
Software Engineering 2DA4

Slides 2: Introduction to Logic Circuits

Dr. Ryan Leduc

Department of Computing and Software

McMaster University

Material based on S. Brown and Z. Vranesic, Fundamentals of Digital Logic with Verilog Design, 3rd Ed.

c©1999-2021 R.J. Leduc, M. Lawford 1

Variables and Functions

◮ Basic unit of a circuit is a switch.

◮ Can be closed (conducts electricity) or open (doesn’t
conduct).

◮ Given switch is controlled by input variable x.

c©1999-2021 R.J. Leduc, M. Lawford 2

Light controlled by Switch
◮ We design circuits to implement logic functions.

◮ We combine basic circuits to create more complicated circuits
to implement useful logic functions.

◮ We can represent the light as logic function L(x) = x, where
light is on when L(x) = 1.

◮ Represeting the light’s state as a
function of input x allows us to
determine if the light is on based
on the current value of x.

c©1999-2021 R.J. Leduc, M. Lawford 3

Logical AND and OR Functions
◮ Here we see two basic building blocks of larger circuits.

◮ We write the logical AND function as L(x1, x2) = x1 · x2 or
L(x1, x2) = x1x2 if meaning clear.

◮ We write the logical OR function as L(x1, x2) = x1 + x2

c©1999-2021 R.J. Leduc, M. Lawford 4

Combined Circuit

◮ Here we combine an AND and OR structure to create a more
complicated function.

◮ Curcuit implements logical function

L(x1, x2, x3) = (x1 + x2)x3

c©1999-2021 R.J. Leduc, M. Lawford 5

Inverting Circuit

◮ Here we see the last basic logic function, NOT.

◮ For NOT, the output function is the logical negation or the
complement of the input variable.

◮ Circuit implements logical function

L(x) = x =!x

c©1999-2021 R.J. Leduc, M. Lawford 6

Truth Tables
◮ Truth Tables are common ways to represent logic functions.

◮ Any logic function can be completely specified by listing all
possible input combinations (valuations) to the left of ||
divider, and the desired value of the function for that input
combination on the right.

◮ Not efficient representation as n variables will have 2n

possible valuations. i.e. 210 = 1024 rows!

c©1999-2021 R.J. Leduc, M. Lawford 7

The Basic Gates
◮ The AND, OR, and NOT logic functions can be implemented

electronically using transistors.

◮ We refer to these circuit elements as logic gates, and use the
symbols below to represent them.

c©1999-2021 R.J. Leduc, M. Lawford 8

Circuits and Networks

◮ A logic circuit or network is a collection of gates connected to
implement a logic function. i.e. the actual items

◮ A schematic is a drawing of a logic circuit.

c©1999-2021 R.J. Leduc, M. Lawford 9

Precedence of Operations

◮ Operations in a logic expression must be performed in the
order: NOT, AND, OR.

◮ eg. x1 · x2 + x1 · x2 = (x1 · x2) + ((x1) · x2)

◮ If you wish a different order, you must use parentheses.

◮ eg. x1 · (x2 + (x1)) · x2

◮ The two logical expressions above do not implement the same
logic function (consider input valuation x1 = 0 and x2 = 1).

c©1999-2021 R.J. Leduc, M. Lawford 10

Information for Lab 1

◮ For information about the DE1-SoC alterra boards used in the
lab, refer to DE1-SoC User manual that accompanies the
boards and is also available as a PDF from the URL:
http://www.cas.mcmaster.ca/~leduc/slides2d04/

DE1-SoC User manual ref.pdf

◮ Pg. 7: Refer to board layout to find switches and LEDs etc.

◮ Pg. 23-26: Board contains 10 toggle switches (SW[0] to
SW[9]).

◮ When the switch is set to its DOWN position (closest to the
board edge), you get a logic low (0). The UP position gives
logic high (1).

◮ Table 3-6 shows how each switch maps to a pin on the
Cyclone V FPGA chip.

c©1999-2021 R.J. Leduc, M. Lawford 11

Information for Lab 1 - II

◮ Pg. 23-26: Board contains 10 red LED lights. Each is
connected to a pin on the FPGA (see Table 3-8).

◮ Driving the associated pin to a high logic level turns the LED
on, and a low logic level turns it off.

◮ For step 4 of part 2 of lab, assign inputs of circuit to the pins
matching the switches. ie. for x1 assigned to SW[9], you
would map signal x1 to pin PIN AE12 of the FPGA.

◮ Assign outputs to the red LEDs. ie. for f assigned to
LEDR[9], you would map f to pin PIN Y21.

◮ NOTE: Will not always be able to cover information for lab
beforehand. You will sometimes have to read ahead on own.
Only so many lab periods. Lectures can’t always keep up.

c©1999-2021 R.J. Leduc, M. Lawford 12

CAD Introduction

◮ Computer Aided Design (CAD) systems have tools for the
following tasks:

◮ Design entry

◮ Synthesis and optimization

◮ Simulation

◮ Physical design

c©1999-2021 R.J. Leduc, M. Lawford 13

Design Entry Methods

◮ Truth table as text file or waveforms.

◮ Schematic Capture.

◮ Hardware Description Language (HDL). Two IEEE standards:

◮ Very high speed integrated Circuit HDL (VHDL)

◮ Verilog HDL

c©1999-2021 R.J. Leduc, M. Lawford 14

Truth Table as Waveform

◮ Example uses waveform editor to specify truth table.

◮ Input signals are x1 and x2, and output is f .

◮ To specify circuit, designer must specify all possible input
combinations and desired value of output for each.

c©1999-2021 R.J. Leduc, M. Lawford 15

Schematic Editor

◮ In a schematic editor, gates are shown as symbols, and lines
show connections.

◮ Input and output signals to circuit are shown as arrows.

◮ Schematic editors used to be most common way to design
circuits, but now largely replaced by HDL.

c©1999-2021 R.J. Leduc, M. Lawford 16

HDL

◮ Replaces schematic capture as standard entry method.

◮ More portable, and easier to script and scale.

◮ Similar to a sequential programming language, but describes
layout and logic functions of hardware. Unless specified
otherwise, everything occurs in parallel.

◮ Signals in circuits are represented as variables.

◮ Logic functions expressed by assigning values to variables.

◮ Will focus on Verilog.

c©1999-2021 R.J. Leduc, M. Lawford 17

Synthesis and Optimization

◮ Synthesis is action of generating set of logic equations to
represent circuit from truth tables or HDL code.

◮ Equations are automatically optimized to produce a better yet
still equivalent circuit.

◮ Maps equations to actual technology used (in our case, the
Altera chips) for implementation.

◮ Process called technology mapping and physical design.

c©1999-2021 R.J. Leduc, M. Lawford 18

Functional Simulation

◮ Purpose to verify circuit implements specification correctly.

◮ Accepts specified sequence of input values created using the
waveform editor.

◮ Evaluates outputs of circuits using logic equations from
synthesis and input sequences and displays result as a
waveform.

◮ Does not use timing information. Using timing information
requires selecting an implementation technology. Called a
timing simulation.

c©1999-2021 R.J. Leduc, M. Lawford 19

First Stages of CAD System

c©1999-2021 R.J. Leduc, M. Lawford 20

Verilog Introduction

◮ For reference, see Section 2.10 and Appendix A
(A.1-A.10,A.15).

◮ Verilog can be used to describe a circuit, and then CAD tools
can synthesize the code into a hardware implementation.

◮ Important to not write Verilog code that resembles a
computer program (i.e. containing many variables and loops).

◮ You want to write Verilog code so that it is obvious what
circuit the code represents.

◮ Verilog syntax is similar to that of the C programming
language.

◮ Single line comments begin with “//” and multi-line
comments begin with “/*” and end with “*/”.

c©1999-2021 R.J. Leduc, M. Lawford 21

Identifiers

◮ Identifiers are names of variables and other items.

◮ Identifiers can contain letters, digits, and the “ ” and “$”
characters.

◮ Identifiers can not begin with a digit and can not be Verilog
Keywords.

◮ Verilog is case sensitive so “BYTE” and “Byte” are not the
same name.

c©1999-2021 R.J. Leduc, M. Lawford 22

Signals

◮ Signals in a circuit are represented in Verilog as either a net or
variable.

◮ A net represents a node (a point where two or more elements
interconnect) in the circuit and lets one describe a circuit’s
interconnection, but not its behavior.

◮ A variable allows us to describe a circuit’s behavior, and can
be of type reg or integer.

◮ A net can be of type wire or tri.

◮ Type wire is a normal wire connection, and type tri is a special
tri-state connection that we will discuss in Appendix B.

c©1999-2021 R.J. Leduc, M. Lawford 23

Signals - II

◮ Signal x and y below are a scalar net definition.

wire x,y;

◮ S and P are vector definitions, where range [Ra : Rb] defines
the value of the most-significant (leftmost) bit (Ra) of the
vector, and Rb defines the least-significant (rightmost) bit.

wire [3:0] S;
wire [1:2] P;

◮ For example, if S was assigned the binary constant “0011”,
then S[3] = 0, S[2] = 0, S[1] = 1, and S[0] = 1.

c©1999-2021 R.J. Leduc, M. Lawford 24

Signal Values and Constants

◮ A signal can take on four possible values:

0 = logical value 0
1 = logical value 1
z = tri-state (high impedance)
x = unknown value

◮ A constant (ie. ’b10, 10, 4’b110) is defined in the form below,
where square brackets represent optional parameters.

[size][’radix]constant

◮ Here, size is number of bits in constant and zeros are usually
added (unless x or z is leftmost bit) to left if needed.

◮ Radix is the number base such as (d = decimal - the default),
(b = binary), (h = hexadecimal), and (o = octal).

c©1999-2021 R.J. Leduc, M. Lawford 25

Verilog Circuit Representation

◮ Verilog allows one to define a circuit using either a structural
representation or a behavioral representation.

◮ A structural representation is when one describes a circuit
using constructs that describe individual logic gates and
transistors and how they are connected.

◮ A behavioral representation uses logic expressions and
programming constructs to describe how the circuit should
operate, but not necessarily its structure in terms of gates and
how they are connected.

c©1999-2021 R.J. Leduc, M. Lawford 26

Structural Representation

◮ Verilog contains a set of gate level primitives for common
logic gates (see Table A.2 in Appendix A.9 for details).

◮ A gate is defined by giving its functional name, output, and
its inputs.

◮ For example, a two-input AND gate with inputs x1 and x2,
and output f would be:

and(f, x1, x2)

◮ A circuit is specified in Verilog as a module that provides the
statements that define the circuit.

◮ A module is given a name, and it may have input and outputs
called ports.

c©1999-2021 R.J. Leduc, M. Lawford 27

Structural Representation e.g. 1

c©1999-2021 R.J. Leduc, M. Lawford 28

Structural Representation e.g. 2

c©1999-2021 R.J. Leduc, M. Lawford 29

Behavioral Representation
◮ Using gate primitives would be tedious for large circuits.

◮ Instead we can use abstract expressions and programming
constructs to describe how the circuit should behave.

◮ For example we can use logical expressions to define the
circuit (see Verilog operators in Table A.1 in Appendix A.7).

◮ The AND operator is “&” and the OR operator is “|”.

◮ The assign keyword gives a continuous assignment for f .

c©1999-2021 R.J. Leduc, M. Lawford 30

Behavioral Representation e.g. 2

c©1999-2021 R.J. Leduc, M. Lawford 31

Analysis and Synthesis

Analysis: Take a logic network and determine its output
function(s).

Synthesis: Design a network to implement a desired logic
function.

c©1999-2021 R.J. Leduc, M. Lawford 32

Analysis
◮ Using intermediate variables and Truth Tables is one way to

analyze a circuit.

◮ Another way is to draw timing diagrams: plots of values of
logic variables & functions vs. time.

◮ Timing diagrams occur in 2 places:

◮ using Computer Aided Design (CAD) software to “simulate”
circuit.

◮ using a logic analyzer in a lab

◮ This type of analysis allows us to verify that two logic circuits
are functionally equivalent.

◮ This means both realize the same logical function. ie. for all
input combinations, they will produce the same output value.

◮ As we will see there are many ways to implement a circuit.
c©1999-2021 R.J. Leduc, M. Lawford 33

Intro to Boolean Algebra

◮ From example on board, we can see that the two functions
f(x1, x2) = x1 + x1 · x2 and g(x1, x2) = x1 + x2 are
functionally equivalent.

◮ Want to be able to start with function f and be able to
simplify to g as it is smaller and thus less costly to implement.

◮ We want to be able to show equivalence without using truth
tables.

◮ One solution is to use Boolean algebra. Provides basis of
modern design techniques.

c©1999-2021 R.J. Leduc, M. Lawford 34

Boolean Algebra Axioms

Axioms 1-4 define truth tables for operators.

(a) (b)
1. 0 · 0 = 0 1 + 1 = 1
2. 1 · 1 = 1 0 + 0 = 0
3. 0 · 1 = 1 · 0 = 0 1 + 0 = 0 + 1 = 1
4. If x = 0, then x = 1 If x = 1, then x = 0

Properties:

(a) (b)
5. x · 0 = 0 x+ 1 = 1
6. x · 1 = x x+ 0 = x

7. x · x = x x+ x = x

8. x · x = 0 x+ x = 1
9. x = x

c©1999-2021 R.J. Leduc, M. Lawford 35

Boolean Algebra Theorems
Properties:
10.(a) x · y = y · x (Commutative)

(b) x+ y = y + x

11.(a) x · (y · z) = (x · y) · z (Associative)
(b) x+ (y + z) = (x+ y) + z

12.(a) x · (y + z) = (x · y) + (x · z) (Distributive)
(b) x+ (y · z) = (x+ y) · (x+ z)

13.(a) x+ (x · y) = x (Absorption)
(b) x · (x+ y) = x

14.(a) x · y + x · y = x (Combining)
(b) (x+ y) · (x+ y) = x

15.(a) x · y = x+ y (DeMorgan)
(b) x+ y = x · y

16.(a) x+ x · y = x+ y

(b) x · (x+ y) = x · y

NOTE: the textbook added propositions 17.a and 17.b in later
editions. We will not be using them in assignments, labs, or tests.
c©1999-2021 R.J. Leduc, M. Lawford 36

Logic Principles

Principle of Duality: The dual of any true statement (axiom or
theorem) in Boolean algebra is also true. It is
obtained by:

◮ Swap all + operators by · operators and vice-versa.

◮ Swap all 0s by 1s and vice-versa.

For example the dual of x · 1 = x is x+ 0 = x

DeMorgan’s Theorem: x · y = x+ y

c©1999-2021 R.J. Leduc, M. Lawford 37

Proving Properties/Theorems

◮ May be asked to prove properties or theorems.

◮ One approach is to use truth tables. This is called proof by
perfect induction.

◮ For example, prove that Property 15.a (x · y = x+ y) is true.

c©1999-2021 R.J. Leduc, M. Lawford 38

Venn Diagrams

◮ Another approach is to use Venn diagrams.

◮ Venn diagrams are a visual aid used to illustrate operations
and relations in set algebra.

◮ In a Venn diagram, the elements of a set are represented by
the area enclosed by a contour (i.e. a square or circle).

◮ Coloured area is portion of region where function is true.

c©1999-2021 R.J. Leduc, M. Lawford 39

Venn Diagrams - II

c©1999-2021 R.J. Leduc, M. Lawford 40

Venn Diagram Example

◮ Verify distributive property, x · (y + z) = (x · y) + (x · z).

c©1999-2021 R.J. Leduc, M. Lawford 41

Algebraic Manipulation
◮ A more effective way to prove that a theorem is true, or to

simplify an expression, is to use algebraic manipulation.

◮ This entails using the axioms, theorems, and properties to
transform an expression, step by step, into another, equivalent
expression.

◮ At each step you MUST cite which axioms etc. you use or
you will lose a lot of marks on assignments/tests.

◮ Example: prove property 13a: x+ xy = x

LHS = x+ xy

= x(1 + y) 12a

= x · 1 5b

= x 6a

= RHS
c©1999-2021 R.J. Leduc, M. Lawford 42

Algebraic Manipulation Example

◮ Use algebraic manipulation to minimize the function below:

f = x y z + x y z + x y z + x yz + xyz + xyz

= x y(z + z) + x y(z + z) + xy(z + z) 12a

= x y + x y + xy 8b, 6a

= x(y + y) + xy 12a

= x+ xy 8b, 6a

= x+ y 16a

◮ This approach not practical for complex expressions.

◮ Method is the basis for automating synthesis of logic functions in
CAD tools.

c©1999-2021 R.J. Leduc, M. Lawford 43

Algebraic Manipulation Example 2

◮ Use algebraic manipulation to minimize the function below:

f = (x1 + x2 + x3) · (x1 + x2 + x3) · (x1 + x2 + x3) ·

(x1 + x2 + x3)

= (x1 + x2 + x3) · (x1 + x2 + x3) · (x1 + x2 + x3) ·

(x1 + x2 + x3) 10a

= ((x1 + x2) + x3) · ((x1 + x2) + x3) · (x1 + (x2 + x3)) ·

(x1 + (x2 + x3)) 11b

= ((x1 + x2) + x3) · ((x1 + x2) + x3) · ((x2 + x3) + x1) ·

((x2 + x3) + x1) 10b

c©1999-2021 R.J. Leduc, M. Lawford 44

Algebraic Manipulation Example 2 - II

= ((x1 + x2) + x3) · ((x1 + x2) + x3) · ((x2 + x3) + x1) ·

((x2 + x3) + x1) 10b

◮ Want to use property 12b: x+ y · z = (x+ y)(x+ z)

◮ Important to realize that terms in a theorem can mean a
variable, or an expression.

◮ Can apply to: ((x1 + x2) + x3) · ((x1 + x2) + x3)
by taking x = (x1 + x2), y = x3, and z = x3

= ((x1 + x2) + x3x3) · ((x2 + x3) + x1x1) 12b

= (x1 + x2) · (x2 + x3) 8a, 6b

c©1999-2021 R.J. Leduc, M. Lawford 45

Synthesis

◮ We can generate or synthesize a circuit from truth table:

x1 x2 x3 f

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

◮ For the above truth table, an equivalent logic function is:
f = x1x2 + x3.

◮ How was it derived? That’s our next topic..

c©1999-2021 R.J. Leduc, M. Lawford 46

Synthesis Intro
◮ Have function that monitors inputs x1 and x2 such that f = 1

when (x1, x2) = (0, 0), (0, 1), or(1, 1), otherwise f = 0.

◮ This gives us:

x1 x2 f

0 0 1
0 1 1
1 0 0
1 1 1

◮ How can we represent this as a function? We know f is true
for all input combos but 1.

◮ For each input valuation that f = 1, we can find a term that
is true only for that input combo. ie. (x1, x2) = (0, 1) can be
represented as x1x2.

◮ We can then OR these three terms together.

◮ f = x1 x2 + x1x2 + x1x2
c©1999-2021 R.J. Leduc, M. Lawford 47

Synthesis Intro - II

◮ Below is f = x1 x2 + x1x2 + x1x2 implemented as a circuit.

◮ Can show that g = x1 + x2, implemented below, is
functionally equivalent to f .

◮ Which is better? Not always obvious so we use a cost metric.

c©1999-2021 R.J. Leduc, M. Lawford 48

Circuit Cost

◮ Defn: The cost of the circuit is the sum of the logic gates
added to the sum of their inputs.

◮ Cost = # gates+# inputs

◮ Unless told otherwise, ignore the cost of inverters. Why? see
Appendix B.

f: cost = 4 + 9 = 13

g: cost = 1 + 2 = 3

c©1999-2021 R.J. Leduc, M. Lawford 49

Synthesis: Sum-of-Products

Literal: A variable in its uncomplemented or complemented
form (ie. A, A, B).

Product term: One literal, or 2 or more literals ANDed together
(ie. A, x1x2x3).

Minterm: For a function of n variables, a minterm is a product
term containing each of the n variables only once.

Sum-of-products expression: Expression formed by combining
product terms with the “+” operator (ie.
A+ x1x2x3)

c©1999-2021 R.J. Leduc, M. Lawford 50

Canonical sum-of-products

Canonical sum-of-products: A sum-of-products expression for a
function consisting only of minterms. Unique to a
truth table.

Procedure:

◮ Identify rows of truth table where f = 1

◮ Form minterms for these rows. If variable is zero in valuation,
then use complement in minterm, else variable. ie, if x = 0 in
valuation, then use x, else x.

◮ Create sum-of-products of these minterms

c©1999-2021 R.J. Leduc, M. Lawford 51

Sum-of-Products Example
◮ Derive canonical sum-of-products from truth table.

x1 x2 x3 h minterm label

0 0 0 0 0
1 0 0 1 1 x1x2x3 m1

2 0 1 0 0
3 0 1 1 1 x1x2x3 m3

4 1 0 0 0
5 1 0 1 1 x1x2x3 m5

6 1 1 0 1 x1x2x3 m6

7 1 1 1 1 x1x2x3 m7

h = x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3

= m1 +m3 +m5 +m6 +m7

= Σ(m1,m3,m5,m6,m7)
= Σm(1, 3, 5, 6, 7)

◮ cost = 6 + 20 = 26
c©1999-2021 R.J. Leduc, M. Lawford 52

Product-of-sums Intro
◮ Earlier, we found the canonical sum-of-products for the truth

table below:

f = x1 x2 + x1x2 + x1x2

x1 x2 f

0 0 1
0 1 1
1 0 0
1 1 1

◮ If we took h = f , it would be true when f = 0. The sum of
products for h is:

◮ h = x1x2

◮ We can derive an expression for f as follows:

◮ f = h = (x1x2) = x1 + x2

◮ Called product-of-sums form. Want to be able to derive from
truth table

c©1999-2021 R.J. Leduc, M. Lawford 53

Synthesis: Product-of-sums

Sum term: One literal, or 2 or more literals ORed together (ie.
A, (x1 + x2 + x3)).

Maxterm: For a function of n variables, a maxterm is a sum
term containing each of the n variables only once.

Product-of-sums expression: Expression formed by combining
sum terms with the “·” operator (ie.
A · (x1 + x2 + x3))

c©1999-2021 R.J. Leduc, M. Lawford 54

Canonical product-of-sums

Canonical product-of-sums: A product-of-sums expression for a
function consisting only of maxterms. Unique to a
truth table.

Procedure:

◮ Identify rows of truth table where f = 0

◮ Form maxterms for these rows. If variable is one in valuation,
then use complement in maxterm, else variable. ie, if x = 1 in
valuation, then use x, else x.

◮ Create product-of-sums of these maxterms.

c©1999-2021 R.J. Leduc, M. Lawford 55

Product-of-Sums e.g.

◮ Earlier, we evaluated the sum-of-products for truth table.
Now we find the canonical product-of-sums.

x1 x2 x3 f maxterm

0 0 0 0 0 x1 + x2 + x3
1 0 0 1 1
2 0 1 0 0 x1 + x2 + x3
3 0 1 1 1
4 1 0 0 0 x1 + x2 + x3
5 1 0 1 1
6 1 1 0 1
7 1 1 1 1

f = (x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)
= M0 ·M2 ·M4 = Π(M0,M2,M4) = ΠM(0, 2, 4)

cost = 4 + 12 = 16

c©1999-2021 R.J. Leduc, M. Lawford 56

Design Steps

1. Specify desired behavior of circuit.

2. Synthesize circuit and optimize.

3. Implement circuit.

4. Verify circuit - if incorrect, go back to step 2.

c©1999-2021 R.J. Leduc, M. Lawford 57

Design Example: Multiplexor

◮ Word Description: You have two data sources, x1 and x2,
and one output, f .

◮ We want to use a third input, s, to select which input is
transmitted to the output.

◮ If s = 0, then f has the same value as x1.

◮ If s = 1, then f has the same value as x2.

◮ This type of circuit is called a multiplexor.

c©1999-2021 R.J. Leduc, M. Lawford 58

Design Example: Multiplexor - II
◮ Step 1: create truth table from word problem.

s x1 x2 f minterm

0 0 0 0 0
1 0 0 1 0
2 0 1 0 1 sx1x2
3 0 1 1 1 sx1x2
4 1 0 0 0
5 1 0 1 1 sx1x2
6 1 1 0 0
7 1 1 1 1 sx1x2

◮ Step 2: Synthesize. Determine minterms and form s-of-p. We
then optimize to reduce cost of circuit.

f = sx1x2 + sx1x2 + sx1x2 + sx1x2

= sx1(x2 + x2) + sx2(x1 + x1) 12a

= sx1 + sx2 6a,8b

c©1999-2021 R.J. Leduc, M. Lawford 59

Design Example: Multiplexor - III

◮ Step 3: implement the circuit.

c©1999-2021 R.J. Leduc, M. Lawford 60

Design Example: Multiplexor - IV
◮ Step 4: verify circuit by analyzing implementation. Take point

A to be s, point B to be sx1 and point C to be sx2 and fill in
the truth table below:

s x1 x2 A B C f ′

0 0 0 0 1 0 0 0
1 0 0 1 1 0 0 0
2 0 1 0 1 1 0 1
3 0 1 1 1 1 0 1
4 1 0 0 0 0 0 0
5 1 0 1 0 0 1 1
6 1 1 0 0 0 0 0
7 1 1 1 0 0 1 1

◮ Must have column for each unique signal in circuit.

◮ f ′ column identical to original f column, thus our circuit is
functionally equivalent.

c©1999-2021 R.J. Leduc, M. Lawford 61

Verilog Subcircuit Example: 2-bit adder

◮ Start with a circuit called a “full adder.”

◮ Adds two 1 bit numbers with a carry in from previous position
(will discuss later in Section 3.2 of text).

c©1999-2021 R.J. Leduc, M. Lawford 62

The 2-bit adder

◮ Will link two full adders together to create a 2-bit adder.

c©1999-2021 R.J. Leduc, M. Lawford 63

Full Adder Definition

◮ First, we define a module for our subcircuit.

◮ See Appendix A, Section 12 for more information on using
subcircuits.

◮ To use a subcircuit, the subcircuit’s module definition must be
in the same file as the main circuit’s module definition.

c©1999-2021 R.J. Leduc, M. Lawford 64

Four Bit Adder Definition
◮ To create a module instantiation, we need to specify the

module name, give a unique identifier, and give the port
connections.

◮ Port connections can be give in either ordered form (listed in
same order as in subcircuit) or in named form (explicit
mapping).

c©1999-2021 R.J. Leduc, M. Lawford 65

