
Software Development Life Cycle Models-
Comparison, Consequences

Vanshika Rastogi

Asst. Professor, Dept. of ISE, MVJCE
Bangalore

Abstract- Software Development Life Cycle is a well defined
and systematic approach, practiced for the development of a
reliable high quality software system. There are tons of SDLC
models available. This paper deals with five of those SDLC
models, namely; Waterfall model, Iterative model, V-shaped
model, Spiral model, agile model. Each development model
has certain advantages and disadvantages. The paper begins
with the discussion to the introduction of SDLC, followed by
the comprehensive comparison among the various SDLC
models.

Key words: software development life cycle, development
models, comparison between models.

1. INTRODUCTION

The process of building computer software and information
systems has been always dictated by different development
methodologies. A software development methodology
refers to the framework that is used to plan, manage, and
control the process of developing an information system.
[1] Software Engineering (SE) is the application of a
systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software, and
the study of these approaches; that is, the application of
engineering to software because it integrates significant
mathematics, computer science and practices whose origins
are in Engineering. Various processes and methodologies
have been developed over the last few decades to improve
software quality, with varying degrees of success. However
it is widely agreed that no single approach that will prevent
project over runs and failures in all cases. Software projects
that are large, complicated, poorly-specified, and involve
unfamiliar aspects, are still particularly vulnerable to large,
unanticipated problems. A software development process is
a structure imposed on the development of a software
product. There are several models for such processes, each
describing approach test to a variety of tasks or activities
that take place during the process. It aims to be the standard
that defines all the tasks required for developing and
maintaining software. [2]
These classic software life cycle models usually include
some version or subset of the following activities:
 Planning and Visualization
 Requirement Analysis
 Software Modeling and Design
 Coding
 Documentation
 Testing
 Deployment and Maintenance

fig.1: SDLC

2. VARIOUS SDLC MODELS

The various SDLC models are discussed as:
a) Waterfall model: The waterfall model is the
classical model of software engineering. This model is one
of the oldest models and is widely used in government
projects and in many major companies. As this model
emphasizes planning in early stages, it ensures design flaws
before they develop. In addition, it is intensive document
and planning makes it work well for projects in which
quality control is a major concern. The waterfall life cycle
consists of several non overlapping stages; the model
begins with establishing system requirements and software
requirements and continues with architectural design,
detailed design, coding, testing, and maintenance. The
waterfall model serves as a baseline for many other life
cycle models.[3]
Basic principle:
o Project is divided into sequential phases, with

some overlap and splash back acceptable between
phases.

o Emphasis is on planning, time schedules, target
dates, budgets and implementation of an entire
system at one time.

o Tight control is maintained over the life of the
project via extensive written documentation,
formal reviews, and approval/signoff by the user
and information technology management to
occurring at the end of most phases before
beginning the next phase.[2]

Vanshika Rastogi / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 168-172

www.ijcsit.com 168

Fig 2: waterfall model

b) Iterative model: An iterative life cycle model does
not attempt to start with a full specification of
requirements. Instead, development begins by specifying
and implementing just part of the software, which can then
be reviewed in order to identify further requirements. This
process is then repeated, producing a new version of the
software for each cycle of the model.[4]

Fig3: iterative model [5]

Basic Principle:
o The problems with the Waterfall Model created a

demand for a new method of developing systems
which could provide faster results, require less up
front information and offer greater flexibility.

o Iterative model, the project is divided into small
parts. This allows the development team to
demonstrate results earlier on in the process and
obtain valuable feedback from system users.

o Each iteration is actually a mini-Waterfall process
with the feedback from one phase providing vital
Information for the design of the next phase.[2]

c) c) V-shaped Model: Just like the waterfall
model, the V-Shaped life cycle is a sequential path of
execution of processes. Each phase must be completed
before the next phase begins. Testing is emphasized in this
model more so than the waterfall model though. The testing
procedures are developed early in the life cycle before any
coding is done, during each of the phases preceding
implementation. Requirements begin the life cycle model
just like the waterfall model. Before development is started,
a system test plan is created. The test plan focuses on
meeting the functionality specified in the requirements
gathering. The high- level design phase focuses on system
architecture and design. An integration test plan is created
in this phase as well in order to test the pieces of the

software systems ability to work together. The low- level
design phase is where the actual software components are
designed, and unit tests are created in this phase as well.
The implementation phase is, again, where all coding takes
place. Once coding is complete, the path of execution
continues up the right side of the V where the test plans
developed earlier are now put to use. [6]

Fig4: iterative model

d) Spiral model: This model was not the first model [7] to
discuss iterative development, but it was the first model to
explain why the iteration matters. As originally envisioned,
the iterations were typically 6months to 2years long. Each
phase starts with a design goal and ends with the client
(who may be internal) reviewing the progress thus far.
Analysis and engineering efforts are applied at each phase
of the project, with an eye toward the end goal of the
project. The process begins at the center position. From
there it moves clock wise in traversals. Each traversal of
the spiral usually results in a deliverable [8]. It is not
clearly defined what this deliverable is. This changes from
traversal to traversal. For example, the first traversals may
result in a requirement specification. The second will result
in a prototype, and the next one will result in another
prototype or sample of a product, until the last traversal
leads to a product which is suitable to be sold.
Consequently the related activities and their documentation
will also mature towards the outer traversals. E.g. a formal
design and testing session would be placed into the last
traversal.[9]

Fig5: spiral model

Vanshika Rastogi / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 168-172

www.ijcsit.com 169

e) Agile model: Agile software development is a style of
software development that emphasizes customer
satisfaction through continuous delivery of functional
software”. The Process of Agile Software Development
involves the following:
1. Starts with a kick-off meeting
2. The known requirements are understood and

prioritized. The development is plan is drawn
accordingly.

3. Relative complexity of each requirement is estimated
4. Sufficient design using simple diagrams is done
5. Test Driven Development (TDD) approach may be

used. TDD emphases on “writing test first and then
writing code to pass the test”. It can help in avoiding
over-coding.

6. Development is done, sometimes in pairs, with lot of
team interaction. Ownership of code is shared when
pair programming is done.

7. The code is tested more frequently. Sometime a
dedicated “Continuous Integration” Server/Software
may be used to ease the integration testing of the code.

8. Depending on the feedback received, the code is
refractor. Refactoring does not impact the external
behavior of the application but the internal structure
may be changed to provide better design,
maintainability. Some ways of refactoring may be add
interface, use super class, move the class etc. [10]

3. COMPARISON

The comparison between different models is shown by their
advantages and disadvantages in two different tables
respectively:

Table1: Comparison of advantages [6]

Table2: Comparison of Disadvantages [6]

4. COMPARISON BETWEEN WATERFALL MODEL

AND AGILE MODEL

Table3: Comparison of Waterfall and Agile model [11]

5. CONCLUSION
There are more than tons of sdlc models today. Here only a
study of five of those models is given. This paper focused
on basic five models; their advantages, disadvantages, so
that one can select the best suited model as per his
requirements.

6. FUTURE WORK:
This paper focused on the existing models. There are
various shortcomings in the existing models; in future we
can have models that can overcome the drawbacks of the
existing models.

Vanshika Rastogi / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 168-172

www.ijcsit.com 170

REFERENCES:
[1] IanSommerville,SoftwareEngineering,AddisonWesley,9th ed., 2010.
[2] Comparative Analysis of Different types of Models in Software

Development Life Cycle-Ms.Shikha Maheshwari, Prof. Dinesh Ch.
Jain

[3] A Comparison between Five Models of Software Engineering Nabil
Mohammed Ali Munassar and A.Govardhan
[4] http://istqbexamcertification.com/what-is iterative- model-
advantages-disadvantages-and-when-to- use-it/

[5] http://www.tutorialspoint.com/sdlc/sdlc_iterative_mod el.html
[6] Raymond Lewallen,“SoftwareDevelopment Life Cycle”, 2005
[7] weblog.erenkrantz.com/~jerenk/phase-ii/Boe88.pdf
[8] www.ccs.neu.edu/home/matthias/670s05/Lectures/2.html
[9] Software Engineering Models Consequences And Alternatives Nitin

Mishra, Shantanu Chowdhary, Arunendra Singh, Anil Sharma
[10] Study & Comparison Of SoftwareDevelopment Lifecycl Models-

Gourav Khurana ,Sachin Gupta
[11] Gray P ilgrim, “Waterfall Model Vs Agile”, Website http://www.b

uzzle.com/articles/waterfall- model- vs-agile.html, Jan, 2012

Vanshika Rastogi / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 168-172

www.ijcsit.com 171

Vanshika Rastogi / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 168-172

www.ijcsit.com 172

