
 Application Development & Re-Engineering Guidelines

Department of Electronics & Information Technology Page | 1

Software Development &

Re-Engineering Guidelines

for

Cloud Ready Applications

Version 2.1

Prepared by:

Department of Electronics & Information Technology

Ministry of Communications & Information Technology, New Delhi

 Application Development & Re-Engineering Guidelines

Department of Electronics & Information Technology Page | 2

Table of Contents

1 Introduction .. 3

1.1 Need for Software Development & Re-Engineering Guidelines .. 3

1.2 Evolution of eGov App Store .. 3

2 Software Development & Re-Engineering Guidelines ... 5

2.1 Solution Architecture ... 5

2.2 Standards Adoption & Solution Engineering ... 8

2.3 Integration & Interoperability.. 12

2.4 Quality Certification, Release Management & Documentation .. 13

2.5 Solution Sizing & Scalability ... 14

2.6 Language & Interface ... 15

2.7 Legacy Integration – Digitization & Migration ... 15

2.8 Intellectual Property Rights (for Center & State owned applications) 15

3 Cloud Enablement of Applications ... 17

3.1 Application Migration to Cloud .. 17

3.2 Software as a Service Characteristics .. 23

4 Annexure I - Application Self-Assessment Checklist.. 27

5 Definitions .. 30

 Application Development & Re-Engineering Guidelines

Department of Electronics & Information Technology Page | 3

1 Introduction

Productized and Cloud enabled applications are ideal solutions that can be utilized by various

departments at centre and states without having to invest time, cost and effort in development of the

same. This would enable re-use and deployment of applications rapidly across several

states/departments.

1.1 Need for Software Development & Re-Engineering Guidelines

The basic need for Software Development and Re-engineering Guidelines is to ensure development of

Common Application Software (CAS) which can be configured as per different states / departments

requirements without the need of modifying the core code of the application for a faster deployment so

that time, effort and costs in developing applications are saved and to obviate duplication of efforts. It is

therefore imperative that applications are developed in conformity to guidelines that makes them

standardized and compatible for hosting and running across states. This need has translated in the

conceptualization, development and roll-out of productized cloud enabled application which can be

centrally run & hosted and are available to states for configuring them as per their relevant processes

with minimal customization for rolling out the services in shortest time possible.

It is envisioned that an application which is centrally run as a SAAS is easy to roll out to all interested

parties at the same time and therefore such application’s architecture and design should be compliant

to common minimum practices / considerations that will convert it to standard product.

1.2 Evolution of eGov App Store

The productized and cloud enabled application for states / departments will be made available on the

eGov AppStore. The eGov AppStore was launched by the Hon’ble Minister of Communications &

Information Technology, on 31st May 2013. The eGov AppStore is a national level common repository of

customizable and configurable applications, components and web services that can be re-used by

various government agencies/departments at Centre and States, with the vision to accelerate delivery of

e-services as envisaged under NeGP and optimizing the ICT spending of the government with the

following objectives:

 Speeding up the development and deployment of eGov applications

 Easy replication of successful applications across States

 Avoid duplication of effort and cost in development of similar applications

 Ensure availability of certified applications following common standards at one place

The key benefit for Stakeholders is that they need not reinvent the wheel and an application which is

successfully running in another state can be made available to them expeditiously with requisite

customization. Core and common applications that have high demand and are replicable across the

 Application Development & Re-Engineering Guidelines

Department of Electronics & Information Technology Page | 4

central and state levels are the likely candidates for the eGov AppStore, which shall be hosted on the

National Cloud. The eGov AppStore will include the setting up of a common platform to host and run

applications (developed by government agencies or private players) at National Clouds under Meghraj,

which are easily customizable and configurable for reuse by various government agencies or

departments at the central and state levels without investing effort in the development of such

applications.

 Application Development & Re-Engineering Guidelines

Department of Electronics & Information Technology Page | 5

2 Software Development & Re-Engineering Guidelines

2.1 Solution Architecture

The solution architecture is key differentiator for product like solutions. A well architected solution gives

it robustness for reusability (in code, configurations, databases, services etc.), enhancements and

interoperability.

The following should be adopted as good architecture principles:

 Well established Service Contracts

A contractual agreement between the Application Owner (Govt. Department at Centre/State or any

Private Player) and the Application Provider (Govt. Department or independent entities which host

& provide services through eGov AppStore) over the period of Application Lifecycle (for example:

Productization + Replication + Hosting + Operation & Maintenance). The contracts related to

licenses, source code etc. will also be a part of such agreements.

 Loose Coupling of Services

This is one of the fundamental concepts of Service Oriented Computing. Loose coupling ensures that

application components are treated individually and dependencies are reduced. This further ensures

that addition, removal, failure or update of one component has a minimum impact on other

components.

Effort should be made to develop components separately and then their integration/ interaction

mechanism could be defined in a separate component. For example, while developing a component

that calculates the order of a commodity should not start calculating the total cost of the order

placed. Order should be calculated separately and the cost should be calculated separately so that

any change in costing structure should only affect the cost calculation code and not the order

placement component.

 Service Reusability

For the purpose of reusability, services should be written in such a way that they can be automated

for testing. Test automation is necessary to ensure services can be upgraded, re-factored, etc.

without breaking other services that use this.

Further, all services should be inherently versioned and all invocations must specify the version of

service. Efforts should be made to ensure that new versions of services should be backward

compatible with at least one or two previous versions so that users of the service can start using

new version of the service without mandatorily making changes to their code.

Rapid Replication and productization of successful applications running across different States/UTs

would ensure that these applications are also reusable in other states with appropriate built-in

configurations which can be undertaken by concerned seeker state / department. The solution

 Application Development & Re-Engineering Guidelines

Department of Electronics & Information Technology Page | 6

should also support minor customization if so essentially required by the seeker state / department.

A repository of re-usable components is to be maintained and made available on eGov AppStore.

Software components can often be classified according to reusability levels:

 Foundation Components

Examples of foundation components are classes such as Money, Date, List, Person and

Number. These can be reused in almost any application

 Domain Components

Examples of domain-specific components include classes like Customer, Account, and

Transaction

 Architectural Components

Examples of architecture-specific components include event notification mechanisms; user

interfaces components, and message passing systems

 Application Components

Examples of application-specific components include message handlers, exception handlers,

and views

 Service Abstraction

Abstraction provides control on what part of the service logic of a particular application are private

(hidden) and what parts are made public (consumable). The public or consumable parts of the

service logic can be designed in a generic manner to ensure that they encourage reusability as

discussed in the point above. Abstraction also supports the loosely coupled principle discussed

above. In a three tier (database, business and presentation) software application, necessary

abstractions should be done in each layer so as to achieve loose coupling and to keep the code

modular so that addition of any logic could easily be done at any tier. For example, in application

development for scholarship disbursement system, a function to fetch beneficiary details may be

designed to interact with database layer and gives the information to presentation layer. How the

database layer performs the operation to fetch details should be abstracted from the business layer.

Similarly how the presentation layer represents the information should be abstracted from the

business layer.

 Service Discoverability

While productizing the existing application or designing a new application for hosting on the eGov

AppStore, it is important that accidental creation of redundant services or implementation of

redundant logic is avoided. Service discoverability makes this happen by ensuring that metadata

attached to a service and describes overall purpose of the service and its functionality, which makes

the services easily discoverable. A repository of re-usable business logic components is to be

maintained and made available on eGov AppStore. For example an existing service or business logic

already available at the data center should not be recreated to save duplicity.

 Application Development & Re-Engineering Guidelines

Department of Electronics & Information Technology Page | 7

 Service Autonomy

In addition to the principle of Reusability discussed above, it is important to ensure that services

which are delivered do not just possess reusable logic, but they are also autonomous to be reused.

This Autonomy will also facilitate adaptation to changing constraint in terms of scalability, service

levels adherence, availability etc. For example only loosely coupled services or service components

can be reused, therefore autonomy becomes an important parameter to efficiently design solutions.

 Service Location Transparency

This refers to ability of the Service Consumers to use a service regardless of its actual location, for

example being available on a cloud.

 Service Granularity

Service Granularity means identification of optimal scope of business functionality in a service

operation. Each service operation should ideally perform single transaction to simplify error

detection, error recovery, and simplify the overall design (this means that particular Service

operation is granular). In addition, each service operation maps to a single business function,

although if a single operation can provide multiple functions without adding design complexity or

increasing message sizes, this can genetically reduce implementation and usage costs (here each

service operation is generalized enough and interoperable for multiple functions, making it

granular).

 Platform & Database Agnostic

From an architectural perspective, it would be required that the productized solutions should be not

only be modular in nature, but be adaptive to converse with other technology components such as

platforms and databases, complete with management suites or with the induction of adaptors and

interfaces or even smaller bespoke solutions to support the same. It would also be required that the

application provider should be able to deliver application on latest IT Infrastructure & system

software components available at National Cloud and at SDCs under Meghraj. This would ensure

that the applications developed can overcome the technology dependences and be available to a

variety of seeker states.

 Application design for occasionally connected systems

For the small percentage of functionality that requires “occasional disconnected/offline”

operations, applications may be designed to use a local persistent store/cache just for the purposes

of offline capability and later sync as and when connectivity is restored. As connectivity becomes

ubiquitous, less of such offline capabilities are needed.

 Application Development & Re-Engineering Guidelines

Department of Electronics & Information Technology Page | 8

2.2 Standards Adoption & Solution Engineering

There are a number of standards available on software engineering lifecycles which ensure quality

product development and scope of continuous improvements. The standards are to be followed as per

the Government of India issued policies and guidelines promulgated from time to time.

The proposed solutions should be adaptable to the following as good software engineering practices:

 Domain / Sector specific Meta Data Standards

Each sector or domain has its unique challenges in standardization of Meta-Data. It is important that

any solution being developed to provide services in the domain or sector adhering to the Meta-Data

standards for that particular sector or domain. This would ensure seamless integration between

solutions developed for domain or sector. The GOI has also come out with Meta data standards

which can be seen at www.egovstandards.gov.in

 Software Engineering Standards

It is important that software engineering standards are adopted during the initial stages of the

development lifecycle to ensure that the developed solution is able to meet quality certifications

and security testing. Recommended testing requirements will be provided by STQC / empanelled

agencies.

 Usage of Open Standards technologies

As part of the software engineering, it is important to use technologies developed in open

standards. As part of the overall software development lifecycle, a minimum customization and

maximum configuration approach should be adopted. There should not be any hard-coding in any

aspect of the development and release lifecycle of the proposed application. The following section

articulates areas (no limited to) that should be available as configurable parameters, while overall

software having the ability to be customized so as to meet the local requirements of the user state /

department / agency. e-Governance application should preferably be developed using open source

tools and components.

 Application Development & Re-Engineering Guidelines

Department of Electronics & Information Technology Page | 9

2.2.1 Configurable Components

An important facet of product like solution is its ability to be configurable to meet the business

requirements. The following should be available as configurable components:

 Master Data

Master data should be available in parameterized format. It should be based on the Meta data

standards for the industry / domain / sector. They should not be hard-coded in the application.

 Screen Labels

Screen labels may differ between solutions owing to the localization requirements for a solution

proposed to be implemented. Configuration of screen labels should be made available through

resource files. They should not be hard-coded in the application.

 User Alerts & Messages

Based on the user departments business requirements, alerts and messaging services need to be

pushed or pulled to the end user. Allowing for alerts and messages to be available as a configurable

component would ensure that unwanted alerts and messages are not routed through to all

workflow entities.

 Reports

It is generally required from solutions to be able to prepare various kinds of reports for various

levels of officers in the hierarchy, along with aggregation and data sorting features. Available as a

configurable component, it would ensure that the reports are localized to the needs of a user, rather

than being generic to business function or sub-unit.

 Workflow Management

Common business functions in two similar organizations may have different processes related to

approvals, escalations, reviews, recommendations etc.; therefore it is important that workflows are

available as configurable components to allow the solution to be configured to the business

requirements of that organization.

 Multi Language Support

Government departments operate in multiple languages depending on their region. Product like

solutions should be adaptable, to allow through configuration, selection of language in which the

user wishes to operate the system. Product like solutions should at least be bi-lingual, with English

as one of the languages.

 Application Development & Re-Engineering Guidelines

Department of Electronics & Information Technology Page | 10

 Business Rules (if - then - else)

Business rules are at the core of workflow processes and allow for information, interaction and

transaction services to be communicated. Product like solutions should ensure that business rules

are configurable to allow the organization to localize the solution to their business requirements.

They should not be hard-coded in the application.

 Dashboards

As a management tool, most senior officers require dashboards to review service progress, service

levels, escalations, alerts and reminders, messages etc. As an operational tool it is required by the

office staff for work-list detailing, alerts, reminders and messaging. As configurable component, it

would ensure that the user is able to see his or her, role based dashboard for summary of tasks and

activities to be completed.

 Online Help & Feedback

As a feature in most standard products it would be required that online help and feedback

mechanism should be available as configurable parameters to assist the users in functioning of the

application. This could include context sensitive help, user manuals etc. In online feedback

mechanism, feedback on technical aspects as well as service delivery should be given to the users.

2.2.2 Customizable Components

A solution may be required to be customized to meet specific business requirements of an organization.

The following should be kept in perspective while customizing core solutions:

 Ability to add additional features without compromising the core code

The solutions should be developed in modular format, or should allow for modular integration or

interfacing with other solutions, without the need of editing existing core code. Solutions should

allow for the development of new features, functionalities, changes to done through interfaces

external to the existing code base.

 Ability to interface with other independent sub-applications

It may be required that a product like solution is required to interface with other bespoke smaller

applications, unique to an organization. There should be minimal effort required for such activities,

and should be made available through external adaptors interfacing with the core application.

Methods of customization could include:

1. Implementing a plug-in architecture so that tenants could upload their own code through

defined interfaces without changing the core application or;

2. using some form of rules engine that enables process customization through configuration

 Application Development & Re-Engineering Guidelines

Department of Electronics & Information Technology Page | 11

3. Another alternative to consider is enabling application to call a service endpoint provided by the

tenant, which performs some custom logic and returns a result.

In addition, application may also require providing ways to extend the application without using custom

code. To achieve this application must implement a mechanism for customizing the UI, and a way of

extending the data storage schema.

Methods of extending schema can be:

 Single fixed schema with a set of columns available for custom data

 Single fixed schema with separate tables holding custom data

2.2.3 Mobile Enablement

The reach of mobile technology and devices has percolated beyond the last mile of connectivity into the

households of the most unreachable terrain in India. Therefore it becomes important that government

service delivery is undertaken through this medium to increase the scale and reach of government

services throughout the nation.

As a resultant it is required that the applications that planned to deliver these services use the mobile

medium to provide services. There are three means through which applications can be engineered to

provide services through mobile enablement:

1. Accessing application on a mobile device

2. Accessing a mobile version of the application through a mobile device (m.website)

3. Accessing a mobile application through a mobile device

In the first means the accessibility of the application through the medium changes translating from a

system based access to a mobile device. The second means assumes the redevelopment or

reconfiguration of the application to suite a mobile based delivery platform, (m.website) which follows

best practices in providing applications with limited or complete functionality to be accessible over a

variety of mobile service delivery resolutions (such as in case of smartphones, tablets, key interface

phones). The third means assumes the redevelopment of an additional application or app, which can be

downloaded and run on the mobile device.

Furthermore the application access can be given through multiple means over mobile devices in formats

such as UDDS, SMS, App etc. It is predominantly decided the services being offered by the parent

domain department / agency to select the means through which the services can be provided.

In case of native mobile application development wherein business layer is planned for deployment on

remote tier, a separate service layer can be designed. Services should be designed for maximum

 Application Development & Re-Engineering Guidelines

Department of Electronics & Information Technology Page | 12

reusability by not assuming any specific details of client. For improving interoperability, REST based

protocols and transport mechanisms can be implemented.

From an application development and re-engineering guidelines perspective it is required that the

applications are developed to meet mobile device service delivery platform requirements while at the

same time ensuring security of data, ease of use of the application and continuation of the citizen

experience as over traditional access mechanism.

2.3 Integration & Interoperability

A key requirement for any product is its ability to interface, integrate and more importantly be

interoperable with other technology suites. The application should be developed in a manner that it

should support flexible, modular and extendable services. The proposed solution should have the

following:

 Clear input and outputs should be defined

 Ability to perform business validations

 Clearly defined error codes

 Support (i) Asynchronous (ii) Synchronous (ii) Batch mode, models of integration

 Support Web Services

 Support File Transfer

 Support SMTP

 Support Mobile (SMS) service delivery

 Support API based integrations

 Support Push & Pull Integration

 Support Published / Subscribed methods such as Java Messaging Service, RSS etc.

 Support integration on open standards

 All major validations / constraints such as primary & foreign keys can be at the database level and

others such as business logic at the context level

 Access should be compatible with external devices such as hand-held devices, tablets &

smartphones

2.3.1 List of Open APIs proposed to be published

The eGovernance projects are linked to each other because they service a common list of beneficiaries,

i.e. the citizen. It is required that new applications developed and those re-engineered should capture

and process data limited to their agency / department. Any data which can be furnished or exchanged

through an external department / agency should be done through the use of APIs (Application

Programming Interface). This will allow the application to source data through a unified data pool and

 Application Development & Re-Engineering Guidelines

Department of Electronics & Information Technology Page | 13

will marginalize errors in data entry for the same record. API invocation must allow platform neutral and

language neutral way of calling. For example, a service written in Java should also be usable within an

application developed in .NET environment.

The proposed application should list all the APIs that it intends to provide to be consumed by other

departmental applications (including citizen interfaces) and should also list data elements which it needs

to be sourced from other departments. Prime examples of this can be UID for personal information,

Vahan data for vehicle data etc.

2.4 Quality Certification, Release Management & Documentation

2.4.1 Quality Certification

It is important for product like solutions to adhere to quality certification processes to ensure that

solutions being given for replications to other stakeholders, meets minimum quality benchmarks. To

ensure a quality product it would be required that the solution:

 Should qualify defined functional testing through STQC / empanelled agencies

 Should qualify defined performance testing through STQC / empanelled agencies

 Should qualify defined security testing through empanelled agencies

 Should have well documented development & testing process artifacts

o Business Requirements Document (BRD)

o Functional Requirement Specifications (FRS)

o Software Requirement Specifications (SRS)

o Software Design Documents (including HLD, LLD etc.)

o Requirements Traceability Matrices (RTM)

o Test Plan, Test Cases & Test Reports

o Code Review Reports

o Database Review Reports

o Project Implementation Plan User Manual

o Deployment Guide

Detailed testing requirements will be provided by STQC.

 Application Development & Re-Engineering Guidelines

Department of Electronics & Information Technology Page | 14

2.5 Solution Sizing & Scalability

Since the solution will be required to be hosted on various deployment models, it is important for the

solutions to be able to scale up to meet increasing usage requirements. Although an initial estimation of

the hardware specifications (quantity and model / version) would be required to size the solution based

on system interaction, to increase capacities the solution should adaptable to scaling. The following

should be kept in perspective:

 Able to scale up to meet increasing load

Solution should be able to handle increasing number of first time users, transactions, data sharing

processes etc.

 Able to demonstrate stress levels exerted

Solution should be able to handle increasing number of concurrent users, concurrent transactions,

synchronous data sharing with other systems etc.

 Able to perform on throttled bandwidth environments

Solution should be able to perform to the agreed service levels regardless of the bandwidth

available or in multiple bandwidth availability scenarios

 Should have low technical & infrastructure resource consumption

Solution should optimally use technical resources such as memory, processor (CPU), storage etc. In

addition should optimally use data center resources on available bandwidths.

 Should be interoperable to newer technology upgrades

The solution should be able to harness the advantages of legacy technology (servers, software,

devices etc.) while be able to upgrade to newer systems. This would enable low cost – optimal

utilization of resources.

 Horizontal Scalability

1. Scalability of an application is aided through designing services as granular as well as loosely

coupled. Use of distributed data stores and sharding also aid application scaling. If the

service uses database/datastore, it must ensure database layer can also span multiple

database nodes

a. This can be achieved either by using a distributed data store; or

b. If using traditional RDBMS systems, this can be achieved by ensuring application level

sharding (partitioning) is implemented to partition data across many RDBMS nodes.

Each shard has the same schema, but holds its own distinct subset of the data. A shard

is a data store in its own right, running on a server acting as a storage node.

 Application Development & Re-Engineering Guidelines

Department of Electronics & Information Technology Page | 15

2.6 Language & Interface

A key requirement for government application being available nationally is their ability to provide the

user a local interface and support local language. Therefore the proposed solutions should:

 Be developed on Unicode Compliant Code practices

The development should be undertaken using Unicode compliant practices.

 Support open standards on language interfaces

The solution should support open standards on language interfaces.

 Should support multiple language (Indian & Foreign) APIs

Solution should at least be bi-lingual, but should possess capabilities to be multi-lingual.

 Should support self-learning data dictionaries

The solution should be support APIs that enable building of transliterated data dictionaries, with

preemptive text, so that the user is given the choice to select the nearest match.

2.7 Legacy Integration – Digitization & Migration

The proposed solution should be able to acquire, sort and store the data that has been accumulated for

the service being provisioned through multiple legacy ICT solutions. Therefore the proposed solutions

should be:

 Able to migrate data through offline user interfaces

The solution should provide for manual data entry of legacy data (allow for conduct of digitization

activities)

 Able to migrate data through be-spoke / product utilities

Solution should support migration legacy data through be-spoke utilities which allow for data entry,

extraction and submission of data into the proposed solution

2.8 Intellectual Property Rights (for Center & State owned applications)

 The Intellectual Property Rights for the developed product should invariably reside with the

Government Department. This should include the source code, release management artifacts and all

other technical and domain related documentation for the developed solution. The licenses

procured for the implementation of the existing application may be provided.

o Release Management Artifacts should include, but not be limited to the following:

 Application Development & Re-Engineering Guidelines

Department of Electronics & Information Technology Page | 16

 Core Application

 Packaged Installation

 Application Code

 Code Review

 Unit Test Results (Multilingual)

 Test Suites

 UAT Scripts & Test Cases (Multilingual)

 User Interface Testing Results (Multilingual)

 Performance Test Results

 Security Test Results

 Requirement Traceability Matrix

 Deployment Scripts

 Deployment Manual

 User Manual

 Technical Manuals

 Release Notes

 Standard Operating Procedures

 Application Customization Guidelines

 Quality Assessment Report

 UAT Acceptance Benchmarks

 Mapping sheet for defects/functionality and system test cases

 Non-Functional Requirements Compliance sheet

 Backup of the Database before executing the incremental Script

 Incremental Script

 Release note for Database changes done between builds

 DB Code Review Report

 The IPR for the developed product / solution should not be restricted / compromised through any

legal interpretation. The solution should clearly be the property of the government department.

 Application Development & Re-Engineering Guidelines

Department of Electronics & Information Technology Page | 17

3 Cloud Enablement of Applications

3.1 Application Migration to Cloud

There are five well established approaches to migrate traditional applications to the cloud, these

include:

1. REHOST on Infrastructure as a Service (IaaS)

2. REFACTOR for Platform as a Service (PaaS)

3. REVISE for IaaS or PaaS

4. REBUILD on PaaS

5. REPLACE with Software as a Service (SaaS)

3.1.1 Rehost on IaaS

This approach involves the re-hosting of the application from the existing infrastructure to the cloud

infrastructure without making any significant changes to application code-base or the application

configuration files. The application Operating System / Hypervisor and the Hardware in addition is

managed by the cloud provider.

The following diagram depicts the re-hosting of the application on Infrastructure as a Service.

 Application Development & Re-Engineering Guidelines

Department of Electronics & Information Technology Page | 18

Rehosting solutions vary from a hosting infrastructure to application virtualization.

Example:

There are ways by which server applications are moved rapidly to and across the cloud, without code

change or lock-in. Use of toolkits may be made that allow cloud integrators to handle migrations on

behalf of their enterprise accounts.

Taking an application-centric approach in moving Server applications, use of application images rather

than server or machine images is considered more efficient i.e. encapsulating an application and its

dependencies in what is called a “virtual application appliance” (VAA), without a virtual machine (VM).

The result is application flexibility that is hypervisor-agnostic, cloud independent, and fast.

3.1.2 Refactor for PaaS

This approach involves the refactoring of the application to use the platform provided by the cloud

provider to migrate the application. In this method the programming languages, development

frameworks, containers, operating system / hypervisor and the hardware are all managed by the cloud

provider.

In addition application data is kept the same or transformed upon migration, application source code is

updated, application configurations are extended to service the customer and programming languages

and development frameworks are either kept as the same or new ones provided by the platform are

used.

The following diagram depicts the refactoring of the application for Platform as a Service.

 Application Development & Re-Engineering Guidelines

Department of Electronics & Information Technology Page | 19

In simple terms, refactoring means doing just enough to migrate an application to a platform-as-a-

service cloud offering. It is not merely lifting an application onto a PaaS, because the way the vendors

handle security, authentication and data access is generally very different which leads to break open the

code in order to use the new frameworks and libraries in the platform.” So application code needs to be

refactored to leverage the benefits of the PaaS frameworks

 Application Development & Re-Engineering Guidelines

Department of Electronics & Information Technology Page | 20

3.1.3 Revise for IaaS or PaaS

This approach involves the migration of the application requiring rebuilding the application utilizing

either the infrastructure components of the cloud or utilizing the platform components of the cloud. In

this approach similar to the Refactor approach, programming languages, development frameworks,

containers, operating system / hypervisor and the hardware are managed by the cloud provider; while

the application data, source code and application configuration is managed by the development agency.

In addition the application data is kept as a same or transformed, the source code is updated, new

application configurations are required, same or new programming languages, development

frameworks and containers are used for revising applications.

 The following diagram depicts the revising of the application for Platform as a Service or Infrastructure

as a Service.

 Application Development & Re-Engineering Guidelines

Department of Electronics & Information Technology Page | 21

Refactoring does a minimalistic change in the application which is required to move it onto a PaaS

system. But in order to reap the maximum benefits from the scalability of cloud infrastructure, the

application has to undergo more fundamental changes to the architecture. The development team has

to do very significant work in the application to make it cloud optimized. The guiding principle on

whether this kind of revision is worth paying for should be the value of the code in question.

3.1.4 Rebuild on PaaS

This approach involves the redevelopment of the application to suite cloud based deployment. Similar to

the revise approach, in this approach also the programming languages development frameworks,

containers, operating system / hypervisor and the hardware are managed by the cloud provider; while

the application data, source code and application configuration is managed by the development agency.

In addition the application data is transformed from the existing infrastructure to the new environment,

the source code and application configurations are written / configured anew. The existing or new

programming languages and development frameworks from the cloud platform are used.

The following diagram depicts the rebuilding of the application on Platform as a Service.

 Application Development & Re-Engineering Guidelines

Department of Electronics & Information Technology Page | 22

PaaS offerings include facilities for application design, application development, testing, and

deployment as well as services such as team collaboration, web service integration, and marshalling,

database integration, security, scalability, storage, persistence, state management, application

versioning, application instrumentation, and developer community facilitation.

3.1.5 Replace with SaaS

The last approach for migration of the applications to cloud involves replacing the existing application

with a new application, which is completely managed by the cloud provider, and is available to the

customer on Software as a Service Model. In this approach only the application data from the existing

application is transformed to the new application; while all other aspects such as source code,

application configuration, programming languages, development frameworks, containers, operating

system / hypervisors and hardware are managed by the cloud provider.

The following diagram depicts the replacing of the application with Software as a Service.

 Application Development & Re-Engineering Guidelines

Department of Electronics & Information Technology Page | 23

In contrast with the other approaches, the replace approach suggests to use the SaaS solutions instead
of building the application.

3.2 Software as a Service Characteristics

The following should be considered as key aspects for development of applications planned for

deployment on SaaS model:

 The application should support Multi-Tenancy

 The application should have certain level of Self-Service Sign-Up

 The application should be Scalable in nature

 The application should be Stateless in nature

 The application should support mechanisms to Measure Service

 There should be a mechanism in place to support Unique User Identification & Authentication

 There should be a mechanism in place to support Configurability (UI, Business Logic, Workflow etc.)

for each tenant

 There should be functions in place to Monitor, Configure, & Manage application & tenants

3.2.1 SaaS Maturity

The following diagram depicts the various stages of SaaS maturity model:

 Application Development & Re-Engineering Guidelines

Department of Electronics & Information Technology Page | 24

SaaS Maturity Level I

Level I of the SaaS maturity model implies that custom development is undertaken

for each tenant and managed separately. In such instances the application

development agency has to manage the changes being suggested for each tenant

along with version control for each deployed version of the application.

SaaS Maturity Level II

Level II of the SaaS maturity model implies that multiple copies of the same

instance are run separately each tenant. In such a model the application

development agency has to manage configuration files for each tenant separately

and make changes based on the business requirements.

SaaS Maturity Level III

Level III of the SaaS maturity model implies that the single instance of the

application is used by all the tenants. Different configuration files are managed

through a multi-tenant efficient architecture. The configurations are managed by

the tenant themselves and can be changed in run-time.

SaaS Maturity Level IV

Level IV of the SaaS maturity model implies that multiple instances of the

application can be managed through a tenant load balancer, which creates

additional instances based on the load on the application. These instances

serve a number of tenants and are based on the configuration files defined for

the application.

 Application Development & Re-Engineering Guidelines

Department of Electronics & Information Technology Page | 25

3.2.2 Multi-tenancy

Multi-tenancy is defined as an architecture in which a single instance of an application serves multiple

customers. The following diagram depicts the multi-tenancy continuum from isolated tenancy to shared

tenancy utilizing the cloud resources.

In order to develop multi-tenant application the architecture should be designed and developed in a

manner so as to have the following:

 Identification of most granular functionality

 Implementation of functionality as a web service

 Orchestrating each functionality to configure the desired workflows

 Configuration of application workflow using workflow designer

 Execution of application workflow using workflow engines

 All configurable aspects of application should be stored in separate tenant specific metadata

database

 UI (User Interface) Customizability

 Segregated data storage (tenant-wise) for protecting access and data isolation amongst various

tenants

 Application Development & Re-Engineering Guidelines

Department of Electronics & Information Technology Page | 26

3.2.3 Designing Configurable Application

The following diagram depicts architectural maturity for all application development envisaged to be

made available under the national eGov AppStore. The architecture proposes applications to be built as

component stores, which will allow the application to be readily re-usable and scalable, two of the key

design aspects for cloud enablement.

Application Tiers

The application should be developed on a multi-tiered architecture to benefit for distributed computing

and scaling advantages brought onboard by cloud enablement. These should be primarily split into

Presentation, Application and Database Layers. These distinct layers can subsequently be divided into

multiple sub-tiers which will allow for greater ease of simultaneous computing capabilities to be made

available on persistent infrastructure.

Application Design

The application should be designed in a manner that provides clear distinction between configuration

components and execution components. This will allow the application to scale-up in run-time to handle

more simultaneous service requests, while at the same time allow the administrators to manage

configurations for multiple tenants. Both configuration and execution processes should be developed as

stores loosely coupled to allow better access to processes within. Process stores of architecture design

should have User Interface Configurator, Service Configurator, Workflow Configurator, Business Logic

Configurator, Meta-data Management System, Access Controllers, Run-time Engine & Application

Database.

 Application Development & Re-Engineering Guidelines

Department of Electronics & Information Technology Page | 27

4 Annexure I - Application Self-Assessment Checklist

The following check-list needs to be self-assessed by Application Development / Providing / Provisioning

Agencies to be eligible for the proposed national level App Store.

Application Details

Application Name

Application Current Version

Released on

Certification (if any, done by)

Provider department details

Initial cost of application development

Proposed effort and cost of application customization for Cloud
enablement (in case the application is not cloud enabled)

Effort: Man Months
Cost: INR

Rating Criteria
Rating 1 – The application is non-compliant and cannot be changed
Rating 2 – The application is presently non-compliant and would require more than 50% of the original
development effort to change the application
Rating 3 – The application is presently non-compliant and would require between 30% to 49% of the
original development effort to change the application
Rating 4 – The application is presently non-compliant and would require between 10% to 29% of the
original development effort to change the application
Rating 5 – The application is presently non-compliant and would require less than 10% of the original
development effort to change the application
Rating 6 – The application is fully compliant on the component

S No Compliance Component Rating
(between
1 – 6)

Weight Provide
Details

1. Is master data, screen labels, user alerts, reports,
dashboards configurable (not hardcoded in the
application)

 4

2. Are business rules configurable (managed using
rule-set engines and not hardcoded in
application)

 4

3. Are workflows configurable (not hardcoded in
the application)

 4

4. Is user interface (application screens - look &
feel) customizable

 4

5. Can the application be integrated with SMS
Gateway and/or Messaging Systems

 5

 Application Development & Re-Engineering Guidelines

Department of Electronics & Information Technology Page | 28

6. Can the application be integrated with other
external applications / components / services,
implies:
(i) Application can be integrated with payment
gateway, third party applications etc.
(ii) Application can be integrated with third party
components such as Identity & Access
Management Tools etc.

 4

7. Can the application be integrated with other
external applications / components / services,
implies: The application has defined interface
points and mechanism for data exchange

 4

8. In case required, is the application developed in
such a manner that it can support offline data
entry & synchronization mechanisms.

 2

9. Is the application designed on a ‘Multi-Tiered’
architecture, implies:
(i) Are tiers configurable with minimal effect to
other tiers
(ii) Is there clear segregation of duties between
presentation, business and database layers

 4

10. Is the application scalable

 5

11. Is the application deployable on multiple
platforms

 1

12. Is the application developed on Service Oriented
Architecture

 3

13. Is the application deployable on multiple
databases

 3

14. Can the application be deployed as packaged
installation and creates verification log for the
installation

 2

15. Does the application have multilingual
capabilities, implies: that the application is
UNICODE compliant

 3

16. Can new features be added in the application
from a remote central location, implies:
application supports automated patch
management

 3

 Application Development & Re-Engineering Guidelines

Department of Electronics & Information Technology Page | 29

17. Is the application developed in a manner that in
case newer versions of the core application are
released, it does not affect the integrated
components to the core application.

 4

18. Are the application release management,
configuration management and version
management clearly articulated with well-
defined policies, implies: project artifacts such as
SRS, FRS, RTM etc. are available.

 5

19. Is the application developed in a manner that it
is multiple browser compatible including
backward compatibility of bowsers

 3

20. If required, is the application accessible through
multiple clients including handheld devices,
tablets, smartphones etc.

 3

21. Does the application support Multi-Tenancy? 5

22. Is the application designed to store configuration
files outside the application & allowed to be
changed in run-time?

 4

23. Is the application designed to be Scale-Out or
Scale-In?

 5

24. Is the application designed to be Stateless? 5

25. Does the application assume any specific
infrastructure dependency?

 3

 Application Development & Re-Engineering Guidelines

Department of Electronics & Information Technology Page | 30

5 Definitions

S
No.

Keyword Definition

1 Product A well-developed product is defined as an integrated packaged solution which
is available to the end user for ready to use. This proposed solution may
require configurations to adapt to the business processes of the end user. Also
the product should only allow for minor customizations to localize the solution
for end user department / agency.

2 Service
Contract

A service contract is defined as a physical contract which is signed between the
service provider and service consumer. In context of the project service
provider would imply, the App providing department / agency / stakeholder
and the service consumer would imply the department / agency that would be
using the product.

3 Loose Coupling
of Services

It is explained as concept wherein the individual services designed, developed
and integrated as part of the solution are loosely coupled in the solution, so
that in case another solution, service wants to use / re-use the service they are
able to do so.

4 Service
Reusability

It is explained as a concept wherein the individual services designed under a
solution for a particular business unit can be reused by configuring certain
parameters to suite the business requirements of another business / functional
unit.

5 Service
Abstraction

It is explained as a concept wherein the application development takes
account of the reusability factor and allows for the developed service and its
components to available for other services / solutions. This would also ensure
that there is transparency in the development of the application and that
features can be reused as part of other services.

6 Service
Discoverability

It is explained as a concept wherein services loosely coupled under a solution
are easily identifiable, so that other services / solutions do not replicate the
logic defined in another service. This would help in weeding out redundant
logic in the developed application code and make its performance optimized.

7 Service
Autonomy

It is explained as a concept wherein the services which are loosely coupled,
discoverable and can be easily abstracted are single as far as their
development is concerned. It implies that the functional logic that has been
developed for the service is not required to be replicated in as part of another
development in the same solution.

8 Service
Location

It is explained as a concept wherein a service that has been developed under a
solution, is not only discoverable to other solutions / services, but is also

 Application Development & Re-Engineering Guidelines

Department of Electronics & Information Technology Page | 31

S
No.

Keyword Definition

Transparency denotes clearly its location, such as locally available, available on the
networked data center or available on the cloud. This would ensure that the
end user / solution are able to use the service independent of its physical
location.

9 Service
Granularity

It is explained as concept wherein each service is developed in a manner that it
easily understood, used by other services, and that the actions performed
under the services are transparent. This would include the maintaining the
activity logs – including user information, delta change, time stamps,

10 Platform &
Database
Agnostic

It is explained as concept wherein the solution is developed in a manner that it
has ability to integrate with other systems, developed diverse platforms, in
addition to being interoperable with multiple databases available. This would
ensure that service delivery is the prime forte of the solution, while technology
and infrastructure support its delivery.

