpreted as a programmer can build a

program, but forget to use initialization bracket, data type, use duplicate variable etc. Due to

above mentioned mistake, the program does not run successfully and might give some error

during compilation time. A defect or fault can be described as incorrect code; data definition etc.

which can occur in software and hardware of a system. The defect can lead to the failure of

software. To detect the defects in software module is one of the rigorous task and requires lot of

time, effort and manpower. So, software defect prediction is the sub part of the software quality

that can predict the defects in software modules and ensure quality of software. It can also help

to develop the software in timely manner. The key advantages of defect prediction are

highlighted below [1].

• To improve and enhance the system quality and reliability.

• Rearrangement and refactoring of software modules during the maintenance phase, if

required.

• It is also helpful to choose best alternative design during design phase.

mailto:k.arvind33@gmail.com

SOFTWARE DEFECTS PREDICTION USING SUPERVISED AND UNSUPERVISED MACHINE

LEARNING APPROACHES: A COMPARATIVE PERFORMANCE ANALYSIS

 Richa Vats , Dr. Arvind Kumar

2

• To ensure the stability and higher assurance of developed software.

• Time and effort devoted during the code review process is effectively reduced using

software fault prediction.

Due to above mentioned key points, software defect prediction becomes a good research

activity. In last few spans, this problem attracted wide attention from research community. Large

numbers of defect prediction methods or techniques are developed by various researchers. The

experimental and theoretical methods can be developed to find optimum solution for software

defect prediction problems. Some of the most popular predication methods are NB, DT, NN,

SVM, LR, and Random Forest etc. Several soft computing approaches are also applied for defect

prediction like- ANFIS, ELM, weighted ELM and so on. During the extensive literature review,

it is observed that the applicability of supervised and unsupervised machine learning algorithm

for software defect prediction is an active area of research or debt [2-4]. Researcher also adopted

supervised and unsupervised machine learning methods for defect prediction [2-3]. Initially,

researchers explored the supervised machine learning algorithm for software defect prediction

[5-7]. But, these methods work well in the presence of historical data. These methods require lot

of training data for accurate prediction of defects. In meanwhile, some researchers also focused

on the applicability of the unsupervised machine learning methods for defect prediction [6, 8].

These methods are quite useful in absence of historical data. Other points that make

unsupervised technique more beneficial are simple implementation, no training data required,

ease to use with new project and less computational time as compared to supervised machine

learning method. Hence, the aim of this research work is to compare the performances of

different supervised and unsupervised machine learning methods and determine which method is

more suitable for software defect predication. So, for this work, Adaboost, Bagging, Random

tree, IBK, K-means, EM and K-harmonic means clustering methods are applied for accurate

prediction of software defects. Adaboost, Bagging, Random tree and IBK methods are classified

as supervised machine learning techniques. Rest of methods are classified as unsupervised

machine learning techniques. The performances of these methods are evaluated using several

benchmark datasets downloaded from PROMISE repository. Rest of paper is organized as

follows- Section 2 presents the reported work in field of software defect predication. Sections 3

and 4 present the supervised and unsupervised techniques adopted for defect predication. The

simulation results are demonstrated in section 5. The entire work is summarized in section 6.

[2] RELATED WORKS

Rong et al., [9] applied SVM model to predict the software defects. In this work, authors

optimize the parameters of SVM using bat algorithm, called CBA-SVM. The simulation results

are taken over standard bench mark defect prediction datasets. It is stated that the CBA-SVM

model gives more promising results in comparison to other algorithms.

Mausaa and Grbaca considered genetic programming method to detect the software defects [10].

The genetic programming method integrates with different selection strategies for handling

population diversity. Moreover, colonization and migration operators are also integrated with

genetic programming method. The performance of the proposed method is evaluated on standard

defect prediction datasets, downloaded from UCI repository. Authors claimed that genetic

programming method obtains promising results for defect prediction problems.

IJRETS: International Journal of Research in Engineering, Technology

and Science,
Volume XIII, Issue VIII, January. 2021

Richa Vats , Dr. Arvind Kumar 3

Ozturk et al., [11] investigated the performance of clustering algorithms for defect prediction. In

this work, four variants of K-mean clustering algorithm are taken into consideration. The

performance of these variants is tested on four real life datasets. Authors claimed that K-mean++

variant gives better results than other K-mean variants.

Ni et al., [12] explored the multi objective algorithm to determine defects in software. In this

work, Pareto based concept was consider to handle defect prediction problem. The proposed

algorithm consider two objective functions in terms of minimization and maximization.

RELINK and PROMISE datasets are used to evaluate the performance of proposed algorithm

and gives quality results.

Xu et al., [13] developed a subset selection model to address the defect prediction problem. In

first stage, the proposed model considers sparse modelling selection method to select the initial

model from historical datasets. In second stage, dissimilarity based sparse representation is used

to refine the selected subset. Moreover, extreme machine learning classifier is adopted to

classify the datasets. Simulation results showed that two stage model gives improved results as

compared to eleven defect prediction models.

Malhotra and Kamal examined the performance of oversampling method to detect the accurate

defects in imbalanced datasets [14]. In their work, five oversampling methods are used to detect

the defects. Further, in this work a new oversampling method called SPIDER3 is also proposed

for imbalanced defect prediction datasets. The performance of above mentioned methods is

evaluated using twelve imbalanced NASA repository datasets. The simulation results stated that

integration of oversampling method with machine learning classifiers improves the performance

of these algorithms.

Singh et al., [15] developed an automatic framework to extract the fuzzy rules for software

defects. The proposed model has capability to determine attributes of faults. Initially, the model

assumed that every attribute is a useless feature. The performance of the proposed framework is

investigated on publically available software defect datasets. It is seen that the proposed model

is capable to find fuzzy rules for software faults.

Chen et al., [16] considered the data dimension to improve the accuracy rate and developed a

multi-view transfer learning method. The proposed method can also work with heterogeneous

data. In the proposed model, class labels are learned using neural network approach. Authors

claimed that the proposed model provides state of art prediction results.

Balogun et al., [17] applied several clustering techniques on software defect prediction problem

and provided a comparative performance analysis of these techniques. In this work, K-mean, X-

mean, hierarchal clustering, density based clustering and Expectation minimization methods are

considered for defect prediction problem. The performance of these techniques is evaluated

using eight benchmark dataset. It is noticed that first clustering method provides optimum results

than other clustering methods.

Bowes et al., [18] evaluated the performance of several classifiers to detect defects. These

classifiers are RF, NB, RPart and SVM. The standard dataset from NASA, open source and

commercial are considered for defect prediction. Authors claimed that although all classifiers

have similar performance for defect prediction, but these classifiers indentify different set of

defects.

It is observed that suitability of supervised and unsupervised methods for defect prediction is an

active area of research. Chen et al.,[19] focussed on above mentioned research area. In their

work, two unsupervised and eleven supervised methods are selected to evaluate rank of module.

It is noticed that unsupervised method can be worked as baseline method for defect prediction.

SOFTWARE DEFECTS PREDICTION USING SUPERVISED AND UNSUPERVISED MACHINE

LEARNING APPROACHES: A COMPARATIVE PERFORMANCE ANALYSIS

 Richa Vats , Dr. Arvind Kumar

4

To minimize the classification cost, Siers and Islam developed cost sensitivity classification

technique called CSVoting for defect prediction [20]. The proposed technique is an ensemble

method of decision tree approach. The proposed technique is tested over six defects datasets.

Authors claimed that CSVoting method provides superior results than compared methods.

Ji et al., [21] applied an improved Naive Bayes algorithm with kernel density estimation to

improve accuracy rate for defect prediction. The performance of improved Naive Bayes

algorithm is tested on ten NASA repository defect datasets. Simulation results are compared

with NB, SVM, Random Forest and logistic regression techniques and NB with kernel

estimation gives superior results.

Machine learning methods for defect prediction is presented [22]. In this work, ANFIS, ANN

and SVM are considered to detect the software defects in efficient manner. The performances of

these methods are evaluated using PROMISE repository defect datasets. It is observed that ANN

obtains slightly better results than ANFIS, whereas, SVM exhibits worst performance among all

three methods.

Lamba et al., [23] applied several machine learning methods for bug prediction. The methods are

linear regression, RF, NN, SVM and DT. The performances of these algorithms are evaluated

using standard defect prediction datasets. It is revealed that SVM method outperforms among all

other methods for bug prediction.

Ji et al., [24] proposed a weighted NB classifier based on the concept of information diffusion.

Further, six weight assignment methods are considered to determine optimum weight of

features. The performance of weighted Naive bayes is examined over ten defect prediction

datasets. These datasets are taken from PROMISE repository. Authors claimed that proposed

improvements significantly improves detection rate of defects.

Laradji et al., [25] developed an ensemble learning method for accurate prediction of software

defects. In this work, feature selection technique is integrated with ensemble classifier. The aim

of feature selection technique is to handle imbalance data and redundancy feature. The

benchmark software defect prediction datasets are considered to evaluate the performance of

proposed classifiers. The simulation results showed that greedy forward selection method

performs better than other feature selection methods.

To reduce the decision cost, Li et al., [26] developed a decision framework for software defects.

In proposed framework, three way decision and ensemble learning is integrated to predict

software defects. It is revealed that the proposed frame work provides better prediction accuracy.

Liu et al. Developed two phase transfer learning model to overcome the limitation associated

with TCA+ [27]. In first phase, source project estimator is developed to select the source project

with higher distribution similarity. In second phase, leverage TCA+ model is used to make

prediction model. The performance of model is evaluated on forty two defect datasets. It is

observed that proposed two phase learning model significantly improves the defect prediction

accuracy. A review on machine learning techniques adopted for defect prediction is reported in

[28].

Marjuni et al., [29] applied the unsupervised approach for software defect prediction due to

absence of historical data. In their work, signed Laplace spectral classifier is used to predict

defects. The simulation results stated that proposed signed classifier significantly improve the

performance of unsupervised method.

IJRETS: International Journal of Research in Engineering, Technology

and Science,
Volume XIII, Issue VIII, January. 2021

Richa Vats , Dr. Arvind Kumar 5

Marjuni et al., [30] developed LM based classifier to improve the reliability of decision making.

In their work, two variants of weighted ELM are proposed to handle the software defect

prediction. Both the variants use the concept of reject option when classification is performed.

The performance of classifiers is evaluated on standard datasets. It is concluded that rejoEM

provides better result as compared to other ELM based classifiers.

Mori and Uchihira developed a superposed Naive bayes to determine the defects in software

[31]. Simulations results are taken on thirteen datasets. It is noticed that superposed NB provides

a balance between accuracy and interpretability.

Ryu and Biak developed a multi-objective NB classifier for measuring defects in software [32].

In their work, three objectives are considered for addressing the class imbalance issue. The

multi-objective NB provides more promising results in comparison to single and multi-objective

approaches.

To handle the software fault prediction task, Erturk and Sezerb developed an iterative defect

prediction model based on hybrid approach for identification of defects in software[33]. The

proposed model works in two modules. In first module, fuzzy inference system is used to make

initial prediction. Whereas, in second module, data driven methods are employed to measure

final outcome. Several benchmark datasets are downloaded from PROMISE. Simulation results

indicated that iterative model significantly identifies the defect in software modules.

Wang et al., [34] employed multiple kernels leaning to predict the defects in software.

Moreover, the multiple kernel learning is embedding with ensemble learning for accurate

prediction. It is revealed that the combination of multiple kernel learning and ensemble classifier

achieves higher accuracy rate.

Wei et al., [35] adopted support vector machine and local tangent space alignment, called LTSA-

SVM to detect defects in software. In the proposed method, SVM works as baseline classifier to

predict defects in software. While, the user defined parameters of SVM are optimized using grid

search and ten cross fold validation technique. The LTSA method is applied to extract the

features of dataset. The simulation results are compared with simple SVM, LLE-SVM and it is

noticed that LTSA-SVM provides more promising results than other methods.

Xu et al., [36] developed a prediction model to determine defects in software datasets. The

proposed defect prediction model is combination of kernel PCA and weighted extreme machine

learning. In their work, kernel PCA is applied to determine the optimum features from data. The

work of WEML is to predict the defects using reduced dataset. Forty four projects are

considered in this work, out of forty four projects, thirty four projects are chosen form

PROMISE repository, while ten are selected from NASA repository. The proposed model

obtains better results compared to similar models.

Yadav et al. developed a fuzzy based approach to handle the software defects during the

development cycle of software [37]. The proposed approach is tested using twenty real life

datasets. It is revealed that accuracy of proposed approach is near to actual defect prediction

rate.

Yousef applied the data mining algorithms for defects prediction [38]. In their work, three data

mining algorithms i.e. NB, NN and DT are adopted for same. The performances of these

algorithms are evaluated using defect datasets from NASA repository. It is observed that NB

outperforms than NN and DT algorithms.

SOFTWARE DEFECTS PREDICTION USING SUPERVISED AND UNSUPERVISED MACHINE

LEARNING APPROACHES: A COMPARATIVE PERFORMANCE ANALYSIS

 Richa Vats , Dr. Arvind Kumar

6

[3] SUPERVISED MACHINE LEARNING METHODS

This section presents the supervised machine learning techniques adopted for software defect

predication.

3.1 AdaBoost

AdaBoost is an ensemble classifier worked with a set of classifiers [39]. This algorithm

processes the classifiers in sequential manner, whereas bagging algorithm can process the

classifier in parallel fashion. Moreover, the AdaBoost algorithm has capability to change the

weights of training instances. The aim of this strategy is to minimize the expected error over

different input. For given a training set X, initially specify the number of trails i.e. T. After that T

weighted training sets are computed from X such as S_1,S_2,…..S_T and describe the T classifier

for weighted training sets like C_1,C_2,…..C_T . The algorithmic steps of AdaBoost algorithm

are mentioned below.

Algorithm 1: Steps of AdaBoost Algorithm

Step 1 Initialize the input training set (X), inducer (M) and integer trails (N)

Step 2 =X // instance weight to be 1

Step 2 for i=1 to N

{

Step 3

Step 4 = arg max

Step 5 If

Step 6

Step 7 For each , if then weight = weight

Step 8 Normalize the weight of training instances.

 }

Step 9 C*(x)= arg max

Step 10 Compute final outcome

3.2 Bagging

Breiman developed the Bagging algorithm in 1996 based on the different bootstrap samples [40].

It is extension of the bootstrap algorithm which is developed by Efron & Tibshirani in 1993. The

bootstrap sample can be computed using uniform distribution m instances from the training set.

Moreover, T bootstrap sample such as is determined using training set

replacement. Further, a classifier is designed for each bootstrap sample. The complete

IJRETS: International Journal of Research in Engineering, Technology

and Science,
Volume XIII, Issue VIII, January. 2021

Richa Vats , Dr. Arvind Kumar 7

classifier C is formed using . The final outcome of classifier C is computed

through sub classifiers . The algorithmic steps of bagging classifier is listed below.

Algorithm 2: Steps of Bagging Algorithm

Step 1 Initialize the input training set (X), inducer (M) and number of bootstrap samples

(N)

Step 2 for i=1 to N

{

Step 3 = bootstrap sample X

Step 4

}

Step 5 C(x)= arg max // measuring class label

Step 6 Compute final outcome

3.3 Random Forest

Random Forest is an ensemble classifier developed by Breiman [41]. This classifier consists of k

number of decision tree. The decision tree is designed using the bootstrap method. In each

iteration, the candidate solution is selected from a set of variables in random fashion. Further, a

tree is constructed using bagging method. The algorithm steps of random forest technique are

highlighted below.

Algorithm 3: Steps of Random Forest

Step 1 Divide the training set (X) into K subsets such as

Step 2 Construct the decision tree using C 4.5 method for each training subset and

K number of decision tree is formed for K number of training subsets.

Step 3 Combined K decision tree in Random forest model using following equation.

T(X, j)

Step 4 Compute final outcome

[4] UNSUPERVISED MACHINE LEARNING METHODS

This section presents the unsupervised machine learning techniques considered for software

defect predication.

4.1 K-Means

K-means is one of popular unsupervised machine learning method [42]. This algorithm is

initially applied to analysis the multi variety data. This algorithm is widely adopted to solve

SOFTWARE DEFECTS PREDICTION USING SUPERVISED AND UNSUPERVISED MACHINE

LEARNING APPROACHES: A COMPARATIVE PERFORMANCE ANALYSIS

 Richa Vats , Dr. Arvind Kumar

8

large number of engineering problems such as clustering, feature selection, dimension reduction,

image segmentation etc. This algorithm works with the predefined number of clusters.

Moreover, the distance function is used to compute the closeness between data objects. The

algorithmic steps of the k-means algorithm are given as.

Algorithm 4: Steps of K-means algorithm

Step 1 Initially upload the dataset and defined the number of clusters (K)

Step 2 Determine the K number of clusters from dataset in random order.

Step 3 Compute the objective function values i.e. sum of squared error using

K number of clusters with each data object.

Step 4 Allocate the data objects to clusters .

Step 5 Compute the mean value of each cluster

Step 6 Update the initial cluster centres using new mean values

Step 7 Repeat the steps 3-6, until optimized results is not obtained

4.2 K-harmonic Mean

K-harmonic mean is a variant of K-means algorithm [43]. In K-mean algorithm, arithmetic mean

is used to compute the new cluster centres. Whereas, in K-harmonic mean, harmonic mean is

used to compute the new cluster centres instead of arithmetic mean. The K-harmonic mean gives

higher convergence rate as compared to K-means. The steps of K-harmonic mean algorithm is

listed below.

Algorithm 5: Steps of K-Harmonic Mean algorithm

Step 1 Initially upload the dataset and defined the number of clusters (K)

Step 2 Determine the K number of clusters from dataset in random order.

Step 3 Compute the objective function values i.e. sum of squared error using K number of

clusters with each data object.

Step 4 Allocate the data objects into clusters

Step 5 Compute the membership function and weight values for each data objects.

Step 6 Update the initial cluster centres using harmonic mean and weight of data objects.

Step 7 Repeat the steps 3-6, until there is no change in cluster centres.

Step 8 Obtain the optimized cluster centres.

[5] RESULTS AND DISCUSSION

IJRETS: International Journal of Research in Engineering, Technology

and Science,
Volume XIII, Issue VIII, January. 2021

Richa Vats , Dr. Arvind Kumar 9

This section presents the experimental results of supervised and unsupervised machine learning

approaches. The performances of these approaches are tested on a set of benchmark software

defect datasets. The defect datasets are taken from the NASA and PROMISE repositories. These

datasets are CM1, JM1, KC3, MC1, MC2, PC1, PC2, PC3 and PC4. These datasets are widely

adopted to evaluate the performance of newly designed classifiers. Moreover, accuracy,

precision and recall are considered as performance metrics to evaluate the performance of

supervised and unsupervised machine learning techniques. The simulation results of supervised

and unsupervised machine learning techniques are reported in tables 1-3 using accuracy,

precision and recall parameters. Table 1 illustrates the results of bagging, AdaBoost, random

forest, k-means and KHM techniques using all datasets. It is noticed that random forest technique

providers better results than bagging, AdaBoost, k-means and KHM techniques. It is also

observed that K-means technique exhibits the worst results among all techniques.

Table 1: Comparison of supervised and unsupervised machine learning techniques using accuracy

parameter

Datasets Bagging AdaBoost Random Forest K-Mean KHM

CM1 79 76 82 77 81

JM1 88 85 86 82 84

KC3 95 93 96 88 90

MC1 69 72 75 67 71

MC2 89 85 88 83 86

PC1 94 92 95 92 93

PC2 83 81 87 77 79

PC3 86 87 89 78 80

PC4 91 92 94 89 90

Avg. Accuracy 86 85 88 81 84

The simulation results of the precision parameter are reported in Table 2. It is seen that random

forest technique have higher precision rate as compared to other techniques. Again, K-means

technique obtains lesser precision rate in comparison to other machine learning techniques. Table

3 demonstrates the simulation results of the recall parameter. Recall parameter is inversely

proportional to the precision parameters. This parameter also signifies the strength of the

technique. If the value of recall parameter is higher than 0.5, then it is said that the particular

technique is good for prediction. It is observed that the AdaBoost technique obtains higher recall

values for defect prediction.

Table 2: Comparison of supervised and unsupervised machine learning techniques using precision

parameter

Datasets Bagging AdaBoost Random Forest K-Mean KHM

CM1 0.75 0.78 0.87 0.79 0.82

JM1 0.78 0.73 0.74 0.68 0.71

SOFTWARE DEFECTS PREDICTION USING SUPERVISED AND UNSUPERVISED MACHINE

LEARNING APPROACHES: A COMPARATIVE PERFORMANCE ANALYSIS

 Richa Vats , Dr. Arvind Kumar

10

KC3 0.90 0.85 0.94 0.81 0.79

MC1 0.74 0.69 0.82 0.73 0.80

MC2 0.71 0.67 0.83 0.72 0.74

PC1 0.88 0.90 0.91 0.86 0.87

PC2 0.89 0.86 0.84 0.78 0.81

PC3 0.84 0.85 0.89 0.82 0.85

PC4 0.83 0.81 0.87 0.79 0.84

Avg. Precision 0.81 0.79 0.86 0.78 0.80

Table 3: Comparison of supervised and unsupervised machine learning techniques using recall parameter

Datasets Bagging AdaBoost Random Forest K-Mean KHM

CM1 0.62 0.65 0.59 0.68 0.73

JM1 0.68 0.71 0.61 0.69 0.67

KC3 0.73 0.69 0.67 0.72 0.69

MC1 0.74 0.76 0.74 0.78 0.71

MC2 0.67 0.68 0.71 0.72 0.69

PC1 0.64 0.72 0.68 0.64 0.66

PC2 0.69 0.73 0.63 0.65 0.62

PC3 0.72 0.76 0.66 0.77 0.74

PC4 0.66 0.74 0.71 0.76 0.68

Avg. Recall 0.68 0.72 0.67 0.71 0.69

Fig. 1: depicts comparison of the average accuracy of supervised and unsupervised techniques

IJRETS: International Journal of Research in Engineering, Technology

and Science,
Volume XIII, Issue VIII, January. 2021

Richa Vats , Dr. Arvind Kumar 11

Fig. 2: depicts comparison of the average precision of supervised and unsupervised techniques

Fig. 3: shows the average recall comparison of supervised and unsupervised techniques

Figs. 1-3 show the graphical representation of the average accuracy, average precision and

average recall parameter using bagging, AdaBoost, random forest, K-means and KHM

techniques. Moreover on the analysis of Tables 1-3, it is concluded that the supervised machine

techniques provides better performance than unsupervised machine learning techniques. Overall,

random forest technique predicts more defects than all other technique. Whereas, among

unsupervised machine learning techniques, KMH provides better result than K-means algorithm

[6] CONCLUSION

This paper presents the comparative analysis between supervised and unsupervised machine

learning techniques and tries to identify which machine learning techniques are better for

software defects prediction. The performance of these techniques is evaluated on nine benchmark

software defect prediction dataset. These datasets are downloaded from NASA repository. In this

work, accuracy, recall and precision metrics are considered to evaluate the performance of

machine learning techniques. From the experimental results, it is noticed that random forest

technique provides better results for most of defect prediction datasets as compared to other

SOFTWARE DEFECTS PREDICTION USING SUPERVISED AND UNSUPERVISED MACHINE

LEARNING APPROACHES: A COMPARATIVE PERFORMANCE ANALYSIS

 Richa Vats , Dr. Arvind Kumar

12

techniques. Further, it is observed that among unsupervised techniques KMH provides good

results for defect prediction. The simulation results also stated that the performance of supervised

machine learning techniques is better than unsupervised machine learning techniques. Finally, it

is concluded that supervised machine learning techniques are more suitable to indentify defects in

software as compared to unsupervised machine learning techniques.

REFERENCES

[1] Catal, C. (2011). Software fault prediction: A literature review and current trends. Expert systems with

applications, 38(4), 4626-4636.

[2] Yang, Y., Zhou, Y., Liu, J., Zhao, Y., Lu, H., Xu, L., & Leung, H. (2016, November). Effort-aware just-

in-time defect prediction: simple unsupervised models could be better than supervised models. In

Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software

Engineering (pp. 157-168). ACM.

[3] Fu, W., & Menzies, T. (2017, August). Revisiting unsupervised learning for defect prediction. In

Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering (pp. 72-83).

ACM.

[4] Huang, Q., Xia, X., & Lo, D. (2017, September). Supervised vs unsupervised models: A holistic look at

effort-aware just-in-time defect prediction. In 2017 IEEE International Conference on Software

Maintenance and Evolution (ICSME) (pp. 159-170). IEEE.

[5] Yu, X., Liu, J., Yang, Z., Jia, X., Ling, Q., & Ye, S. (2017, October). Learning from imbalanced data

for predicting the number of software defects. In 2017 IEEE 28th International Symposium on

Software Reliability Engineering (ISSRE) (pp. 78-89). IEEE.

[6] Chen, M., & Ma, Y. (2015). An empirical study on predicting defect numbers. In SEKE (pp. 397-402).

[7] Rathore, S. S., & Kumar, S. (2017). An empirical study of some software fault prediction techniques for

the number of faults prediction. Soft Computing, 21(24), 7417-7434.

[8] Yan, M., Fang, Y., Lo, D., Xia, X., & Zhang, X. (2017, November). File-level defect prediction:

Unsupervised vs. supervised models. In 2017 ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement (ESEM) (pp. 344-353). IEEE.

[9] Rong, X., Li, F., & Cui, Z. (2016). A model for software defect prediction using support vector machine

based on CBA. International Journal of Intelligent Systems Technologies and Applications, 15(1), 19-

34.

[10] Mauša, G., & Grbac, T. G. (2017). Co-evolutionary multi-population genetic programming for

classification in software defect prediction: An empirical case study. Applied soft computing, 55, 331-

351.

[11] Öztürk, M. M., Cavusoglu, U., & Zengin, A. (2015). A novel defect prediction method for web pages

using k-means++. Expert Systems with Applications, 42(19), 6496-6506.

[12] Ni, C., Chen, X., Wu, F., Shen, Y., & Gu, Q. (2019). An Empirical Study on Pareto based Multi-

objective Feature Selection for Software Defect Prediction. Journal of Systems and Software.

[13] Xu, Z., Li, S., Luo, X., Liu, J., Zhang, T., Tang, Y., ... & Keung, J. (2019). TSTSS: A Two-Stage

Training Subset Selection Framework for Cross Version Defect Prediction. Journal of Systems and

Software.

IJRETS: International Journal of Research in Engineering, Technology

and Science,
Volume XIII, Issue VIII, January. 2021

Richa Vats , Dr. Arvind Kumar 13

[14] Malhotra, R., & Kamal, S. (2019). An Empirical Study to Investigate Oversampling Methods for

Improving Software Defect Prediction using Imbalanced Data. Neurocomputing.

[15] Singh, P., Pal, N. R., Verma, S., & Vyas, O. P. (2016). Fuzzy rule-based approach for software fault

prediction. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(5), 826-837.

[16] Chen, J., Yang, Y., Hu, K., Xuan, Q., Liu, Y., & Yang, C. (2019). Multiview Transfer Learning for

Software Defect Prediction. IEEE Access, 7, 8901-8916.

[17] Balogun, A., Oladele, R., Mojeed, H., Amin-Balogun, B., Adeyemo, V. E., & Aro, T. O. (2019).

Performance Analysis of Selected Clustering Techniques for Software Defects Prediction.

[18] Bowes, D., Hall, T., & Petrić, J. (2018). Software defect prediction: do different classifiers find the

same defects?. Software Quality Journal, 26(2), 525-552.

[19] Chen, X., Zhang, D., Zhao, Y., Cui, Z., & Ni, C. (2019). Software defect number prediction:

Unsupervised vs supervised methods. Information and Software Technology, 106, 161-181.

[20] Siers, M. J., & Islam, M. Z. (2015). Software defect prediction using a cost sensitive decision forest

and voting, and a potential solution to the class imbalance problem. Information Systems, 51, 62-71.

[21] Ji, H., Huang, S., Lv, X., Wu, Y., & Feng, Y. (2019). Empirical Studies of a Kernel Density Estimation

Based Naive Bayes Method for Software Defect Prediction. IEICE TRANSACTIONS on Information

and Systems, 102(1), 75-84.

[22] Erturk, E., & Sezer, E. A. (2015). A comparison of some soft computing methods for software fault

prediction. Expert systems with applications, 42(4), 1872-1879.

[23] Lamba, T., & Mishra, A. K. (2019). Optimal Machine learning Model for Software Defect Prediction.

International Journal of Intelligent Systems and Applications, 11(2), 36.

[24] Ji, H., Huang, S., Wu, Y., Hui, Z., & Zheng, C. (2019). A new weighted naive Bayes method based on

information diffusion for software defect prediction. Software Quality Journal, 1-46.

[25] Laradji, I. H., Alshayeb, M., & Ghouti, L. (2015). Software defect prediction using ensemble learning

on selected features. Information and Software Technology, 58, 388-402.

[26] Li, W., Huang, Z., & Li, Q. (2016). Three-way decisions based software defect prediction. Knowledge-

Based Systems, 91, 263-274.

[27] Liu, C., Yang, D., Xia, X., Yan, M., & Zhang, X. (2019). A two-phase transfer learning model for

cross-project defect prediction. Information and Software Technology, 107, 125-136.

[28] Malhotra, R. (2015). A systematic review of machine learning techniques for software fault prediction.

Applied Soft Computing, 27, 504-518.

[29] Marjuni, A., Adji, T. B., & Ferdiana, R. (2019). Unsupervised software defect prediction using signed

Laplacian-based spectral classifier. Soft Computing, 1-12.

[30] Mesquita, D. P., Rocha, L. S., Gomes, J. P. P., & Neto, A. R. R. (2016). Classification with reject

option for software defect prediction. Applied Soft Computing, 49, 1085-1093.

[31] Mori, T., & Uchihira, N. (2018). Balancing the trade-off between accuracy and interpretability in

software defect prediction. Empirical Software Engineering, 1-47.

[32] Ryu, D., & Baik, J. (2016). Effective multi-objective naïve Bayes learning for cross-project defect

prediction. Applied Soft Computing, 49, 1062-1077.

[33] Erturk, E., & Sezer, E. A. (2016). Iterative software fault prediction with a hybrid approach. Applied

Soft Computing, 49, 1020-1033.

[34] Wang, T., Zhang, Z., Jing, X., & Zhang, L. (2016). Multiple kernel ensemble learning for software

defect prediction. Automated Software Engineering, 23(4), 569-590.

SOFTWARE DEFECTS PREDICTION USING SUPERVISED AND UNSUPERVISED MACHINE

LEARNING APPROACHES: A COMPARATIVE PERFORMANCE ANALYSIS

 Richa Vats , Dr. Arvind Kumar

14

[35] Wei, H., Hu, C., Chen, S., Xue, Y., & Zhang, Q. (2019). Establishing a software defect prediction

model via effective dimension reduction. Information Sciences, 477, 399-409.

[36] Xu, Z., Liu, J., Luo, X., Yang, Z., Zhang, Y., Yuan, P., ... & Zhang, T. (2019). Software defect

prediction based on kernel PCA and weighted extreme learning machine. Information and Software

Technology, 106, 182-200.

[37] Yadav, H. B., & Yadav, D. K. (2015). A fuzzy logic based approach for phase-wise software defects

prediction using software metrics. Information and Software Technology, 63, 44-57.

[38] Yousef, A. H. (2015). Extracting software static defect models using data mining. Ain Shams

Engineering Journal, 6(1), 133-144.

[39] Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification algorithms: Bagging,

boosting, and variants. Machine learning, 36(1-2), 105-139.

[40] Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123-140.

[41] Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R news, 2(3), 18-22.

[42] MacQueen, J. (1967, June). Some methods for classification and analysis of multivariate observations.

In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (Vol. 1, No.

14, pp. 281-297).

[43] Zhang, B., Hsu, M., & Dayal, U. (1999). K-harmonic means-a data clustering algorithm. Hewlett-

Packard Labs Technical Report HPL-1999-124, 55.

