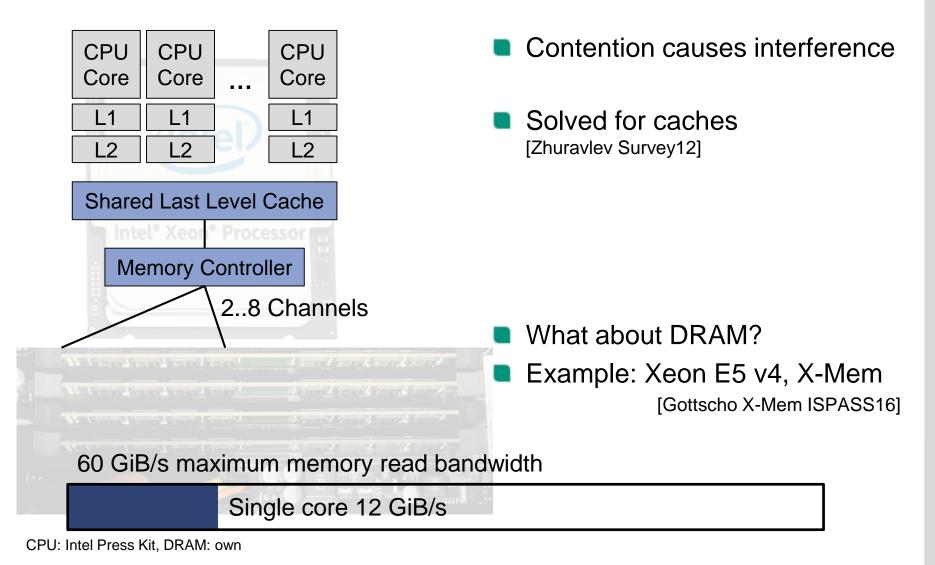


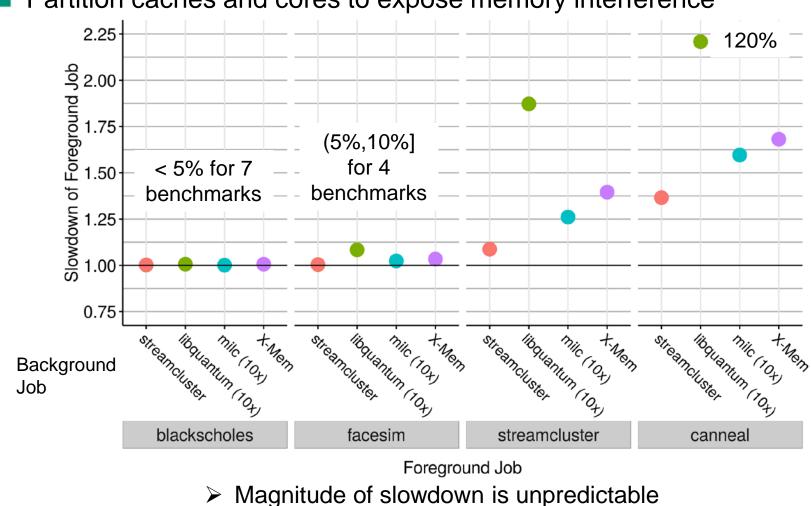
Software-Defined Physical Memory Putting the OS in Control of DRAM

Marius Hillenbrand | Frank Bellosa


GI Fachgruppe Betriebssysteme – Frühjahrstreffen 2017

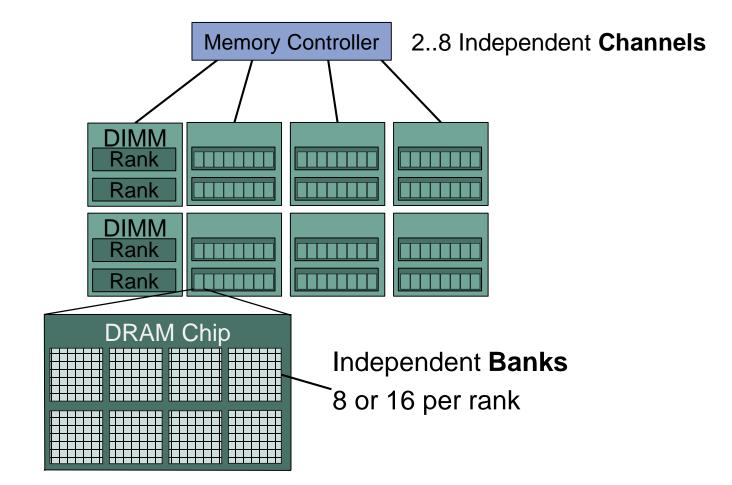
OPERATING SYSTEMS GROUP, DEPARTMENT OF INFORMATICS

Shared Resources in Multicore Processors



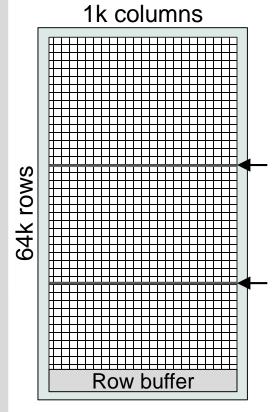
2 06.03.2017 Marius Hillenbrand – Software-Defined Physical Memory

Experiment: DRAM Interference



Partition caches and cores to expose memory interference

DRAM Parallelism [Jacob Memory07]



4

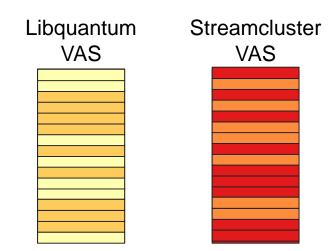
DRAM Operation & Interference

Row hit

15 bus cycles (t_{CL})			4	4 cycles			
bank 0	column access in bank		bank	burst	over memory bus		
bank 1		colun	nn access	burst			
bank 2			column access			burst	

Want parallelism for performance

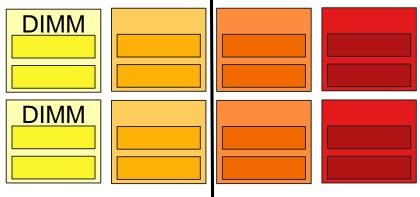
Row miss – cycle to other row


precharge	activate	

~3x latency

Sharing reduces locality, induces slowdown

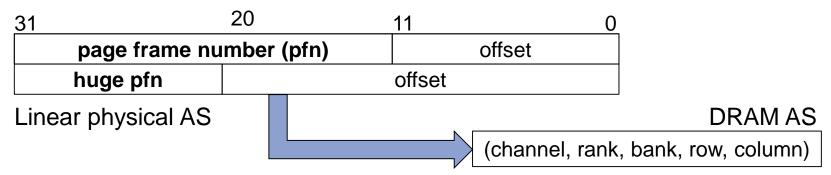
Mitigation: Partitioning



- Page placement is long-term scheduling
 - Permission to send read/write requests to DRAM banks/channels

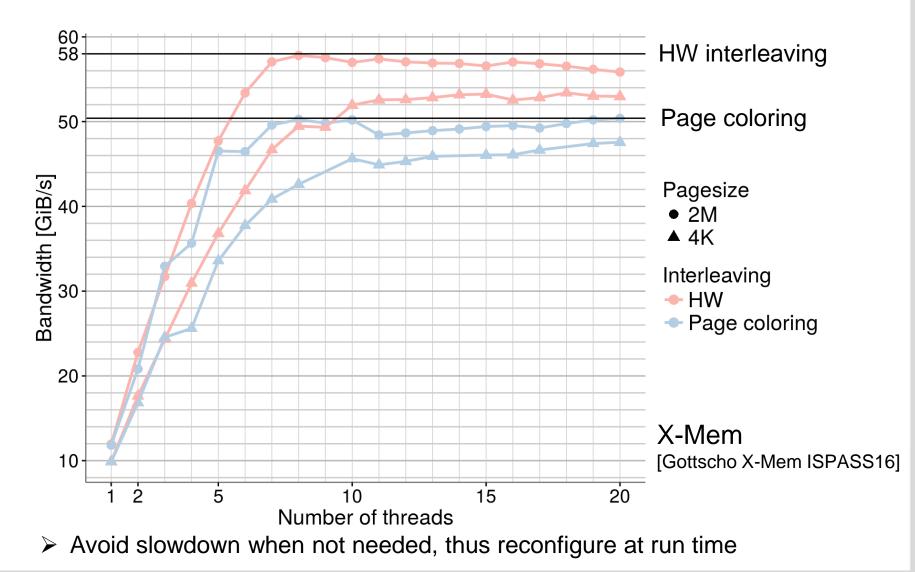
100	$D \gamma$	rtit	inn	nna
	Га		ЮГ	ing
			. • .	
				-

- Page coloring [Liedtke CacheRT97]
- Channels [Muralidhara Chan11]
- Banks [Liu BPM14]
- Control parallelism
- Isolation maintains locality


4 channels

Partitioning – DRAM Address Mapping

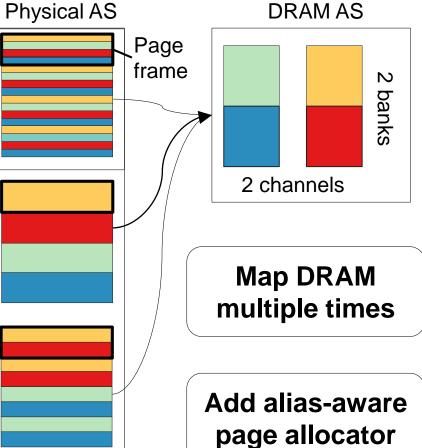
OS page placement assigns channels and banks


DRAM address mapping scheme [Jacob Memory07, 13.3]

		Cor	figured at boot time	е					
	31		-	15	11	8:7		0	channel & bank
			row	column	bank	ch	column		interleaving
31	:30	29:27	12				0	Non-interleaved	
ch		bank	row	N		column			
									(+page coloring)

Need to reconfigure address mapping to enable partitioning (BIOS setup)

Slowdown from Partitioning

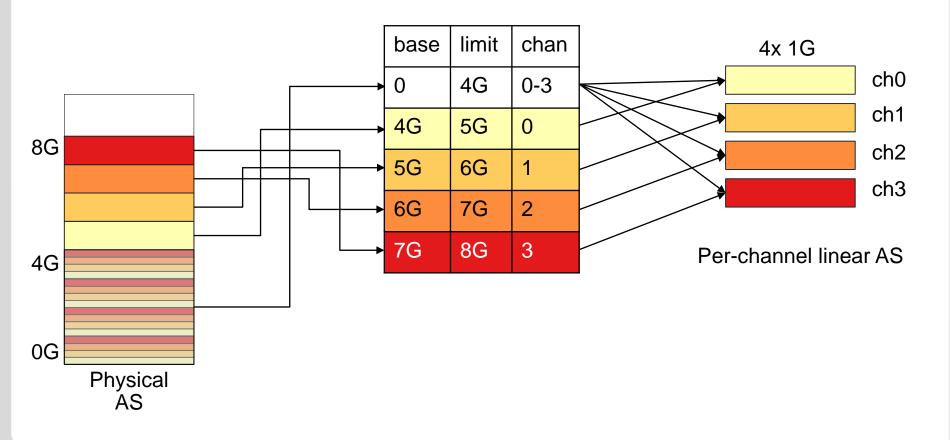

06.03.2017 Marius Hillenbrand – Software-Defined Physical Memory

8

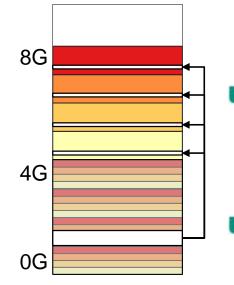
Bank + channel interleaving

DRAM Address Mapping Aliases

- Max parallelism
- No isolation
- Linear
 - Channel and bank partitioning
 - Minimum parallelism
- Bank interleaving
 - Channel partitioning
 - Bank parallelism


Dynamically choose performance or isolation at run time

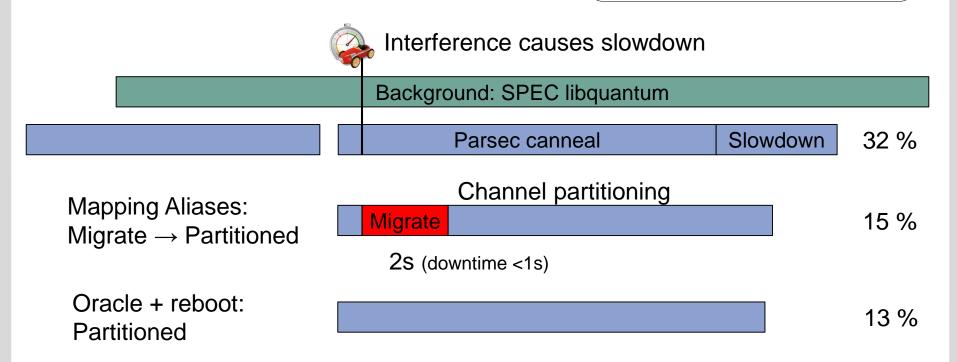
Channel Mapping Aliases


Reconfigurable address translation (Intel Xeon, AMD Athlon/Opteron) [SongPlkit16] [Xeon7500] [AMD15h30h]

Alias-Aware Memory Management

- Page coloring
 - Large regions
 - Utilize NUMA support in OS
- Binding processes to mapping scheme and channel
 - Aliases and channels are ~NUMA memory nodes

Avoiding conflicts


- Same DRAM behind corresponding physical regions
- Memory hotplugging sets conflicting regions offline
- Migrating processes
 - NUMA memory policy and page migration
 - Cache coherence

Evaluation: On-Demand Partitioning

- Scenario: Compute cluster node
- Interleaved address mapping

AMD Athlon X4 880K Linux 4.4.36 Cache & core partitioning

Dynamic reconfiguration provides effective isolation and reduces slowdown

Karlsruhe Institute of Technology

Conclusion

- DRAM performance interference
 - Slowdown depends on workload combination
 - Not known in advance
- Partitioning introduces unavoidable overhead
 - Disables interleaving
 - Reduces memory parallelism
- DRAM mapping aliases offer the OS a choice at runtime
 - Isolation or sharing
 - Integrated with memory management
 - Performance of interleaved address mapping
 - On-demand partitioning

References

[Zhuravlev Survey12] Sergey Zhuravlev, Juan Carlos Saez, Sergey Blagodurov, Alexandra Fedorova, and Manuel Prieto. *Survey of Scheduling Techniques for Addressing Shared Resources in Multicore Processors*. ACM Computing Surveys 45, 1, Article 4 (December 2012)

[X-Mem ISPASS16] Mark Gottscho, Sriram Govindan, Bikash Sharma, Mohammed Shoaib, and Puneet Gupta. *X-Mem: A Cross-Platform and Extensible Memory Characterization Tool for the Cloud*. IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS). Uppsala, Sweden. April 2016

[Intel SDM] Intel Corp. Intel 64 and IA-32 Architectures Software Developer's Manual, September 2016, Order Number 325462-060US

[Jacob Memory07] Bruce Jacob, Spencer Ng, and David Wang. *Memory Systems: Cache, Dram, Disk.* 2007. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[Rixner Sched00] Scott Rixner, William J. Dally, Ujval J. Kapasi, Peter Mattson, and John D. Owens. *Memory Access Scheduling*. In Proceedings of the 27th Annual International Symposium on Computer Architecture (ISCA '00). ACM, 2000

[Mutlu Survey14] Onur Mutlu and Lavanya Subramanian. Research Problems and Opportunities in Memory Systems. Supercomputing Froniers and Innovations: an International Journal 1, 3 2014

References (2)

[PessIDRAMA16] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, Stefan Mangard. DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks. 25th Usenix Security Symposium, 2016

[SongPlkit16] Wonjun Song, Hyunwoo Choi, Junhong Kim, Eunsoo Kim, Yongdae Kim, and John Kim. Plkit: A New Kernel-Independent Processor-Interconnect Rootkit. 25th Usenix Security Symposium, 2016

[Xeon7500] Intel Corp. Intel Xeon Processor 7500 Series Datasheet, Volume 2, March 2010

[AMD15h30h] Advanced Micro Devices, Inc. BIOS and Kernel Developer's Guide (BKDG) for AMD Family 15h Models 30h-3Fh Processors, 49125 Rev 3.06 - February 10, 2015

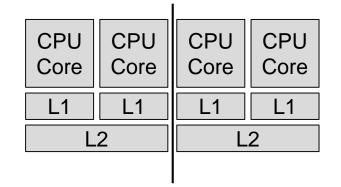
[Liedtke CacheRT97] Jochen Liedtke, Hermann Haertig, and Michael Hohmuth. OS-Controlled Cache Predictability for Real-Time Systems. In Proceedings of the 3rd IEEE Real-Time Technology and Applications Symposium (RTAS '97). IEEE Computer Society, 1997

References (3)

[Ebrahimi FST10] Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt. *Fairness via Source Throttling: a Configurable and High-Performance Fairness Substrate for Multi-Core Memory Systems.* In Proceedings of the Fifteenth Edition of ASPLOS on Architectural Support for Programming Languages and Operating Systems (ASPLOS XV). ACM, 2010

[Yun MemG13] Heechul Yun, Yao Gang, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha, *MemGuard: Memory Bandwidth Reservation System for Efficient Performance Isolation in Multi-core Platforms*, IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), April, 2013

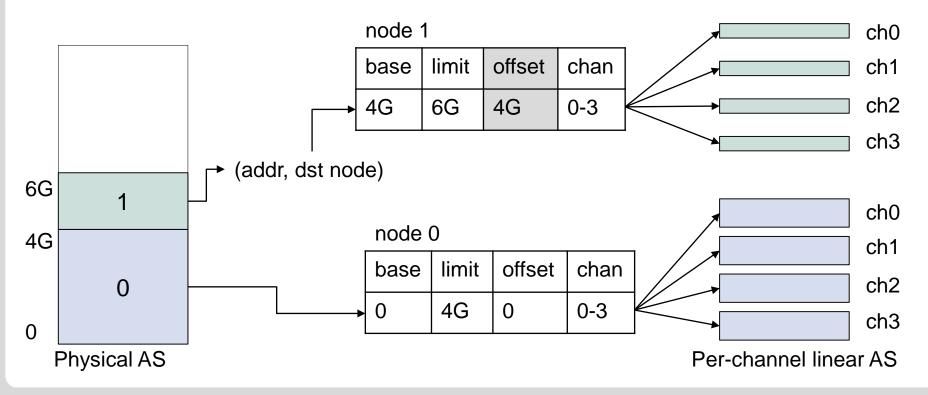
[Zhang HWET09] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. *Hardware Execution Throttling for Multi-Core Resource Management*. In Proceedings of the 2009 USENIX Annual Technical Conference (ATC'09). USENIX Association, 2009


[Muralidhara Chan11] Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kandemir, and Thomas Moscibroda. *Reducing Memory Interference in Multicore Systems via Application-Aware Memory Channel Partitioning*. In Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-44). ACM, 2011

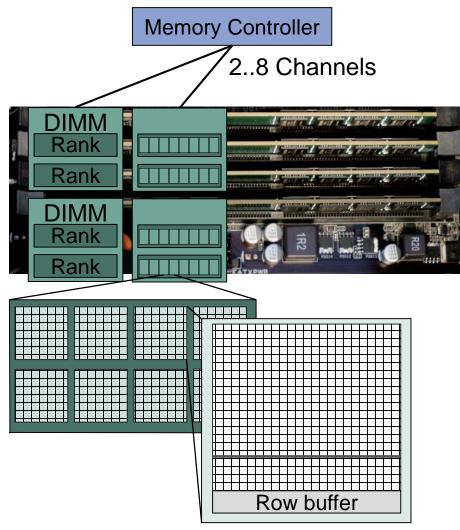
[Liu BPM14] Lei Liu, Zehan Cui, Yong Li, Yungang Bao, Mingyu Chen, and Chengyong Wu. BPM/BPM+: Software-based Dynamic Memory Partitioning Mechanisms for Mitigating DRAM Bank-/Channel-Level Interferences in Multicore Systems. ACM Transactions on Architecture and Code Optimization (TACO) 11, 1, Article 5 (February 2014)

Evaluation Setup

- AMD Athlon X4 880K Steamroller [AMD15h30h]
- 32 GiB dual-channel DDR3 DRAM
 - Channel-interleaved alias
 - Linear alias
- Linux 4.4.36 + modifications
- Core and cache partitioning


Implementation: Conventional Mapping

3-stage address translation (Intel Xeon, AMD Athlon/Opteron)


[SongPlkit16] [Xeon7500] [AMD15h30h]

- 1. Source NUMA routing
- 2. Target address decoder
- 3. (DRAM address decoder)

DRAM Structure

- Hierarchy of parallel resources
- Memory Channel
 - Command & address / data bus
 - Set of DIMMs

Rank

- Set of chips (8/9)
- Addressed as a unit
- 1-2 per DIMM

Bank

- 2-dimensional DRAM array
- 8/16 per rank

Memory parallelism from independent banks and channels

[[]Jacob Memory07]