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Variables and Functions

◮ Basic unit of a circuit is a switch.

◮ Can be closed (conducts electricity) or open (doesn’t
conduct).

◮ Given switch is controlled by input variable x.
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Light controlled by Switch
◮ We design circuits to implement logic functions.

◮ We combine basic circuits to create more complicated circuits
to implement useful logic functions.

◮ We can represent the light as logic function L(x) = x, where
light is on when L(x) = 1.

◮ Represeting the light’s state as a
function of input x allows us to
determine if the light is on based
on the current value of x.
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Logical AND and OR Functions
◮ Here we see two basic building blocks of larger circuits.

◮ We write the logical AND function as L(x1, x2) = x1 · x2 or
L(x1, x2) = x1x2 if meaning clear.

◮ We write the logical OR function as L(x1, x2) = x1 + x2
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Combined Circuit

◮ Here we combine an AND and OR structure to create a more
complicated function.

◮ Curcuit implements logical function

L(x1, x2, x3) = (x1 + x2)x3
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Inverting Circuit

◮ Here we see the last basic logic function, NOT.

◮ For NOT, the output function is the logical negation or the
complement of the input variable.

◮ Circuit implements logical function

L(x) = x =!x

c©1999-2021 R.J. Leduc, M. Lawford 6



Truth Tables
◮ Truth Tables are common ways to represent logic functions.

◮ Any logic function can be completely specified by listing all
possible input combinations (valuations) to the left of ||
divider, and the desired value of the function for that input
combination on the right.

◮ Not efficient representation as n variables will have 2n

possible valuations. i.e. 210 = 1024 rows!
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The Basic Gates
◮ The AND, OR, and NOT logic functions can be implemented

electronically using transistors.

◮ We refer to these circuit elements as logic gates, and use the
symbols below to represent them.
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Circuits and Networks

◮ A logic circuit or network is a collection of gates connected to
implement a logic function. i.e. the actual items

◮ A schematic is a drawing of a logic circuit.
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Precedence of Operations

◮ Operations in a logic expression must be performed in the
order: NOT, AND, OR.

◮ eg. x1 · x2 + x1 · x2 = (x1 · x2) + ((x1) · x2)

◮ If you wish a different order, you must use parentheses.

◮ eg. x1 · (x2 + (x1)) · x2

◮ The two logical expressions above do not implement the same
logic function (consider input valuation x1 = 0 and x2 = 1).
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Information for Lab 1

◮ For information about the DE1-SoC alterra boards used in the
lab, refer to DE1-SoC User manual that accompanies the
boards and is also available as a PDF from the URL:
http://www.cas.mcmaster.ca/~leduc/slides2d04/

DE1-SoC User manual ref.pdf

◮ Pg. 7: Refer to board layout to find switches and LEDs etc.

◮ Pg. 23-26: Board contains 10 toggle switches (SW[0] to
SW[9]).

◮ When the switch is set to its DOWN position (closest to the
board edge), you get a logic low (0). The UP position gives
logic high (1).

◮ Table 3-6 shows how each switch maps to a pin on the
Cyclone V FPGA chip.
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Information for Lab 1 - II

◮ Pg. 23-26: Board contains 10 red LED lights. Each is
connected to a pin on the FPGA (see Table 3-8).

◮ Driving the associated pin to a high logic level turns the LED
on, and a low logic level turns it off.

◮ For step 4 of part 2 of lab, assign inputs of circuit to the pins
matching the switches. ie. for x1 assigned to SW[9], you
would map signal x1 to pin PIN AE12 of the FPGA.

◮ Assign outputs to the red LEDs. ie. for f assigned to
LEDR[9], you would map f to pin PIN Y21.

◮ NOTE: Will not always be able to cover information for lab
beforehand. You will sometimes have to read ahead on own.
Only so many lab periods. Lectures can’t always keep up.
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CAD Introduction

◮ Computer Aided Design (CAD) systems have tools for the
following tasks:

◮ Design entry

◮ Synthesis and optimization

◮ Simulation

◮ Physical design
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Design Entry Methods

◮ Truth table as text file or waveforms.

◮ Schematic Capture.

◮ Hardware Description Language (HDL). Two IEEE standards:

◮ Very high speed integrated Circuit HDL (VHDL)

◮ Verilog HDL
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Truth Table as Waveform

◮ Example uses waveform editor to specify truth table.

◮ Input signals are x1 and x2, and output is f .

◮ To specify circuit, designer must specify all possible input
combinations and desired value of output for each.
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Schematic Editor

◮ In a schematic editor, gates are shown as symbols, and lines
show connections.

◮ Input and output signals to circuit are shown as arrows.

◮ Schematic editors used to be most common way to design
circuits, but now largely replaced by HDL.
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HDL

◮ Replaces schematic capture as standard entry method.

◮ More portable, and easier to script and scale.

◮ Similar to a sequential programming language, but describes
layout and logic functions of hardware. Unless specified
otherwise, everything occurs in parallel.

◮ Signals in circuits are represented as variables.

◮ Logic functions expressed by assigning values to variables.

◮ Will focus on Verilog.
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Synthesis and Optimization

◮ Synthesis is action of generating set of logic equations to
represent circuit from truth tables or HDL code.

◮ Equations are automatically optimized to produce a better yet
still equivalent circuit.

◮ Maps equations to actual technology used (in our case, the
Altera chips) for implementation.

◮ Process called technology mapping and physical design.
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Functional Simulation

◮ Purpose to verify circuit implements specification correctly.

◮ Accepts specified sequence of input values created using the
waveform editor.

◮ Evaluates outputs of circuits using logic equations from
synthesis and input sequences and displays result as a
waveform.

◮ Does not use timing information. Using timing information
requires selecting an implementation technology. Called a
timing simulation.
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First Stages of CAD System
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Verilog Introduction

◮ For reference, see Section 2.10 and Appendix A
(A.1-A.10,A.15).

◮ Verilog can be used to describe a circuit, and then CAD tools
can synthesize the code into a hardware implementation.

◮ Important to not write Verilog code that resembles a
computer program (i.e. containing many variables and loops).

◮ You want to write Verilog code so that it is obvious what
circuit the code represents.

◮ Verilog syntax is similar to that of the C programming
language.

◮ Single line comments begin with “//” and multi-line
comments begin with “/*” and end with “*/”.
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Identifiers

◮ Identifiers are names of variables and other items.

◮ Identifiers can contain letters, digits, and the “ ” and “$”
characters.

◮ Identifiers can not begin with a digit and can not be Verilog
Keywords.

◮ Verilog is case sensitive so “BYTE” and “Byte” are not the
same name.
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Signals

◮ Signals in a circuit are represented in Verilog as either a net or
variable.

◮ A net represents a node (a point where two or more elements
interconnect) in the circuit and lets one describe a circuit’s
interconnection, but not its behavior.

◮ A variable allows us to describe a circuit’s behavior, and can
be of type reg or integer.

◮ A net can be of type wire or tri.

◮ Type wire is a normal wire connection, and type tri is a special
tri-state connection that we will discuss in Appendix B.
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Signals - II

◮ Signal x and y below are a scalar net definition.

wire x,y;

◮ S and P are vector definitions, where range [Ra : Rb] defines
the value of the most-significant (leftmost) bit (Ra) of the
vector, and Rb defines the least-significant (rightmost) bit.

wire [3:0] S;
wire [1:2] P;

◮ For example, if S was assigned the binary constant “0011”,
then S[3] = 0, S[2] = 0, S[1] = 1, and S[0] = 1.
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Signal Values and Constants

◮ A signal can take on four possible values:

0 = logical value 0
1 = logical value 1
z = tri-state (high impedance)
x = unknown value

◮ A constant (ie. ’b10, 10, 4’b110) is defined in the form below,
where square brackets represent optional parameters.

[size][’radix]constant

◮ Here, size is number of bits in constant and zeros are usually
added (unless x or z is leftmost bit) to left if needed.

◮ Radix is the number base such as (d = decimal - the default),
(b = binary), (h = hexadecimal), and (o = octal).
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Verilog Circuit Representation

◮ Verilog allows one to define a circuit using either a structural
representation or a behavioral representation.

◮ A structural representation is when one describes a circuit
using constructs that describe individual logic gates and
transistors and how they are connected.

◮ A behavioral representation uses logic expressions and
programming constructs to describe how the circuit should
operate, but not necessarily its structure in terms of gates and
how they are connected.
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Structural Representation

◮ Verilog contains a set of gate level primitives for common
logic gates (see Table A.2 in Appendix A.9 for details).

◮ A gate is defined by giving its functional name, output, and
its inputs.

◮ For example, a two-input AND gate with inputs x1 and x2,
and output f would be:

and(f, x1, x2)

◮ A circuit is specified in Verilog as a module that provides the
statements that define the circuit.

◮ A module is given a name, and it may have input and outputs
called ports.
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Structural Representation e.g. 1
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Structural Representation e.g. 2
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Behavioral Representation
◮ Using gate primitives would be tedious for large circuits.

◮ Instead we can use abstract expressions and programming
constructs to describe how the circuit should behave.

◮ For example we can use logical expressions to define the
circuit (see Verilog operators in Table A.1 in Appendix A.7).

◮ The AND operator is “&” and the OR operator is “|”.

◮ The assign keyword gives a continuous assignment for f .
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Behavioral Representation e.g. 2
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Analysis and Synthesis

Analysis: Take a logic network and determine its output
function(s).

Synthesis: Design a network to implement a desired logic
function.
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Analysis
◮ Using intermediate variables and Truth Tables is one way to

analyze a circuit.

◮ Another way is to draw timing diagrams: plots of values of
logic variables & functions vs. time.

◮ Timing diagrams occur in 2 places:

◮ using Computer Aided Design (CAD) software to “simulate”
circuit.

◮ using a logic analyzer in a lab

◮ This type of analysis allows us to verify that two logic circuits
are functionally equivalent.

◮ This means both realize the same logical function. ie. for all
input combinations, they will produce the same output value.

◮ As we will see there are many ways to implement a circuit.
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Intro to Boolean Algebra

◮ From example on board, we can see that the two functions
f(x1, x2) = x1 + x1 · x2 and g(x1, x2) = x1 + x2 are
functionally equivalent.

◮ Want to be able to start with function f and be able to
simplify to g as it is smaller and thus less costly to implement.

◮ We want to be able to show equivalence without using truth
tables.

◮ One solution is to use Boolean algebra. Provides basis of
modern design techniques.
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Boolean Algebra Axioms

Axioms 1-4 define truth tables for operators.

(a) (b)
1. 0 · 0 = 0 1 + 1 = 1
2. 1 · 1 = 1 0 + 0 = 0
3. 0 · 1 = 1 · 0 = 0 1 + 0 = 0 + 1 = 1
4. If x = 0, then x = 1 If x = 1, then x = 0

Properties:

(a) (b)
5. x · 0 = 0 x+ 1 = 1
6. x · 1 = x x+ 0 = x

7. x · x = x x+ x = x

8. x · x = 0 x+ x = 1
9. x = x
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Boolean Algebra Theorems
Properties:
10.(a) x · y = y · x (Commutative)

(b) x+ y = y + x

11.(a) x · (y · z) = (x · y) · z (Associative)
(b) x+ (y + z) = (x+ y) + z

12.(a) x · (y + z) = (x · y) + (x · z) (Distributive)
(b) x+ (y · z) = (x+ y) · (x+ z)

13.(a) x+ (x · y) = x (Absorption)
(b) x · (x+ y) = x

14.(a) x · y + x · y = x (Combining)
(b) (x+ y) · (x+ y) = x

15.(a) x · y = x+ y (DeMorgan)
(b) x+ y = x · y

16.(a) x+ x · y = x+ y

(b) x · (x+ y) = x · y

NOTE: the textbook added propositions 17.a and 17.b in later
editions. We will not be using them in assignments, labs, or tests.
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Logic Principles

Principle of Duality: The dual of any true statement (axiom or
theorem) in Boolean algebra is also true. It is
obtained by:

◮ Swap all + operators by · operators and vice-versa.

◮ Swap all 0s by 1s and vice-versa.

For example the dual of x · 1 = x is x+ 0 = x

DeMorgan’s Theorem: x · y = x+ y
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Proving Properties/Theorems

◮ May be asked to prove properties or theorems.

◮ One approach is to use truth tables. This is called proof by
perfect induction.

◮ For example, prove that Property 15.a (x · y = x+ y) is true.
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Venn Diagrams

◮ Another approach is to use Venn diagrams.

◮ Venn diagrams are a visual aid used to illustrate operations
and relations in set algebra.

◮ In a Venn diagram, the elements of a set are represented by
the area enclosed by a contour (i.e. a square or circle).

◮ Coloured area is portion of region where function is true.
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Venn Diagrams - II
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Venn Diagram Example

◮ Verify distributive property, x · (y + z) = (x · y) + (x · z).
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Algebraic Manipulation
◮ A more effective way to prove that a theorem is true, or to

simplify an expression, is to use algebraic manipulation.

◮ This entails using the axioms, theorems, and properties to
transform an expression, step by step, into another, equivalent
expression.

◮ At each step you MUST cite which axioms etc. you use or
you will lose a lot of marks on assignments/tests.

◮ Example: prove property 13a: x+ xy = x

LHS = x+ xy

= x(1 + y) 12a

= x · 1 5b

= x 6a

= RHS
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Algebraic Manipulation Example

◮ Use algebraic manipulation to minimize the function below:

f = x y z + x y z + x y z + x yz + xyz + xyz

= x y(z + z) + x y(z + z) + xy(z + z) 12a

= x y + x y + xy 8b, 6a

= x(y + y) + xy 12a

= x+ xy 8b, 6a

= x+ y 16a

◮ This approach not practical for complex expressions.

◮ Method is the basis for automating synthesis of logic functions in
CAD tools.
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Algebraic Manipulation Example 2

◮ Use algebraic manipulation to minimize the function below:

f = (x1 + x2 + x3) · (x1 + x2 + x3) · (x1 + x2 + x3) ·

(x1 + x2 + x3)

= (x1 + x2 + x3) · (x1 + x2 + x3) · (x1 + x2 + x3) ·

(x1 + x2 + x3) 10a

= ((x1 + x2) + x3) · ((x1 + x2) + x3) · (x1 + (x2 + x3)) ·

(x1 + (x2 + x3)) 11b

= ((x1 + x2) + x3) · ((x1 + x2) + x3) · ((x2 + x3) + x1) ·

((x2 + x3) + x1) 10b
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Algebraic Manipulation Example 2 - II

= ((x1 + x2) + x3) · ((x1 + x2) + x3) · ((x2 + x3) + x1) ·

((x2 + x3) + x1) 10b

◮ Want to use property 12b: x+ y · z = (x+ y)(x+ z)

◮ Important to realize that terms in a theorem can mean a
variable, or an expression.

◮ Can apply to: ((x1 + x2) + x3) · ((x1 + x2) + x3)
by taking x = (x1 + x2), y = x3, and z = x3

= ((x1 + x2) + x3x3) · ((x2 + x3) + x1x1) 12b

= (x1 + x2) · (x2 + x3) 8a, 6b
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Synthesis

◮ We can generate or synthesize a circuit from truth table:

x1 x2 x3 f

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

◮ For the above truth table, an equivalent logic function is:
f = x1x2 + x3.

◮ How was it derived? That’s our next topic..

c©1999-2021 R.J. Leduc, M. Lawford 46



Synthesis Intro
◮ Have function that monitors inputs x1 and x2 such that f = 1

when (x1, x2) = (0, 0), (0, 1), or(1, 1), otherwise f = 0.

◮ This gives us:

x1 x2 f

0 0 1
0 1 1
1 0 0
1 1 1

◮ How can we represent this as a function? We know f is true
for all input combos but 1.

◮ For each input valuation that f = 1, we can find a term that
is true only for that input combo. ie. (x1, x2) = (0, 1) can be
represented as x1x2.

◮ We can then OR these three terms together.

◮ f = x1 x2 + x1x2 + x1x2
c©1999-2021 R.J. Leduc, M. Lawford 47



Synthesis Intro - II

◮ Below is f = x1 x2 + x1x2 + x1x2 implemented as a circuit.

◮ Can show that g = x1 + x2, implemented below, is
functionally equivalent to f .

◮ Which is better? Not always obvious so we use a cost metric.
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Circuit Cost

◮ Defn: The cost of the circuit is the sum of the logic gates
added to the sum of their inputs.

◮ Cost = # gates+# inputs

◮ Unless told otherwise, ignore the cost of inverters. Why? see
Appendix B.

f: cost = 4 + 9 = 13

g: cost = 1 + 2 = 3
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Synthesis: Sum-of-Products

Literal: A variable in its uncomplemented or complemented
form (ie. A, A, B).

Product term: One literal, or 2 or more literals ANDed together
(ie. A, x1x2x3).

Minterm: For a function of n variables, a minterm is a product
term containing each of the n variables only once.

Sum-of-products expression: Expression formed by combining
product terms with the “+” operator (ie.
A+ x1x2x3)
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Canonical sum-of-products

Canonical sum-of-products: A sum-of-products expression for a
function consisting only of minterms. Unique to a
truth table.

Procedure:

◮ Identify rows of truth table where f = 1

◮ Form minterms for these rows. If variable is zero in valuation,
then use complement in minterm, else variable. ie, if x = 0 in
valuation, then use x, else x.

◮ Create sum-of-products of these minterms
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Sum-of-Products Example
◮ Derive canonical sum-of-products from truth table.

# x1 x2 x3 h minterm label

0 0 0 0 0
1 0 0 1 1 x1x2x3 m1

2 0 1 0 0
3 0 1 1 1 x1x2x3 m3

4 1 0 0 0
5 1 0 1 1 x1x2x3 m5

6 1 1 0 1 x1x2x3 m6

7 1 1 1 1 x1x2x3 m7

h = x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3

= m1 +m3 +m5 +m6 +m7

= Σ(m1,m3,m5,m6,m7)
= Σm(1, 3, 5, 6, 7)

◮ cost = 6 + 20 = 26
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Product-of-sums Intro
◮ Earlier, we found the canonical sum-of-products for the truth

table below:

f = x1 x2 + x1x2 + x1x2

x1 x2 f

0 0 1
0 1 1
1 0 0
1 1 1

◮ If we took h = f , it would be true when f = 0. The sum of
products for h is:

◮ h = x1x2

◮ We can derive an expression for f as follows:

◮ f = h = (x1x2) = x1 + x2

◮ Called product-of-sums form. Want to be able to derive from
truth table
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Synthesis: Product-of-sums

Sum term: One literal, or 2 or more literals ORed together (ie.
A, (x1 + x2 + x3)).

Maxterm: For a function of n variables, a maxterm is a sum
term containing each of the n variables only once.

Product-of-sums expression: Expression formed by combining
sum terms with the “·” operator (ie.
A · (x1 + x2 + x3))
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Canonical product-of-sums

Canonical product-of-sums: A product-of-sums expression for a
function consisting only of maxterms. Unique to a
truth table.

Procedure:

◮ Identify rows of truth table where f = 0

◮ Form maxterms for these rows. If variable is one in valuation,
then use complement in maxterm, else variable. ie, if x = 1 in
valuation, then use x, else x.

◮ Create product-of-sums of these maxterms.
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Product-of-Sums e.g.

◮ Earlier, we evaluated the sum-of-products for truth table.
Now we find the canonical product-of-sums.

# x1 x2 x3 f maxterm

0 0 0 0 0 x1 + x2 + x3
1 0 0 1 1
2 0 1 0 0 x1 + x2 + x3
3 0 1 1 1
4 1 0 0 0 x1 + x2 + x3
5 1 0 1 1
6 1 1 0 1
7 1 1 1 1

f = (x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)
= M0 ·M2 ·M4 = Π(M0,M2,M4) = ΠM(0, 2, 4)

cost = 4 + 12 = 16
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Design Steps

1. Specify desired behavior of circuit.

2. Synthesize circuit and optimize.

3. Implement circuit.

4. Verify circuit - if incorrect, go back to step 2.
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Design Example: Multiplexor

◮ Word Description: You have two data sources, x1 and x2,
and one output, f .

◮ We want to use a third input, s, to select which input is
transmitted to the output.

◮ If s = 0, then f has the same value as x1.

◮ If s = 1, then f has the same value as x2.

◮ This type of circuit is called a multiplexor.
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Design Example: Multiplexor - II
◮ Step 1: create truth table from word problem.

# s x1 x2 f minterm

0 0 0 0 0
1 0 0 1 0
2 0 1 0 1 sx1x2
3 0 1 1 1 sx1x2
4 1 0 0 0
5 1 0 1 1 sx1x2
6 1 1 0 0
7 1 1 1 1 sx1x2

◮ Step 2: Synthesize. Determine minterms and form s-of-p. We
then optimize to reduce cost of circuit.

f = sx1x2 + sx1x2 + sx1x2 + sx1x2

= sx1(x2 + x2) + sx2(x1 + x1) 12a

= sx1 + sx2 6a,8b
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Design Example: Multiplexor - III

◮ Step 3: implement the circuit.
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Design Example: Multiplexor - IV
◮ Step 4: verify circuit by analyzing implementation. Take point

A to be s, point B to be sx1 and point C to be sx2 and fill in
the truth table below:

# s x1 x2 A B C f ′

0 0 0 0 1 0 0 0
1 0 0 1 1 0 0 0
2 0 1 0 1 1 0 1
3 0 1 1 1 1 0 1
4 1 0 0 0 0 0 0
5 1 0 1 0 0 1 1
6 1 1 0 0 0 0 0
7 1 1 1 0 0 1 1

◮ Must have column for each unique signal in circuit.

◮ f ′ column identical to original f column, thus our circuit is
functionally equivalent.
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Verilog Subcircuit Example: 2-bit adder

◮ Start with a circuit called a “full adder.”

◮ Adds two 1 bit numbers with a carry in from previous position
(will discuss later in Section 3.2 of text).
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The 2-bit adder

◮ Will link two full adders together to create a 2-bit adder.
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Full Adder Definition

◮ First, we define a module for our subcircuit.

◮ See Appendix A, Section 12 for more information on using
subcircuits.

◮ To use a subcircuit, the subcircuit’s module definition must be
in the same file as the main circuit’s module definition.
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Four Bit Adder Definition
◮ To create a module instantiation, we need to specify the

module name, give a unique identifier, and give the port
connections.

◮ Port connections can be give in either ordered form (listed in
same order as in subcircuit) or in named form (explicit
mapping).
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