
Software engineering:
Architecture-driven Development

Richard Schmidt
Sirrush Corporation

703-919-8531

NDIA 15th Annual Systems Engineering Conference
Hyatt Regency Mission Bay

San Diego, California
October 24

Appears in the work Software Engineering: Architecture-Driven Development, published by Morgan Kaufmann, an imprint of Elsevier, Inc.
(c)2012 SIRRUSH Corporation October 2012 1

• Software Development CHAOS

• What is a Software Architecture

• How is a Software Architecture Developed

• Software Engineering Practices

• Software Architecture Design Strategy

• Relationship to Other Software Methodologies

Overview

October 2012 Appears in the work Software Engineering: Architecture-Driven Development, published by Morgan Kaufmann, an imprint of Elsevier, Inc.
(c)2012 SIRRUSH Corporation 2

Software Development Trends

October 2012 Appears in the work Software Engineering: Architecture-Driven Development, published by Morgan Kaufmann, an imprint of Elsevier, Inc.
(c)2012 SIRRUSH Corporation 3

1940 1950 1960 1970 1980 1990 2000 2010

D
em

a
n

d
 f

o
r

S
o
ft

w
a
re

 P
ro

d
u

ct
io

n

Scientific Computing Industrial/Business Computing Personal Computing
Flow Charts

Structured Design

Cost Estimation

Code Inspections

Structured Analysis

Defect Prevention

Object-Oriented Design

Object-Oriented Analysis

Software Reuse

Risk Management

Software Architecture

Software Metrics

Agile

CASE Tools

Automated Regression Testing

Integrated Development

Environments (IDEs)

IDEF

Unified Modeling Language

Non-Software Engineering Methods

Computer-Aided Software Engineering

DOD-STD-2167

DOD-STD-2167, Rev A

IEEE-12207-1996

MIL-STD-498
ISO/IEC-12207

IEEE-1220-1994

MIL-STD-1697

Rapid Application Development

Short History of Software Methods, By David F. Rico

Chaos Reports

October 2012 Appears in the work Software Engineering: Architecture-Driven Development, published by Morgan Kaufmann, an imprint of Elsevier, Inc.
(c)2012 SIRRUSH Corporation 4

CHAOS, The Standish Group Report, 1995

 1994 1996 1998 2000 2002 2004 2006 2009

Successful 16% 27% 26% 28% 34% 29% 35% 32%

Challenged 53% 33% 46% 49% 51% 53% 46% 44%

Failed 31% 40% 28% 23% 15% 18% 19% 24%

In the United States, we spend more than $250 billion each year on IT application
development of approximately 175,000 projects. The average cost of a
development project for a large company is $2,322,000; for a medium company, it
is $1,331,000; and for a small company, it is $434,000. A great many of these
projects will fail. Software development projects are in chaos, and we can no longer
imitate the three monkeys -- hear no failures, see no failures, speak no failures.

When a bridge falls down, it is investigated and a report is written on the
cause of the failure. This is not so in the computer industry where failures are
covered up, ignored, and/or rationalized. As a result, we keep making the same
mistakes over and over again.

• Computer technology’s rapid transition into Industrial, Commercial &
Consumer systems/products

• Majority of Software R&D
– Initially Programming Language focused (1950-1985)
– Programming productivity focused (1985-2010)

• Software development project management emphasis on documentation
– Inadequate design methodologies
– Software Professional untrained in “product” design

• Software workforce demand exceeded availability of skilled professionals
• Variety of software application domains
• No sponsored research to establish formal software design practices

Why Such CHAOS?

October 2012 Appears in the work Software Engineering: Architecture-Driven Development, published by Morgan Kaufmann, an imprint of Elsevier, Inc.
(c)2012 SIRRUSH Corporation 5

Software As a Critical Material

October 2012 Appears in the work Software Engineering: Architecture-Driven Development, published by Morgan Kaufmann, an imprint of Elsevier, Inc.
(c)2012 SIRRUSH Corporation 6

S
o

ft
w

a
re

 P
ro

d
u

ct
 S

iz
e/

C
o

m
p

le
x

it
y

Software Development Professionalism

• Direct Machine Language

• Design Unnecessary

• Assembly Language Programming

• Design Heuristics (Trial & Error)

• Flow Charts

• High Order Languages

• Software Development Methodologies

(Project Management Controls)

• Programmatic Design Techniques

• Time-to-Market & Price Competition

• Pioneering Design Practices

• Software Warranties

• Initial Software Liability Litigation

• Software Lawsuits

• Software Architectural Design

• Professional Practices

• Product Stability & Quality

Applying Systems Engineering Practices

October 2012 Appears in the work Software Engineering: Architecture-Driven Development, published by Morgan Kaufmann, an imprint of Elsevier, Inc.
(c)2012 SIRRUSH Corporation 7

Bugs In The Program,
 Problems in Federal Government Computer Software Development and Regulation,

Staff Study by the Subcommittee on Investigations and Oversight,
 Congress, September 1989

“The Government’s present system for procuring software does
not meet the Government’s needs and wastes resources. The
application of “systems engineering” disciplines is needed to
remedy the procurement system’s defects. . . Software
Development is a complex process that requires modern
“systems engineering” techniques.”

What are “systems engineering” disciplines ?

How can “systems engineering” be adapted to development of software
product?

• Establishing a Requirements Baseline
– Balance the needs and expectations of all stakeholders
– Provides a basis for DESIGNING the software product
– Establishes the basis for software acceptance testing

• Establishment of a comprehensive software product design
– Functional basis for ensuring product performance
– Structural basis for software implementation

• Software Post-development Processes Specifications
• Full traceability throughout the software architecture

– Software Specifications, Functional Specifications, Physical Specifications
• Basis for continual planning and resource allocation
• Architectural Design Decisions

– Risk-based decision-making
– Focus on project success criteria

What is Architecture-driven Development?

October 2012 Appears in the work Software Engineering: Architecture-Driven Development, published by Morgan Kaufmann, an imprint of Elsevier, Inc.
(c)2012 SIRRUSH Corporation 8

Software Architecture

October 2012 Appears in the work Software Engineering: Architecture-Driven Development, published by Morgan Kaufmann, an imprint of Elsevier, Inc.
(c)2012 SIRRUSH Corporation 9

Software

Architecture

Software

Product

Architecture

Software

Post-development

Process

Architectures

Design Solution

Functional

and

Physical Architecture

Software
Requirement
Specifications

Computing
Environment
Architecture

Distribution Process Architecture

Training Process Architecture

Sustainment Process Architecture

Replication Process Architecture

Organizing for Software Engineering

October 2012 Appears in the work Software Engineering: Architecture-Driven Development, published by Morgan Kaufmann, an imprint of Elsevier, Inc.
(c)2012 SIRRUSH Corporation 10

Software Development

Computing
Environment

Product
Training

Product
Distribution

Post-development
Process IPT

Software
Engineering IPT

Software Test and
Evaluation

Software
Implementation

Product
Support

Software
Product

Objective architectural decision-making
– Project objectives
– Resource constraints
– Technical challenges
– Risk aware

Value of Software Architecture

October 2012 Appears in the work Software Engineering: Architecture-Driven Development, published by Morgan Kaufmann, an imprint of Elsevier, Inc.
(c)2012 SIRRUSH Corporation 11

Development
Speed

(Time - to - Market)

Product
Cost

Development
Program
Expense

(Investment)

Product
Performance

Basis for Technical and Project Planning
– Software Breakdown Structure
– Work Packages & Dependencies
– Resource Allocations
– Integrated Technical Planning
– Integrated project Planning

Provides specifications for every software module, routine or class

Operational
Models Software

Specifications
Functional

Models Functional
Specifications

Physical
Models Structural

Specifications

Developing The Software Architecture

October 2012 Appears in the work Software Engineering: Architecture-Driven Development, published by Morgan Kaufmann, an imprint of Elsevier, Inc.
(c)2012 SIRRUSH Corporation 12

 Structural Unit Specifications

 Structural Component Specifications

 Component Integration Strategy

Software Analysis
• Trade-off Analysis

• Risk Assessment

• Complexity Assessment

Software Design Synthesis

 Operational Model

 Software Requirement Specifications

Software Requirements

Analysis

 Business Needs and Expectations

 Operational Concepts

 Functional Behavior Model

 Functional Hierarchy

 Functional Specifications

Functional Analysis and Allocation

Requirements Baseline

Functional Architecture

Physical Architecture

• It’s not the Decision that matters – It’s the Rationale
• Decision implies a choice among multiple alternatives
• The important architectural decisions affect software product life-cycle

characteristics:
– Complexity
– Supportability
– Extensibility
– Usability
– Product Life-cycle Costs

• Architectural Decisions must align technical scope of work with availability
of project resources

Design Decisions

October 2012 Appears in the work Software Engineering: Architecture-Driven Development, published by Morgan Kaufmann, an imprint of Elsevier, Inc.
(c)2012 SIRRUSH Corporation 13

Technical
Imperatives

Project
Objectives

• Software development is a technical effort
• All technical challenges impact project feasibility
• All risk to a software development project is technical in nature

– Insufficient resources should imply a less robust software product
– Complexity must be simplified
– Over-stated requirement must be challenged

• Software prototyping should be used to assess technical solution feasibility
– Never put a prototype on the CRITICAL PATH

Technical and Project Risks

October 2012 Appears in the work Software Engineering: Architecture-Driven Development, published by Morgan Kaufmann, an imprint of Elsevier, Inc.
(c)2012 SIRRUSH Corporation 14

Deriving the Software Architecture

October 2012 Appears in the work Software Engineering: Architecture-Driven Development, published by Morgan Kaufmann, an imprint of Elsevier, Inc.
(c)2012 SIRRUSH Corporation 15

Stakeholder
Needs

1. Requirements Definition Stage
- Requirements Analysis – Translates stakeholder needs into software requirements specifications
- Functional Analysis and Allocation – Analyzes ambiguous needs or requirements to grasp functional and performance characteristics
- Verification – Confirms that every software requirement can be traced to stakeholder needs or derived from analytical studies

Software
Requirement
Specifications

2. Preliminary Architecture Definition Stage
- Functional Analysis and Allocation – Analyzes specified requirements to derive more detailed functional and performance understanding
- Software Design Synthesis – Analyzes functional components to confirm an acceptable design solution exists
- Requirements Analysis – Analyzes functional components and units to specify their behavior and performance characteristics
- Verification – Confirms that every functional unit and component can be traced to software requirements or derived from analytical studies

Functional
Architecture

3. Detailed Architecture Definition Stage
- Application Design Synthesis – Combines functional units to compose structural units
- Requirements Analysis – Integrates and deconflicts functional unit requirements to specify structural units
- Functional Analysis and Allocation – Analyzes structural units to derive functional integration strategies
- Software Design Synthesis – Assembles and integrates structural units to compose structural components
- Requirements Analysis - Integrates and deconflicts structural unit requirements to specify structural components
- Verification – Confirms that structural units and component specifications align with the functional architecture
- Validation – Confirms that every structural unit and component can be traced to specified software requirements

Physical Architecture
and

Technical Data
Package

Software Engineering Practices

Planning the Software Engineering Effort

October 2012 Appears in the work Software Engineering: Architecture-Driven Development, published by Morgan Kaufmann, an imprint of Elsevier, Inc.
(c)2012 SIRRUSH Corporation 16

Perform Software

Engineering Activities

Software Requirement

Baseline

Product

Functional Architecture

Product

Physical Architecture

Technical Planning (Revision 1.0)

(Focus on Preliminary Architecture Definition Phase)

• Software Engineering Plan

• Software Implementation Plan

• Software Test Plan

• PDSS Process Development Plan(s)

Technical Planning (Revision 2.0)

(Focus on Detailed Architecture Definition Phase)

• Software Engineering Plan

• Software Implementation Plan

• Software Test Plan

• PDSS Process Development Plan(s)

Technical Planning (Revision 3.0)

(Focus on Software Implementation Phase)

• Software Engineering Plan

• Software Implementation Plan

• Software Test Plan

• PDSS Process Development Plan(s)

Integrated Master Plan and

Revisions

Integrated Master Schedule

and Revisions

Project Plan and Revisions

3 Primary Planning Iterations
1. Preliminary Architecture Definition Phase
2. Detailed Architecture Definition Phase
3. Software Implementation Phase

Initial Planning

• Focus on Software

Requirement Definition Phase

• Identify Milestones Success

Criteria

Elements of Software Architecture

October 2012 Appears in the work Software Engineering: Architecture-Driven Development, published by Morgan Kaufmann, an imprint of Elsevier, Inc.
(c)2012 SIRRUSH Corporation 17

Stakeholder Needs and

Expectations

Functional Architecture
• Functional Decomposition

• Performance Measure Allocation

among Functions

• Control Logic

• Data Flows (Functional Interfaces)

• Failure Detection and Recovery

• Resource Utilization

• Behavior Models

• Design Diagrams & Documentation

• Functional Specifications

• Data Definitions

Computing Environment

• Data Processing Platforms

• Networking / Communication Infrastructure

• Data Storage & Replication

• Concurrent User Interaction

• Administration Control Station

Requirements Baseline
• Software Requirements Specification(s)

• Software Interface Specification(s)

• PDSS Process Specifications

Test & Evaluation
• Test Plan

• Test Procedures

• Test Environment

Post Development Processes

• Training Operations Plan

• Training Material

• Training Environment

• Training Procedures

• Distribution Operations Plan

• Distribution Material

• Distribution Environment

• Distribution Procedures

• Product Support Operations Plan

• Product Support Process

• Problem Resolution

• Enhancements

• Iterations of Development Process

• Product Support Environment

• Customer Support Operations Plan

• Customer Support Material

• Customer Support Environment

• Customer Support Procedures

Software Product Architecture

Software

Implementation

Physical Architecture
• Structural Units (Building Blocks)

• Structural Component Integration

Strategy

• Structural Unit Specifications

• Data Specifications

• Structural Component Specifications

• Component Integration Test

Objectives

Artifacts of Software Architecture

October 2012 Appears in the work Software Engineering: Architecture-Driven Development, published by Morgan Kaufmann, an imprint of Elsevier, Inc.
(c)2012 SIRRUSH Corporation 18

Software Architecture

Software Product Architecture Post-Development Process Architecture

Requirements Baseline

S/W Requirement

Specification

Physical Architecture

S/W Interface

Specification

Requirement

Traceability Matrix

Entity Relationship

Diagram

Interface Block

Diagram

Structural

Configuration Diagram

Engineering Assembly

Diagram

Software Integration

Diagram

Entity Relationship

Diagram

Structural Component

Specification

Structural Unit

Specification

Functional Architecture

Behavior

 Model

Execution

Timeline

Functional

Decomposition Diagram

Entity Relationship

Diagram

Functional Component

Specifications

Functional Unit

Specifications

Sustainment Process Architecture

Distribution Process Architecture

Training Process Architecture

Product Support Process

Architecture

Customer Support Process

Architecture

Software Architecture Definition

October 2012 Appears in the work Software Engineering: Architecture-Driven Development, published by Morgan Kaufmann, an imprint of Elsevier, Inc.
(c)2012 SIRRUSH Corporation 19

Software Architecture Definition

Preliminary Architecture Definition Detailed Architecture Definition

PDR

Preliminary Design Review

CDR

Critical Design Review

• Preliminary Functional Architecture

• Initial Structural Design Concept

• Preliminary Test Procedures

• Updated Requirement Traceability Matrix

• Revised Functional Architecture

• Completed Physical Architecture

• Initial GUI Structural Design

• Detailed Test Procedures

• Updated Requirement Traceability Matrix

Products of Critical Architecture Definition:

• Structural Unit Specifications

• Software Integration Strategy

• Structural Component Specifications (Integrated Behaviors)

• Interface Design Documents

• Structural Block Diagrams

• Structural Interface

• User Interface Structural Hierarchy

Products of Preliminary Architecture Definition:

• Behavior Model (Data Processing Transactions)

• Functional Hierarchy

• Conceptual Design Structure

• Functional Component Specifications

• Functional Unit Specifications

• Database Transaction Specifications

• Interface Transaction Specifications (Protocols & Messaging)

• User Interface Functional Hierarchy

Software Design Chasm

October 2012 Appears in the work Software Engineering: Architecture-Driven Development, published by Morgan Kaufmann, an imprint of Elsevier, Inc.
(c)2012 SIRRUSH Corporation 20

Level n-1
Fundamental Structural

Components

Structural

Component A

Integrating

Component B (IC B)

Level n
Fundamental Structural

Units Structural

Unit B1

Structural

Unit B2
Structural

Unit B3

SU A1 SU A2 SU A3 SU A4

Tier 3
(Bottommost

Tier)

(Lower Tier)

Fundamental

Structural

Design Elements

Tier 2
(Middle Tier)

(Integration

Tier)

Design Chasm

Tier 1
(Topmost Tier)

(Upper Tier)

Conceptual

Structural

Design Elements

Integrating

Component (IC A/B) Levels

x+1 to n-2
Integrating Components

Conceptual

Component (CC2)

Conceptual

Component (CC1)

Levels 1 - x
Conceptual

Components

Software Product

Structural

Configuration

Level

0
Integrated Product

Software Product Performance

October 2012 Appears in the work Software Engineering: Architecture-Driven Development, published by Morgan Kaufmann, an imprint of Elsevier, Inc.
(c)2012 SIRRUSH Corporation 21

Software Architecture Definition Software Implementation

Preliminary Architecture

Definition

Detailed Architecture

Definition

Unit

Implementation

Component Integration &

Testing

Establish resource utilization

structural specifications:
• Behavioral thread profiles

• Structural component specification

• Structural unit specification (if desired)

• Identify engineering assembly resource

utilization stub specifications

Establish resource utilization

functional specifications:
• Allocate resources among functions

• Identify resource supervision behaviors

Establish the computing resource utilization strategy
• Software design and coding guidelines

• Identify task prioritization strategy

• Identify multi-tasking scheduling strategy

• Identify garbage collection strategy

• Identify resource queuing strategy

Implement resource utilization

requirements:
• Design units with efficient object

creation & destruction mechanisms

• Implement connection & object pools

Assess resource utilization :
• Design units with efficient object

creation & destruction mechanisms

• Implement connection & object pools

Measure computing resource utilization
• Software unit resource consumption and conservation (average & worst-case)

• Integrated component resource consumption and conservation

• Integrated product consumption and conservation

Software performance is predicated on the performance of
the Computing Environment

Software Engineering Practices

October 2012 Appears in the work Software Engineering: Architecture-Driven Development, published by Morgan Kaufmann, an imprint of Elsevier, Inc.
(c)2012 SIRRUSH Corporation 22

Project Control

V
er

if
ic

a
ti

o
n

Validation

Project Management

• Objectives and Constraints

• Plans and Schedules

• Budgets

• Stakeholder Needs &

Expectations

• Change Proposals

Software Engineering

• Software Requirements Analysis

• Functional Analysis & Allocation

• Software Design Synthesis

• Software Analysis

• Control

• Verification & Validation

Software Requirements

Definition

• Operational Model

• Software Requirement Specs

• Interface Requirement specs

• Software Test Plan

• Software Requirement Baseline

Preliminary Architecture

Definition

• Functional Behavior Model

• Functional Architecture

• Functional Unit Specs

• Conceptual (Structural)

 Components

Detailed Architecture Definition

• Physical Architecture

• Physical Unit Specs

• Software Integration Strategy

• Unit Interface Hierarchy

• Software Technical Data Package

Software Implementation

(Unit Development)

• Software Unit Design (Programmatic)

• Software Unit Coding

• Software Unit Testing

• Software Development Folders

Software Implementation

(Integration & Testing)

• Software Component Integration

• Software Component Testing

• Dry-run Acceptance testing

Software Acceptance Testing

• Test Conduct

• Software Test Report

• Software Problem Reports

• Waivers and Deviations

October 2012 Appears in the work Software Engineering: Architecture-Driven Development, published by Morgan Kaufmann, an imprint of Elsevier, Inc.
(c)2012 SIRRUSH Corporation 23

Project Control

V
er

if
ic

a
ti

o
n

Project Management

• Objectives and Constraints

• Plans and Schedules

• Budgets

• Stakeholder Needs &

Expectations

• Change Proposals

Software Requirements

Definition

• Operational Model

• Software Requirement Specs

• Interface Requirement Specs

• Software Test Plan

• Software Requirement Baseline

Software Implementation

(Agile Unit Development)

• Software Unit Design (Programmatic)

• Software Unit Coding

• Software Unit Testing

• Software Development Folders

Software Implementation

(Agile Integration & Testing)

• Software Component Integration

• Software Component Testing

• Dry-run Acceptance testing

Software Acceptance

Testing

• Test Conduct

• Software Test Report

• Software Problem Reports

• Waivers and Deviations

Architecture-driven Software Development

October 2012 Appears in the work Software Engineering: Architecture-Driven Development, published by Morgan Kaufmann, an imprint of Elsevier, Inc.
(c)2012 SIRRUSH Corporation 24

Project Control

V
er

if
ic

a
ti

o
n

Validation

Project Management

• Objectives and Constraints

• Plans and Schedules

• Budgets

• Stakeholder Needs &

Expectations

• Change Proposals

Software Engineering

• Software Requirements Analysis

• Functional Analysis & Allocation

• Software Design Synthesis

• Software Analysis

• Control

• Verification & Validation

Software Requirements

Definition

• Operational Model

• Software Requirement Specs

• Interface Requirement specs

• Software Test Plan

• Software Requirement Baseline

Preliminary Architecture

Definition

• Functional Behavior Model

• Functional Architecture

• Functional Unit Specs

• Conceptual (Structural)

 Components

Detailed Architecture Definition

• Physical Architecture

• Physical Unit Specs

• Software Integration Strategy

• Unit Interface Hierarchy

• Software Technical Data Package

Software Implementation

(Agile Unit Development)

• Software Unit Design (Programmatic)

• Software Unit Coding

• Software Unit Testing

• Software Development Folders

Software Implementation

(Agile Integration & Testing)

• Software Component Integration

• Software Component Testing

• Dry-run Acceptance testing

Software Acceptance Testing

• Test Conduct

• Software Test Report

• Software Problem Reports

• Waivers and Deviations

• Software Industry is in CHAOS
• Computer technology’s rapid growth and employment have prevented

software engineering practices from arising
• Software Product Complexity must be corralled
• Application of Systems Engineering Practices is a viable solution
• Architecture-driven approach improves Software Development Probability

of Project Success
• Software Functional Decomposition must be complete to enable a bottom-

up structural design solution
• Software Methodologies rely on Programmatic Design & Coding

(Prototyping) – Hence CHAOS!
• Software Engineering is the little brother of Systems Engineering

– Software as a “material” offers unique challenges!

Summary

October 2012 Appears in the work Software Engineering: Architecture-Driven Development, published by Morgan Kaufmann, an imprint of Elsevier, Inc.
(c)2012 SIRRUSH Corporation 25

