oftware Development Life Cycle Models
- Process Models

Week 2, Session 1

PROCESS MODELS

Many life cycle models have been proposed

Traditional Models (plan-driven)

Classical waterfall model

Iterative waterfall

Evolutionary

Prototyping

Spiral model

Rational Unified Process (RUP)
Agile Models

eXtreme Programming (XP)

Scrum

Crystal

Feature-Driven Development (FDD)

The Process Methodology Spectrum

More Agile Less Agile
_ ﬁ
Crystal Feature Driven Design
Scrum €40 DSDM
XP
Hackers Inch-
RUP PSP Pebble
TSP SW- Cleanroom
CMM

from “Balancing Agility & Discipline” (Boehm & Turner)

CLASSICAL WATERFALL MODEL

| Feasibility Study |—l

| Req. analysis & spec h

| Design |_l
| Coding |_¢
| Testing I_l

| Maintenance |

CLASSICAL WATERFALL MODEL (cont,)

» The guidelines and methodologies of an organization:

called the organization's software development
methodology.

» Software development organizations:

expect fresh engineers to master the organization's software
development methodology.

Problems with Classical Waterfall Model

» Classical waterfall model is idealistic:

assumes that no defect is introduced during any
development activity.

In practice:

defects do get introduced in almost every phase of
the life cycle.

» Defects usually get detected much later in the life cycle:

For example, a design defect might go unnoticed till
the coding or testing phase

PROTOTYPING MODEL

» Before starting actual development,
a working prototype of the system should first be built.

» A prototype is a toy implementation of a system:
limited functional capabilities,
low reliability,

inefficient performance.

WHY PROTOTYPE?

PROTOTYPING MODEL (cont,)

Build Prototype
Requirements Customer Customer
Gathering — Quick Design legtlgf‘ytIl)%n of e Dellgn
\ Refine / Implement
Requirements ¢

Test

y

Maintain

EVOLUTIONARY MODEL

» Evolutionary model (aka successive versions or
incremental model):

The system is broken down into several modules which can be
incrementally implemented and delivered.

» First develop the core modules of the system.

» The initial product skeleton is refined into increasing
levels of capability:

by adding new functionalities in successive versions.

INCREMENTAL MODEL

increment #n

o delivery of

. o :
increment # 2 ® ath increment

delivery of
2nd increment

increment # 1

o e b & e
B

delivery of
1st increment

software functionality and features

project calendar time

ADVANTAGES OF EVOLUTIONARY
MODEL

» Users get a chance to experiment with a partially developed
system:

much before the full working version is released,

» Helps finding exact user requirements:

much before fully working system is developed.

» Core modules get tested thoroughly:

reduces chances of errors in final product.

DISADVANTAGES OF EVOLUTIONARY
MODEL

» Often, difficult to subdivide problems into
functional units:

which can be incrementally implemented and
delivered.

evolutionary model is useful for very large
problems,

where it is easier to find modules for incremental
implementation.

EVOLUTIONARY MODEL WITH ITERATION (Iterative

Incremental Model)

» Many organizations use a combination of
iterative and incremental development:

a new release may include new functionality

existing functionality from the current release
may also have been modified.

EVOLUTIONARY MOD!]

L WITH IT]

» Several advantages:

Training can start on an earlier release

customer feedback taken into account

Markets can be created:

for functionality that has never been offered.

CRATION

Frequent releases allow developers to fix unanticipated

problems quickly.

SPIRAL MODEL

» Proposed by Boehm in 1988.

» Each loop of the spiral represents a phase of the
software process:
the innermost loop might be concerned with system feasibility,
the next loop with system requirements definition,

the next one with system design, and so on.

» There are no fixed phases in this model, the phases
shown in the figure are just examples.

SPIRAL MODEL onr,)
Determine Identify &
Objectives Resolve Risks
)
y
Customer

Evaluation of
Prototype

Dgvelop Next Level
A Product

OBJECTIV]

()

SETTING (FIRST QUADRANT)

» ldentify objectives of the phase,

» Examine the risks associated with these objectives.

Risk:
any adverse circumstance that might hamper

successful completion of a software project.

» Find alternate solutions possible.

RISK ASSESSMENT AND REDUCTION
(SECOND QUADRANT)

» For each identified project risk,

a detailed analysis is carried out.
» Steps are taken to reduce the risk.

» For example, if there is a risk that the requirements are
Inappropriate:

a prototype system may be developed.

SPIRAL MODEL (conr)

» Development and Validation (Third quadrant):
develop and validate the next level of the product.

» Review and Planning (Fourth quadrant):

review the results achieved so far with the customer and plan the
next iteration around the spiral.

» With each iteration around the spiral:
progressively more complete version of the software gets built.

SPIRAL MODEL AS A META MODEL

» Subsumes all discussed models:
a single loop spiral represents waterfall model.
uses an evolutionary approach --
iterations through the spiral are evolutionary levels.
enables understanding and reacting to risks during each
iteration along the spiral.

USes.
prototyping as a risk reduction mechanism

retains the step-wise approach of the waterfall model.

COMPARISON OF DIFFERENT LIFE CYCLE
MODELS

» |terative waterfall model
most widely used model.

But, suitable only for well-understood problems.

» Prototype model is suitable for projects not well
understood:

user requirements

technical aspects

COMPARISON OF DIFFERENT LIFE CYCLE
MODELS (CONT.)

» Evolutionary model is suitable for large problems:

can be decomposed into a set of modules that can be
incrementally implemented,

incremental delivery of the system is acceptable to the
customer.

» The spiral model:

suitable for development of technically challenging software
products that are subject to several kinds of risks.

Agile processes

23

Agile Manifesto

» We are uncovering better ways of developing
software by doing it and helping others do it. Through this work we have
come to value;

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

» 'That is, while there is value in the items on the right, we value the items on

the left more.

24

Some Agile Methods

ASD - Adaptive Software Development

Crystal
FDD - Feature Driven Development
DSDM - Dynamic Systems Development Method

Lean Software Development

Scrum

vV Vv Vv VvV VvV Vv v

XP - eXtreme Programming

Four Values

» Simplicity
create the simplest thing that could work

» Communication

face-to-face, not document-to-face

» Feedback

lots of tests

» Aggressiveness

26

Four Basic Activities

» Coding

cannot do without it
» Testing

if it cannot be tested it doesn't exist
» Listening

to those with domain knowledge
» Designing

to keep the system from decaying

27

Twelve Practices

28

AN A

The Planning Game
Small releases
Metaphor

Simple design
Testing

Refactoring

10.
11,
12.

Pair programming
Collective ownership
Continuous integration
40-hour week

On-site customer

Coding standards

Process Assessment and Improvement

Standard CMMI Assessment Method for Process
Improvement (SCAMPI) — provides a five step process
assessment model that incorporates five phases: initiating,
diagnosing, establishing, acting and learning,

CMM-Based Appraisal for Internal Process Improvement
(CBA IPI)—provides a diagnostic technique for assessing the
relative maturity of a software organization

SPICE—The SPICE (ISO/IEC15504) standard defines a set

of requirements for software process assessment.

ISO 9001:2000 for Software—a generic standard that applies to
any organization that wants to improve the overall quality of the
products, systems, or services that it provides

SUMMARY

» There are various process models:
Traditional (Plan-driven) Models
Agile Models

Helps to do various development activities in a
systematic and disciplined manner.

Also makes it easier to manage a software
development effort.

