

Software-Defined Test

Fundamentals

Understanding the Architecture of Modular,

High-Performance Test Systems

2

Contents
Executive Summary ___ 4

Architecture Layer No. 5: System Management/Test Executive _____________________________ 5

Architecture Layer No. 4: Application Development Software ______________________________ 6

Architecture Layer No. 3: Measurement and Control Services ______________________________ 7

Architecture Layer No. 2: Computing and Measurement Bus_______________________________ 8

Architecture Layer No. 1: Measurement and Device I/O __________________________________ 9

Chapter 1: Developing a Modular Test Software Framework _________________________ 10

National Instruments Modular Test Software Framework ________________________________ 10

Chapter 2: Choosing the Right Software ADE for Your Automated Test System ___________ 13

Factors to Consider When Selecting an ADE __ 13

NI LabVIEW __ 15

NI LabWindows/CVI ___ 18

Microsoft Visual Studio .NET (C++, Visual Basic .NET, C#, and ASP.NET) ______________________ 20

Chapter 3: Choosing the Right Data Bus __ 22

Understanding Bus Performance ___ 22

Instrument Control Bus Comparison (GPIB, USB, PCI, PCI Express, and Ethernet/LAN/LXI) _______ 24

Conclusion: Instrument Bus Performance __ 26

Chapter 4: Modular Instruments Basics __ 28

Anatomy of a Modular Instrument ___ 29

Effects of Front End ___ 31

Bandwidth ___ 31

Accuracy ___ 31

Effects of ADC/DAC __ 33

Sampling Rate __ 33

Resolution ___ 33

Instrument Types ___ 36

Digital Multimeters (DMMs) ___ 36

Arbitrary Waveform Generators (Arbs) and Digitizers ___________________________________ 36

Dynamic Signal Analyzers (DSAs) __ 36

RF Analyzers and Generators ___ 37

Conclusion ___ 37

Chapter 5: PXI Modular Instrumentation Platform _________________________________ 38

3

Hardware Architecture ___ 38

PXI Chassis ___ 39

PXI Controllers __ 39

Software Architecture ___ 43

PXI – Industry Standard for Modular Instrumentation ____________________________________ 43

Why Customers Choose PXI ___ 44

Extension of the PXI Platform: PXI Express ___ 45

Chapter 6: Case Studies ___ 46

U.S. Navy: Developing Digital Test Equipment for Navy Aircraft Communications Using NI LabVIEW

and the PXI Platform __ 49

Sanmina-SCI Exceeds Throughput Goals with PXI Tester and Multithreaded Software __________ 51

©2009 National Instruments. All rights reserved. CVI, FlexDMM, HS488, LabVIEW, Measurement Studio,

MXI, National Instruments, NI, ni.com, and NI TestStand are trademarks of National Instruments. The

mark LabWindows is used under a license from Microsoft Corporation. Windows is a registered

trademark of Microsoft Corporation in the United States and other countries. Other product and

company names listed are trademarks or trade names of their respective companies.

4

Executive Summary
When designing automated test systems and choosing a test system architecture, you need to take into

account several design considerations and challenges including increased device complexity, shorter

development cycles, decreased budgets, and test system longevity. For your test system, determine the

factors that are most important and choose an architecture that best meets your needs.

A modular, software-defined test system architecture, like the one shown in Figure 1, is based on a

layered approach with the following advantages:

 Increased test system flexibility deployable to a variety of applications, business segments, and

product generations

 Higher-performance architectures that significantly increase test system throughput and deliver

tight correlation and integration of instruments from multiple suppliers including precision DC,

high-speed analog and digital, and RF signal generation and analysis

 Lower test system investments by reducing initial capital investment and maintenance cost

while increasing equipment use across multiple test requirements

 Increased test system longevity based on widely adopted industry standards that implement

technology upgrades to improve performance and meet future test requirements

Figure 1. Five-Layer Architecture for Developing Test Systems

5

Architecture Layer No. 5: System Management/Test Executive

An automated test system requires the implementation of several tasks and measurement functions –

some specific to the device under test (DUT) and others repeated for every device tested. To minimize

maintenance costs and ensure test system longevity, it is important to implement a test strategy that

separates the DUT-level tasks from the system-level tasks so you can quickly reuse, maintain, and

change test programs (or modules) created throughout the development cycle to meet specific test

requirements.

In any test system, operations are often different and common for each device tested such as system-

level tasks.

Operations Different for Each Device

• Instrument configuration

• Measurements

• Data acquisition

• Results analysis

• Calibration

• Test modules

Operations Common for Each Device

• Operator interfaces

• User management

• DUT tracking

• Test flow control

• Results storage

• Test reports

Operations that are common for each device should be handled by the test executive. A test executive

that handles the common operations can save time for your developers because they do not have to

write the same code for multiple devices. They can spend their time writing the code to handle the

operations that are different for each device. Using a test executive also ensures consistency among

common operations and circumvents having multiple developers write the same type of code for several

devices.

You can choose from several test executives. Some companies write their own test executive, and

others opt to use commercially available software such as NI TestStand. You should select the test

executive that is best for your test system, whether you are creating a custom test executive or using

one that is commercially available.

NI TestStand includes the Sequence Editor development environment for automated test system

development, as shown in Figure 2.

http://www.ni.com/teststand/

6

Figure 2. The NI TestStand Sequence Editor helps you shorten your automated test system development

time.

With the NI TestStand Sequence Editor, you can create test sequences, which automate the execution of

code modules written in any programming language. Each code module executes a test on the device

under test and returns measurement information to NI TestStand. You can automatically log test result

information in a report or database. In addition, systems written in NI TestStand can integrate with

source code control, requirements management, and data management systems.

NI TestStand was designed to address four key areas: (1) simplify complex sequence development, (2)

accelerate complex sequence development, (3) increase code and test system reusability and

maintenance, and (4) improve test system execution performance. These focus areas have led to the

adoption of NI TestStand in consumer electronics for validation and manufacturing test, military and

aerospace applications, the medical industry, and IC characterization.

Architecture Layer No. 4: Application Development Software

The application development environment (ADE) plays a critical role in test system architectures. Using

these tools, you can communicate with a variety of instruments, integrate measurements, display

information, connect with other applications, and more. Ideally, the ADEs used to develop test and

measurement applications provide ease of use, compiled performance, integration of a diverse set of

I/O, and programming flexibility to meet the requirements for a range of applications.

You spend most of your development time working with an ADE, so it is critical to choose one that is

easy to use, supports multiple platforms, and integrates easily with measurement and control services

7

such as drivers. Other features that you should consider when choosing an ADE for developing your test

system are its presentation and reporting features, likelihood of product obsolescence, and the kind of

training and support available worldwide.

Factors to consider when selecting an ADE include the following:

 Ease of use

 Measurement and analysis capabilities

 Integration with measurement and control drivers

 Training and support

 Multicore support

 Operating system independence

 Presentation and reporting features

 Protection against obsolescence

 Upgrades

Examples of ADEs include NI LabVIEW, NI LabWindows/CVI, and Microsoft Visual Studio.

Architecture Layer No. 3: Measurement and Control Services

Choosing test and measurement hardware with scalable software interfaces is another important layer

in defining modular test architectures. Measurement and control services software provides modular

software interfaces for configuring and programming your tests. Examples of these types of software

interfaces include configuration managers such as NI Measurement & Automation Explorer (MAX),

Virtual Instrument Software Architecture (VISA), Plug and Play instrument drivers, and Interchangeable

Virtual Instrument (IVI) drivers. Other examples include instrument drivers provided by your instrument

vendor such as NI-DAQmx.

Configuration Manager

A configuration manager, such as MAX, presents a unified system view of measurement hardware

supported in the measurement and control services software. With MAX, you can define channel names

to organize signals or specify scaling functions to convert digitized signals to measurement quantities.

The key benefit of the configuration manager is the integration with the ADEs, which gives you the

ability to easily integrate multiple measurements into a single application without tedious programming.

With these configuration tools, you can avoid spending time configuring these measurement functions

programmatically.

Instrument Connectivity

Integrating traditional instruments into the test software framework requires technologies such as Plug

and Play instrument drivers and IVI to facilitate the communication with these instruments and their

interchangeability. A Plug and Play instrument driver is a set of functions, or LabVIEW VIs, that control a

programmable instrument. Instrument drivers help you get started using your instrument from your

computer and save you development time and cost because you do not need to learn the programming

protocol for each instrument. With open-source, well-documented instrument drivers, you can

http://www.ni.com/labview
http://sine.ni.com/nips/cds/view/p/lang/en/nid/11104

8

customize your operation for better performance.

IVI implements a driver framework that facilitates instrument interchangeability by using a general API

for each kind of instrument and separately implementing the driver to communicate with particular

instruments. Separating the API from the particular driver implementation of each instrument gives you

the ability to design a system using a particular IVI-compliant oscilloscope; after the system is deployed,

you can change the brand and model of the instrument without having to rewrite the test application.

Programming Tools

Drivers can go beyond providing an easy-to-use API by adding tools to facilitate development and save

you time. I/O assistants are interactive tools for rapidly creating a measurement or stimulus application.

The DAQ Assistant, part of the NI-DAQmx driver, is an example of an I/O assistant. The DAQ Assistant

presents a panel to the user for configuring common data acquisition parameters without programming.

The combination of easy-to-use assistants and powerful programming environments is necessary to

provide rapid development and the capabilities to meet a variety of application requirements.

Architecture Layer No. 2: Computing and Measurement Bus

At the center of every modern automated test system is a computer in the form of a desktop PC, server

workstation, laptop, or embedded computer used with PXI and VXI. An important aspect of the

computing platform is the ability to connect (and communicate) with multiple instruments in a test

system. Several instrumentation buses including GPIB, USB, LAN, PCI, and PCI Express are available for

stand-alone and modular instruments. These buses have different strengths that make some more

suitable for certain applications than others. For example, GPIB has the widest adoption for instrument

control and availability of instrumentation; USB provides wide availability, easy connectivity, and high

throughput; LAN is well-suited for distributed systems; and PCI Express delivers the highest

performance.

The widespread use of the PC has generated the proliferation of high-performance internal buses

including PCI and PCI Express, which offer the lowest latency and highest data throughput or bandwidth.

The PCI bus provides up to 132 MB/s of bus bandwidth, and PCI Express, an evolution of PCI, can scale

up to 4 GB/s to meet growing bandwidth needs and can provide complete software compatibility with

PCI. Figure 3 illustrates the latency and bandwidth performance of the most popular instrument control

buses. Oftentimes, you need a test system that incorporates multiple buses to maximize performance,

longevity, and reusability.

http://www.ni.com/pxi

9

Figure 3. In an instrument control bus comparison, PCI and PCI Express provide the best bandwidth and

latency or overall throughput performance.

Architecture Layer No. 1: Measurement and Device I/O

The final architecture layer, measurement and device I/O, includes the instruments and modules used in

your test system. Depending on the computing and measurement bus you chose for layer No. 2, this

layer can include VXI and/or PXI modules; GPIB, LAN, and/or USB benchtop instruments; and PCI or PCI

Express instruments, as shown in Figure 4. Most automated test systems have several I/O devices

connected by a mix of instrumentation buses. After defining the DUT or DUTs and the types of tests that

you need to perform, you can choose the appropriate device I/O for your test system.

With a modular approach, you can define the test system measurement functionality and build systems

that scale to meet future demands. Using a modular, software-defined approach, you can make custom

measurements, perform measurements for emerging standards, or modify the system if requirements

change to add instruments, channels, or new measurements. The combination of flexible, user-defined

software and scalable hardware components is the core of modular instrumentation.

Figure 4. Example of a Hybrid Test System Based on PXI, LAN, and USB Instruments

10

Chapter 1: Developing a Modular Test

Software Framework
Designing efficient test systems requires a modular software architecture and development tools

optimized for test. To develop test systems faster and more cost-effectively, it is critical that you

evaluate your test software architecture to maximize code reuse. Examining your test software

architecture consists of evaluating the software development tools you are using and studying your

approach to test code development. Understanding the importance of modular test software

architectures and how to develop your tests as modules rather than building stand-alone applications

significantly improves your test software reuse.

Incorporating modular test software architectures begins with choosing a software development

environment that is designed for easily connecting to your instruments and quickly performing any type

of measurement and analysis required for your tests. Such test software development tools include NI

LabVIEW, LabWindows/CVI, and Measurement Studio for Visual Studio .NET. Using the proper test

development environment, you can more easily share your test programs with others in your group and

across test departments in your organization.

Test modules created by design engineers for prototype and validation tests are an integral asset to

production test departments. Production test engineers can easily integrate tests developed during the

prototype and validation phases into final automated test systems using industry-standard test

management software such as NI TestStand.

NI TestStand provides built-in test management capabilities such as test module adapters for calling

tests written in common test languages such as LabVIEW, LabWindows/CVI, C/C++, and Visual Studio

.NET regardless of the function prototypes defined for each test. Maximizing code reuse between the

product design and manufacturing teams reduces test development effort, so production schedules are

met and demands for improved quality are upheld. The flexible NI TestStand module adapters ensure

maximum code reuse across the product development cycle with minimal training and code.

National Instruments Modular Test Software Framework

The management level of the modular test software framework is responsible for directing the

execution of the whole test system. The open software architecture of NI TestStand, a popular choice

for test management software, greatly reduces the effort required to implement a scalable test

software framework. It provides a completely modular and open architecture that you can use “as is”

off-the-shelf or as individual components for designing your completely customized test systems based

on NI TestStand. Figure 1 shows the NI TestStand architecture.

11

Figure 1. NI TestStand Test Management Software Architecture

The center of the NI TestStand architecture is the NI TestStand Engine, a powerful multithreaded test

server with complete and extensively documented APIs. By communicating with the NI TestStand

Engine, the module adapters provide an open language interface to automate tests written in any

language. The process models offer superior modularity between the test code and the system-level

functions that must be performed. The Sequence Editor provides an easy-to-use and powerful

development environment for test sequences. Lastly, the operator interfaces are included in source

code in multiple programming languages for rapid customization to match your exact needs.

NI TestStand Engine

All parts of the NI TestStand architecture are directed by the NI TestStand Engine, a set of libraries that

export an ActiveX/COM API. With the API, you can perform any operation on the NI TestStand Engine

programmatically by taking advantage of the more than 1,400 exported functions. The NI TestStand

Engine implements multithreading so you can increase throughput by testing multiple units

simultaneously. You also no longer have to include limit testing in your test code by implementing this

functionality natively. By not including limit testing, test code becomes more flexible and reusable.

Another feature of the NI TestStand Engine is that it implements flow control functionality much like any

programming language. Finally, it increases the security of your test system by implementing multilevel

user access and management.

Module Adapters

To call code written in different languages, the NI TestStand Engine uses the different module adapters

available with NI TestStand. The module adapters provide an open language interface between the NI

TestStand Engine and your test code written in LabVIEW, LabWindows/CVI, .NET, C/C++ DLLs,

ActiveX/COM, and HT Basic. By calling code in different languages, you are able to take advantage of any

legacy code as well as newer technologies. You can send and receive information from your code

modules using an arbitrary number of parameters or by leveraging the NI TestStand API. Other module

adapter features include stepping into code modules for debugging and leveraging code templates to

improve programmer productivity.

12

Process Model

Testing a DUT requires more than just executing a set of tests. Usually, the test system must perform a

series of operations such as identifying the DUT, logging results, and generating a test report. The set of

such operations and their flow of execution are called a process model. Process models provide superior

modularity between the test code and the system-level functions that must be performed by using

these functions with multiple test sequences. NI TestStand is shipped with three process models that

you can use as is or fully customize. The Sequential process model tests one unit at a time and the Batch

and Parallel process models, featuring NI TestStand multithreading functionality, test more than one

unit at the same time.

Sequence Editor

The Sequence Editor offers all the functionality and tools you need to develop the most sophisticated

automated test systems. In the Sequence Editor, you can create, debug, and modify test sequence files.

These files contain test steps that can include code modules developed in any test programming

language. Furthermore, the Sequence Editor features a utility to build deployment packages to ease the

distribution of test sequences and operator interfaces. The Sequence Editor also provides user

management services, which prevents some users from accessing restricted functionality based on the

privileges defined by your NI TestStand administrator. Figure 2 shows the Sequence Editor displaying a

test sequence written in LabWindows/CVI.

Figure 2. NI TestStand Sequence Editor

Operator Interfaces

Lastly, an operator interface is a customizable user interface for NI TestStand that you can use to

execute and debug test sequence files created in the Sequence Editor. The operator interface is typically

used on a manufacturing floor or if you need to deliver a custom look and feel to your test or validation

system. NI TestStand operator interfaces use NI TestStand user interface controls, which facilitate

development by fully implementing common features such as sequence file display and execution

tracing. NI TestStand includes ready-to-run operator interfaces written in LabVIEW, LabWindows/CVI,

C#, Visual Basic, and Visual Basic .NET.

13

Chapter 2: Choosing the Right Software

ADE for Your Automated Test System
Application development environments (ADEs) play a critical, visible role in a test software framework.

With these tools, the system developer designs and integrates the system that takes measurements,

displays information to the end user, connects with other applications, and much more. Today, test

engineers spend most of their development time working with an ADE. Hence, it is critical to select an

ADE that not only is intuitive but can support multiple platforms and integrate easily with measurement

and control services such as drivers. Other features you should consider when selecting an ADE for your

test system development are its presentation and reporting features, how protected you are from the

obsolescence of the product, and what kind of training and support is available worldwide. This paper

discusses how three different ADEs – LabVIEW, LabWindows/CVI, and Visual Studio .NET – compare on

these characteristics.

Factors to Consider When Selecting an ADE

Ease of Use for New Software Engineers

Because the ADE is where the heart of an automated system is developed, ease of use in these tools is

critical to the productivity of a new software engineer. Ease of use goes beyond how quickly someone

can get up and running. For example, developers should be able to easily integrate processing routines

with multiple measurement devices, create sophisticated user interfaces, deploy and maintain an

application, and modify the application as product designs evolve and system needs expand. Other ADE

features needed include extensive documentation and example code.

Measurement and Analysis Capabilities

It is critical that the ADE used to develop a test system can seamlessly manage and process

measurements. To do this effectively, the ADE should incorporate measurement data types directly in

the environment so that the data is easy to use in additional processing routines. For maximum

development productivity, the ADE should include comprehensive statistical and numerical analysis

functions as well as high-performance signal processing and control algorithms common in

measurement applications.

Multicore and Parallelism Support

Multicore technology has become a standard feature in automated test systems and a necessity for

today’s electronic devices that are processing unprecedented amounts of data. Multicore processors

present new software challenges that must be overcome to fully take advantage of processing

capabilities in a multithreaded application. An ADE must offer developers with programming techniques

to create processes to execute in parallel.

14

Integration with Measurement and Control Drivers

Too often, test system developers assume a device driver alone is sufficient for effectively integrating

their measurement devices. The driver is not enough; measurement and control drivers should be

integrated as seamlessly as possible with the ADE. In the ideal case, the software that controls the

measurement devices is transparent, appearing only as part of the ADE. This ideal implementation

guarantees maximum development flexibility and a scalable architecture that organizations can deploy

on all of the platforms the ADE targets.

Training and Support

The ease of use of an ADE can only go so far in making it simple for new users to learn the application.

Hence, ADE vendors should provide manuals and online training for engineers to quickly learn how to

use their products. Advanced users also might need classroom training to further their knowledge and

learn more about system-level design concepts. This classroom training should give developers the

opportunity to attain proof of their knowledge by going through a certification process. Another

consideration to make when selecting an ADE is the type of vendor support you have access to when

developing your application, such as phone and e-mail support. Furthermore, if you are going to

standardize on an ADE worldwide, you want to consider whether your engineers around the world have

access to support in their own languages.

Platform Independence

Test software applications today target several different architectures. It is important that you choose

an ADE that is flexible enough to support all of these different architectures as seamlessly as possible.

Different OSs such as Windows, Linux, and Macintosh can offer different benefits depending on the

application. You should be able to port your code from one platform to the other. If the ADE does not

support these multiple platforms, you must use different ADEs for different projects and spend crucial

time porting your intellectual property from one platform to the other.

Presentation and Reporting Features

Test applications present many presentation and reporting challenges due to their emphasis on the

graphical representation of data. The ADE should have multiple visual components for data visualization

such as charts, graphs, knobs, and meters. Reporting should also be easy to facilitate the communication

of the information acquired by the system. Some of the most popular reports, such as Microsoft Word

and Excel, should be simple to generate. The communication of results should also be easy to

implement by either publishing the application on the Web or logging information to a database.

Protection Against Obsolescence

Standardizing on an ADE for the development of your test system is a big commitment. It is important

that your investment is protected from the obsolescence of the product. One of the characteristics you

should consider is the product’s track record of integrating with the latest software technologies and its

ability to protect you against discontinuous shifts in test software development. Furthermore, the

product should go through routine upgrades to add new functionality.

15

Table 1. Different ADEs feature different benefits and challenges during test system development.

NI LabVIEW
LabVIEW is a graphical development language that helps engineers and scientists create flexible and

scalable test applications rapidly and at minimal cost. It uses a graphical development paradigm instead

of relying on text-based programming. The LabVIEW graphical dataflow language and block diagram

approach naturally represent the flow of your data and intuitively map user interface controls to your

data, so you can easily view and modify your data or control inputs. Figure 1 depicts the block diagram

of an application and its respective front panel written in LabVIEW.

16

Figure 1. The LabVIEW ADE

LabVIEW also has features to help you reference the extensive documentation included with the

product. Using the Context Help feature, you can leverage the graphical nature of LabVIEW to access a

subVI’s documentation by simply hovering over it. In addition, LabVIEW emphasizes the use of the

hundreds of example programs available with the product and online as a means of demonstrating and

teaching different features.

Despite the sophistication of the underlying algorithms, LabVIEW analysis tools are easy to use. More

than 15 analysis Express VIs, such as the Spectral Measurements Express VI, reduce the complexity of

implementing measurement analysis in your application through interactive configuration dialogs in

which you can preview analysis results immediately. You can use these and other measurement analysis

tools to input real-world, time-domain signals directly from data acquisition hardware and provide

results ready for charting, graphing, or further processing. With these functions, you easily can

determine signal characteristics such as DC/RMS levels, total harmonic distortion (THD/SINAD), impulse

response, frequency response, and cross-power spectrum.

To benefit from the improved processing performance of multicore technology, however, engineers

must be able to program their test code to target the different cores. LabVIEW is inherently parallel and

can automatically generate programs optimized for multiple processing cores. In LabVIEW, two loops

that do not share a data dependency automatically execute in separate threads, as shown in Figure 2.

http://www.ni.com/analysis

17

Figure 2. LabVIEW inherently handles the parallelization of code to target multiple cores.

Consider Table 2 as a representative example of the performance improvement achieved with a

LabVIEW application on a dual-core processor versus a single-core processor, such as the 2.16 GHz Intel

Core 2 Duo T7400 dual-core processor used in the new NI PXIe-8106 embedded controller. With

LabVIEW, you can take advantage of existing code on multicore processors to enhance the performance

of your test applications.

Table 2. By executing tasks in parallel, the same LabVIEW application, which finds all the prime numbers

in the first 1,000,000 natural numbers, runs 47.74 percent faster on a dual-core processor.

LabVIEW offers tight integration with measurement and control drivers, which simplifies connecting to

and communicating with thousands of instruments from hundreds of vendors. With this software, you

can quickly acquire data from GPIB, serial, Ethernet, PXI, USB, and VXI instruments using instrument

drivers, interactive assistants, and built-in instrument I/O libraries. Furthermore, LabVIEW includes easy-

to-use libraries and interactive assistants to communicate with the National Instruments line of modular

instruments and data acquisition products.

18

National Instruments offers LabVIEW training for any level of expertise. While basic courses target

nonprogrammers and developers who want to learn the product, intermediate and advanced users also

can find content that is useful for their level of expertise. On-site courses help organizations train a large

number of developers quickly without having to leave the company. Online and self-paced courses

target those developers who wish to increase their knowledge on their own time and at their own pace.

Although LabVIEW is usually seen as a Windows OS application, the product’s original OS was the

Macintosh. National Instruments ported LabVIEW to Windows as the OS’s importance increased in the

desktop PC industry. The NI commitment to ensure that LabVIEW supports new platforms continues

today. LabVIEW continues to support both Windows and Macintosh but has also added support for

Linux due to its increasing popularity among customers. Being able to run LabVIEW VIs on different OSs

means that no matter which computing platform you work with, you can use your LabVIEW knowledge.

LabVIEW can even run on other targets such as real-time systems and even field-programmable gate

arrays (FPGAs) and digital signal processors (DSPs).

LabVIEW presentation and reporting features are a big part of why the ADE is so well-suited for test

software development. LabVIEW contains multiple graphs, charts, meters, knobs, and switches in both

2D and 3D to help you represent measurement data graphically. The ADE also includes the LabVIEW

Report Generation Toolkit, which you can use to create reports in Microsoft Word and Excel formats. If

you need to communicate results by exporting the application through the Web, you can use LabVIEW

remote panels to display the front panel over the Web on any browser. On the other hand, if you need

to log the results of your measurements to a database, the LabVIEW Database Connectivity Toolkit

offers a set of easy-to-use tools with which you can quickly connect to local and remote databases and

perform many common database operations.

Finally, National Instruments has continually emphasized that it is committed to help its LabVIEW

customers fight obsolescence. Even though a large amount of development effort has been focused on

adding new features and integrating new technologies, running code from previous versions on newer

versions has always been a priority. Running older code on newer versions of the product means that

the valuable resources that were dedicated to creating previous applications are not wasted and can be

leveraged in newer applications.

NI LabWindows/CVI
LabWindows/CVI is a proven test and measurement ANSI C development environment that greatly

increases the productivity of engineers and scientists. Figure 3 displays the LabWindows/CVI

development environment.

19

Figure 3. LabWindows/CVI features a complete workspace you can use to quickly develop, debug, and

manage large applications.

Engineers and scientists use LabWindows/CVI to develop high-performance, stable applications in the

manufacturing test, military and aerospace, telecommunications, design validation, and automotive

industries. LabWindows/CVI streamlines development in these areas with hardware configuration

assistants, comprehensive debugging tools, and interactive execution capabilities you can use to run

functions at design time.

Toolkits such as the Advanced Analysis Library complement the analysis libraries included with

LabWindows/CVI to help you analyze your measurement data. The LabWindows/CVI Advanced Analysis

Library offers a comprehensive set of functions for analyzing your data. With these powerful analysis

routines, you can easily convert raw data into useful information and build test applications. The

Advanced Analysis Library includes functions for signal generation, 1D and 2D array manipulation,

complex operations, signal processing, statistics, and curve fitting.

LabWindows/CVI is an industry leader in instrument control and connectivity because of the NI

Instrument Driver Network of more than 8,000 instrument drivers from more than 200 vendors. You can

use these drivers to easily program instrument control applications. With the Instrument I/O Assistant,

you can generate code to communicate with devices such as serial, Ethernet, and GPIB instruments

without using an instrument driver. The Instrument I/O Assistant offers a simple interface for quickly

prototyping applications and autoparsing instrument data without any programming. You can easily

http://www.ni.com/devzone/idnet/
http://www.ni.com/devzone/idnet/

20

import the code generated into any application, which removes the tedium of writing instrument

connectivity, basic communication, and string parsing code. In addition to the integrated NI-DAQmx

Libraries, LabWindows/CVI provides the DAQ Assistant, an interactive interface to the data acquisition

driver framework.

The training and support structure you can take advantage of for LabVIEW is also available for

LabWindows/CVI. LabWindows/CVI has a variety of training courses that target different levels of

expertise with the product. Organizations that need to train a large number of developers quickly

without their having to travel can choose from on-site courses. Engineers who wish to increase their

knowledge on their own time and at their own pace can select training in the form of online and self-

paced courses. To complement the training opportunities for LabWindows/CVI, National Instruments

applications engineers from local branches around the globe provide worldwide support.

By maintaining the backward compatibility of LabWindows/CVI, National Instruments helps to protect

you from obsolescence. You not only can run C code developed many years ago or LabWindows/CVI

code created in a previous version of the product but also run the applications faster with new

optimizing compiler integration. The National Instruments commitment to ensure LabWindows/CVI

offers backward compatibility is critical to industries that value longevity and continuity such as military

and aerospace.

Microsoft Visual Studio .NET (C++, Visual Basic .NET, C#, and ASP.NET)
Visual Studio .NET offers a powerful ADE by supporting multiple programming languages such as C++,

Visual Basic .NET, C#, and ASP.NET. With the option to select any of these programming languages, you

can use the same tool and leverage the expertise of your developers even if their knowledge focuses on

different programming languages. You can run applications developed in Visual Studio .NET on a PC as

well as the Web by using the ASP.NET language.

Visual Studio .NET provides functionality to develop in different programming languages such as C++,

Visual Basic .NET, and C#. By enabling these programming languages to compile to the Common

Language Runtime, you can add libraries developed in different languages. On the other hand, the fact

that the .NET platform is supported only by the Microsoft Windows OS means that you are limited in the

number of OSs you can use to run your application. Furthermore, porting your application to another OS

in the future might require rewriting the application in a different language.

By default, Visual Studio .NET does not include any functionality to integrate with measurement and

control drivers or perform any analysis operations. Components such as those offered by NI

Measurement Studio, as shown in Figure 4, can provide access to measurement and instrument drivers

and analysis functionality. These components increase the ability of the ADE to integrate with

instrument and measurement drivers by providing interactive assistants to generate code automatically.

In contrast, there are certain features of the .NET framework that make it inherently difficult to

communicate with some instruments. The .NET framework executes code in the Common Language

Runtime, which prevents you from accessing the hardware. When you cannot access the hardware, it is

21

difficult to write directly to an instrument’s registers. To do this, you would have to create a DLL and

then call it from a .NET application.

Figure 4. NI Measurement Studio provides access to measurement and instrument drivers and analysis

functionality.

Visual Studio .NET offers few presentation and reporting capabilities by default. Out of the box, the ADE

provides enough features to generate a standard Windows application by offering text boxes, combo

boxes, list boxes, buttons, and other components that are needed to create a basic application. To use

more powerful components to display data such as graphs and charts, you need to purchase a set of

components for this particular application. This problem is also reflected in the lack of reporting tools

for any of the programming languages in Visual Studio .NET. On the other hand, the .NET framework

includes powerful features for reporting by storing information to a database. You can use ADO.NET, a

rich library of database functionality, to communicate with and perform operations on many different

databases.

The focus of .NET lies in business, IT, and Web-based applications instead of automated test. For this

reason, guaranteeing the longevity of the programming language and avoiding discontinuous shifts are

not a priority. Applications that focus on IT instead of automated test can have a life cycle of a few

months instead of years in the case of automated test. For example, even though it is possible to

integrate DLLs into .NET, this requires the developer to manually invoke the function and guarantee that

the DLL data types match those in .NET. At first this may not seem very challenging, but if you need to

communicate with the hundreds of functions of an instrument driver, this process can be time-

consuming. On the other hand, incorporating your existing ActiveX components into a .NET automated

test application is easier than incorporating DLLs. Visual Studio .NET can generate wrappers around your

ActiveX components to expose them as .NET objects.

22

Chapter 3: Choosing the Right Data Bus
GPIB, USB, PCI/PCI Express, PXI/PXI Express, and Ethernet/LAN are some of the most popular

communication buses available for automated test systems. The challenge for today’s test engineer is

not to choose a single bus or platform on which to standardize every single application, but to choose a

bus or platform appropriate for a specific application or even a specific part of an application. This

chapter presents a head-to-head comparison of the most popular instrumentation buses to help you

make informed decisions when choosing the bus and platform technologies that meet your application-

specific needs. Specific bus technologies discussed below include GPIB, USB, PCI, PCI Express, and

Ethernet/LAN/LXI.

Understanding Bus Performance
First, it is important to outline the relevant performance criteria for instrument control buses to set a

baseline for evaluation and comparison.

Bandwidth

When considering the technical merits of alternative buses, bandwidth and latency are two of the most

important bus characteristics. Bandwidth measures the rate at which data is sent across the bus,

typically in MB/s (106 bytes per second). A bus with high bandwidth is able to transmit more data in a

given period than a bus with low bandwidth. Most users recognize the importance of bandwidth

because it affects whether their data can be sent across the bus to or from a shared host processor as

fast as it is acquired or generated and how much onboard memory their instruments need. Bandwidth is

important in applications such as complex waveform generation and acquisition as well as RF and

communications applications. High-speed data transfer is particularly important for virtual and synthetic

instrumentation architectures. The functionality and personality of a virtual or synthetic instrument is

defined by software; in most cases, this means data must be moved to a host PC for processing and

analysis. Figure 1 charts the bandwidth (and latency) of all the instrumentation buses examined in this

paper.

Figure 1. Bandwidth versus Latency for Instrumentation Buses

23

Latency

Latency measures the delay in data transmission across the bus. By analogy, if you compared an

instrumentation bus to a highway, bandwidth corresponds to the number of lanes and the speed of

travel, while latency corresponds to the delay introduced at the on and off ramps. A bus with low

(meaning good) latency introduces less delay between the time data was transmitted on one end and

processed on the other end. Latency, while less observable than bandwidth, has a direct impact on

applications where a quick succession of short, choppy commands are sent across the bus, such as in

handshaking between a digital multimeter (DMM) and switch, and in instrument configuration.

Message versus Register-Based Communication

Buses that use message-based communication are generally slower because this mode of

communication adds overhead in the form of command interpretation and padding around the data.

With register-based communication, data transfer occurs by directly writing and reading binary data to

and from hardware registers on the device, resulting in a faster transfer. Register-based communication

protocols are most common to internal PC buses, where interconnects are physically shorter and the

highest throughput is required. Message-based communication protocols are useful for transmitting

data over longer distances and where higher overhead costs are acceptable.

Long-Range Performance

For remote monitoring applications and for systems that involve measurement over a large geographical

area, range becomes important. You can view performance in this category as a trade-off with latency

because the error checking and message padding added to overcome the physical limitations of sending

data over longer cables can add delays to sending and receiving the data.

Instrument Setup and Software Performance

Ease of use in terms of instrument setup and software performance is the most subjective criterion

examined here. Nonetheless, it is important to discuss. Instrument setup describes the out-of-the-box

experience and setup time. Software performance relates to how easily you can find interactive utilities

or standard programming APIs such as VISA to communicate with and control the instrument.

Ruggedness of Connector

The physical connector for the bus affects whether it is suitable for industrial applications and whether

additional effort is required to “ruggedize” the connection between the instrument and the system

controller. Figure 2 presents photos of several instrumentation bus connectors.

24

Figure 2. Connectors for Ethernet, USB, PXI, and GPIB (not to scale): The connector for PXI is an

integrated part of the modular instrument on which it resides.

Instrument Control Bus Comparison (GPIB, USB, PCI, PCI Express, and

Ethernet/LAN/LXI)
GPIB

First examine the IEEE 488 bus, familiarly known as GPIB (general-purpose interface bus). GPIB is a

proven bus designed specifically for instrument control applications. GPIB has been a rugged, reliable

communication bus for more than 30 years and is still the most popular choice for instrument control

because of its low latency and acceptable bandwidth. It has the widest industry adoption, with a base of

more than 10,000 instrument models featuring GPIB connectivity.

With a maximum bandwidth of about 1.8 MB/s, GPIB is best suited for communicating with and

controlling stand-alone instruments. The more recent, high-speed revision, HS488, increased bandwidth

up to 8 MB/s. Transfers are message-based, often in the form of ASCII characters. You can cable

together multiple GPIB instruments to a total distance of 20 m, and bandwidth is shared among all

instruments on the bus. Despite relatively lower bandwidth, GPIB latency is significantly lower (better)

than that of USB and especially Ethernet. GPIB instruments do not autodetect or autoconfigure when

connected to the system, though GPIB software is among the best available and the rugged cable and

connector are suitable for the most demanding physical environments. GPIB is ideal for automating

existing equipment or for systems requiring highly specialized instruments.

USB

USB (universal serial bus) has grown popular in recent years for connecting computer peripherals. That

popularity has spilled over into test and measurement, with an increasing number of instrument

vendors adding USB device controller capabilities to their instruments.

Hi-Speed USB has a maximum transfer rate of 60 MB/s, making it an attractive alternative for

25

instrument connectivity and control of stand-alone and some virtual instruments with data rates below

1 MS/s. Though most laptops, desktops, and servers may have several USB ports, those ports usually all

connect to the same host controller, so the USB bandwidth is shared among all the ports. Latency for

USB falls into the better category (between Ethernet at the slow end and PCI and PCI Express at the fast

end), and cable length is limited to 5 m. USB devices benefit from autodetection, which means that

unlike other technologies such as LAN or GPIB, USB devices are immediately recognized and configured

by the PC when you connect them. USB connectors are the least rugged and least secure of the buses

examined here. You may need external cable ties to keep them in place.

USB devices are well-suited for applications with portable measurements, laptop or desktop data

logging, and in-vehicle data acquisition. The bus has become a popular communication choice for stand-

alone instruments due to its ubiquity on PCs and especially due to its plug-and-play ease of use. The USB

Test and Measurement Class (USBTMC) specification addresses the communication requirements of a

broad range of test and measurement devices.

PCI

PCI and PCI Express feature the best bandwidth and latency specifications among all the instrumentation

buses examined here. PCI bandwidth is 132 MB/s, with that bandwidth shared across all devices on the

bus. PCI latency performance is outstanding; it is benchmarked at 700 ns, compared to 1 ms in Ethernet.

PCI uses register-based communication, and, unlike the other buses mentioned here, it does not cable

to external instruments. Instead, it is an internal PC bus used for PC plug-in cards and in modular

instrumentation systems such as PXI, so distance measures do not directly apply. Nonetheless, you can

“extend” the PCI bus up to 200 m by using NI fiber-optic MXI interfaces when connecting to a PXI

system. Because the PCI connection is internal to the computer, it is probably fair to characterize the

connector robustness as being constrained by the stability and ruggedness of the PC in which it resides.

PXI modular instrumentation systems, which are built around PCI signaling, enhance this connectivity

with a high-performance backplane connector and multiple screw terminals to keep connections in

place. Once booted with PCI or PXI devices in place, Windows automatically detects and installs the

drivers for modules.

An advantage that PCI and PCI Express share with Ethernet and USB is that they are universally available

in PCs. PCI is one of the most widely adopted standards in the history of the PC industry. Today, every

desktop PC has either PCI slots, PCI Express slots, or both. In general, PCI instruments can achieve lower

costs because these instruments rely on the power source, processor, display, and memory of the PC

that hosts them rather than incorporating that hardware in the instrument itself.

PCI Express

PCI Express is similar to PCI. It is the latest evolution of the PCI standard as Hi-Speed USB is to USB.

Therefore, much of the above evaluation of PCI applies to PCI Express as well.

The main difference between PCI and PCI Express performance is that PCI Express is a higher-bandwidth

bus that dedicates bandwidth to each device. Of all the buses covered in this tutorial, only PCI Express

26

offers dedicated bandwidth to each peripheral on the bus. GPIB, USB, and LAN divide bandwidth across

the connected peripherals. Data is transmitted across point-to-point connections called lanes at 250

MB/s per direction for PCI Express Gen1. Each PCI Express link can be composed of multiple lanes, so the

bandwidth of the PCI Express bus depends on how it is implemented in the slot and device. A x1 (by 1)

Gen1 link provides 250 MB/s, a x4 Gen1 link provides 1 GB/s, and a x16 Gen1 link provides 4 GB/s

dedicated bandwidth. It is important to note that PCI Express achieves software backward compatibility,

meaning that if you are moving to the PCI Express standard, you can preserve your software

investments in PCI. Also extensible by external cabling, PCI Express continues to evolve. In 2007, the PCI-

SIG (PCI Special Interest Group) introduced PCI Express Gen2, which doubles the bandwidth of PCI

Express Gen1.

High-speed, internal PC buses were designed for rapid communication. Consequently PCI and PCI

Express are ideal bus choices for high-performance, data-intensive systems where large bandwidth is

required, and for integrating and synchronizing several types of instruments.

Ethernet/LAN/LXI

Ethernet has long been an instrument control option. It is a mature bus technology that has been widely

used in many application areas outside of test and measurement. 100BASE-T Ethernet has a theoretical

maximum bandwidth of 12.5 MB/s. Gigabit Ethernet, or 1000BASE-T, increases the maximum bandwidth

to 125 MB/s. In all cases, Ethernet bandwidth is shared across the network. At 125 MB/s, Gigabit

Ethernet is theoretically faster than Hi-Speed USB, but this performance quickly declines when multiple

instruments and other devices are sharing network bandwidth. Communication along the bus is

message-based, with communication packets adding significant overhead to data transmission. For this

reason, Ethernet has the worst latency of the bus technologies featured in this tutorial.

Nonetheless, Ethernet remains a powerful option for creating a network of distributed systems. It can

operate at distances of up to 85 to 100 m without repeaters and, with repeaters, it has no distance

limits. No other bus has this range of separation from the controlling PC or platform. As with GPIB,

autoconfiguration is not available on Ethernet/LAN. You must manually assign an IP address and subnet

configuration to your instrument. Like USB and PCI, Ethernet/LAN connections are ubiquitous in modern

PCs. This makes Ethernet ideal for distributed systems and remote monitoring. It is often used with

other bus and platform technologies to connect measurement system nodes. These local nodes may

themselves be composed of measurement systems relying on GPIB, USB, and PCI. Physical Ethernet

connections are more robust than USB connections but less so than GPIB or PXI.

LXI (LAN eXtensions for Instrumentation) is an emerging LAN-based standard. The LXI standard defines a

specification for stand-alone instruments with Ethernet connectivity that adds triggering and

synchronization features.

Conclusion: Instrument Bus Performance
Despite the conceptual convenience of designating a single bus or communication standard as the

“ultimate” or “ideal” technology, history shows that several standards are likely to continue to coexist

27

because each bus technology has unique strengths and weaknesses. A compilation of the performance

criteria from the previous section, Table 1 shows that no single bus is superior across all measures of

performance.

Bandwidth
(MB/s)

Latency (µs) Range (m)
(without

extenders)

Setup and
Installation

Connector
Ruggedness

GPIB 1.8 (488.1)
8 (HS488)

30 20 Good Best

USB 60 (Hi-Speed) 1000 (USB)
125 (Hi-
Speed)

5 Best Good

PCI 132 0.7 Internal PC
Bus

Better Better
Best (for PXI)

PCI Express 250 (x1)
4000 (x16)

0.7 (x1)
0.7 (x4)

Internal PC
Bus

Better Better
Best (for PXI)

Table 1. Bus Performance Comparison

You can exploit the strengths of several buses and platforms by creating hybrid systems. Hybrid test and

measurement systems combine components from modular instrumentation platforms such as PXI and

VXI and stand-alone instruments that connect across GPIB, USB, and Ethernet/LAN. One key to creating

and maintaining a hybrid system is implementing a system architecture that transparently recognizes

multiple bus technologies and takes advantage of an open, multivendor computing platform, such as

PXI, to achieve I/O connectivity.

The other key to successfully developing a hybrid system is ensuring that the software you choose at the

driver, application, and test system management levels is modular. Though some vendors may offer

vertical software solutions for specific instruments, the most useful system architecture breaks up the

software functions into interchangeable modular layers so that your system is tied neither to a

particular piece of hardware nor to a particular vendor. This layered approach provides the best code

reuse, modularity, and longevity. For example, VISA (Virtual Instrument Software Architecture) is a

vendor-neutral software standard for configuring, programming, and troubleshooting instrumentation

systems comprising GPIB, VXI, serial (RS232/485), Ethernet, USB, and/or IEEE 1394 interfaces. It is a

useful tool because the API for programming VISA functions is similar for a variety of communication

interfaces.

With hybrid systems, you can combine the strengths of many types of instruments, including legacy

equipment and specialized devices. Despite the appeal of finding a one-size-fits-all solution for

instrumentation, reality requires that you fit the instruments and associated bus technologies to your

specific application needs.

28

Chapter 4: Modular Instruments Basics
Modular instrument is the term given to the modular hardware that fits into the virtual instrumentation

architecture, as illustrated by Figure 1.

Figure 1. Comparing Traditional and Virtual Instrumentation Architectures.

To understand how modular instruments work, you need to know the similarities and differences

between the two approaches shown in Figure 1.

As you can see, both approaches have measurement hardware, a chassis, a power supply, a bus, a

processor, an OS, and a user interface. Because the approaches use the same basic components, the

most obvious difference from a purely hardware standpoint is how the components are packaged. A

traditional, or stand-alone, instrument puts all of the components in the same box for every discrete

instrument. By contrast, in a well-designed modular instrumentation system, many of the components –

such as the bus, power supply, OS, and user interface – are shared across instrument modules instead of

duplicating these components for every instrument function. These instrument modules can also include

different types of hardware, such as oscilloscopes, function generators, digital, and RF.

While you can design modular instruments for a variety of platforms, this tutorial examines various

specifications with respect to modular instruments designed for the PCI eXtensions for Instrumentation

(PXI) platform – a rugged platform for test, measurement, and control supported by more than 70

member companies.

29

Figure 2. The PXI platform supports modular instrumentation.

Anatomy of a Modular Instrument
To choose the best possible set of instruments for your application, it is important for you to understand

the various components that make up a modular instrument and the impact that these components

have on fundamental instrument specifications such as bandwidth, resolution, accuracy, and sampling

rate.

This tutorial describes the anatomy of a modular instrument with inputs and provides insight into how

the components of such an instrument can impact various specifications.

Modular instruments typically consist of four main components – analog inputs, analog front end,

analog-to-digital converter (or digital-to-analog converter in the case of instruments that have outputs),

and chassis connection.

Figure 3. Anatomy of a Typical PXI Modular Instrument.

30

Analog Inputs: All modular instruments have input connectors. This is where the analog signal enters

the device. The type of connector, however, varies from instrument to instrument. DMMs for example

use banana connectors because they provide a solid connection with the input signal and, thereby,

reduce noise and ensure accurate DC measurements. On the other hand, many digitizers use BNC

connectors due to their higher bandwidth.

Figure 4. DMM connectors are optimized for accuracy. Digitizer connectors are optimized for bandwidth.

Connection to chassis: Modular instruments made for the PXI platform also have a PXI or PXI Express

connector at the back. This component connects the instrument to the chassis backplane and enables

synchronization between multiple instruments in a chassis using the trigger lines on the backplane.

Analog front end: All instruments also feature an analog front end. This is essentially the analog circuitry

that is required to condition the input signal. The analog front end is typically optimized either for

bandwidth or accuracy. The front end of a DMM, for example, has an oven-stabilized onboard reference

that is used to calibrate the DMM before every measurement to ensure maximum accuracy. The front

end is also optimized to reduce noise.

On the other hand, the analog front end of higher-speed instruments such as digitizers and arbitrary

waveform generators is designed using components that are impedance-matched to reduce attenuation

at higher bandwidth values.

Typically, there is a trade-off between designing an instrument’s front end for accuracy and bandwidth.

Thus, instruments with front ends that have high bandwidth typically have low accuracy. The same is

true for the opposite case.

Analog-to-digital converter (ADC): After the input signal passes through the front-end circuitry, it is

converted into digital values that can be read by the computer using an analog-to-digital converter

(ADC). The instrument’s ADC determines how fast it can sample an input signal. It can also help

determine the instrument’s resolution.

Note: In the case of instruments that output a signal, the ADC is replaced with a digital-to-analog

converter (DAC).

31

Effects of Front End
The previous section of this paper discussed how the analog front end of an instrument can impact its

bandwidth and accuracy. This section defines the terms bandwidth and accuracy and explains how these

specifications can impact your signal measurements.

Bandwidth

The bandwidth of an instrument is more clearly defined as the frequency at which a sinusoidal signal is

attenuated by the analog front end to 70 percent of its original amplitude. This is also commonly known

as the 3 dB point. Bandwidth of an instrument depends on the bandwidth of its front end, which takes

the form of an RC circuit and acts as a lowpass filter.

For example, Figure 5 shows a 100 MHz, 1 Vpk-pk sine wave passing through the front end of an

instrument with a bandwidth of 100 MHz. The signal that emerges from the front end is a 0.7 Vpk-pk sine

wave, which is essentially the original signal attenuated by 30 percent.

Figure 5. 100 MHz Sine Wave Passing through an Instrument with a Bandwidth of 100 MHz.

Accuracy

There is always some uncertainty in any measurement made by an instrument. Accuracy is a measure of

this uncertainty. To better understand accuracy, take a look at the example of the Omega chronometer

watch series. These watches feature a mechanical movement with an average daily variation range

between -4 and +6 seconds per day or 69.4 parts per million (ppm). This is an accuracy of 99.99 percent,

the highest accuracy attainable by a mechanical movement.

Just like watches, instruments have a certain degree of accuracy. Some of the most accurate

instruments available on the market are DMMs. The front end of some DMMs can offer less than 50

ppm of accuracy. This means some DMMs can offer an uncertainty of less than 50 µV on a 1 V input

signal. Accuracy is usually represented as an offset on your measurement.

32

Figure 6. Accuracy is represented as an offset on your measurement.

Different instruments offer different accuracy for different measurement ranges and conditions. It is

therefore very important to carefully evaluate the specifications listed in the datasheet to determine

whether a particular product suits your measurement needs.

For example, assume that you are trying to measure a 7 V signal with the NI PXI-4070 6½-digit DMM 90

days after it has been calibrated and at an ambient temperature that is within ±5° of the temperature at

which the DMM was calibrated. Based on this information, you can calculate the accuracy of the DMM

using Table 1, which is included in the specifications sheet of the product.

Table 1. DC Voltage Accuracy of the PXI-4070 6½-Digit DMM

From the table, you can determine that the accuracy specifications for these conditions is ±(20 ppm of

reading + 6 ppm of range). Thus:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ± 𝑝𝑝𝑚 𝑜𝑓 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 + 𝑝𝑝𝑚 𝑜𝑓 𝑟𝑎𝑛𝑔𝑒

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ± 20 𝑝𝑝𝑚 𝑜𝑓 7 𝑉 + 6 𝑝𝑝𝑚 𝑜𝑓 10 𝑉

33

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ± 7 𝑉 ×
20

1000000
+ 10 𝑉 ×

6

1000000
 = 200 𝜇𝑉

Therefore, the reading should be within 200 µV of the actual input voltage.

Effects of ADC/DAC
This section examines in greater detail the impact that sampling rate and resolution – specifications

affected by the ADC of an instrument – can have on your measurements.

Sampling Rate

Sampling rate is the maximum speed at which the ADC of an instrument can convert the input signal

into digital values that represent the voltage level. One consideration to make when evaluating the

sampling rate of an instrument is the Nyquist Theorem, which states that a signal must be sampled at a

rate greater than twice the highest frequency component of interest in the signal to capture the highest

frequency component of interest. Even at a rate of 2X, the signal appears significantly distorted, as

shown Figure 6, where a 100 MHz sine wave is being acquired by an ADC that can sample at only 200

MS/s or 200 MHz.

Figure 6. The 100 MHz sine wave sampled by 200 MS/s appears distorted.

To obtain an accurate representation of the signal, the instrument must have a sample rate at least 5X

the speed of the signal.

Resolution

Resolution is another instrument specification that is directly impacted by the ADC. It is defined as the

smallest amount of input signal change that an instrument or sensor can detect reliably. Typically, in

analog instruments such as digitizers, arbitrary waveform generators (arbs), and dynamic signal

analyzers (DSAs), resolution is represented in bits. But in the case of precision DC instruments, such as

DMMs, it is represented in digits.

Bits

Expressed in bits, the resolution of analog instruments (digitizers, arbs, DSAs, and so on), is a

characteristic that is directly tied to the ADC (or DAC in the case of arbs) used in the instrument. An 18-

bit digitizer, for example, uses an 18-bit ADC. In analog instruments, you can calculate the smallest

34

possible change in the input signal that can be detected, also known as the least-significant bit (LSB),

using the following formula:

𝐿𝑒𝑎𝑠𝑡 𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝐵𝑖𝑡 𝐿𝑆𝐵 =
𝐼𝑛𝑝𝑢𝑡 𝑅𝑎𝑛𝑔𝑒

2𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑜𝑛 𝐴𝐷𝐶/𝐷𝐴𝐶

For example, Figure 7 shows a 10 Vpk-pk sine wave passing through a three-bit ADC. This ADC can use a

total of 23 different discrete values to represent any voltage value that it converts. Thus, for an input

signal with a range of 10 V, the smallest possible voltage detectable by the ADC or LSB can be calculated

as 10/23 or 1.25 V.

Figure 7. Sine Wave Passing through a Three-Bit ADC.

If the same signal were to pass through an ADC with a resolution of eight bits, then the smallest possible

voltage that is detectable by the ADC is 10/28 = 39 mV, and for a 24-bit ADC the value would be 10/224 =

596 nV.

Digits

The resolution of precision DC instruments such as DMMs is represented in digits. The number of digits

is used to specify the number of meaningful counts, or unique digitized values, the DMM is capable of

producing. For a traditional benchtop DMM, the number of digits indicates how many decimal places

the DMM can display on its digital readout. The number of digits is often specified as the number of full

digits, digits that can take any value from 0 to 9, and a single overrange digit, referred to as the ½ digit.

The overrange digit is limited to only specific values, generally 0 or 1. For example, a 6½-digit DMM has

seven decimal places on its readout. The most significant digit on the display can take on a value of 0 or

1; the rest can range from 0 to 9.

Figure 8. Example Reading Obtained from a 6½-Digit DMM.

35

There is a loose relationship between digits and bits. For example, for a noise-free DMM that uses a 12-

bit ADC to digitize signals, you can calculate the digits of resolution using the following formula:

𝐷𝑖𝑔𝑖𝑡𝑠 𝑜𝑓 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = log10(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐿𝑆𝐵) = log10 212 = 3.61 𝑑𝑖𝑔𝑖𝑡𝑠

In reality, however, a noise-free DMM does not exist. Noise may reduce the number of LSBs, therefore

reducing the number of digits. As a result, you need to account for the noise level when calculating the

effective number of digits (ENOD) for a DMM. You can do this using the following formula:

𝐸𝑁𝑂𝐷 = log10(
𝑇𝑜𝑡𝑎𝑙 𝑆𝑝𝑎𝑛

 12 × 𝑅𝑀𝑆 𝑁𝑜𝑖𝑠𝑒
)

For example, if a DMM set on the ±10 V range (20 V total span) shows readings with an rms noise level
of 70 µV, you can calculate its effective absolute units of resolution and the ENOD using the following
formula:

𝐸𝑁𝑂𝐷 = log10(
20 𝑉

 12 × 70 𝜇𝑉
) = 4.92 𝑑𝑖𝑔𝑖𝑡𝑠

Thus, this DMM can be called a five-digit DMM. You can calculate the minimum number of counts
(equivalent to LSBs) required for building a five-digit DMM using the following formula:

𝐶𝑜𝑢𝑛𝑡 =
𝑇𝑜𝑡𝑎𝑙 𝑆𝑝𝑎𝑛

 12 × 𝑅𝑀𝑆 𝑁𝑜𝑖𝑠𝑒
=

20 𝑉

 12 × 70 𝜇𝑉
= 82478

The minimum number of bits needed is, therefore, 17 (216 = 65,536, 217 = 131,072).

Table 2 relates bits, counts, and ENOD to conventional digits of resolution for DMMs. As evidenced by
the table, bits, counts, and ENOD are deterministically related. A direct mathematical relationship
between ENOD and digits does not exist because digits are used only as an approximation.

Table 2. Relating Bits, Counts, and ENOD to Conventional Digits of Resolution.

36

Instrument Types
This section of the tutorial describes the five main instrument types – DMMs, digitizers, arbitrary

waveform generators, RF analyzers and generators, and dynamic signal acquisition boards – and

explains for which specifications each type is optimized.

Digital Multimeters (DMMs)

A DMM is similar to a digitizer or data acquisition hardware with some important differences. Unlike the

front end of digitizers, the front end of DMMs is designed to lower noise and increase accuracy.

Additionally, DMMs provide accuracy through averaging. This often slows down their speed. Figure 1

illustrates basic DMM functionality. Like a digitizer, a DMM has a fast sample clock that sets the rate at

which samples are acquired. However, unlike a digitizer, a DMM does not return every analog-to-digital

conversion. Rather, multiple samples are buffered and then averaged to return a single measurement.

Figure 9. DMMs average various samples to obtain a single reading.

The number of samples collected for averaging is determined by the aperture time. By increasing the

aperture time of a DMM, you can effectively increase the number of samples being averaged per

measurement and thus reduce noise and increase resolution.

Through averaging, DMMs offer higher resolution. However, averaging also reduces the speed of DMMs.

Thus DMMs are designed for high-precision but not high-speed applications.

Arbitrary Waveform Generators (Arbs) and Digitizers

Arbs and digitizers are different in that arbs are used for signal generation while digitizers are used for

measurements. However, because both instruments are designed to work with high-speed signals, they

share many of the same design concerns. For starters, when designing the front end for an arb or

digitizer, engineers pay special attention to the characteristic impedance of the components used. By

matching impedances of all components used in the signal path, engineers are able to design high-

bandwidth front ends.

Additionally, both arbs and digitizers use ADCs/DACs that are high-speed rather than high-resolution.

Typically, these devices have sampling rates in the GS/s range generally have resolution of between

eight and 12 bits. Thus arbs and digitizers are optimized for high-speed applications but not high-

precision applications.

Dynamic Signal Analyzers (DSAs)

DSA devices are specifically designed for sound and vibration applications. These devices use high-

resolution rather than high-speed ADCs. Even so, they are different from DMMs. While DMMs are

37

specifically optimized for measuring DC voltages, currents, and resistances, DSA devices are optimized

for measuring AC signals.

RF Analyzers and Generators

RF instruments are different from all other instruments. They consist of an ADC and an upconverter or a

downconverter, and they have components that are impedance-matched to ensure minimum losses and

attenuation at high frequencies. RF instruments have not been addressed in this tutorial due to their

complexity. To learn more about RF instruments and how they work, visit ni.com/rf.

Conclusion
Bandwidth, accuracy, resolution, and sampling rate are often the first factors you must consider when

selecting modular instruments because instruments that are optimized for accuracy and resolution

typically have lower sampling rates and bandwidths. Figure 10, which uses two axes – resolution and

sampling rate – to illustrate how various NI instrument types stack up against each other, is a good place

to start when short-listing instruments for your application.

Figure 10. Resolution versus Sampling Rate Chart for NI Modular Instruments.

However, it is important to note that choosing instruments is often far more complex than simply

evaluating the four specifications outlined in this document. You must also consider several other

instrument specifications, such as noise, power, isolation, and dynamic range. Additionally, various

instruments offer specific features that can prove to be extremely valuable for specific applications. The

NI PXI-4071 7½-digit DMM, for example, offers a feature known as offset compensation that eliminates

parasitic voltage and resistance values from a circuit to obtain highly accurate low-level resistance

measurements. Other instruments such as the NI PXI-5154 feature equivalent time sampling, which

increases the apparent sampling rate of the device by creating a picture of a waveform using a series of

samples taken from repetitive waveforms.

Though this tutorial can provide a starting point, choosing the right modular instrument for your

application involves thoroughly evaluating all the specifications and features of various products.

http://www.ni.com/rf

38

Chapter 5: PXI Modular

Instrumentation Platform

PXI (PCI eXtensions for Instrumentation) is a rugged PC-based platform for measurement and

automation systems. PXI combines PCI electrical-bus features with the rugged, modular, Eurocard

packaging of CompactPCI, and then adds specialized synchronization buses and key software features.

PXI is both a high-performance and low-cost deployment platform for measurement and automation

systems. These systems serve applications such as manufacturing test, military and aerospace, machine

monitoring, automotive, and industrial test.

Developed in 1997 and launched in 1998, PXI was introduced as an open industry standard to meet the

increasing demands of complex instrumentation systems. Today, PXI is governed by the PXI Systems

Alliance (PXISA), a group of more than 60 companies chartered to promote the PXI standard, ensure

interoperability, and maintain the PXI specification. For more information on the PXISA, including the PXI

specification, refer to the PXISA Web site at pxisa.org.

Hardware Architecture

Figure 1. A PXI system features three basic components: chassis, system controller, and peripheral

modules.

http://www.pxisa.org/

39

PXI Chassis

PXI chassis provide the rugged and modular packaging for systems. Chassis available in both 3U and 6U

form factors, generally ranging in size from four to 18 slots, are available with special features such as

DC power supplies and integrated signal conditioning. The chassis contains the high-performance PXI

backplane, which includes the PCI bus and timing and triggering buses. Using these timing and triggering

buses, you can develop systems for applications requiring precise synchronization.

PXI Controllers

As defined by the PXI Hardware Specification, all PXI chassis contain a system controller slot located in

the leftmost slot of the chassis (slot 1). Controller options include remote controllers from a desktop,

workstation, server, or laptop computer as well as high-performance embedded controllers with either

a Microsoft OS (Windows XP/2000) or a real-time OS (LabVIEW Real-Time).

PXI Embedded Controllers

Embedded controllers eliminate the need for an external PC, therefore providing a complete system

contained in the PXI chassis. PXI embedded controllers are typically built using standard PC components

in a small, PXI package. For example, the NI PXI-8110 controller has the Core 2 Quad Q9100 2.26 GHz

processor, with up to 2 GB of DDR2 RAM, a hard drive, and standard PC peripherals such as ExpressCard,

USB 2.0, Ethernet, serial, parallel, and GPIB ports. There are two types of PXI embedded controllers:

 PXI embedded controllers with Windows

 PXI embedded real-time controllers

PXI Embedded Controllers with Windows: PXI embedded controllers with Windows come with standard PC

features such as integrated CPU, hard-drive, RAM, Ethernet, video, keyboard/mouse, serial, USB, and

other peripherals, as well as Microsoft Windows and all device drivers already installed. Because the

controllers have Microsoft Windows, the user experience is no different than a PC or laptop computer. It

has application software similar to that available on your PC or laptop computer such as Microsoft Office

Word, Excel, and PowerPoint.

PXI Embedded Real-Time Controllers: PXI embedded real-time controllers also come with standard PC

features along with a real-time OS such as LabVIEW Real-Time or VxWorks to deliver real-time,

deterministic, and reliable I/O for measurement, automation, and control. Because RT Series PXI

controllers are configured and programmed over the Ethernet, you can distribute a real-time application

across the network and remotely monitor it. These controllers are designed for applications requiring

deterministic and reliable performance and can be run under headless operation (in other words, no

keyboard, mouse, or monitor).

http://sine.ni.com/nips/cds/view/p/lang/en/nid/1527
http://sine.ni.com/nips/cds/view/p/lang/en/nid/10485
http://sine.ni.com/nips/cds/view/p/lang/en/nid/11154

40

Figure 2. NI PXI-8110 Core 2 Quad Q9100 2.26 GHz Processor Embedded Controller: Notice the familiar

PC peripherals such as keyboard/mouse and monitor connections as well as the hard drive, USB 2.0,

Ethernet, serial, ExpressCard, and other standard PC peripherals.

Embedded controllers are ideal for portable systems and contained “single box” applications where the

chassis is moved from one location to the next. For more information, refer to PXI controllers.

PXI Remote Controllers

There are two types of PXI remote controllers:

 Laptop control of PXI

 PC control of PXI

Laptop Control of PXI: With ExpressCard MXI (Measurement eXtensions for Instrumentation) and

PCMCIA CardBus interface kits, you can control PXI systems directly from laptop computers. During

boot-up, the laptop computer recognizes all peripheral modules in the PXI system as PCI boards. Using

ExpressCard MXI, you can control your PXI system with a sustained throughput of up to 214 MB/s.

Figure 3. Laptop Control of PXI – ExpressCard MXI Interface Kit.

http://sine.ni.com/nips/cds/view/p/lang/en/nid/1534

41

Figure 4. Laptop Control of PXI – PCMCIA CardBus Interface Kit.

You now have the advantage of mobile PXI systems for applications such as field tests; in-vehicle data

logging; noise, vibration, and harshness testing; and nondestructive testing with laptop control of PXI.

You can purchase any ExpressCard MXI compatible laptop or PCMCIA CardBus compatible laptop to

remotely control your PXI system.

PC Control of PXI: With MXI-Express and MXI-4 interface kits, you can control PXI systems directly from

your desktop, workstation, or server computers. During boot-up, the computer recognizes all peripheral

modules in the PXI system as PCI boards.

Figure 5. Remote control with two-port MXI-Express provides simultaneous

control of two PXI chassis with combined throughput of 160 MB/s.

Using MXI-Express, you can control your PXI system with a sustained throughput of up to 832 MB/s.

With the MXI-Express two-port interface kit, you can control two PXI systems simultaneously from a

single PC.

http://zone.ni.com/devzone/conceptd.nsf/webmain/23F563A4255EB50F8625702D005A9D07
http://zone.ni.com/devzone/conceptd.nsf/webmain/40C6006F85B25FA18625702E00578407

42

Figure 6. Remote control with MXI-4 provides PC control of PXI as well as multichassis PXI systems.

With PXI remote controllers, you can maximize processor performance with minimized cost by using a

desktop computer or laptop to remotely control a PXI system. Because all remote control products are

software-transparent, no additional programming is required.

PXI Peripheral Modules

National Instruments offers more than 300 different PXI modules. Because PXI is an open industry

standard, nearly 1,500 products are available from more than 70 different instrument vendors.

Analog input and output Boundary scan

Bus interface and communication Carrier products

Digital input and output Digital signal processing

Functional test and diagnostics Image acquisition

Prototyping boards Instruments

Motion control Power supplies

Receiver interconnect devices Switching

Timing input and output RF and communications

Because PXI is directly compatible with CompactPCI, you can use any 3U CompactPCI module in a PXI

system. A categorized list of modules offered by National Instruments and its PXI product partners is

available at ni.com/pxi.

http://www.ni.com/pxi

43

PXI also preserves investments in stand-alone instruments or VXI systems by providing standard

hardware and software for communication to these systems. For example, interfacing a PXI system to

GPIB-based instrumentation is no different with a PXI-GPIB module than it is with a PCI-GPIB module.

The software is identical. Additionally, a number of methods are available to build hybrid systems

interfacing PXI, USB, LAN/LXI, VXI, and stand-alone instruments.

Software Architecture
Because PXI hardware is based on standard PC technologies, such as the PCI bus, and standard CPUs and

peripherals, the standard Windows software architecture is familiar to users as well. Development and

operation of Windows-based PXI systems is no different from that of a standard Windows-based PC.

Additionally, because the PXI backplane uses the industry-standard PCI/PCI Express bus, writing

software to communicate with PXI devices is, in most cases, identical to that of PCI devices. For example,

software to communicate to an NI PXI-6251 multifunction data acquisition module is identical to that of

an NI PCI-6251 board in a PC. Therefore, existing application software, example code, and programming

techniques do not have to be rewritten when moving software between PC-based and PXI-based

systems.

Figure 7. Two Different Packages – One Software Standard: In software, communication

with a PXI module (bottom) is identical to that with a PCI board (top).

As an alternative to Windows-based systems, you can use a real-time software architecture for time-

critical applications requiring deterministic loop rates and headless operation (no keyboard, mouse, or

monitor). Additional information on using LabVIEW Real-Time with PXI systems is available at

ni.com/realtime.

PXI – Industry Standard for Modular Instrumentation
PXI, based on PCI and next-generation PCI Express, is the fastest-growing test and measurement

standard since GPIB. PXI best meets modular instrumentation demands now and in the future, with

more than 60 vendors in the PXI Systems Alliance and more than 1,500 products available today.

Primarily, all instruments in a PXI system share the same power supply, chassis, and controller.

Alternative approaches duplicate the power supply, chassis, and/or controller for every instrument,

adding cost and size and decreasing reliability. With PXI, the controller can be a high-performance slot 0

http://www.ni.com/realtime

44

embedded controller, desktop PC, laptop, or server-class machine. When you require faster processing,

you can easily upgrade the controller of a PXI system. To reuse existing equipment, you can use PXI to

control USB, GPIB, LAN/LXI, serial, and VXI instruments.

Modular instruments require a high-bandwidth, low-latency bus to connect instrument modules to the

shared processor for performing user-defined measurements. PXI meets these needs with bandwidth up

to 2 GB/s for each slot as specified by the PCI Express Gen1 specification. Future generations of PCI

Express will increase this further. Actual per-slot bandwidth will vary by manufacturer depending on

whether a manufacturer uses x4 or x8 PCI Express interfaces and whether these interfaces are Gen 1, 2,

or 3.

Take a modular RF acquisition system, for example. PXI can stream two channels of 100 MS/s, 16-bit IF

data directly to a processor for computation. Neither LAN nor USB can meet these requirements, so

these instruments always include an embedded, vendor-defined processor. Hence high-bandwidth

standards such as PXI provide a truly software-defined approach required for modular instrumentation.

Why Customers Choose PXI

Higher Throughput

Every application is unique and has very specific needs. However, bandwidth and latency are two

important attributes of a platform for many applications. Latency tends to dominate single-point

operations, such as digital multimeter/switch scanning, and bandwidth tends to dominate data

streaming applications, such as waveform stimulus/response. PXI provides high speed for a wide range

of applications with both high bandwidth and low latency via the PCI/PCI Express bus.

Timing and Synchronization

Many measurement and automation applications require advanced timing and synchronization

capabilities that you cannot implement directly across PC standard I/O buses such as PCI/PCI Express,

Ethernet/LAN, USB, and so on. PXI offers advanced timing and synchronization features to meet your

application needs:

• 100 MHz differential system reference clock

• 10 MHz reference clock signal

• Differential star trigger

• Star trigger bus with matched-length trigger traces to minimize intermodule delay and skew

• Trigger bus to send and receive high-speed timing and triggering signals

• Differential signals for multichassis synchronization

• Support for industry standards including GPS, 1588, and IRIG-B

System Reliability

The PXI specification defines requirements that make PXI systems well-suited for harsh environments.

PXI features the high-performance IEC (International Electrotechnical Commission) connectors and

rugged Eurocard packaging system used by CompactPCI. The PXI specification also defines specific

cooling and environmental requirements to ensure operation in industrial environments. Modularity

45

makes it easy to configure, reconfigure, and repair your PXI systems, resulting in very low mean time to

repair (MTTR). Because PXI is modular, you can update individual modules and components without

replacing the entire system.

Lower System Costs

Because PXI is a PC-based platform, it delivers high-precision instrumentation, synchronization, and

timing features at an affordable price. The low cost of PC components is only the beginning of the

savings you gain from using PXI. With PXI, you use the same OS and application software like Microsoft

Excel and Microsoft Word in your office and on the production floor. The familiarity of the software

eliminates training costs and the need to retrain personnel every time you implement a new system.

Because the foundation of PXI is PC technology, you benefit from low component costs, familiar

software, and system reuse.

Extension of the PXI Platform: PXI Express
PXI Express technology is the latest addition to the PXI platform. The PXI Express specification integrates

PCI Express signaling into the PXI standard, which increases backplane bandwidth from 132 MB/s to 6

GB/s, a 45 times improvement. It also enhances PXI timing and synchronization features by

incorporating a 100 MHz differential reference clock and differential triggers.

The PXI Express specification adds these features to PXI while maintaining backward compatibility:

• Software: PCI Express uses the same OS and driver model as PCI, resulting in complete software

compatibility between PCI-based systems (such as PXI) and PCI Express-based systems (such as

PXI Express). This software compatibility is ensured by the PCI Special Interest Group (PCI-SIG), a

group composed of member companies, such as Intel, who are committed to the development

and enhancement of the PCI and PCI Express standards.

• Hardware: PXI Express chassis provide hybrid peripheral slots that accept both PXI Express

peripheral modules and hybrid-slot-compatible PXI peripheral modules. These peripheral slots

deliver signaling for both PCI and PCI Express.

You can use code you have written for previous PXI systems with PXI Express systems because PXI

Express maintains complete software compatibility with PXI. Software compatibility includes OSs such as

Windows XP and Linux, application software such as Microsoft Office, and user code such as LabVIEW

VIs and C++ projects. For more information, refer to PXI Express.

http://www.ni.com/pxi/pxie/

46

Chapter 6: Case Studies

Microsoft Uses NI LabVIEW and PXI Modular Instruments to Develop

Production Test System for Xbox 360 Controllers

Author(s): D.J. Mathias, Microsoft

Product Used: LabVIEW, Modular Instruments, Oscilloscopes/Digitizers, PXI/CompactPCI

The Challenge: Developing a comprehensive, low-cost production test system for the Microsoft Xbox

360 wired and wireless controllers.

The Solution: Using a flexible, automated test system based on Microsoft Windows XP, Microsoft SQL

Server, National Instruments LabVIEW, and NI PXI modular instruments to test the functional

performance of the Xbox 360 controller, both wired and wireless versions.

Designing Powerful Controllers for a New Generation of Gaming

In 2001, Microsoft deployed a PXI-based end-of-line functional test system for the original Xbox

controller using NI LabVIEW and PXI modular instruments.

The system tested device communication and monitored

data packets at the bit level to verify that all controller-

functional messages were within specification. The system

also monitored signals at the chip level to analyze the

electrical signals for parameters such as rise/fall times,

minimum/maximum voltage levels, and current draw.

In May 2005, Microsoft announced its latest innovation for

digital entertainment and gaming, the Xbox 360, along with a

new line of Xbox 360 wired and wireless controllers. The

Xbox 360 wired controllers use a versatile, low-cost USB

interface to communicate to the main game console. With

the USB interface, the system easily accepts additional peripherals such as dance pads and steering

wheels. The Xbox 360 controller-functional test system needed to perform similar tests to those of the

original Xbox controller test system, but it required higher-performance signal capture to qualify the

signal integrity of the new controller and ensure a high-quality user experience. With the latest NI

modular instruments, including the NI PXI-5124 12-bit, 200 MS/s digitizer, we met the increased

functional test requirements for the Xbox 360 controller. Using the LabVIEW graphical development

environment, we created more than 100 tests, implemented Ethernet communication, and incorporated

a data storage interface to our Microsoft SQL Server database.

Microsoft uses PXI and LabVIEW to

ensure a quality gaming experience with

the Xbox 360.

47

PXI Modular Instruments for Design Validation and Production Test

Using PXI instrumentation and LabVIEW, we built the test system in our Xbox 360 controller design

validation lab and recently deployed it to our production line. During the validation and production

cycle, the following NI PXI-based modular instruments provided us with a broad range of measurement

functionality:

 PXI-5124 high-resolution digitizer for USB communication interface analysis
 PXI-4472 dynamic signal acquisition module for vibration feedback motor analysis
 PXI data acquisition modules for general-purpose analog I/O measurements
 PXI-6509 digital I/O module for general-purpose I/O control

We rapidly adapted the test system capabilities to meet our requirements for both the validation lab

and production test by taking advantage of the broad range of PXI functionality, PXI modularity, and the

PXI software-centric measurement approach.

The PXI-5124 high-resolution digitizer is a key component in the Xbox 360 controller end-of-line

functional test system. The 200 MS/s real-time sampling rate and 12 bits of resolution on the PXI-5124

digitizer helped us verify the signal integrity of the USB communication between the controller and the

Xbox 360 console with confidence. The high-resolution input and high-speed sampling rate are

important features that make the digitizer a low-cost, quality solution – and a better option compared

with higher-cost and lower-resolution oscilloscopes – to capture, monitor, and analyze the Xbox 360

controller USB signals, audio signals, and serial data signaling.

NI LabVIEW Interfacing with Microsoft SQL Server, TCP/IP, and ActiveX Controls

Functional test is a key component to any production line. The challenge in developing a production line

functional tester is to package as many parallel test scenarios as possible within the given production

cycle time. With the new functional test system for the Xbox 360 controller, we implemented a test

strategy that resulted in a 100 percent increase in our test throughput per test station.

We used LabVIEW to run multiple tests in parallel to maximize test coverage during the given

production cycle time, and we used the LabVIEW Database Connectivity Toolkit to connect to our

Microsoft SQL Server database to store every DUT parameter. As each Xbox 360 controller rolls off the

production line, each completed test sends more than 110 data parameters to the dedicated Microsoft

SQL Server for post-test analysis to implement future production line and device enhancements. Using

the integrated TCP/IP and support for embedded ActiveX controls in LabVIEW, we communicated to the

USB and wireless controllers through our custom interfaces. Overall, LabVIEW helped us develop an

optimized end-of-line production test system for the Xbox 360 controller with data storage to our

Microsoft SQL Server, communication through TCP/IP, and programmatic interaction with ActiveX

controls.

48

Microsoft Sees Results Using NI LabVIEW and PXI Modular Instruments

At Microsoft Corporation, we developed a versatile validation and end-of-line production test system for

the Xbox and Xbox 360 controllers using Microsoft Windows XP, LabVIEW, and PXI. With the PXI-based

system, we can achieve reliable production line testing and store all parameters to our Microsoft SQL

Server. Using the high-resolution input and high sampling rate of the PXI-5124 digitizer, we acquire our

test signals with 12 bits of resolution at data rates up to 200 MS/s, which provides a low-cost automated

test system. Finally, using the power of the PC, we continue to easily upgrade and maintain our system

today and for future development.

For more information, contact:

D.J. Mathias

Microsoft

One Microsoft Way

Redmond, WA 98052

Tel: 1-800-MICROSOFT

49

U.S. Navy: Developing Digital Test Equipment for Navy Aircraft

Communications Using NI LabVIEW and the PXI Platform
Author(s): Lawrence M. David Jr. - ALE System Integration, Terry Stratoudakis, P.E. - ALE System

Integration

Product Used: LabVIEW, PXI-8196 RT, PXI-4060, PXI-6542, High-Speed Digital I/O, PXI-8196, Digital

Waveform Editor, Digital Multimeters, NI-HSDIO

The Challenge: Developing a small, versatile test system that mimics the onboard communications of a

military aircraft and analyzes the communications for accuracy and completeness.

The Solution: Using the NI LabVIEW graphical programming environment, NI Digital Waveform Editor

software, and PXI hardware to design and develop a flexible

and comprehensive test system.

Using the NI LabVIEW graphical programming environment,

NI Digital Waveform Editor software, and PXI hardware to

design and develop a flexible and comprehensive test

system.

“The analysis capabilities of LabVIEW were

instrumental in filtering and cross-referencing

results from multiple categories of tests to

pinpoint circuitry defects.”

When a local high-tech electronics firm was awarded the

contract to supply a communications interface hub for a

Navy surveillance aircraft, it was also tasked with designing

digital test equipment (DTE) to verify the initial

functionality of the interface and provide ongoing

verification for 20 years of field maintenance. Using a PXI

platform from National Instruments, ALE System

Integration provided expertise in hardware integration and

software development for the system.

System Requirements

The interface unit (the end product being tested) was designed to coordinate all the aircraft’s digital and

analog signal routing, including the internal intercom, external radio, radar, and all digital

instrumentation. The interface needs to correctly process all appropriate signals while ignoring

corrupted signals and noise. To verify this functionality, the DTE needed to inject all valid and invalid

signals and interpret the interface’s responses.

 Using the National Instruments PXI

platform, ALE System Integration

developed a system to test communications

equipment onboard naval aircrafts.

50

In addition to verifying the aircraft’s functionality, the DTE needed the capability to perform a self-test

operation and the flexibility to perform a one-time design verification including all flight-worthiness

tests; additional electromagnetic interference tests; and a series of physical tests such as the highly

accelerated life test (HALT), explosive atmosphere, salt atmosphere, and thermal cycling. The DTE also

had to be able to inject and interpret the wide range of signals onboard the aircraft including analog

audio, serial (9600 baud), high-speed digital (5 MHz), and MIL-STD 1553, a military standard serial data

bus that features a dual redundant balanced line physical layer, time division multiplexing, and a half-

duplex command/response protocol.

Designing the DTE with PXI Hardware from National Instruments

The DTE was implemented using an NI PXI-8196 embedded controller containing the following modules:

NI PXI-6513, PXI-6542, PXI-2569, PXI-6511, and PXI-4060. The PXI-6542 module was used at a clock

speed of 20 MHz allocating four bits per tick of the 5 MHz DUT clock, thus improving test accuracy. The

NI-HSDIO software greatly reduced development time. The system also included a Condor QPC-1553

from GE Fanuc Embedded Systems that included LabVIEW drivers to further simplify software

development.

We also used two programmable power supplies: a three-phase AC supply (GPIB) at 400 Hz to mimic the

aircraft’s power and a DC supply (USB) to mimic internal supply circuitry. Both programmable power

supplies were interfaced to the system via the USB and GPIB ports of the PXI-8196 embedded controller.

Analyzing Digital Test Data with LabVIEW

With a graphical user interface (GUI) developed using LabVIEW software, the technician experiences

improved flexibility in configuring test runs of any of the 10 categories of tests in addition to a DTE self-

test. The analysis capabilities of LabVIEW were instrumental in filtering and cross-referencing results

from multiple categories of tests to pinpoint circuitry defects. One constraint of this project was the

simultaneous development of the test system and the interface unit. However, two major advantages of

using LabVIEW to develop this system were the prototyping and debugging capabilities including custom

probes and highlighted execution. The code developed for the test system was reused to conduct the

ongoing tests for the system.

We were able to develop the test system with ongoing changes to the specification and give invaluable

support to our client in their own development process. The key to this success was the NI Digital

Waveform Editor software. With this tool, our client created digital waveform files using the editor,

which we then fed into the test system. The resulting digital data file was easy for our client to review.

Overall, this was a great experience for our client. Using the LabVIEW and PXI platform, we delivered

software faster than our client expected, and we were able to integrate seamlessly with their team.

For more information, contact:

Terry Stratoudakis, P.E.

ALE System Integration

United States

terry@aleconsultants.com

mailto:terry@aleconsultants.com

51

Sanmina-SCI Exceeds Throughput Goals with PXI Tester and

Multithreaded Software
Author(s): Mike Oehrlein, Sanmina-SCI Corporation

Product: Digital Multimeters, LabWindows/CVI, Modular Instruments, NI TestStand, PXI/CompactPCI

The Challenge: Developing a compact and high-speed functional test station that performs parallel

calibration on eight medical devices.

The Solution: Using National Instruments LabWindows/CVI, NI TestStand, and high-performance PXI

modular instruments to develop an automated and modular production tester with database and

statistical process control capability for medical device calibration.

Test System Requirements

Sanmina-SCI, one of the world’s leading contract manufacturers,

recently developed a test application for a medical device that

measures blood glucose levels by measuring the current and

impedance characteristics produced from an electrochemical reaction.

We needed to build a functional test and calibration system that

complied with FDA regulations, calibrated the DC amplifier circuits of

the measurement engine, and verified the operation of other critical

support circuits contained within the device under test. Additionally, in

real time, the system had to switch a variety of input loads into the

measurement engine to emulate the complex task of simulating blood

response. Lastly, the system had to reliably and repeatedly process up

to 83,000 devices per week while maintaining a cycle time of effectively

30 seconds per device.

Because of these requirements, we chose a flexible software

framework that facilitated multithreaded parallel testing; efficient

communication with commercial databases; and a custom software interface with strict user

management for administrators, supervisors, engineers, and manufacturing operators.

Compact, High-Speed Test Solution

The Sanmina-SCI design team knew from previous experience that a design solution based on traditional

instrumentation alone could not meet test-throughput needs. For this application, the design team

needed to build a hybrid test system based on PXI and GPIB modular instruments as well as a custom

FPGA-controlled interface to the device under test that could test eight devices in parallel. The

completed test system included eight NI PXI-4070 6½-digit FlexDMM devices, eight NI PXI-6533 high-

speed digital I/O modules, an NI PXI-6508 general-purpose digital I/O module, a GPIB-based power

supply, and an LCR meter. The FlexDMM delivered the throughput and accuracy the design team

needed to acquire all of the voltage and current measurements on the device under test. The design

High-Speed PXI-Based Test

System for Calibrating Medical

Devices

52

team used the PXI digital devices to communicate with the DUT and write the calibration values to the

onboard EEPROM.

We chose NI TestStand for test management software because it provided test sequencing of

LabWindows/CVI and C# .NET modules, native parallel testing support, and a comprehensive user

management framework. Its flexible and open source code operator interface also gave our design team

full control over the look and feel of the operator interface. Rather than worry about thread

management and synchronization, we could use NI TestStand to focus on the details of the test

management process. We used LabWindows/CVI for test module development because of the built-in

test and measurement functions and user interface controls, in addition to the SQL database

connectivity capabilities. With LabWindows/CVI, we could create highly efficient ANSI C source code

that integrated with modular instruments and GPIB. By using commercially available software such as

LabWindows/CVI and NI TestStand, we kept software development time and costs to a minimum.

Exceeded Yield Expectations

The PXI-based tester provided a compact calibration system that met our high-speed throughput

requirements while exceeding the initial system yield requirements by achieving yields greater than 95

percent in production. The customer was satisfied with the completed test system and has plans to

expand the system by building additional stations to satisfy product demand and adapting fixtures and

software for the next-generation devices.

 For more information, contact:

Mike Oehrlein

Sanmina-SCI Corporation

13000 S. Memorial Pkwy

PO Box 1000

Huntsville, AL 35807

Tel: (256) 882-4800, ext. 8587

www.sanmina-sci.com

	Executive Summary
	Architecture Layer No. 5: System Management/Test Executive
	Architecture Layer No. 4: Application Development Software
	Architecture Layer No. 3: Measurement and Control Services
	Architecture Layer No. 2: Computing and Measurement Bus
	Architecture Layer No. 1: Measurement and Device I/O

	Chapter 1: Developing a Modular Test Software Framework
	National Instruments Modular Test Software Framework

	Chapter 2: Choosing the Right Software ADE for Your Automated Test System
	Factors to Consider When Selecting an ADE
	NI LabVIEW
	NI LabWindows/CVI
	Microsoft Visual Studio .NET (C++, Visual Basic .NET, C#, and ASP.NET)

	Chapter 3: Choosing the Right Data Bus
	Understanding Bus Performance
	Instrument Control Bus Comparison (GPIB, USB, PCI, PCI Express, and Ethernet/LAN/LXI)
	Conclusion: Instrument Bus Performance

	Chapter 4: Modular Instruments Basics
	Anatomy of a Modular Instrument
	Effects of Front End
	Bandwidth
	Accuracy

	Effects of ADC/DAC
	Sampling Rate
	Resolution
	Digits

	Instrument Types
	Digital Multimeters (DMMs)
	Arbitrary Waveform Generators (Arbs) and Digitizers
	Dynamic Signal Analyzers (DSAs)
	RF Analyzers and Generators

	Conclusion

	Chapter 5: PXI Modular Instrumentation Platform
	Software Architecture
	PXI – Industry Standard for Modular Instrumentation
	Why Customers Choose PXI
	Extension of the PXI Platform: PXI Express

	Chapter 6: Case Studies
	Designing Powerful Controllers for a New Generation of Gaming
	PXI Modular Instruments for Design Validation and Production Test
	NI LabVIEW Interfacing with Microsoft SQL Server, TCP/IP, and ActiveX Controls
	Microsoft Sees Results Using NI LabVIEW and PXI Modular Instruments
	U.S. Navy: Developing Digital Test Equipment for Navy Aircraft Communications Using NI LabVIEW and the PXI Platform
	System Requirements
	Designing the DTE with PXI Hardware from National Instruments
	Analyzing Digital Test Data with LabVIEW

	Sanmina-SCI Exceeds Throughput Goals with PXI Tester and Multithreaded Software
	Test System Requirements
	Compact, High-Speed Test Solution
	Exceeded Yield Expectations

