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A Short History of SDN

~2004: Research on new management paradigms

RCP, 4D [Princeton, CMU,….]

SANE, Ethane [Stanford/Berkeley]

2008: Software-Defined Networking (SDN)

NOX Network Operating System [Nicira]

OpenFlow switch interface [Stanford/Nicira]

2011: Open Networking Foundation (~69 members)

Board: Google, Yahoo, Verizon, DT, Microsoft, Facebook, NTT

Members: Cisco, Juniper, HP, Dell, Broadcom, IBM,…..

2013: Latest Open Networking Summit

1600 attendees, Google: SDN used for their WAN

Commercialized, in production use (few places)
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Why Was SDN Needed?

• Networks are hard to manage

- Computation and storage have been virtualized

- Creating a more flexible and manageable infrastructure

- Networks are still notoriously hard to manage

- Network administrators large share of sysadmin staff

• Networks are hard to evolve

- Ongoing innovation in systems software

- New languages, operating systems, etc.

- Networks are stuck in the past

- Routing algorithms change very slowly

- Network management extremely primitive

• Networks design not based on formal principles

- OS courses teach fundamental principles 

- Mutual exclusion and other synchronization primitives

- Files, file systems, threads, and other building blocks

- Networking courses teach a big bag of protocols

- No formal principles, just general design guidelines
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Networks design not based on formal principles

• Networks used to be simple

- Basic Ethernet/IP straightforward, easy to manage

• New control requirements have led to complexity
- ACLs, VLANs, TE, Middleboxes, DPI,…

• The infrastructure still works...
- Only because of our great ability to master complexity

• Ability to master complexity both blessing and 
curse
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How Programming Made the Transition

• Machine languages: no abstractions

- Had to deal with low-level details

• Higher-level languages: OS and other abstractions

- File system, virtual memory, abstract data types, ...

• Modern languages: even more abstractions

- Object orientation, garbage collection,...

Abstractions simplify programming

Easier to write, maintain, reason about programs

Abstractions are the way we extracted simplicity

So, what role do abstractions play in networking?
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The Two Networking “Planes”

• Data plane: processing and delivery of packets with local 

forwarding state

– Forwarding state + packet headerforwarding decision

• Control plane: compute the state in routers (forwarding 

state)

– Determines how and where packets are forwarded

– Routing, traffic engineering, firewall state, …

– Implemented with distributed protocols, manual 

configuration (and scripting) or centralized computation

• These different planes require different abstractions
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Data Plane Abstractions: Layers

Applications

…built on…

Reliable (or unreliable) transport

…built on…

Best-effort global packet delivery

…built on…

Best-effort local packet delivery

…built on…

Local physical transfer of bits
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Control Plane Abstractions
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(Too) Many Control Plane Mechanisms

• Variety of goals:

- Routing: distributed routing algorithms

- Isolation: ACLs, VLANs, Firewalls,…

- Traffic engineering: adjusting weights, MPLS,…

• No modularity, limited functionality

• Control Plane: mechanism without abstraction

- Too many mechanisms, not enough functionality
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What abstractions should we
apply to the control plane?
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The Control Plane Problem

• Control plane must compute forwarding state. To 

accomplish its task, the control plane must:

1. Figure out what network looks like (topology)

2. Figure out how to accomplish goal on given topology

3. Tell the swtiches what to do (configure forwarding 

state)

• We view this as a natural set of requirements....

- And we require each new protocol to solve all three

This is crazy!
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Programming Analogy

• What if you were told to write a program that must…

- Be aware of the hardware you were running on

- Specify where each bit was stored

• Programmer would immediately define abstractions:

- Machine-independent interface

- Virtual memory interface

• Programmers use abstractions to separate concerns

- Network designers should too!
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The Control Plane Problem

• Control plane must compute forwarding state. To 

accomplish its task, the control plane must:

1. Figure out what network looks like (topology)

2. Figure out how to accomplish goal on given topology

3. Tell the swtiches what to do (configure forwarding 

state)

• What components do we want to reuse?

1. Determining the topology information

3. Configuring forwarding state on routers/switches

• You now know everthing you need about SDN:

- It is the use of those two control planes abstractions
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SDN: Two Control Plane Abstractions

• Abstraction: global network view

- Provides information about current network

- Implementation: “Network Operating System”

- Runs on servers in network (replicated for reliability)

• Abstraction: forwarding model

- Provides standard way of defining forwarding state

- This is OpenFlow

- Specification of <match,action> flow entries



Network of Switches and/or Routers
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Distributed algorithm running between neighbors
Complicated task-specific distributed algorithm

Traditional Control Mechanisms

Network OS (e.g. NOX)

SDN is “Layers” for Control Plane

Global Network View

Control Program

routing, access control, etc.

Forwarding Model
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Example1: OSPF and Dijkstra

• OSPF
- RFC 2328: 245 pages

• Distributed System
- Builds consistent, up-to-date map of the network: 

101 pages

• Dijkstra’s Algorithm
- Operates on map: 4 pages
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Example1: OSPF and Dijkstra
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Example2: Load Balancing

Optimal Load Balancer: 

Ideally each HTTP 

request would be sent 

over a path which is 

lightly loaded to a server 

which is lightly loaded in 

order to minimize the 

request
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Example2: Load Balancing

KEMP Technologies

LoadMasterTM 2400

Current Load Balancer: 

it can choose only the 

lightly loaded server
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Example2: Load Balancing
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Example2: Load Balancing

N. Handigol, S. Seetharaman, M. Flajslik, R. Johari, and N. McKeown. Aster*x: 

Load-balancing as a network primitive.  9th GENI Engineering Conference 

(Plenary), November 2010
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Specification Abstraction

• Control program must express desired behavior

- Whether it be isolation, access control, or QoS

• It should not be responsible for implementing that
behavior on physical network infrastructure

- Requires configuring the forwarding tables in each switch

• Proposed abstraction: Virtual Topology of network

- Virtual Topology models only enough detail to specify 

goals

- Will depend on task semantics



Simple Example: Access Control

A

B

Global Network View

• Operator’s goal: prevent A’s packets from reaching B

• Control program does so with access control entries:

- Control program must respond to topology/routing changes

- Makes it hard to write correct control program

AB drop

AB drop
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Network Virtualization

• Introduce new abstraction and new SDN layer

• Abstraction: Virtual Topology

- Allows operator to express requirements and policies

- Via a set of logical switches and their configurations

• Layer: Network Hypervisor

- Translates those requirements into switch configurations

- “Compiler” for virtual topologies
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Virtualization Simplifies Control Program

A

B

A

B

Abstract Network View

Global Network View

AB drop

Hypervisor then inserts flow entries as needed

AB drop

AB drop
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Network OS

Software Defined Network
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Global Network View

Control Program

Virtual Topology

Network Hypervisor
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Clean Separation of Concerns
• Control program: express goals on Virtual Topology

- Operator Requirements

- Configuration = Function(view)

- Not a distributed protocol, now just a graph algorithm

• Network Hypervisor: Virtual Topology Global Network View

• Network OS: Global Network View  physical switches

- Gathers information for global network view

- Conveys configurations from control program to switches

• Router/switches: merely follow orders from NOS

• Clean separation of control and data planes

- Not packaged togheter in proprietary boxes

- Enables use of commodity hardware, 3rd party software

- Easier to write, maintain, verify, reason about, …



Control Program

Abstract Network View

Network Virtualization

Global Network View

SDN: Layers for the Control Plane
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Abstractions Don’t Eliminate Complexity
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• Every component of system is tractable

- NOS, Virtualization are still complicated pieces of code

• SDN main achievements:

- Simplifies interface for control program (user-specific)

- Pushes complexity into reusable code (SDN platform)

• Just like compilers….
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Virtualization is Killer App for SDN

• Consider a multi-tenant datacenter

- Want to allow each tenant to specify virtual topology

- This defines their individual policies and requirements

• Datacenter’s network hypervisor compiles these 

virtual topologies into set of switch configurations

- Takes 1000s of individual tenant virtual topologies

- Computes configurations to implement all simultaneously

• This is what people are paying money for….

- Enabled by SDN’s ability to virtualize the network
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What Should I Remember About SDN?
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Four Crucial Points

• SDN is merely set of abstractions for control plane

- Not a specific set of mechanisms

- OpenFlow is least interesting aspect of SDN, technically

• SDN involves computing a function….

- NOS handles distribution of state

• …on an abstract network

- Can ignore actual physical infrastructure

• Network virtualization is the “killer app”

- Already virtualized compute, storage; network is next
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Does SDN have larger implications?

Aside from providing easier network management,

how will SDN change the world of networking?
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Control/Data Planes Become Separate

• Currently control plane tied to data plane

• NOS runs on servers: observes/controls data plane

• Changes the deployment and business models

- Can buy the control plane separately from the switches

- Enabling commodity hardware and 3rd  party software

• Changes the testing model

- Simulator to analyze large-scale control planes
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Networking Becomes Edge-Oriented

• Can implement most control functionality at edge

- Access control, QoS, mobility, migration, monitoring…

• Network core merely delivers packets edge-to-edge

- Current protocols do a good job (mostly)

• Let edge handle all complexity

- Complicated matching, actions

- “Overlay” networking via tunnels

• This has two important implications
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1. Makes SDN Incrementally Deployable

• Host software often has OpenFlow switch

- Open vSwitch (OVS) in Linux, Xen,…

• The edge becomes a software switch

- Core of network can be legacy hardware

• Enables incremental deployment of SDN

- Might never need OpenFlow in hardware switches….
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2. Networking Becomes Software-Oriented

• All complicated forwarding done in software (edge)

• And control plane is a program (on a server)…

- …not a protocol (on a closed proprietary switch/router)

• We are programming the network, not designing it

- Focus on modularity and abstractions, not packet headers

• Innovation at software, not hardware, speeds

• Software lends itself to clean abstractions



SDN Vision: Networks Become “Normal”
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• Hardware: Cheap, interchangeable, Moore’s Law

• Software: Frequent releases, decoupled from HW

• Functionality: Mostly driven by SW

- Edge (software switch)

- Control program

• Solid intellectual foundations



Custom Hardware

Custom Hardware

Custom Hardware

Custom Hardware

Custom Hardware

OS

OS

OS

OS

OS

Network OS

Feature Feature

Recap - The network is changing

Feature Feature

Feature Feature

Feature Feature

Feature Feature

Feature Feature
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Control Program 1

Network OS

1. Open interface to packet forwarding

3. Consistent, up-to-date global network view 2. At least one Network OS
probably many.

Open- and closed-source

Recap - Software Defined Network (SDN)

Packet
Forwarding 

Packet
Forwarding 

Packet
Forwarding 

Packet
Forwarding 

Packet
Forwarding 

Control Program 2
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OpenFlow Protocol

Data Path (Hardware)

Control Path OpenFlowEthernet Switch

Network OS

Control Program A Control Program B

OpenFlow Basics
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Primitives <Match, Action>

• Match arbitrary bits in headers:

– Match on any header, or new header

– Allows any flow granularity

• Action

– Forward to port(s), drop, send to controller

– Overwrite header with mask, push or pop

– Forward at specific bit-rate

Header Data

Match: 1000x01xx0101001x
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Control Program A Control Program B

Network OS

OpenFlow Basics

Packet

Forwarding 

Packet

Forwarding 

Packet

Forwarding 

Flow

Table(s)

“If header = p, send to port 4”

“If header = ?, send to me”

“If header = q, overwrite header with r, 

add header s, and send to ports 5,6”
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More sophisticated flow identification

Application level flow
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More sophisticated flow identification

IP flow
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More sophisticated flow identification

Custom flow
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More sophisticated flow identification

My flow

47



SDN “Implementations” –

Software/Hardware
• Forwarding Model

- OpenFlow

- ForCES

• Software Switches compliant with OpenFlow std.
- Open vSwitch

- Pantou/OpenWRT

- Ofsoftswitch13

- Indigo

• Controller compliant with OpenFlow std.
- POX

- NOX

- MUL

- Maestro

• Available Commodity Switches compliant with OpenFlow std.
- Hewlett-Packard 8200zl, 6600, 6200zl,

- Brocade 5400zl, and 3500/3500yl

- IBM NetIron CES 2000 Series
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SDN Literature - Sources

• Browsing on proceedings of:

– ACM Sigcomm;

– ACM Sigcomm Workshop HotSDN;

– ACM Sigcomm Workshop HotNets;

– ACM CoNEXT;

– USENIX NSDI;

– USENIX HotCloud;

– USENIX Hot-ICE;

– ONS;

• SDN reading list: http://www.nec-

labs.com/~lume/sdn-reading-list.html

49

http://www.nec-labs.com/~lume/sdn-reading-list.html


SDN research areas

Controller scalability

multi-controller

reduce messages sent to 

controller

switch/CPU design 

approaches

Network Updates

Programming

Testing/Debugging

Traffic Management/QoS

flow scheduling

Load balancing

Transport protocol

Monitoring

Security
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