

SOFTWARE DESIGN DOCUMENT

Version 1.1

17.01.2013

MOBCOLL PROJECT

Prepared By: ANDIOS

Murat Öksüzer

Sercan Çidem

Vedat Şahin

Fatih Osman Seçmen

1

Change History

*A - ADDED M - MODIFIED D – DELETED

VERSION

NUMBER

DATE NUMBER OF

FIGURE,

TABLE OR

PARAGRAPH

A*

M

D

TITLE OF

BRIEF

DESCRIPTION

1.0 03.12.2012 Original

1.1 17.01.2013 3.2.8

3.2.9

Figure 24

Figure 25

Figure 26

3.2

Figure 29 -37

A,

M,

Synchronization

Service

Component,

Local Database

Management

Component,

Sequence

Diagram and

Class Diagram

of

Synchronization

Service and

Class Diagram

of Local

Database

Management

System are

added

Decomposition

Description and

User Interface

Screens are

modified

2

Preface

 This document contains the system design information for MOBCOLL project. The

document is prepared according to the “IEEE Standard for Information Technology – Systems

Design – Software Design Descriptions – IEEE Std 1016 – 1998”.

 This Software Design Documentation provides a complete description of all the

system design and views of MOBCOLL Project.

 The first section of this document includes purpose, scope, overview, reference

material and definitions and abbreviations of the project.

 The second chapter of this document includes an overview of the functionality of the

application. It describes the informal design generally.

 The third chapter of this document will give the user a detailed description of each

function of the system.

The fourth chapter of this document contains data design and data description of the

project.

The fifth chapter of this document contains a general overview of what the user

interface will look like.

The sixth and last chapter of this document includes of requirements matrix of the

project.

3

Table of Contents

1. Introduction ... 6

1.1 Purpose .. 6

1.2 Scope ... 6

1.3 Overview .. 6

1.4 Reference Material .. 7

1.5 Definitions and Abbreviations ... 7

2. System Overview ... 7

2.1 Technologies Used ... 7

2.2 Application Overview .. 8

2.3 Design Languages .. 8

3. System Architecture .. 8

3.1 Architectural Design .. 8

3.2 Decomposition Description ... 9

3.2.1. Login and Logout Component ... 9

3.2.2 Setting Component ... 13

3.2.3 Social Component ... 16

3.2.4 Trade Component ... 18

3.2.5 Main Functionality Component .. 19

3.2.6 Data Service Component .. 23

3.2.7 Remote Server Component .. 24

3.2.8 Synchronization Service Component ... 28

3.2.9 Local Database Management Component ... 30

3.3 Design Rationale .. 31

4. Data Design .. 32

4.1 Data Description .. 32

4.1.1 Data Objects ... 32

4.1.2. Relationships and Complete Data Model .. 35

4.2 Data Dictionary .. 35

5. Human Interface Design .. 38

5.1 Overview of User Interface ... 38

4

5.2 Screen Objects and Actions ... 38

5.2.1 Register Screen ... 38

5.2.2 Login Screen ... 39

5.2.3 Logout Screen ... 39

5.2.4 User Profile Screen ... 39

5.2.5 My Book List Screen ... 40

5.2.6 Add New Book .. 41

5.2.7 View Profiles ... 41

5.2.8 History .. 42

5.2.9 Settings ... 43

5.2.10 Book Market ... 44

5.2.11 Search Book .. 45

6. Requirements Matrix ... 45

5

Table of Figures

Figure 1 - General Deployment Diagram .. 9

Figure 2 - Sequence Diagram of LoginHandler .. 10

Figure 3 - Sequence Diagram of LogoutHandler .. 10

Figure 4 - Sequence Diagram of RegisterHandler... 10

Figure 5 - Sequence Diagram of UpdateHandler .. 11

Figure 6 - Class Diagram of Login-Logout Component ... 12

Figure 7 - Sequence Diagram of SettingsManager .. 13

Figure 8 – Class Diagram of Setting Component .. 14

Figure 9 - Sequence Diagram of socialShare .. 16

Figure 10 - Sequence Diagram of addFriend .. 17

Figure 11 – Class Diagram of Social Manager ... 17

Figure 12 - Sequence Diagram of TradeManager ... 18

Figure 13 – Class Diagram of TradeManager ... 18

Figure 14 - Sequence Diagram of ViewController .. 19

Figure 15 – Class Diagram of ViewController .. 20

Figure 16 - Sequence Diagram of addCoverOfBook .. 21

Figure 17 – Class Diagram of Create Controller ... 21

Figure 18 - Sequence Diagram of BarcodeScanner... 22

Figure 19– Class Diagram of Barcode Scanner .. 23

Figure 20 – Sequence Diagram of Data Service Component .. 23

Figure 21 – Class Diagram of Data Service Component... 24

Figure 22 – Sequence Diagram of Remote Service Component ... 24

Figure 23 – Class Diagram of Remote Service Component .. 25

Figure 24 - Class Diagram of SynchronizationService Component .. 29

Figure 25 - Sequence Diagram between client and SynchronizationService .. 30

Figure 26 – Class Diagram of Local Database Management Component... 30

Figure 27 – ER Diagram ... 35

Figure 28 – Register Screen of Application .. 39

Figure 29 – Login Screen of Application .. 39

Figure 30 – User Profile Screen of Application .. 40

Figure 31 – My BookList Screen of Application .. 40

Figure 32 – Add New Book Screen of Application... 41

Figure 33 – View Profiles Screen of Application.. 42

Figure 34 – History Screen of Application .. 43

Figure 35 – Settings Screen of Application ... 43

Figure 36 – Book Market Screen of Application .. 44

Figure 37 – Search Book Screen of Application ... 45

6

1. Introduction

1.1 Purpose

 This document describes the conceptual design of the MOBCOLL Project according

to the document guidelines presented in the IEEE 1016-1998 Recommended Practice for

Software Design Descriptions (SDD).

 The SDD shows how the software system will be structured to satisfy the requirements

identified in the software requirements specification. It is a translation of requirements into a

description of the software structure, software components, interfaces and data necessary for

the implementation phase. In essence, the SDD becomes a detailed blueprint for the

implementation activity. In a complete SDD, each requirement must be traceable to one or

more design entities.

1.2 Scope

This project, MOBCOLL will be an android application of a book collection for an

owner. The system will help the owner to do followings;

 - Manage the information about owned books

 - Track the place of books on the shelves

 - Search the item with barcode or cover picture taken by the device on repository or web

 - Keeping the statistical history of books borrowed or lent.

 - Web shopping, gift requests and wanted item management

1.3 Overview

The purpose of this document is to help the reader visualize the solution to the project

presented. This document verifies how the design meets the requirements stipulated in the

SRS document through design viewpoints. The design viewpoints will cover all design

elements presented before.

By using information from IEEE 1016-1998, this document will provide a direct

approach to the development of this project hence reducing feature creep and pointedly

determine the quality of the design.

7

1.4 Reference Material

IEEE, IEEE Std 1016-1998 Recommended Practice for Software Design Descriptions, 1998-

09-23, The Institute of Electrical and Electronics Engineers, Inc., (IEEE)

IEEE, IEEE 1016 Software Design Document (SDD) Template for CENG491

1.5 Definitions and Abbreviations

Term Definition

Software Design

Description

A document that completely describes all of the function of a

proposed system and the constraints under which it must operate.

Eclipse IDE A multi-language software development environment

Zxing
An open-source, multi-format 1D/2D barcode image processing

library implemented in Java.

Jersey Open-source JAX-RS (JSR 311) Reference Implementation for

building RESTful Web services

JSON A lightweight data-interchange format(JavaScript Object Notation)

RESTful
An approach for getting information content from a Web site by

reading a designed Web page that contains an XML.

Android A Linux based mobile phone operating system developed by Google.

Balsamiq Mockups A graphical user interface mockup builder application.

SRS

A document that completely describes all of the functions of a

proposed system and the constraints under which it must operate. For

example, this document. (System Requirements Specification)

2. System Overview

2.1 Technologies Used

 The system is coded with Java programming language by using Eclipse integrated

development environment. We will use MySQL for database. Android SDK will be used for

8

android application development and Jersey web service library will be used for RESTFUL

web service.

2.2 Application Overview

The main goal of the project is to enable user to create a virtual library owned by

him/her. The final product of MOBCOLL project will be a mobile platform for Android

mobile phones or tablet systems that will enable third party mobile application developers to

easily develop Android based collection applications by utilizing the common Android

services.

 The Mobcoll project will be an android application that is designed for users who want

to keep the list of owned books. This project gives the user to an application account and by

using this, user can use functionalities of the application easily. For example, Mobcoll project

gives opportunities user to add new friends, add new books, recommend some of his/her

books to friends, sell or buy a book and so on.

2.3 Design Languages

 Unified Modeling Language (UML) 5.02 is used for graphical representations of

viewpoints in MOBCOLL Project in 3.System Architecture, 4.Data Design and 5.Component

Design parts. Balsamiq Mockups is used for user interface design in sixth section of this

project.

3. System Architecture

3.1 Architectural Design

The Figure 1 shows the general deployment diagram of the MobColl. The MobColl

Android Application will be developed as a single Android Client (apk) and it will:

- provide the common services for default MobColl functions,

- communicate with the remote server to retrieve or update user’s information.

- interact user with system.

9

RESTFUL Web Service will be deployed as a web application. It consist of RESTFUL

web service functionality to response user request. It will act as a bridge between Android

application and database. It is supposed to manage database operations like CRUD.

Database will contain necessary data for users, their book lists, etc.

The connection between these component will be carried on internet with HTTP protocol.

 Figure 1 - General Deployment Diagram

3.2 Decomposition Description

3.2.1. Login and Logout Component

10

 Figure 2 - Sequence Diagram of LoginHandler

 Figure 3 - Sequence Diagram of LogoutHandler

 Figure 4 - Sequence Diagram of RegisterHandler

11

 Figure 5 - Sequence Diagram of UpdateHandler

In MobColl Application, data exchange between remote server and android client for

login, logout, register and update operations is achieved over JSON. For these operations,

there will be four handler classes named LoginHandler, LogoutHandler, UpdateHandler and

RegisterHandler. These classes are exactly the same classes shown in Figure 1. For login

operation, system sends username, password and URL to the remote Server and receives a

response. Which method will handle our request from Android client and give response to this

request will be determined by this URL. The mechanism is just the same for logout, register

and update operation. Figure 2, 3, 4 and 5 shows the sequence diagrams of these four

operations.

12

 Figure 6 - Class Diagram of Login-Logout Component

LoginHandler: Thread to be run when an account is being logged in. User should login

automatically or manually according to the settings that user previously defined. After the

successful login of the user, the normal operation sequence of the service will continue.

LogoutHandler: Thread to be run when an account is being logged out. After the successful

logout of the user, this finishes the application.

RegisterHandler: Thread to be run when user creates a new account.

UpdateHandler: Thread to be run when user updates his/her account.

3.2.1.1 Login and Logout Component Design

LoginHandler:

13

It inherits Thread class. When we call “login” in “UserController”, we create a

LoginHandler and we use “start” function in LoginHandler class. This function invokes the

“run” function. In “run” function, we send a login request to remote server.

“handleLoginSuccessful” function determines whether the login operation is successful or

not. The remaining handler functions work similar.

UserController

 This class is used for account operations in android application. When a user logs in,

current user data is kept in “currentUser” variable. Other components use this variable to

execute their operations. It consists of four functions listed below:

- login(String email, String password, String url) : Used for logging in to system. It uses

LoginHandler.

- logout(String email, String url) : Used for logging out from system. It uses LogoutHandler.

- register(User user, String url) : Used for registering the user. It uses RegisterHandler.

- update(User user, String url) : User for updating the information of the user. It uses

UpdateHandler.

3.2.2 Setting Component

 Figure 7 - Sequence Diagram of SettingsManager

14

 In our project, between SettingsManager and RemoteServer, there will be a data flow

consists of settings of the user. This sequence diagram shows how settings are saved to the

server. These settings are sent to the RemoteServer if there is an available connection.

Moreover, an update operation that changes settings of the user will be done via this

component. The settings that will be available for change and their descriptions are listed

below:

 Figure 8 – Class Diagram of Setting Component

Setting Class:

 We will use setting class in SettingManager to handle managerial incidents. This class

has following attributes:

-boolean isSearchabilityPubliclyAvailable: Indicates whether the user can be found public

user searches.

-boolean isSearchabilityFriendlyAvailable: Indicates whether the user can be found friends'

user searches.

-boolean isBookListsPubliclyAvailable: Indicates whether the user shares own book list with

public.

-boolean isBookListsFriendlyAvailable: Indicates whether the user shares own book list with

SettingsManager

-Setting setting

+getSetting(): Setting
+setIsSearchabilityPubliclyAvailable(b: boolean)
+setIsSearchabilityFriendlyAvailable(b: boolean)
+setIsBookListsPubliclyAvailable(b: boolean)
+setIsBookListsFriendlyAvailable(b: boolean)
+setIsHistoryPubliclyAvailable(b: boolean)
+setIsHistoryFriendlyAvailable(b: boolean)
+setIsContactInformationPubliclyAvailable(b: boolean)
+setIsContactInformationFriendlyAvailable(b: boolean)
+updateSettings(settings: Setting, url: String)

Setting

-isSearchabilityPubliclyAvailable: boolean
-isSearchabilityFriendlyAvailable: boolean
-isBookListsPubliclyAvailable: boolean
-isBookListsFriendlyAvailable: boolean
-isHistoryPubliclyAvailable: boolean
-isHistoryFriendlyAvailable: boolean
-isContactInformationPubliclyAvailable: boolean
-isContactInformationFriendlyAvailable: boolean

+isSearchabilityPubliclyAvailable(): boolean
+isSearchabilityFriendlyAvailable(): boolean
+isBookListsPubliclyAvailable(): boolean
+isBookListsFriendlyAvailable(): boolean
+isHistoryPubliclyAvailable(): boolean
+isHistoryFriendlyAvailable(): boolean
+isContactInformationPubliclyAvailable(): boolean
+isContactInformationFriendlyAvailable(): boolean

15

friends.

-boolean isHistoryPubliclyAvailable: Indicates whether the user shares his/her history with

public.

-boolean isHistoryFriendlyAvailable: Indicates whether the user shares his/her history with

friends.

-boolean isContactInformationPubliclyAvailable: Indicates whether the user shares his/her

contact information with public.

-boolean isContactInformationFriendlyAvailable: Indicates whether the user shares his/her

contact information with friends.

3.2.2.1 Setting Component Design

 We will use SettingManager for managing settings. There is a private “setting”

property in this class. This represents data model of “settings” table in ER-Diagram. There are

some public functions in this class:

- getSetting() : Returns setting.

- setIsSearchabilityPubliclyAvailable(): Used for whether the user can be found public user

searches.

- setIsSearchabilityFriendlyAvailable(): Used for whether the user can be found friends' user

searches.

- setIsBookListsPubliclyAvailable(): Used for whether the user shares own book list with

public.

- setIsBookListsFriendlyAvailable(): Used for whether the user shares own book list with

his/her friends.

- setIsHistoryPubliclyAvailable(): Used for whether the user shares his/her history with

public.

- setIsHistoryFriendlyAvailable(): Used for whether the user shares his/her history with

his/her friends.

- setIsContactInformationPubliclyAvailable(): Used for whether the user shares his/her

contact information with public.

- setIsContactInformationFriendlyAvailable(): Used for whether the user shares his/her

16

contact information with his/her friends.

- updateSettings(settings: Setting, url: String): Used to update user information on the server.

3.2.3 Social Component

 Figure 9 - Sequence Diagram of socialShare

This sequence diagram shows sharing a book list on social media like Facebook or

twitter. The application will use SocialMedia API for Facebook or Twitter. With this API,

sharing list of a user's book is handled by sending the information of the audience, type of the

list, list of books and a link. Also, adding or deleting a friend and viewing profile of friends

will also be handled by this component. The sequence diagram of addFriend is shown below

and deleteFriend is the same as this. After this diagram, the SocialMedia class, its methods

and their definitions are listed and explained.

17

 Figure 10 - Sequence Diagram of addFriend

This sequence diagram shows friend adding functionality. Remaining functions are

similar.

 Figure 11 – Class Diagram of Social Manager

3.2.3.1 Social Component Design

 We will use SocialManager to handle social functionalities. There are 4 public

functions in this class:

 - addFriend(int friend_id, string url): With this function, a user sends friend request to

another user. If the requested user accepts the invitations, they become friends in database.

This function has one parameter that represents requested user's id.

 - deleteFriend(int friend_id, string url): With this function, a user deletes a friend. The

function has one argument representing the id of the user to be deleted.

SocialManager

+addFriend(friend_id: Integer, String url)
+deleteFriend(friend_id: Integer, String url)
+void share(shareMode: String, shareType: String, List<Book>, String url)
+viewProfileOfFriend(friend_id: Integer, String url)

18

 - share (shareType: String, list: List<Book>, string url) : ShareType determines which

book list will be shared for example, gift request book list.

 - viewProfileOfFriends(int friend_id, string url): This function shows up the profile

page of a user who's id is given as a parameter to this function.

3.2.4 Trade Component

 Figure 12 - Sequence Diagram of TradeManager

 We used actors for a better understanding. In real, this event occurs when two people

come together physically. We showed here lending and borrowing a book. Selling and

buying transactions are the same with this representation, so we did not draw it again

 Figure 13 – Class Diagram of TradeManager

19

3.2.4.1 Trade Component Design

We will user TradeManager to perform trade incidents. There are 4 public functions

this class:

 - lendBook (BookOfUser b, int friend, string url): This function keeps track of lending

books own books to a friend.

 - borrowBook(Book book, int friend_id, string url): With this function, a user can

borrow a book from his/her friend founded by the friend_id.

 - buyBook(Book book, int friend_id, string url): With this function, a user can buy a

book from his/her friend founded by the friend_id.

 - sellBook(BookOfUser b, int friend_id, string url): With this function, a user can sell

a book to a user founded by the friend_id.

3.2.5 Main Functionality Component

3.2.5.1 ViewController

 Figure 14 - Sequence Diagram of ViewController

20

 This sequence diagram shows how ViewController and RemoteServer are connected

each other. If internet connection is available, user would control some operations like

lending/borrowing book, requesting or searching a book etc. by this controller. The

ViewController class has the methods to handle these operations. They are listed below and

explained one by one.

 Figure 15 – Class Diagram of ViewController

3.2.5.1.1 ViewController Component Design

 This class is used to view some lists created by a user like owned books, lent books,

gift request books etc. The class consists of six functions listed below:

 - getLentBooks(): Returns the list of books which are lent to another user.

 - getBorrowedBooks(): Returns the list of books which are borrowed from another

user.

 - giftRequestBooks(): Returns the list of books which are gifted request to some user.

 - setForSaleBooks(): Returns the list of books which have selected as for sale before.

 - getOwnedBooks(): Returns the list of books which are owned by the user, no

operations have been performed on these books like lending, borrowing etc.

 - search(scope: String, keyword: String):

3.2.5.2 CreateController

ViewController

+getLentBooks(): List<Book>
+getBorrowedBooks(): List<Book>
+giftRequestBooks(): List<Book>
+setForSaleBooks(): List<Book>
+getOwnedBooks(): List<Book>
+search(scope: String, keyword: String): List<Book>

21

 Figure 16 - Sequence Diagram of addCoverOfBook

 CreateManager and RemoteServer are connected via DataService again. Adding book

operation is shown in this diagram. While adding new book, cover of the book can be added

by taking a photo from the device's camera. Also, setting lent/borrow books or gift request/for

sale is handled by this manager. These operations are listed in CreateController which is

explained below.

 Figure 17 – Class Diagram of Create Controller

CreateController

+setLentBook(List<Book>, String url)
+setBorrowedBook(List<Book>, String url)
+setGiftRequestBooks(List<Book>, String url)
+setForSaleBooks(List<Book>, String url)
+addBook(Book, String url)
+addCoverOfBook()

22

3.2.5.2.1 CreateController Component Design

 This class is used to create or edit some lists to group books of a user and in this way,

the user can keep track of his/her books in more efficient way. The class has six functions

which are following:

- setLentBook(List<Book>, String url) : Edit operations on the list of lent books such as

adding or creating.

- setBorrowedBook(List<Book>, String url) : Edit operations on the list of borrowed

books.

- setGiftRequestBook(List<Book>, String url) : Edit operations on the list of gift

request books.

- addBook(Book, String url) : Used to add a book to owned book list by a user.

addCoverOfBook() : Used to add cover of a book using camera of android device.

3.2.5.3 BarcodeScanner

 Figure 18 - Sequence Diagram of BarcodeScanner

23

 Figure 19– Class Diagram of Barcode Scanner

This class is intended to be used while adding a book. The barcode of book is scanned

with the camera of android device so that the scanned ISBN will be searched. Therefore, all

information about the book like title, author, category, publish date etc. will be provided. The

only function is;

3.2.5.3.1 Barcode Scanner Component Design

- scanISBN(): Return the number gathered from the camera scan operation

3.2.6 Data Service Component

 Figure 20 – Sequence Diagram of Data Service Component

This diagram shows how DataService and RemoteServer are related with each other.

They use HTTP protocol to handle the server connection. The related class is below and it has

only two methods which will be explained next.

BarcodeScanner

+scanISBN(): string

24

 Figure 21 – Class Diagram of Data Service Component

3.2.6.1. Data Service Component Design

 sendHTTPRequest(url: String, parameters: ArrayList<NamedValuePair>): This

function sends HTTP requests to remote server. These requests contain information about

functions of other components.

 isNetAvailable(): This function determines whether internet connection is available or

not.

3.2.7 Remote Server Component

 Figure 22 – Sequence Diagram of Remote Service Component

This diagram shows how DataService and RemoteServer execute requests.

RemoteServer sends request with parameter name and named value pairs while DataService

sends HTTP request in response. The related class is RemoteServerServiceManager and its

methods are listed and described below:

DataServiceManager

+sendHTTPRequest(url: String, parameters: ArrayList<NamedValuePair>)
+isNetAvailable(): boolean

25

 Figure 23 – Class Diagram of Remote Service Component

3.2.7.1 Remote Server Component Design

 executeRequest(url: String, parameters: ArrayList<NamedValuePairs>): This function

executes taken requests with their parameters and return back results to the Data Service

Component.

 We show “executeRequest” method as template for following methods that we use in

all components.

Server side methods:

String loginUser(MultivaluedMap<String, String> params):

The “params” multivalued parameter container includes an email and a password

parameter. It checks whether the given email-password pair belongs to a valid, registered

user. If it is, then the method returns the id of the user in String type.

If it doesn’t valid, then it returns a negative number.

public String registerUser(MultivaluedMap<String, String> params):

The “params” multivalued parameter container includes user name, lastname, email,

password, and phone number. It firstly checks whether a user with given email already

registered or not. If there is, it returns a negative number. Otherwise, it saves a user entry into

“user” table in database and returns id of this entry.

public String addBook(MultivaluedMap<String, String> params):

The “params” multivalued parameter container includes ISBN, title, author, publisher,

publishdate, language, category, type, location, and description parameters for book and user

id parameter for owner of the book.

RemoteServerServiceManager

+executeRequest(url: String,parameters: ArrayList<NamedValuePairs>)

26

This method saves a book entry into “book” table and a book id-user id entry into

“books_of_user” table in database.

public List<Book> getUserBookList(MultivaluedMap<String, String> params):

The “params” multivalued parameter container includes a user id parameter for the

user whom book list is asked.

This method retrieves book entries which belongs the given user and returns it in a

List data structure.

public String setApplicationSettings(MultivaluedMap<String, String> params):

The “params” multivalued parameter container includes a bunch of setting type-

boolean pairs representing setting preferences. These setting types determine :

-is searchability publicly available

-is searchability friendly available

-is book list publicly available

-is book list friendly available

-is history publicly available

-is history friendly available

-is contact information publicly available

-is contact information friendly available

This method updates given parameters in the “settings” table in database.

public String addDeleteFriend(MultivaluedMap<String, String> params):

The “params” multivalued parameter container includes a friend user id and a flag

parameter for determining whether adding or deleting friend.

For friend adding, this method saves a user id-friend user id pair into

“friends_of_user” table in database.

For friend deleting, this method deletes the user id-friend user id pair entry in

“friends_of_user” table.

27

public User getFriendProfileInfo (MultivaluedMap<String, String> params):

The “params” multivalued parameter container includes a friend user id whom profile

information is asked. This method retrieves given user information, constructs a User object

and returns it.

public String tradeOperations (MultivaluedMap<String, String> params):

The “params” multivalued parameter container includes a book id, a friend user id and

a flag parameter for determining the operation. The operation can be lending, borrowing,

buying, and selling.

If the operation is lending, the book entry in the “books_of_user” table is updated such

that the “is_lent” boolean attribute is set to true.

If the operation is borrowing, an entry which includes book id and owner id is saved

into “borrowed_books” table.

If the operation is buying, a book entry is saved into “books_of_user” table.

If the operation is selling, the book entry in the “books_of_user” table is deleted.

public List<Book> getBookLists (MultivaluedMap<String, String> params):

The “params” multivalued parameter container includes a user id parameter for whom

book lists are asked, and a flag for determining which book list is asked. Lent, borrowed,

requested, for sale, and owned book lists can be asked.

This method retrieves required book entries from database, adds into a List data

structure and returns it.

public List<Book> searchBook (MultivaluedMap<String, String> params):

The “params” multivalued parameter container includes a user id parameter for whom

book lists are searched. Moreover, it includes a keyword for searching and a scope parameter

for determining in which list the search operation will be executed. . Lent, borrowed,

requested, for sale, and owned book lists can be searched.

This method searches using given keyword, builds a list of book from search result

and returns it.

28

public List<Book> setBookLists (MultivaluedMap<String, String> params):

The “params” multivalued parameter container includes a user id parameter for whom

book lists are set.

Moreover, it includes a XML string that includes input book list and a flag parameter

for determining which list we should set. This list can be lent, borrowed, requested, for sale,

or owned book list.

This method parses the input XML string and extracts the list of books. Then, it saves

the books into database.

3.2.8 Synchronization Service Component

SynchronizationService is another communication interface as an Android Bound

Service between the Mobile Book Collector Android Application and remote server which

will enable the android application to check the count of unsynchronized records with remote

server and synchronize them manually.

The Figure xxx illustrates the class diagram for SynchronizationService component

and related classes. SynchronizationService will also be implemented as an Android Bound

Service that will be accessible by Mobil Book Collector Application. Similar to DataService,

the SynchronizationClient is the helper class to communicate with the service from another

application. Figure 9 shows the sequence diagram to synchronize records with remote Server.

29

 Figure 24 - Class Diagram of SynchronizationService Component

30

 Figure 25 - Sequence Diagram between client and SynchronizationService

3.2.9 Local Database Management Component

This component manages local database operations. It is used to synchronize offline

records.

 Figure 26 – Class Diagram of Local Database Management Component

31

SynchronizeRecordItem

İd: unique record identifier of a record within the android application.

book: The record itself. The record is persisted as the JSON serialization of the object model.

lastUpdateTime: Last update time of the record within the android application.

lastUpdateTimeRemote: Last update time of the record from the remote server.

isDirty: The boolean indicator which indicates if the record persisted in the android

application has changed and these changes are not synchronized with the remote server.

SQLLiteOpenHelper

It is a helper class for database open operations specific for Android SDK. It can be used to

create tables also.

ClientDatabaseHelper

It is a helper class for database operations like create, delete, read and update. It uses

SQLLiteOpenHelper for opening databases.

clientdb.db

It is the local database we use for offline records.

LocalDatabase2SynchronizerHelper

It is a layer between local database and android application.

3.3 Design Rationale

We wanted to build a system such that available from everywhere. Therefore, we

designed a Client-Server system. Moreover, we don’t want to restrict the user to his/her

device storage size. So, we designed system such that data is kept in a public database.

We chose Android for mobile platform because aproximately 50% of smartphone in market

uses Android for operating system.

32

We wanted to use a RESTful web service because a REST service is:

 Platform-independent (you don't care if the server is Unix, the client is a Mac, or

anything else),

 Language-independent (C# can talk to Java, etc.),

 Standards-based (runs on top of HTTP), and

 Can easily be used in the presence of firewalls.

We chose Jersey library because Jersey makes it easy to build RESTful Web Services in Java.

4. Data Design

4.1 Data Description

4.1.1 Data Objects

Book:

id: Identity number given from the database for each book. This attribute is unique for any

book.

title: Title of the book.

author: Author of the book.

description: A small description/summary of the book. The user will be able to edit this text.

isbn: A number consisting of 13-digit-number which is identical for the book in every

country.

cover_image: Cover image of the book.

publisher: The company that has published the book.

publish_date: The date of publishing.

language: Demonstrates the language which the book is written in or translated to.

category: The general type of the book

type: The specified type of the book.

rating: Average score of the book rated by the users.

location: Indicates the place of the book in the bookshelf.

User:

33

id: Identity number given from the database for each user. This attribute is unique for any

user.

name: The name and surname of the user.

username: User's nickname for the application.

password: The user's password.

e-mail: E-mail of the user that will be used for the communication information.

phone_number: Phone number of the user that will be used for the communication

information.

description: A brief description where the user mentions about his/herself

profil_photo: A picture that may be used to face detection login.

Books-of-User :

user_id: Id number that will be taken from the user table indicating the owner of the book.

book_id: Id number taken from the book table indicating which book is owned by the user.

is_favourite: The user has selected the book as a favorite book.

status: The number demonstrating the status of the book. 0 means “owned” and 1 means “for

sale”

is_lent: Is the book lent or not.

lent_date: When the lending action happens.

due_date: Due date for returning the book back.

id: Id of the user that takes the book.

Friends-of-user:

user_id, friend_id: The user with “friend_id” is a friend of the user with “user_id” .

Borrowed-book list:

book_id: Id of the book taken from “book” table.

owner_id: Id of the user that gives the book.

borrowed_date: When the borrowing action happens

due_date: Due date for returning the book back.

History:

id: Primary key.

34

type_id: Process type id.

date_time: When the process occurred.

description: Detailed explanation about process.

user_id: This is the user id of owner of history entry.

Process_types :

id: Primary key

type: Name of the process. It can be lending, borrowing, adding book, deleting book, selling,

buying, adding friend, favoring, etc.

Message:

id: Primary key

sender_id: The user who sends the message.

receiver_id: The user who receives the message.

date: The date of the sent message

message: Information which is sent from a sender to a receiver.

Settings:

user_id: Primary key

isSearchabilityPubliclyAvailable: Whether user can be reached by public search or not.

isSearchabilityFriendlyAvailable: Whether user can be reached by a friend of that user or

not.

isBookListsPubliclyAvailable: Whether user’s book lists can be reached by public search

or not.

isBookListsFriendlyAvailable: Whether user’s book lists can be reached by a friend of that

user or not.

isHistoryPubliclyAvailable: Whether user’s history can be reached by public search or not.

isHistoryFriendlyAvailable: Whether user’s history can be reached by a friend of that user

or not.

isContactInformationPubliclyAvailable: Whether contact information of user can be

reached by public search or not.

35

isContactInformationFriendlyAvailable: Whether contact information of user can be

reached by a friend of that user or not.

4.1.2. Relationships and Complete Data Model

 Figure 27 – ER Diagram

4.2 Data Dictionary

Alphabetically list the system entities or major data along with their types

1. Book:

Parameter: Parameter Type:

author: User

category: String

cover_image: String (path information)

36

description: String

id: int

isbn: String (13-digit-number)

language: String

location: String

publisher: String

publish_date: String

rating: Float

title: String

type: String

2. Books-of-User

Parameter: Parameter Type:

book_id: int

due_date: String.

id: int

is_favourite: Boolean

is_lent: Boolean

lent_date: String

user_id: int

status: int (0,1 uses generally)

3. Borrowed-book list:

Parameter: Parameter Type:

book_id: int

borrowed_date: String

due_date: String

owner_id: int

4. Friends-of-user:

Parameter: Parameter Type:

friend_id: int

37

user_id int

5. History

Parameter: Parameter Type:

date_time: String

description: String

id: int

type_id: int

user_id: int

6. Message:

Parameter: Parameter Type:

date: String

id: int

message: String

receiver_id: int

sender_id: int

7. Process_types :

Parameter: Parameter Type:

id: int

type: String

8. Settings:

Parameter: Parameter Type:

isBookListsFriendlyAvailable: Boolean

isBookListsPubliclyAvailable: Boolean

isContactInformationFriendlyAvailable: Boolean

isContactInformationPubliclyAvailable: Boolean

isHistoryFriendlyAvailable: Boolean

isHistoryPubliclyAvailable: Boolean

isSearchabilityFriendlyAvailable: Boolean

isSearchabilityPubliclyAvailable: Boolean

user_id: Boolean

9. User:

38

Parameter: Parameter Type:

description: String

e-mail: String

id: int

name: String

password: String

phone_number: String

profil_photo: String

username: String

5. Human Interface Design

5.1 Overview of User Interface

 The user will be prompted with the login screen when the application starts. Once the

user logs into the application successfully, the profile page of the user will be prompted to

him/her according to the user type. For the users who have not registered yet, there will be a

button linking to the register screen. By using this application, users can keep their book lists

and manage the information of their owned books.

5.2 Screen Objects and Actions

This section briefly describes the interfaces and interface components of MOBCOLL.

5.2.1 Register Screen

Register screen will be used in case of the user has not been saved to the database yet.

The system will request the basic information of the user.

39

 Figure 28 – Register Screen of Application

5.2.2 Login Screen

Login screen will be the first screen which the users see when MOBCOLL Application starts.

 Figure 29 – Login Screen of Application

5.2.3 Logout Screen

When the logout button is pressed, the login screen will come up and the system waits

for a logging in or registering.

5.2.4 User Profile Screen

 When the user logs in, this screen will show up. In this screen, there will be text fields

containing information about the user. If it is added, the profile picture of the user will also be

40

in this screen. The user can also view his/her book list and friend list. These items will be

placed in the screen as shown in the following figure.

 Figure 30 – User Profile Screen of Application

5.2.5 My Book List Screen

This screen consists of the list of books owned by the logged in user. A search tool to

find a book in the list will be above the list. There will be buttons to recommend or selecting

as for sale or gift a book after choosing from the list. Also, when a book is selected from the

list, its information will be shown in the screen. These items will be placed in the screen as

shown in the following figure.

 Figure 31 – My BookList Screen of Application

41

5.2.6 Add New Book

This screen will be shown up when the “add new book” button is pressed. The user

can add a book to his/her book list by gathering information of the book using barcode reader

quality of the application. While adding a new book, there will be a button to add the cover

image of the book. These items will be placed in the screen as shown in the following figure.

 Figure 32 – Add New Book Screen of Application

5.2.7 View Profiles

A user can search reach the list of users who allow to be found in the search. The

screen consists of list of users, information of the selected user and three buttons which are

“add friend”, “view user history” and “send message”. “Add friend” button sends request to

the selected user to be friends. “Send Message” button sends a message to the selected user.

The other button will show up the transaction history of the user if he/she allows this feature.

A search tool to find a user will be placed above of the user list. These items will be placed in

the screen as shown in the following figure.

42

 Figure 33 – View Profiles Screen of Application

5.2.8 History

All processes that a user make are saved for each user in transaction history. This list

can be viewed by an audience determined by the user. The audience can be friend, everyone

or no one. The history keeps track of the date, type and the users related to the process. The

type of the process can be followings:

- Buying a book

- Selling a book

- Selecting a book as for sale

- Creating book list for sale

- Creating gift request

- Sharing information

- Borrowing a book

- Lending a book

- Adding a friend

- Deleting a friend

- Updating user info

These items will be placed in the screen as shown in the following figure.

43

 Figure 34 – History Screen of Application

5.2.9 Settings

The user will modify the privacy and account settings in this screen. In privacy

settings part, user decides who will be the audience of history, contact information and search

ability. The choices will be friends, everyone or no one. In account settings part, the user can

update the account information like e-mail or password or username and by clicking the “save

changes” button, the system saves the new settings. These items will be placed in the screen

as shown in the following figure.

 Figure 35 – Settings Screen of Application

44

5.2.10 Book Market

 The user handles book transactions in this market tool. Using this tool, a user can:

- buy a book

- sell a book

- lend a book

- borrow a book

- create book list for sale

- view book list for sale

- view list of lent books

- view list of borrowed books

- send gift request

- recommend a book

 Instead of the menu on the left, there will be market-related buttons. These items will

be placed in the screen as shown in the following figure.

 Figure 36 – Book Market Screen of Application

45

 The user can view and create a for sale list with “view for sale list” button and view

lent and borrowed books list in a joined table with “lent&borrowed books” button.

5.2.11 Search Book

User can search a book in this search tool by directly writing the title of the book to

this tool. Search results will be shown in the screen. After selecting the founded books, using

some buttons like “add book to my list”, basic operation about a book will be handled. These

items will be placed in the screen as shown in the following figure.

 Figure 37 – Search Book Screen of Application

6. Requirements Matrix

UC stands for use case.

Components:

Requirements

from SRS

(use cases):

Login

Logout

Component

Main

Functionality

Component

Settings

Component

Social

Component

Trade

Component

Data

Service

Component

Remote

Server

Component

UC1 X X X
UC2 X X X

46

UC3 X X X
UC4 X X X
UC5 X X X
UC6 X X X
UC7 X X X
UC8 X X X
UC9 X X X
UC10 X X X
UC11 X X X
UC12 X X X
UC13 X X X
UC14 X X X
UC15 X X X
UC16 X X X
UC17 X X X
UC18 X X X
UC19 X X X
UC20 X X X
UC21 X X X
UC22 X X X
UC23 X X X
UC24 X X X

