Software Development Life Cycle Models
 - Process Models

Week 2, Session 1

PROCESS MODELS

Many life cycle models have been proposed

- Traditional Models (plan-driven)
- Classical waterfall model
- Iterative waterfall
- Evolutionary
- Prototyping
- Spiral model
- Rational Unified Process (RUP)
- Agile Models
bXtreme Programming (XP)
- Scrum
- Crystal
- Feature-Driven Development (FDD)

The Process Methodology Spectrum

from "Balancing Agility \& Discipline" (Boehm \& Turner)

CLASSICAL WATERFALL MODEL

CLASSICAL WATERFALL MODEL (cont.)

- The guidelines and methodologies of an organization:
> called the organization's software development methodology.
- Software development organizations:
- expect fresh engineers to master the organization's software development methodology.

Problems with Classical Waterfall Model

Classical waterfall model is idealistic:
p assumes that no defect is introduced during any development activity.

- in practice:
d defects do get introduced in almost every phase of the life cycle.
- Defects usually get detected much later in the life cycle:
- For example, a design defect might go unnoticed till the coding or testing phase

PROTOTYPING MODEL

- Before starting actual development,
- a working prototype of the system should first be built.
- A prototype is a toy implementation of a system:
- limited functional capabilities,
- low reliability,
- inefficient performance.

WHY PROTOTYPE?

PROTOTYPING MODEL (cont.)

EVOLUTIONARY MODEL

- Evolutionary model (aka successive versions or incremental model):
- The system is broken down into several modules which can be incrementally implemented and delivered.
- First develop the core modules of the system.
- The initial product skeleton is refined into increasing levels of capability:
- by adding new functionalities in successive versions.

INCREMENTAL MODEL

ADVANTAGES OF EVOLUTIONARY MODEL

- Users get a chance to experiment with a partially developed system:
- much before the full working version is released,
- Helps finding exact user requirements:
- much before fully working system is developed.
- Core modules get tested thoroughly:
- reduces chances of errors in final product.

DISADVANTAGES OF EVOLUTIONARY MODEL

Often, difficult to subdivide problems into functional units:

- which can be incrementally implemented and delivered.
- evolutionary model is useful for very large problems,
* where it is easier to find modules for incremental implementation.

EVOLUTIONARY MODEL WITH ITERATION (Iterative Incremental Model)

- Many organizations use a combination of iterative and incremental development:
> a new release may include new functionality
- existing functionality from the current release may also have been modified.

EVOLUTIONARY MODEL WITH ITERATION

- Several advantages:
- Training can start on an earlier release
> customer feedback taken into account
- Markets can be created:
- for functionality that has never been offered.
- Frequent releases allow developers to fix unanticipated problems quickly.

SPIRAL MODEL

- Proposed by Boehm in 1988.
- Each loop of the spiral represents a phase of the software process:
* the innermost loop might be concerned with system feasibility,
b the next loop with system requirements definition,
b the next one with system design, and so on.
- There are no fixed phases in this model, the phases shown in the figure are just examples.

SPIRAL MODEL (cont.)
 Customer Evaluation of Prototype

OBJECTIVE SETTING (FIRST QUADRANT)

- Identify objectives of the phase,
- Examine the risks associated with these objectives.
| Risk:
- any adverse circumstance that might hamper successful completion of a software project.
- Find alternate solutions possible.

RISK ASSESSMENT AND REDUCTION (SECOND QUADRANT)

- For each identified project risk,
> a detailed analysis is carried out.
- Steps are taken to reduce the risk.
- For example, if there is a risk that the requirements are inappropriate:
» a prototype system may be developed.

SPIRAL MODEL (cont.)

- Development and Validation (Third quadrant):
- develop and validate the next level of the product.
- Review and Planning (Fourth quadrant):
b review the results achieved so far with the customer and plan the next iteration around the spiral.
- With each iteration around the spiral:
b progressively more complete version of the software gets built.

SPIRAL MODEL AS A META MODEL

Subsumes all discussed models:

- a single loop spiral represents waterfall model.
b uses an evolutionary approach --
- iterations through the spiral are evolutionary levels.
- enables understanding and reacting to risks during each iteration along the spiral.
b uses:
prototyping as a risk reduction mechanism
- retains the step-wise approach of the waterfall model.

COMPARISON OF DIFFERENT LIFE CYCLE MODELS

- Iterative waterfall model
b most widely used model.
- But, suitable only for well-understood problems.
- Prototype model is suitable for projects not well understood:
- user requirements
b technical aspects

COMPARISON OF DIFFERENT LIFE CYCLE MODELS (сомт.)

- Evolutionary model is suitable for large problems:
- can be decomposed into a set of modules that can be incrementally implemented,
- incremental delivery of the system is acceptable to the customer.
- The spiral model:
> suitable for development of technically challenging software products that are subject to several kinds of risks.

Agile processes

Agile Manifesto

- We are uncovering better ways of developing software by doing it and helping others do it. Through this work we have come to value:
(Individuals and interactions over processes and tools
, Working software over comprehensive documentation
- Customer collaboration over contract negotiation
, Responding to change over following a plan
- That is, while there is value in the items on the right, we value the items on the left more.

Some Agile Methods

- ASD - Adaptive Software Development
- Crystal
- FDD - Feature Driven Development
- DSDM - Dynamic Systems Development Method
- Lean Software Development
- Scrum
- XP - eXtreme Programming

Four Values

- Simplicity
- create the simplest thing that could work
- Communication
- face-to-face, not document-to-face
- Feedback
- lots of tests
- Aggressiveness

Four Basic Activities

- Coding
- cannot do without it
- Testing
- if it cannot be tested it doesn't exist
b Listening
- to those with domain knowledge
- Designing
- to keep the system from decaying

Twelve Practices

1. The Planning Game
2. Small releases
3. Metaphor
4. Simple design
5. Testing
6. Refactoring
7. Pair programming
8. Collective ownership
9. Continuous integration
10. 40-hour week
11. On-site customer
12. Coding standards

Process Assessment and Improvement

- Standard CMMI Assessment Method for Process Improvement (SCAMPI) - provides a five step process assessment model that incorporates five phases: initiating, diagnosing, establishing, acting and learning.
- CMM-Based Appraisal for Internal Process Improvement (CBA IPI) - provides a diagnostic technique for assessing the relative maturity of a software organization
- SPICE—The SPICE (ISO/IEC15504) standard defines a set of requirements for software process assessment.
- ISO 9001:2000 for Software-a generic standard that applies to any organization that wants to improve the overall quality of the products, systems, or services that it provides

SUMMARY

- There are various process models:
- Traditional (Plan-driven) Models
- Agile Models

Helps to do various development activities in a systematic and disciplined manner.
Also makes it easier to manage a software development effort.

