
Alexander Pretschner is a senior researcher at ETH Zürich,

Switzerland, currently concentrating on model-based testing and

distributed usage control. He holds master!s degrees in computer

science from RWTH Aachen and the University of Kansas as well as

a Ph.D. degree in computer science from Technische Universität

München. Alexander has organized several workshops in the field of

software engineering for automotive systems.

Manfred Broy is a professor at the Department of Informatics of

Technische Universität München, Germany. His research interests

are software and systems engineering comprising both theoretical

and practical aspects. He is leading a research group working in a

number of industrial projects that apply mathematically based

techniques to combine practical approaches to software engineering

with mathematical rigor. The main topics are requirements

engineering, ad hoc networks, software architectures,

componentware, software development processes and graphical

description techniques. In his group the CASE tool AutoFocus was

developed. Today one of his main interests is the development of a

modeling theory for software and systems engineering.

Ingolf H. Krüger holds a Ph.D. from Technische Universität München,

Germany, and an M.A. from the University of Texas at Austin. He is

an Assistant Professor i.R. in the Computer Science and Engineering

Department of UCSD's Jacobs School of Engineering, leading the

“Service-Oriented Software and Systems Engineering Laboratory”; he

also directs the “Software & Systems Architecture & Integration”

functional area within the California Institute for Telecommunications

and Information Technology (Calit2). Dr. Krüger is a member of the

UCSD Divisional Council of Calit2. Krüger!s major research interests

are service-oriented software & systems engineering for distributed,

reactive systems, software architectures, description techniques,

verification&validation, and development processes. Together with

Manfred Broy he has organized the Automotive Software Workshops

2004 and 2006 in San Diego, CA.

Software Engineering for Automotive Systems: A Roadmap

Alexander Pretschner, Manfred Broy, Ingolf H. Krüger, Thomas Stauner

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

Thomas Stauner is a software specialist with BMW AG, Germany. He

studied computer science at Technische Universität München and the

University of Edinburgh. He obtained his PhD in computer science

from Technische Universität München. After leading a team at BMW

Car IT on specification and verification of automotive systems, he is

currently responsible for compatibility management of automotive

electronic control units at BMW.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

Software Engineering for Automotive Systems: A Roadmap

Alexander Pretschner1, Manfred Broy2, Ingolf H. Krüger3, Thomas Stauner4
1Information Security, ETH Zürich, Switzerland

2Software&Systems Engineering, TU München, Germany
3CSE Department, UCSD, La Jolla, CA, USA

4BMW Group, München, Germany
pretscha@inf.ethz.ch, broy@in.tum.de, ikrueger@ucsd.edu, thomas.stauner@bmw.de

Abstract
The first pieces of software were introduced into cars
in 1976. By 2010, premium class vehicles are expected
to contain one gigabyte of on-board software. We pre-
sent research challenges in the domain of automotive
software engineering.

1. Introduction

The amount of software in modern cars is increasing
at a breathtaking pace. The current BMW 7 series, for
instance, implements about 270 functions that a user
interacts with, deployed over up to 67 embedded plat-
forms. Altogether, the software amounts to about 65
megabytes of binary code. The next generation of up-
per class vehicles, hitting the market around the year
2010, is expected to run one gigabyte of software (on
board, excluding data on DVD for navigation etc.).
This is comparable to what a typical desktop work-
station runs today. Reasons for this tremendous in-
crease include the demand for new functionality on the
one hand, and the availability of powerful and cheap
hardware on the other hand. Furthermore, electronics
in cars help reduce gas consumption as well as increase
performance, comfort and safety as today’s figures of
increasing traffic with decreasing serious accidents
show. Finally, software enables OEMs (the “car mak-
ers”) and suppliers to tailor systems to particular cus-
tomers’ needs. In other words, software can help dif-
ferentiate between cars. At least in principle, software
also allows expensive hardware to be reused across
different cars.

Automotive software is economically relevant. The
worldwide value creation in automotive elec-
tric/electronics (including software) amounts to an es-
timated € 127 billion in 2002 and an expected € 316
billion in 2015 according to a Mercer study [DK04].
Software makes up an estimated 40 percent of this
value creation by 2010 [HKK04].

The considerable and increasing complexity of auto-
motive software systems and their huge economic rele-

vance give rise to various organizational, engineering,
and research challenges. In the first part of this paper,
we describe the unique blend of characteristics that
define automotive software systems. Reflecting on the
market, technology, economics, and organization of
labor, we describe software-related consequences of
• the heterogeneous nature of automotive software

(embedded and infotainment systems) and the
consequences for systems integration, tools, proc-
esses and engineering skills;

• the huge number of communicating processors and
the resulting need for tailored middleware;

• the necessity to handle large numbers of variants
and configurations;

• decisions grounded in a unit-based cost model;
• the interplay of long life and short development

cycles; and
• specific requirements related to reliability, safety,

and security.
As key research challenges, we identify the integra-

tion of heterogeneous subsystems from different
sources as well as their evolution and maintenance, and
reuse.

Division of labor in the automotive world has tradi-
tionally been organized in a highly vertical manner,
resulting in distributed and concurrent engineering
processes. The corresponding need for clear interface
descriptions together with a tradition of model-based
development of continuous systems explains, at least in
part, the relative success of model-based approaches to
developing automotive software systems. In the second
part of the paper, we hence explore potential benefits
of a seamless model-based development process that
caters to the characteristics of automotive software in
terms of requirements engineering and management,
architecture development, and testing activities.
Overview. Section 2 describes the characteristics of the
domain of automotive software and their conse-
quences. Section 3 uses this analysis to identify re-
search challenges. More specifically, we present one

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

particular facet of model-based development as a pos-
sible solution in Section 4. Our presentation of the fun-
damental models itself leads to many more relevant
areas of future research. Section 5 summarizes our
findings and concludes. A more detailed discussion of
the domain characteristics can be found in [BKP+07].

2. Domain Profile

We use this section to present five salient features of
the automotive software domain as it presents itself
today. These features are the heterogeneous nature of
the software involved, the organization of labor, the
distributed nature of automotive software, the huge
number of variants and configurations, and the pre-
dominance of unit-based cost models. In Section 3, we
will use this analysis to highlight particularly relevant
areas of research.

2.1 Heterogeneity of Software

2.1.1 Description
Automotive software is very diverse, ranging from

entertainment and office-related software to safety-
critical real-time control software. It can be clustered
according to the application area and the associated
non-functional requirements:
• Multimedia, telematics, and human-machine inter-

face (HMI) software: typically soft real-time soft-
ware, which also has to interface with off-board
IT, dominated by discrete-event/data processing;

• Body/comfort software: typically soft real-time,
discrete-event processing dominates over control
programs;

• Software for safety electronics: hard real-time,
discrete event-based, strict safety requirements;

• Power train and chassis control software: hard
real-time, control algorithms dominate over dis-
crete-event processing, strict availability require-
ments; and

• Infrastructure software: soft and hard real-time,
event-based software for management of the IT
systems in the vehicle, such as software for diag-
nostics and software updates.

In terms of non-functional requirements, reliability and
safety are concerns for all functions relevant to driving,
from engine control and passenger safety functions to
forthcoming X-by-wire [XBW98] functions where
mechanical transmission is replaced by electrical sig-
nals, such as steer-by-wire (steering signals are elec-
tronically transmitted to the wheels) or brake-by-wire
(braking signals are electronically transmitted to the
brakes). In addition, with the development of infotain-
ment functionality, the car is becoming an information
hub where functions of cell phones, Laptops and PDAs
are interconnected using wired and wireless network

technologies (UMTS, Bluetooth, WiFi) via and with
car information systems. Increasingly, the on-board
electronics systems establish communication links be-
yond car boundaries, enabling various applications
relating to, among others, sharing of infotainment con-
tent, remote vehicle analysis, software updates, global
positioning and emergency services, inter-vehicle
communication for crash prevention and automatic
convoy forming.

2.1.2 Consequences
From the integrated software and systems engineer-

ing perspective, the five clusters suggest a need for
development skills from various disciplines.
• The different SW/HW systems consist of a high

number of separated functions and processes that
exchange information over several communication
links. These systems exhibit all the details and
complexities of distributed computer networks—
computer science and computer engineering skills
are required to successfully build automotive sys-
tems.

• These systems are connected to sensors and actua-
tors that read physical values and operate physical
processes, respectively, in real time. The SW/HW
systems have to respond to these inputs in a classi-
cal control-theoretic manner—knowledge of con-
trol theory is required.

• For some functions, such as power train control
software, an understanding of mechanical engi-
neering is mandatory.

Historically, the methods as well as the models of
control theory have been quite different from the mod-
els of information processing. In control theory, tools
such as Matlab/Simulink [Mat06,WM95] are used to
model differential equations. In contrast, engineers in
business information processing are increasingly eager
to use models of data and behavior as expressed in the
Unified Modeling Language (UML), and other kinds
of discrete data flow or state machine models. In auto-
motive development, these separate engineering cul-
tures have to be united to reflect all relevant aspects of
the different engineering domains.

The heterogeneity of the domain and the lack of a
widely accepted, let alone standardized, set of models
and development approaches also explains the large
number of different tools in use in automotive software
development today. Because the tools are developed by
different vendors, there is no comprehensive system
model, and as a consequence, the tools are usually not
integrated. There exist attempts to creating pragmatic
tool chains by connecting the tools in a form where the
data models of one tool are exported and imported by
the next tool [PT06, KSL+03, AKMP05], but in most

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

cases, full production support has not yet been
achieved.

2.2 Distribution of Labor

2.2.1 Description
As mentioned above, the car industry has tradition-

ally been organized in a highly vertical manner. Me-
chanical engineers worked hard for over a century to
render the various sub-systems in cars independent.
This facilitated independent development and produc-
tion of the parts and gave rise to a highly successful
division of labor: today, an estimated 25% of the prod-
uct value is created by the OEMs who tend to concen-
trate on the engine, integration, design, and marketing
of the brand.

In the past, the “ideal” of automotive development
was that the parts of cars are produced by a chain of
suppliers and more or less only assembled by the
OEM. Thus, a large portion of the engineering and
production activities were, and still are, outsourced.
This also facilitates optimization of cost and risk dis-
tribution. With software becoming a major force of
innovation, the OEM’s responsibilities have evolved
from the assembly of parts to system integration. Tra-
ditionally unrelated and independent functions (such as
braking, steering, or controlling the engine) that were
freely controlled by the driver suddenly related to one
another, and started to interact, as the example of the
central locking system in §2.3 will demonstrate.

While the integration of subsystems is always a chal-
lenging task for a complex system, the situation in
automotive software engineering is even worse, be-
cause suppliers usually have a lot of freedom in how
they realize individual solutions. (In business IT the
client will often strongly constrain the technologies
that may be used by a supplier.)

2.2.2 Consequences
Suppliers can use synergies in development and pro-

duction, because they usually produce similar systems
for different OEMs. This, in turn, also keeps the unit
cost low for the OEMs. For functions that do not dif-
ferentiate between the different OEMs this synergy is
greatly exploited at the suppliers’ side.

A negative side effect of the distribution of labor is
that complex distributed processes need to be coordi-
nated. In particular, development is geographically
distributed and communication gets more complicated.
Clear interfaces as well as liabilities need to be de-
fined. The large number of parties involved in itself is
a reason for unstable requirements, with frequent
changes and revisions of the requirements during the
development process as a consequence. Furthermore,
the OEM often only has black-box specifications of the
subsystems to be integrated, and it is difficult or im-

possible for the OEM to localize errors and to modify
parts of the subsystems.

2.3 Distribution of Software

2.3.1 Description
As mentioned in the introduction, today’s premium-

class vehicles are equipped with as many as 67 proces-
sors that implement roughly 270 user functions that a
user interacts with (one of the reasons for the huge
number of processors being the organization of labor
as described in §2.2). These functions are composed of
as many as 2500 “atomic” software functions. These
functions address many different issues including clas-
sical driving tasks but also other features in comfort
and infotainment and many more. These functions do
not stand alone, but exhibit a high dependency on each
other. A telling example for the increased interaction
among previously unrelated sub-systems is the central
locking system (CLS) as found in most modern vehi-
cles [KNP04]. It integrates the pure functionality of
locking and unlocking car doors with comfort func-
tions (such as adjusting seats, mirrors and radio tuners
according to the specific key used during unlocking),
with safety/security functions (such as locking the car
beyond a minimum speed, arming a security device
when the car is locked, and unlocking the car in case of
a crash), and with HMI functions, such as signaling the
locking and unlocking using the car’s interior and exte-
rior lighting system. Many of these functions are real-
ized in sub-systems that are distributed according to
the major mechanical breakdown of the vehicle into
engine, drive-train, body and comfort systems. In some
vehicles this seemingly simple functionality is physi-
cally distributed over up to 18 electronic control units
(ECUs). Reinforced by a trend to combine on-board
with off-board IT, the car has turned from an assem-
bled device into an integrated system.

2.3.2 Consequences
With the huge amount of software-based functions,

phenomena like unintentional feature interaction
[Zav93] have become issues. Feature interaction is the
technical term created in the telecommunication do-
main for intentional or unintentional dependencies be-
tween individual features. Feature interactions are visi-
ble at the user level as specific dependencies between
distinct functions.

A second consequence of the highly distributed na-
ture of automotive software systems is the intricacy of
an appropriate technical infrastructure, including oper-
ating systems and middleware. There are five bus sys-
tems (even more for some luxury vehicles) that serve
as communication platform for ECUs. There are real
time operating systems; and a lot of system-specific
technical infrastructure on which the applications are

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

based. One challenge this infrastructure has to face is
the significant amount of multiplexing at the bus level
to efficiently support communication among the doz-
ens of ECUs for thousands of software-enabled tasks in
parallel. Among others, one consequence of the high
degree of multiplexing is that the transmission time of
messages exhibit jitter so that systems appear to be
nondeterministic. In many cases, timing deadlines can-
not be guaranteed. Similar problems arise in the indi-
vidual ECUs where tasks and schedulers manage (vir-
tual) parallelism. We can thus find all the issues of
distributed systems, in a situation where physical and
technical processes have to be controlled and coordi-
nated by the software, some of them being highly criti-
cal and hard real time.

Due to the unpredictable load, time guarantees often
cannot be provided. In many ways the communication
buses serve as a global “memory” or database, captur-
ing information about the current state of the vehicle
and its electronics components. Therefore, a lot of in-
teresting potentials for improvement, such as a car-
wide data model and management system, or the intro-
duction of drive-by-wire systems have not been real-
ized so far. Time-synchronous bus systems like TT-
CAN [ISO01] or FlexRay [MHB+01] are current at-
tempts at solving these problems.

2.4 Variants and Configurations

2.4.1 Description
The need for differentiation in the mass market mo-

tivates the desire for customized items. A premium car
typically has about 80 electronic fittings that can be
ordered depending on the country, etc. Simple yes/no
decisions for each function yield a possible maximum
of 280 variants to be ordered and produced for a car. In
a similar vein, the authors of [BBC+01] calculate for a
simplified power train control application 3,488 possi-
ble component realizations by instantiating different
algorithms and their variants.

A different kind of variability is a consequence of
the development process. A car model is usually pro-
duced for seven to eight years. The customer expecta-
tion of a long lifetime is reflected in the OEM's duty to
offer service and spare parts for at least 15 years after
the purchase of a vehicle (compare this to an estimated
lifecycle of, say, 4 years for an average workstation
program, with several hot fixes during this period). The
life cycle of hardware components such as CPUs or
DSPs is much smaller, say less than 5 years. Some of
them will no longer be produced and have to be re-
placed by newer types. Already after the first three
years of production, 25 percent of the ECUs in the car
typically have to be replaced by newer ECUs due to
discontinuation of an ECU’s specific technology.

Software may be changed at much shorter intervals,
typically several times a year. In particular, the com-
paratively short CPU life cycles enforce changes in a
vehicle’s software/hardware system during the produc-
tion period and maybe also during the development
phase. This means that, over time, there are various
versions for each piece of software in a car. When de-
fective ECUs are replaced or when a software update is
performed as part of vehicle maintenance, configura-
tions containing a mixture of “old” and “new” software
can be created.

2.4.2 Consequences
Market demands, short innovation and long life cy-

cles lead to a huge number of variants and configura-
tions. Updating or replacing software in cars is a chal-
lenge. New versions of software are brought in when
exchanging entire ECUs, or during maintenance by
“flashing” techniques for replacing the software of an
ECU. In this context, it is estimated that today more
than fifty percent of the ECUs that are replaced in cars
are technically error-free—they are replaced when the
customer brings the car to a garage to fix a problem, or
for maintenance. They are replaced simply because the
garage could not find better ways to fix the problem.
However, often the problem is not rooted in defective
hardware but in ill-designed or incompatible software.

When exchanging entire ECUs or updating the re-
spective software, one has to be sure that new software
versions correctly interoperate with the remainder of
the vehicle software (compatibility [BBD+06]). Be-
cause of the substantial scattering of functionality in
cars today, this is difficult, and a lot of the problems
we see today in the field are indeed compatibility prob-
lems. Obviously, an elaborate design and test method-
ology is required for this.

Furthermore, because of the long lifecycles of cars,
long-term maintenance processes must be organized.
Today, an OEM's vehicle fleet is predominantly main-
tained by vehicle dealers following prescribed semi-
automated procedures. With its increasing amount of
software, the vehicle more and more inherits the char-
acteristics of a complex IT system. There is a differ-
ence with the desktop software market, however: We
deem it likely that future maintenance of on-board
software will continue not to be delegated to the users.
Among other things, this is a consequence of the
OEM’s desire to create an overall brand “experience”
to which the customer can relate as a “package”.

2.5 Unit-Based Cost Model

2.5.1 Description
The automotive industry operates in a highly com-

petitive mass market with strong cost pressure. Here
the rules of business of scale prove to be crucial: how

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

many units of a product are sold? Depending on the
market segments targeted by an OEM, competition
occurs over product price, product quality, product
image and differentiating product features. Competi-
tion by differentiation requires innovation and a strong
brand profile. Competition over price requires perma-
nent optimization.

Traditionally, the cost per unit produced has played a
decisive role. A consequence of the large quantities
produced, production and material cost by far out-
weighed engineering cost for classical, not software-
centric vehicle parts. The classical argument is as fol-
lows. A vehicle component may be produced over
seven years or more with, for instance, 500,000 units
per year. A hardware cost reduction of € 1 for 20 such
components (including 1 processor each) in each car
would then lead to an overall cost reduction of € 70
million over the production period. For vehicle soft-
ware, this argument continues to be used as a motiva-
tion to keep the cost per unit low.

2.5.2 Consequences
As a consequence, engineers concentrate on reducing

the amount of required memory and computation
power. Code is then written and directly optimized for
specific individual processors. Such optimization re-
quires that the software be very closely tuned towards
the processors’ characteristics. Trying to squeeze the
code into as little memory as possible requires a further
set of code optimizations. As a consequence, it be-
comes difficult to port the code to another processor.
Thus, keeping pace with processor life cycles (§2.4.1)
is hindered. The integration of new functionality is
made more difficult or even impossible if memory size
of the ECUs was optimized too much during the de-
velopment process. The negative results are as follows.
It is very difficult to add any functionality to the sys-
tem later on, and it is very difficult to change parts of
the code or to fix defects. The code is more complex
than necessary, for instance, in terms of strong cou-
pling between modules. Changing the code becomes
very difficult, and reusing this code in future car mod-
els or on other processors is almost impossible. Finally,
some defects in the code may be a result of the optimi-
zation itself and finding defects may become even
more difficult, since now application logic issues are
obscured by optimization.

In sum, exclusively thinking in terms of unit-based
costs with the associated need for optimizations makes
the software complex and difficult to handle. Prema-
ture optimization has a negative effect on many classi-
cal quality attributes for software. Time-to-market,
maintenance costs and the risk of not finishing a devel-
opment project in time are substantially increased.

We recognize that unit-based costs are important for
software-based functions, as the above numbers show.
However, they are but one factor.

3. Research Challenges in Software Engi-

neering
The domain characteristics of §2 directly translate

into many fascinating areas of research in software
engineering (we omit application-specific challenges
such as crash prevention, advanced energy manage-
ment, driver assistance systems, further X-by-wire
technologies, HMI-related challenges, personalization,
etc. here). At the bottom line, they all relate to quality
and cost, reflected by the need for integration, evolu-
tion, and reuse:
1. Languages, models, and techniques for require-

ments engineering that support the structured
specification of multi-functional systems and their
mutual dependencies;

2. Languages, models, and techniques for require-
ments engineering that cater to heterogeneous sys-
tems and the engineers that build them, to the in-
terplay between OEMs and suppliers, and to the
huge number of variants and configurations;

3. Platform and HW/SW designs and design method-
ologies at different levels of abstraction that ad-
dress the heterogeneity of the systems involved as
well as the compatibility problem;

4. Middleware at different levels of abstraction that
enables the communication between heterogene-
ous subsystems;

5. Comprehensive cost models that take into account
development, maintenance and opportunity cost
(for failure of enabling reuse, for instance);

6. System models that enable the semantics-
preserving integration of different tools;

7. Design and coding practices that lead to portable
and reusable code;

8. Security of the communication within a car as well
as between cars and several forms of off-board IT;

9. Reliability estimates, timing predictability, meas-
urements, and assurance;

10. Techniques and error models for quality assur-
ance—particularly relevant in a domain with huge
numbers of deployed entities and very limited con-
trol over them—that, in particular, address the in-
tegration problem as well as the huge numbers of
variants and configurations;

11. Integration of on-board and off-board IT;
12. Approaches to error diagnosis and recovery; and
13. Approaches to reuse for the benefit of reducing

complexity and cost.
We will use Section 4 to address items 1, 2, 3, and 6
collectively in some detail under the headlight of

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

“model-based development”. In the remainder of this
section, we briefly summarize research challenges for
some of the other areas.

3.1 Middleware: Communication Services

A classical approach to handling complexity is
separation of concerns. The application logic, for in-
stance, should obviously be independent from the un-
derlying communication infrastructure; all applications
should, system-wide, react uniformly to exceptional
events (such as physical read/write errors on the bus)
etc. With each of the five busses (§2.3.2) having its
own characteristics and protocols, the definition of a
respective adequate middleware, of course, comes as a
significant challenge.

Separation of concerns can be reached on several
levels, including architecture, design and implementa-
tion (language dependent). Popular techniques, well
known from business IT, are middleware layers and the
corresponding component orientation. An automotive
middleware, however, must fit other requirements than
middleware known from business IT (such as CORBA
and web services). Flexibility at runtime is still domi-
nated by the need for flexibility at design time in the
automotive domain, because the runtime layout of
automotive software is still mostly static. The follow-
ing issues need to be considered for automotive mid-
dleware:
• Resource optimization: due to the unit-based cost

structure (§2.5), modularity must not be overly
expensive with respect to resource consumption.

• Adaptability to different domains: real-time and
non-real-time, safety-critical and non-safety-
critical software is integrated within one system
(§2.1).

• Optimizability to hardware but also transferability
from one hardware platform to another: due to the
lifecycle gap (§2.4) and the hardware-software
correlation the software must be transferable from
old platforms to new ones, but still optimizable
towards the hardware.

• Extensibility: again due to the lifecycle gap (§2.4),
it must be possible to upgrade a system during its
lifetime and extend it with new features.

In contrast to other middleware approaches there is
no single instance in the system that handles the com-
munication dynamically (like an ORB in CORBA), but
the middleware layer is generated statically for this
special configuration of the system. This can lead to
lean, highly optimized middleware portions inside
every ECU that minimizes the overhead that comes
along when using middleware.

The consequence is that middleware can be only as
flexible and optimized as allowed by the expressive-

ness of the underlying model. Therefore, a powerful
meta- or domain-model is needed that allows us to
express all required aspects of the system, including,
but not limited to communication variants, timing as-
pects, safety and redundancy.

The goal of a uniform, lean middleware layer that
manages communication and exception aspects in a
system-wide uniform way is only achievable by in-
creasing the expressive power of automotive modeling
approaches towards model-based system specifications
supporting code generation of middleware components
in an optimized and validated way. The AUTOSAR
[Aut06] partnership, consisting of various OEMs and
suppliers, is a promising step towards an open architec-
ture that features such a model-based middleware
layer. It provides a basis and an enabler for further
aspects such as timing and redundancy aspects that can
be included in the metamodel to further increase ex-
pressiveness.

3.2 Safety and Security

The life-criticality of many avionics systems has led
to reliabilities of 109 hours mean time between failures.
This high reliability is, on one hand, due to the use of
very sophisticated error tolerance methods and redun-
dancy techniques, and on the other hand due to sophis-
ticated ways of error modeling (like Failure Mode and
Effect Analysis (FMEA), which is also heavily applied
in the automotive industries, but rather not at the level
of software). Furthermore, driven by government man-
dates, avionics companies invest heavily into quality
management, including rigorous code inspection tech-
niques throughout the development process. For many
equally life-critical systems in the automotive domain,
the respective numbers are not even known (but the
requirements are admittedly different). Research into
measuring and improving reliability is, hence, required.

Personalization and the related privacy and security
issues are becoming increasingly important, notwith-
standing usability issues. The management of intellec-
tual property, including digital rights management, is
particularly challenging in a distributed development
process as described in §2.2. From a liability perspec-
tive, unauthorized “tuning” of code must be prohibited
or at least be detectable in hindsight. Liability also is
an important issue in ad-hoc distributed safety-critical
applications such as crash prevention that relies on
communication between cars. Today’s secure commu-
nication protocols need to be extended for real-time
applications.

There are clear benefits to hardening the automotive
infrastructure against the intrusion of unauthorized
services and components. The more the vehicle be-
comes connected to the cyber-infrastructure the more

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

susceptible it becomes to attacks carried out via this
cyber-infrastructure. Management of security is, there-
fore, a necessity both on-and off-board. As an example
for on-board authentication requirements, consider the
importance of identifying which of the myriad of func-
tions and ECUs is responsible for a failure: if the func-
tions, as they become active and communicate, authen-
ticate themselves, the system could identify the pres-
ence of unauthorized components, or could determine
which of the authorized components malfunctioned.
These topics are under research also in their more tra-
ditional home grounds of internet-enabled business
information systems; their inherently cross-cutting
nature makes them particularly challenging in automo-
tive architectures with a high degree of scattered func-
tionality.

3.3 Error Diagnosis and Recovery

Failure management, from a systems engineering
perspective, is a further area that requires increased
attention. Because of its role as the system integrator,
the OEM is uniquely positioned to deal with failures at
the composite system level—as compared to the typi-
cally localized failure management at the component
level prevalent today. This requires, however, compre-
hensive logical and technical domain models of fail-
ures, failure effects, failure detectors, mitigators and
mitigation strategies that influence the choice of both
logical architectures and their mapping to technical
architectures (§4.2).

Today the amount of error diagnosis and error re-
covery in cars is rather lightweight. In the CPUs some
error logging takes place, but there is no consideration
nor logging of errors at the level of the network and the
functional distribution; there is no comprehensive error
diagnosis and no systematic error recovery beyond
individual CPUs (note that as of today, this appears
appropriate because systems are essentially designed in
a way that will lead to a safe state, even if bus commu-
nication crashes). One result of inadequate error man-
agement is the maintenance problem mentioned in
§2.4.1, resulting in the replacement of many non-
defective ECUs. Failure logging to the end of better
error diagnosis for maintenance then emerges as a
relevant research problem.

There are some fail-safe and graceful degradation
techniques found in cars today, but a systematic and
comprehensive error treatment is missing. With the
upcoming multi-core controllers for embedded applica-
tions, an interesting area for research is how this can be
exploited also for redundancy/recovery strategies. In
the long run, comprehensive error models in cars seem
desirable, and so does software for the detection and
possibly mitigation of errors. On such models we can

base techniques to guarantee fail-safe and graceful
degradation and, in the end, also error avoidance by the
help of redundancy.

3.4 Reuse
Typically, functionality changes only to a small

amount from one vehicle generation to the next. Most
of the old functionality remains and can be found in the
new car generation, as it was in the old one. From one
car generation to the next, functionality (of the systems
that exist in both generations) differs mostly not more
than 10%, while much more than 10% of the software
is re-written. The short hardware lifecycles (§2.4) may
require frequent re-implementations. Nevertheless,
today the process of software reuse is not systemati-
cally planned between OEMs and suppliers, as re-
quired, say, for software product lines ([CN01]; see the
comment below). From the OEM point of view, reuse
rather occurs on the level of whole ECUs than on the
level of software, and the reuse objectives of OEMs
and suppliers may be in conflict with each other. Reuse
is arguably one of the most challenging problems,
clearly transcending the automotive domain, and we
are not aware of convincing solutions for the general
problem. However, some reuse problems are of an ac-
cidental rather than an essential nature. For instance,
too strong an optimization of the software towards the
hardware (§2.5) can make reuse in the form of porting
it to new hardware impossible or very expensive. With
the increasing importance of software, we deem it a
mere question of time until it becomes more economi-
cal to use more generous hardware structures and to
stay away from low-level code optimization.

Reuse comes in different forms. Reuse at the level of
single code modules has proven to be utterly difficult.
At the level of programming or modeling languages,
recurring patterns of behavior in a domain can be en-
capsulated into concise language constructs. In terms
of research, this necessitates the analysis of domains
where such patterns can be identified, and then the
definition of these patterns. The tradeoff between the
benefits of general-purpose languages on the one hand
and the benefits of domain-specific languages on the
other hand has to be evaluated. Domain-specific design
patterns must be defined in places where it makes no
sense to encode recurring patterns into dedicated lan-
guage constructs. Well-designed libraries and frame-
works form a promising avenue of research.

Reuse is also facilitated by standardized middleware
[Aut06] that allows for coordinated and standardized
interfaces. At the level of requirements engineering,
there definitely is a need for further research into prod-
uct lines (with the common argument that product lines
cater to anticipated changes only). The organizational

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

structure of the development process, with its interplay
between OEMs and suppliers and the resulting con-
flicting desires for reuse, must also be taken into ac-
count (as reflected by suppliers being seemingly more
open to product line approaches than OEMs). Research
into reuse must of course include studies of the cost
effectiveness, and hence be related to research into cost
models. It is unclear to date to what extent and where
at least ad hoc reuse occurs today, and how OEMs and
suppliers profit from different forms of reuse.

3.5 Cost Models

In the development of software intensive systems,
many aspects of costs are involved, including devel-
opment cost, maintenance cost, different forms of op-
portunity cost, and reputation-related costs for the
OEM’s brand. So far the comprehensive cost situation
is not understood in sufficient detail. What is quite
clear is that the costs for the electronic devices both for
the development and for the production are rising (§1).
But it is not so clear how development cost is distrib-
uted between software and hardware costs. Because
current cost models usually relate to the cost per unit,
software is considered an integral part of the develop-
ment process and not explicitly calculated in the con-
tracts between the supplier and the OEM despite its
continuous rise (there is an estimation that, per year,
about five percent of the costs “migrate” from hard-
ware to software).

The importance of intellectual property (IP) issues
seems to exceed that of hardware developments. The
IP for a large piece of software is remarkable. The next
generation of premium cars will exhibit hundreds of
millions of lines of code. If the overall costs for such
an amount of code are calculated according to the clas-
sical development costs, the value of the software costs
of a premium car amounts to somewhere between three
hundred and eight hundred million €. Owning the soft-
ware and being able to reuse it is an important factor in
the cost models.

In sum, the exponential increase of software does not
justify the use of restricted unit-based cost-models
alone. The research challenge consists of understand-
ing processes and products and defining more appro-
priate, comprehensive cost models. The automotive
industry needs decision and cost models that take into
account rising development costs, maintenance cost,
software-related project risk and time-to-market. It is
likely that such models require a more transparent co-
operation between suppliers and OEMs

4. Model-Based Development

In this section, we describe some further research
challenges. We will cast facets of a possible solution to

the abovementioned problems into the general ideas of
model-based development, by taking into account the
automotive idiosyncrasies. In this paper, model-based
development means working with artifacts representing
domain and design knowledge at different levels of
abstraction, throughout the development process, and
possibly also at runtime. Many crucial software-related
facets of a system are then represented by the follow-
ing artifacts.
• Requirements models that address multi-

functionality and feature interactions embrace all
requirements-related issues, dealing with the direct
behavior of embedded software-based functions
from the users’ point of view. These include the
driver, passengers, maintenance staff and other
persons dealing with the car. Use cases and related
behavior specifications are one part of the re-
quirements models.

• The logical architecture is a breakdown of the
functionality into interacting logical components.
It represents the functional decomposition of a
system into functional components, as well as the
behaviors of these components at the logical level.
The functional components provide the functional-
ities described in the requirements model.

• The technical architecture defines the deployment
architecture, i.e. all the hardware units, the basic
software (operating system and middleware) on
them and their connections: controllers, communi-
cation devices, actuators and sensor, as well as a
mapping (the “deployment function”) from the
logical architecture (its structures and behaviors),
to this deployment architecture. This includes the
definition of source code modules, the platform,
and the representation of the application software
in terms of tasks, based on the chosen platform, as
well as the mapping of these tasks to ECUs and
their schedules.

Each of these models must of course be connected to
non-functional requirements, including safety reliabil-
ity, maintainability, portability, performance, etc. The
architectures and the implementation of the system
then have to ensure these requirements.

In the remainder of this section, we discuss require-
ments models (§4.1), the logical and technical architec-
tures (§4.2), and the role of detailed behavior models
(§4.3). We will argue that a clear separation of con-
cerns together with a comprehensive understanding of
the domain-specific issues (§2) and their cross-cutting
aspects is likely to be the main benefits of this ap-
proach. We consider code generation, in particular in
the domain of discrete systems, to be but one of the
benefits of a model-based approach. Furthermore, we
deem the availability of comprehensive product models

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

the exception, rather than the norm. This is a conse-
quence of the complexity of the systems and the nature
of the distributed development process (§2.2).

With different levels of abstraction, seamlessness and
traceability are, of course, major concerns and belong
to the fundamental research challenges: how can, con-
ceptually, models at different levels of abstraction be
related to one another [BBJ+05], and how can the re-
spective tools be integrated? The different levels of
abstraction discussed in this section support require-
ments tracing for functional requirements (of course,
requirements tracing should also include the link be-
tween requirements, their origin—e.g., requirements
from marketing—and design decisions). The flow-
down is as follows. The relationship between the func-
tion hierarchy—a part of the requirements model—and
the logical architecture indicates which components of
the logical architecture are contributing to (i.e., col-
laboratively realizing) the respective function. The
logical components are later represented by specific
software. The deployment onto the technical architec-
ture determines which software runs on which hard-
ware and which logical communication channels are
implemented by which bus systems. In sum, by also
taking into account the quality models, elements of the
function hierarchy can be traced to the hardware level,
which greatly facilitates requirements verification,
maintenance, and evolution after the start of produc-
tion.

4.1 Model-Based Requirements Engineering

There is a general agreement that requirements en-
gineering for embedded systems is a key discipline in
the automotive domain—a discipline that is not suffi-
ciently mastered today [WW03]. Reasons include the
following.
• Many new innovative functions in cars today are

based on embedded software systems. There is no
experience so far with these functions and the best
way to engineer the human-machine interactions
with them. The process of deciding on the optimal
realization of functions, the interaction between
functions themselves, and the interaction between
users and functions is a difficult and error-prone
learning process. Models and prototypes can pro-
vide initial solutions to these problems.

• The systems are multi-functional, and a huge
number (§2.3.1) of functions is offered to the user.
These functions exhibit complex interactions, are
mutually dependent and give rise to intended and
unwanted feature interactions.

• The suppliers realize a lot of the functionality
(§2.2). Therefore the overall ideas of functions
have to be fixed by the OEMs and then docu-

mented in a way such that the supplier can imple-
ment them.

• Over the development process requirements occur
in strongly varying levels of detail. In the begin-
ning requirements are often very abstract, e.g.
based on benchmarking with competitors. How-
ever, in the same process phase requirements to
reuse some ECUs from other products may al-
ready be fixed. The need to integrate these ECUs
not only strongly restricts the set of possible solu-
tions, it also adds a large set of very detailed re-
quirements resulting from the ECUs to be inte-
grated.

• Requirements specifications must deal with a large
number of vehicle variants (§2.4; for instance, “2
doors”, “4 doors”), and in particular variants re-
sulting from different combinations of auxiliary
equipment.

• Besides the functional requirements there is a
large number of non-functional requirements con-
cerning cost, time-to-market for innovations,
safety, security, reliability, maintainability etc.

• Often, there are further constraining platform-
specific requirements (“this ECU has to be re-
used”), pulling deployment specifics already into
the levels of requirements engineering and logical
architecture design.

In general, requirements are originally expressed in
natural language. It has turned out that rigorously im-
posing structure on the text is most useful. A first step
from text to models are taxonomies that can be com-
puted from text by natural language processing tech-
niques [Kof05]. They are used as a basis for the
abovementioned requirements models (that of course
reflect a lot of structuring activities and which are
hence richer than mere feature trees [BLP04]).

The system’s (intended) functionality is modeled by
a function hierarchy that collects all software-based
functions. These will be implemented by functional
entities defined at the level of the logical architecture.
Requirements are associated with the elements of this
hierarchy. Its nodes relate to one another in an “is-
subfunction” relation. The dependencies between the
functions must also be described. Each function is
modeled in isolation. A function may, for instance,
define an interactive service that is described by a state
machine. System behavior in the presence of failures
needs to be specified as well. Based on the function
hierarchy, detailed behavior patterns can be provided
for the individual functions. This model of the func-
tionality comes along with models of the required qual-
ity aspects of the system.

These models are a necessary starting point for
mapping requirements to elements of the logical and

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

technical architectures (ideally, the latter mapping is
indirect via elements of the logical architecture); the
quality models are used to assess and optimize archi-
tecture decisions. Therefore, for a systematic model-
based requirements definition, all requirements have,
sooner or later, to be formulated in terms of the struc-
tured view on the architectures.

Research Challenges. This approach to require-
ments engineering entails many research challenges.
The definition of the tracing structures and their effec-
tive tool support is, so far, an unsolved problem.

As indicated above, requirements exist at various lev-
els of detail. They range from marketing-driven re-
quests (“the car has to have the following comfort-
functions”) to very detailed platform specifications,
which may limit the design space for both logical and
technical architectures. One research challenge is,
therefore, to elucidate a comprehensive requirements
model that brings out these levels of abstraction and
optimizes the resulting solution space for logical and
technical architecture.

A systematic way to structure the requirements after
capturing them, to make them precise, and to validate
them is still a challenge. First of all, a reference model
is needed that defines all the artifacts that are to be
considered as results of requirements engineering and
requirements dependencies (see [GBB+06]).

So far the models offered for requirements engineer-
ing are limited. We need structured hierarchies of all
the software-based functions in a car that reflect all
their mutual dependencies (specified feature interac-
tion). Good ways to model the functional hierarchies
and their dependencies that support automatic analysis
are a challenge for research. In addition, the functional
behavior of the individual functions has to be modeled.

The systematic step from the requirements to the de-
sign phase, taking into account both functional and
quality requirements, is largely unsolved. Eliciting
domain-specific design and analysis patterns can be a
promising research direction to tackle this problem.

4.2 Logical and Technical Architectures
As outlined above, the complexity of automotive sys-

tems rivals that of other ultra large scale systems, in-
cluding avionics, command and control, and internet-
wide business intelligence systems. In fact, automotive
systems combine many of the requirements challenges
we see elsewhere only in isolation. Historically, there
has been a tight coupling between automotive software
functions and the physical processes they manage, and
thus with dedicated, networked ECUs. This tight cou-
pling has contributed significantly to the fragmentation
of the automotive platform into its current state. This,
in turn, has led to a strong entanglement between the

logical architecture or function network, and its de-
ployment on a concrete, technical architecture. This
entanglement gives rise to a scattering of functionality
(§2.3.1). One of the central challenges for next-
generation automotive system development is, there-
fore, to disentangle logical and technical architectures.
This will help unleash so far untapped potentials at
• reducing the number of ECUs required to deliver

the desired functionality based on the ability to es-
tablish globally optimal mappings from functions
to ECUs;

• enabling dynamic reallocation of computing and
communication resources to effect globally opti-
mal energy and QoS management, or to manage
failures by means of an appropriate reconfigura-
tion of the system;

• reducing the dependency on physical proximity for
the provisioning of automotive functionality by in-
troducing location transparency, say, for functions
such as navigation;

• enabling conceptual reuse by allowing independ-
ent evolution of logical and technical architecture;
and

• enabling faster modeling, design and test cycles,
because the OEM can ultimately perform continu-
ous integration of functionalities as they become
available from suppliers – rather than having to
wait until all functions of all ECUs are imple-
mented towards the end of the overall system de-
velopment cycle during system integration.

Modern approaches to software and systems archi-
tecture and integration recognize the importance of
separating logical and technical architectures. Model-
Driven Architecture, for instance, distinguishes be-
tween Platform Independent Models (PIMs) and Plat-
form Specific Models (PSMs) to separate logical func-
tionality from its mapping to a deployment model. Ar-
chitecture standards, such as the Department of De-
fense Architecture Framework, distinguish operational
from systems views to effect a similar disentanglement
between logical and technical system aspects.

In essence, the models relevant for logical ar-
chitecture focus on capabilities and their mapping to
logical entities (sometimes called operational nodes).
These capabilities realize the functions in the require-
ments model. The models relevant for technical archi-
tecture focus on deployment, i.e. the physical layout of
the system including physical nodes and networking
structures—and the mapping from the logical architec-
ture to this layout. Consequently, many models, includ-
ing structural and behavioral models, crosscut logical
and technical architectures. Often, the technical archi-
tecture introduces additional constraints at, for in-
stance, performance, safety, security and reliability that

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

influence the mapping from logical to technical archi-
tecture. The use of reflective models, i.e. models that
are accessible to and can be modified by the runtime
infrastructure, can establish a link between the logical
and technical architecture; this can provide a means to
adapt the mapping between logical and technical archi-
tecture according to resource constraints, or to over-
come failures.
4.2.1 Logical Architecture

The focus of the logical architecture in general is
the set of capabilities provided and requested by the
overall system and its subsystems. This describes the
(logical) implementation of the overall functionality by
a network of logical entities (operational nodes includ-
ing software components) and the necessary links be-
tween these logical entities. In addition, the logical
architecture encompasses mapped use cases, the rele-
vant data models, as well as QoS, bandwidth, (real-
time) performance, security and other cross-cutting
concerns to the degree they are relevant on the logical
level. Data models, logical entities and behavior mod-
els are typically linked by means of data-flow models.
Depending on the level of detail at which these models
are available, the logical architecture can support early
simulation, optimization, prototyping, verification &
validation, including testing.

In the automotive domain, the so-called function
network (which is not the same as the function hierar-
chy of the requirements model) is often used as a
key—sometimes the only—expression of the logical
architecture. The function network is, in essence, a
representation of the functionality to be provided by
the vehicle together with links indicating (communica-
tion) dependencies among these functions. The mod-
eled functions are then mapped to the HW/SW imple-
mentations as part of the technical architecture, consid-
ering the also captured real-time and bandwidth re-
quirements.

Because the OEM to a large extent plays the role of
system integrator, the logical architecture from the
OEM’s point of view will mainly stay at the level of an
integration architecture. The detailed development of
functions is often left to suppliers; consequently, the
OEM will have only a black-box view on these func-
tions, limiting opportunities for global optimization,
and deep verification and validation. This places par-
ticular importance on the specification of interfaces at
the logical level; in particular, the interfaces need to be
rich in the sense that they need to convey not only
structural information (such as function names and data
types) but also behavioral information (§4.3).

Research Challenges. A first step towards accom-
plishing the desired disentanglement of logical from
technical architecture aspects is to consistently think of
the system and its subsystems in terms of capabilities

rather than in terms of deployment components. A
promising aid to that end is the notion of service. Of-
ten, service-oriented architectures consist of at least
two distinct layers: one domain layer, which houses all
domain objects and their associated logic; and one ser-
vice layer, which acts as a façade to the underlying
domain objects—in effect offering an interface that
shields the domain objects from client software. Typi-
cally, services in this sense coordinate workflows
among the domain objects; they may also call, and thus
depend on, other services; and a respective service
model that takes into account the specifics of automo-
tive requirements needs to be defined. Enriching do-
main-specific architecture definition languages with
the corresponding abstractions and notations to capture
the cross-cutting, coordinating nature of services is
also a rich topic of future research [KNP04, AKMP05].

Another research challenge is the management of
the various levels of granularity and detail available in
a systems of systems engineering project. Because of
the complexity and size of automotive systems, having
complete knowledge about all subsystems and the
overall systems is an illusion. Hence, we need re-
quirements and logical architecture models that can
deal with the partiality of information. Again, the no-
tion of service discussed above can be a valuable step
into this direction. Services, defined via interaction
patterns among roles, provide partial views onto the
overall system, albeit in an end-to-end fashion. Com-
position and combination of services then leads to a
composite view of the relevant parts of the overall sys-
tem integration. Exploiting this partiality for tasks such
as simulation, verification and validation holds signifi-
cant promise in complexity management. Of course, to
be viable, the service notion has to reflect the com-
bined control- and event-driven behavior spectrum.

Ultimately, combining the aforementioned models
into a notion of service- and component-interfaces that
includes behavior descriptions and can be shared be-
tween OEMs and suppliers, is a long-term research
goal at the logical architecture level. Solving this chal-
lenge would enable OEMs and suppliers to engage in
meaningfully tool-supported exchange of interface
models that can support the value-added development
support we have alluded to, above.
4.2.2 Technical Architecture

The technical architecture identifies the ECUs, the
basic software (operating system and middleware) on
them, their interconnection via busses, as well as the
partitioning of functions or SW components from the
logical architecture onto ECUs. This, of course, re-
quires the identification and definition of software
components representing logical entities defined at the
level of the logical architecture. The respective parti-
tioning decisions need to be future-proof, because of

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

the business characteristic of long life-cycles (§2.4):
changes in the partitioning are very likely to lead to
incompatibilities to legacy systems. An ECU with a
new partitioning will usually not work in an already
produced vehicle. As backward compatibility is
breached, a new branch in the configuration space is
opened, or an obsolescence management strategy is
needed for the old ECU variant.

 The technical architecture also specifies how logi-
cal communication is mapped onto technical commu-
nication. For instance, the technical architecture speci-
fies how a logical signal is mapped onto protocol data
units of the bus system that is used for communication
of the deployment components. Due to the specifics of
real-time bus systems, this mapping often is a complex
issue. For instance, for a signal with hard real-time
requirements that will be sent via the time-synchronous
Flexray [MHB+01] bus, the decision remains whether
the signal should be transmitted in the static segment
of bus communication or within the guaranteed dy-
namic segment.

In the context of upcoming time-synchronous bus
systems such as Flexray, a further task in the definition
of the technical architecture is to define a bus schedule.
This schedule specifies what information is sent in
which time slot, and it needs to be coordinated with the
task schedules of the ECUs. A close coordination al-
lows to minimize communication latency. On the other
hand, it decreases the maintainability of the overall
system. If coordination is very close, minor changes in
the bus schedule might require changes to all task
schedules of the ECUs that are connected to the bus.
Currently, first tools for the generation of bus sched-
ules start to be available [D06, P06].
Research Challenges. From the point of view of
model based development, the integration of models
for the technical architecture and models for bus traffic
analysis is highly desirable. A key property of these
models is that they abstract communication behavior of
hardware, middleware and application software in a
stochastic way, focusing on size, frequency of occur-
rence and timing of the data to be sent.

Furthermore, as already mentioned in §3.2, safety
analysis can greatly benefit from model-based devel-
opment, if further research identifies how those models
can be integrated with models for FMECA (Failure
Mode, Effects and Criticality Analysis), FTA (Fault
Tree Analysis), and also for reliability analysis in gen-
eral. Of course, the integration with the technical archi-
tecture alone does not suffice here. This is because
additional information on which functions are affected
in which way is needed, i.e. the link to the logical ar-
chitecture. Similarly, models of the logical and techni-
cal architectures can be used as a basis for diagnosis
models that help in the localization of faults. A central

research question here also is how modeling can help
in performing software diagnosis for shipped software,
i.e. without the possibility to inject stimuli from out-
side the system to localize faults. This also requires
models for the system environment (the plant in con-
trol theory terminology).

In vehicle networks that contain both time-
asynchronous busses like CAN [Bos91] and time-
synchronous busses like Flexray, a further question is
which functions are deployed onto CAN-ECUs and
which on Flexray-ECUs. While functions with hard-
real time requirements obviously are good candidates
for Flexray-ECUs, the question remains where the bor-
der with the asynchronous world is to be drawn. Usu-
ally there remains a lot of communication between the
two worlds, but their interface is non-trivial. In particu-
lar for the case of signals with soft real-time require-
ments that are forwarded via a gateway from CAN to
Flexray, these signals are not only delayed by the la-
tency when accessing the CAN bus, but also by the
latency time that is a consequence of waiting for the
next appropriate Flexray time slot. This means that
latency from CAN to Flexray either is rather high or
that bandwidth is wasted on the synchronous bus. Se-
mantics-preserving deployments of synchronous mod-
els on heterogeneous architectures [BCC+04, Rom06],
including time-synchronous and asynchronous archi-
tectures [HS06], deserve further investigation.

Integration of models of the technical architecture
in overall models for systems engineering is a further
important topic. With respect to the technical architec-
ture there is a close correlation to models for the flow
of electrical energy and geometric models for the
placement of wiring and ECUs. Furthermore, a link to
cost models (§§ 2.5 and 3.5) is mandatory for partition-
ing decisions. For instance, with respect to cost, the
partitioning is strongly affected by the business choice
of which functions are part of every vehicle and which
ones are optional. With such an integration, a detailed
evaluation of architectural decisions becomes possible.
For the integration with models from systems engi-
neering, establishing of a tool chain is highly demand-
ing since for all disciplines good, isolated tools exists,
but we cannot assume that their semantics is identical
in detail in the model elements they have in common.

For a seamless model-based development, there is a
need for models of the technical architecture that com-
prise all the features offered by a platform to the SW
components deployed on it. Therefore, research into a
modeling paradigm is needed that supports a kind of
(automotive-specific?) layer-based modeling, which
makes all relevant platform aspects visible but ab-
stracts from details. As suggested in §3.1 such a mod-
eling of platform/middleware features must provide
that some features are system wide, for instance, due to

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

a common middleware, while others are domain or
platform/ECU specific.

4.3 Detailed Behavior Models

Finally, we will have a look at behavior models that
specify functionality at a rather detailed level. This is
needed for architecture specifications at both the logi-
cal and—in refined form—the technical levels. These
models come in different flavors. Existential models
focus on the main system runs in an exemplary man-
ner. In the form of sequence diagrams, they are often
used as specifications. Universal models, on the other
hand, are detailed enough to permit the generation of
production code [FGG05, BOJ04], of simulation code
that is used for prototyping and hardware-in-the-loop
simulations [Spi01], and of test cases [PPW+05].

Except for the generation of production code, all
these activities require the development of environ-
ment models (with high costs and high potential for
reuse). We ignore them here for brevity’s sake, and
focus on universal models of systems.

In accordance with the heterogeneous nature of auto-
motive software (§2.1.1), the models are continuous,
mixed discrete-continuous, and purely continuous (see
[HS06] for a complementary perspective).
• Modeling continuous systems—more concretely,

control algorithms—is common practice and has a
long tradition in the automotive domain. In the
automotive domain, the most prominent toolset for
such models is Matlab Simulink [Mat06,WM95].
The language of block diagrams allows the engi-
neer to graphically specify differential equations,
with blocks representing operations such as multi-
plication, integration, or differentiation, and arrows
between blocks representing data flow. Block dia-
grams can be seen as a graphical special-purpose
programming language for control algorithms. At
the control-theoretic, purely continuous, level there
is a huge body of methods for the analysis of prop-
erties like robustness, stability, attraction, etc.
[Sta04]. Because of the low level of detail, impres-
sively efficient simulation and production code can
be generated. This, of course, involves discretiza-
tion and the respective fundamental problems with
the transition from floating point to fixed point
numbers.

• Mixed discrete-continuous systems exhibit different
modes in which they operate continuously, and
modes are switched in a non-continuous—i.e., dis-
crete—manner [GKS00]. Approaches to specifying
hybrid systems include hybrid automata, hybrid
Petri nets, and equation-based approaches. In prac-
tice, extensions of the Matlab Simulink languages
(Stateflow) are most commonly used.

• Discrete systems, as predominantly found in the
infotainment domain (§2.1.1), are probably most
familiar to software engineers. They are typically
specified in one of a plethora of state machine vari-
ants. As of today, in contrast to continuous systems,
their usage is not commonplace in the automotive
industry. When speculating about the reasons, one
might want to quote
1. the lack of convincing tools with excellent pro-

duction code generators that would allow for
roundtrip engineering;

2. a rather close proximity between genuine C++
code and state machines with C++ as action
language on transitions—hierarchical state ma-
chines then act as structuring means only;

3. the closely related problem of choosing appro-
priate abstraction levels (for continuous models,
abstraction takes place by means of language
constructs, not deliberate loss of information
[PP05,PP04]);

4. cost issues in cases where models are not used
for the generation of production code but as
specifications only: two artifacts, model and
code, have to be maintained and synchronized;

5. the necessity to add yet another language and
yet another toolset to the existing tool chain for
continuous systems;

6. so far unfulfilled promises as far as the verifica-
tion of such models is concerned; and

7. education issues.
It is noteworthy that the goals of code generation

and verification are somehow contradictory. The for-
mer requires a rather low level of abstraction as em-
bodied by corresponding language constructs whereas
the latter usually requires abstraction in the sense of an
actual loss of information [PP04]. Furthermore, verifi-
cation tasks by definition require knowledge of the
properties to be verified, and these properties are often
not known (these problems are of course not unique to
the automotive domain).

The above objections are hard to overcome. Indeed,
as far as the automotive domain is concerned, it seems
very possible that the benefits of model-based devel-
opment for discrete systems do not lie in the generation
of code but rather in the definition of clear interfaces
and the relationships between components (§§ 4.2.1
and 4.2.2). What does appear appealing in this context
is the use of behavior models as black-box specifica-
tions, serving as communication interface between
OEMs and suppliers (§2.2.1; [PP05, AKMP05]). In
addition, these behavior models can be used to the end
of generating tests [PPW+05], thus facilitating the task
of verifying a system with respect to its specification.
Research Challenges. Challenges in the context of
continuous models include even more efficient code

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

generators as well as a sufficiently precise “standard”
semantics. Such a standard would of course come with
the political problems that every standardization of
semantics has to face, see the UML. On the other hand,
it would allow assessments of the correctness of code
generators—as of today, production and simulation
code from one product do not necessarily exhibit iden-
tical behaviors (we mention TDL [PT06] as a notable
exception), and neither does generated code from two
different products [SC04]. Because the idiosyncrasies
of different code generators are known, the current
approach to handling this problem consists of avoiding
“critical” constructs, which results in modeling guide-
lines. Because of the enormous state spaces of continu-
ous systems, their analysis also remains a challenging
task. Function blocks are equipped with a multitude of
possible parameters in order to cater for different ap-
plication domains such as automotive and avionics. As
a consequence, it is very hard to keep track of all the
relevant and irrelevant parameters; the models become
unnecessarily complex. A possible solution, and thus a
research challenge, is an automotive “profile” for Mat-
lab/Simulink.

Because the classical proof methods from control
theory are not applicable, the analysis of mixed dis-
crete-continuous systems presents itself as a vast re-
search problem, with only first steps in the understand-
ing of proof methods [Sta04] and in terms of reachabil-
ity analyses being taken today. The conceptual clarity
of time-synchronous languages such as Esterel [BG92]
and Lustre [HCR+91] is appealing and might turn out
to impact the integration of discrete and discretized
continuous systems. Furthermore, the combination of
continuous and discrete subsystems into a joint, com-
prehensive domain model supporting early simulation
and validation is missing so far. In particular, this will
require a combination of timed behavior models of
varying degrees of rigidity and event-driven behavior
models. This combination will be a first step towards
integrating time into a general programming model for
embedded systems.

Fundamental research challenges in the context of
using models both as specifications and source of test
cases include the definition of domain- and purpose-
specific abstraction levels, tools for push-button gen-
eration of tests, and the definition of domain-specific
and domain-independent test case specifications. It is
unclear if the effort, including synchronization, of
maintaining both a model and a piece of code is justi-
fied by the resulting quality of systems and test cases.

Embracing all three classes of models, further open
research problems include the question of how to de-
rive detailed behavior models from more coarse-
grained ones (§4.2), how to map this functionality to
software components and possibly different ECUs,

domain-specific modeling methodologies, code genera-
tors, roundtrip engineering, tool integration, and verifi-
cation technology.

Finally, empirical investigations into cost effective-
ness are needed to assess the benefits of behavior mod-
els when used for specification (where component-
based engineering might turn out to be the better solu-
tion) and test case generation (where setting up better
structured test processes might in itself solve a lot of
problems). We realize that many of these research
challenges are shared with other technical domains.

5. Conclusions and Outlook

Software engineering for automotive systems embraces
almost all areas of computer science and computer
engineering, and includes all software engineering ac-
tivities. In this paper, we have characterized the do-
main of automotive software and highlighted some
particularly important research problems, of course
without any claims to completeness. Because of the
broad scope of our subject it is not surprising that
many problems exist in other domains as well. As a
consequence, we have taken some care to identify
problems that are specific to the automotive realm—
which explains why we did not discuss important prob-
lems as diverse as continuously changing requirements,
timing predictability, usability, portability, design and
coding standards, etc. Essentially, the problems we
have identified relate to evolution and integration. To-
day, integration is mainly enabled in an ex-post man-
ner, by testing and changing where necessary. For evo-
lution, this becomes increasingly complicated, a con-
sequence of the huge number of variants and versions
that require support. We have indicated how model-
based approaches to systems development can help
meet the challenges, and provided some particularly
relevant research directions in the intersection of
model-based development and automotive software
systems.
Acknowledgment. The first author would like to thank
Manuel Hilty for comments on a draft version of this
article. The third author was partially supported by the
UC Discovery Grant and the Industry University Co-
operative Research Program, as well as by funds from
the California Institute for Telecommunications and
Information Technology (Calit2).

6. References

[AKMP05] J. Ahluwalia, I. Krüger, M. Meisinger, W. Phil-
lips: “Model-Based Run-Time Monitoring of End-to-
End Deadlines”. Proc. EMSOFT, 2005

[Aut06] AUTOSAR consortium: www.autosar.org, 2006
[BBC+01] K. Butts, D. Bostic, A. Chutinan, J. Cook, B. Mi-

lam, and Y. Wang, “Usage Scenarios for an Automated

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

Model Compiler”. Proc. EMSOFT, LNCS 2211, pp. 66-
79, 2001

[BBJ+05] A. Bauer, M. Broy, J. Romberg, B. Schätz, P.
Braun, U. Freund, N. Mata, R. Sandner, and D. Ziegen-
bein: “AutoMoDe—Notations, Methods, and Tools for
Model-Based Development of Automotive Software”.
Proc. SAE 2005 World Congress, Detroit, MI, April
2005. Society of Automotive Engineers

[BBD+06] M. Bechter, M. Blum, H. Dettmering and B.
Stützel: “Compatibility models”. Proc. 3rd Intl. Work-
shop on SW Engineering for Automotive Systems, pp.
5-12, 2006

[BCC+04] A. Benveniste, B. Caillaud, L. Carloni, P. Caspi,
A. Sangiovanni-Vincentelli: “Heterogeneous Reactive
Systems Modeling: Capturing Causality and the Cor-
rectness of Loosely Time-Triggered Architectures
(LTTA)''. Proc. EMSOFT, September 2004

[BG92] G. Berry, G. Gonthier: “The ESTEREL synchronous
programming language: design, semantics, implementa-
tion”. Sci. Comput. Program. 19, 2 (Nov. 1992), 87-152,
1992

[BKP+07] M. Broy, I. Krüger, A. Pretschner, C. Salzmann:
“Engineering Automotive Software”. To appear in Pro-
ceedings of the IEEE, 2007

[BLP04] S. Bühne, K. Lauenroth, K. Pohl, M. Weber: “Mod-
eling Features for Multi-Criteria Product-Lines in the
Automotive Industry”. Proc. 1st Intl. Workshop on SW
Engineering for Automotive Systems, pp. 9-16, 2004

[BOJ04] M. Beine, R. Otterbach, M. Jungmann: “Develop-
ment of Safety-Critical Software Using Automatic Code
Generation”. Proc. SAE World Congress, 2004

[Bos01] Robert Bosch GmbH: “CAN Specification Version
2.0”, 1991

[CN01] P. Clements, L. Northrop: “Software Product
Lines—Practices and Patterns”, Addison Wesley, 2001

[DK04] J. Dannenberg, C. Kleinhans: “The Coming Age of
Collaboration in the Automotive Industry”, Mercer
Management Journal 18:88-94, 2004

[D06] Decomsys: “Designer Pro”, http://www.decomsys.
com/htm/frs/3_flexraydesign_pro.htm, 2006

[FGG05] A. Ferrari, G. Gaviani, G. Gentile, M. Stefano, L.
Romagnoli, M. Beine: “Automatic Code Generation and
Platform Based Design Methodology: An Engine Man-
agement System Design Case Study”. Proc. SAE World
Congress, paper 2005-01-1360, 2005

[GBB+06] E. Geisberger, M. Broy, B. Berenbach, J. Kaz-
meier, D. Paulish, A. Rudorfer: “Requirements Engi-
neeringReference Model (REM)”. Internal Report, Soft-
ware & Systems Engineering, TU München and Sie-
mens Corporate Research Princeton

[GKS00] R. Grosu, I. Krüger, T. Stauner: “Hybrid Sequence
Charts”. Proc. 3rd IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing
(ISORC 2000), IEEE, 2000

[HCR+91] N. Halbwachs, P. Caspi, P. Raymond, and D.
Pilaud: “The synchronous data-flow programming lan-
guage LUSTRE”. Proceedings of the IEEE,
79(9):1305–1320, September 1991

[HKK04] B. Hardung, T. Kölzow, A. Krüger: “Reuse of
Software in Distributed Embedded Automotive Sys-
tems”. Proc. EMSOFT, 203-210, 2004

[HS06] T. Henzinger, J. Sifakis: “The Embedded Systems
Design Challenge”, 2006

[ISO01] ISO. Road Vehicles – Controller Area Network
(CAN) – Part 4: Time Triggered Comunication. Stan-
dard ISO/CD 11898-4, International Organization for
Standardization, 2001

[Kof05] L. Kof: “Text Analysis for Requirements Engineer-
ing”. PhD thesis, TU München, 2005

[KNP04] I. Krüger, E. Nelson. K.V. Prasad: “Service-based
Software Development for Automotive Applications”.
Proc. CONVERGENCE 2004, 2004

[KSL+03] G. Karsai, J. Sztipanovits, A. Ledeczi, T. Bapty:
“Model-Integrated Development of Embedded Soft-
ware”. Proceedings of the IEEE, January, 2003

[Mat06] The MathWorks, Inc., www.mathworks.com, 2006
[MHB+01] R. Mores, G. Hay, R. Belschner et al.: “FlexRay

– The Communication System for Advanced Automo-
tive Control Systems”. Doc. No. SAE 2001-01-0676,
SAE, 2001

[P06] preeTEC: “TDL Tool Suite”. http://www.preetec.com/,
2006

[PP04] W. Prenninger, A. Pretschner: “Abstractions for
Model-Based Testing”. ENTCS 116:59-71, 2004

[PP05] A. Pretschner, J. Philipps: “Methodological Issues in
Model-Based Testing”. Model Based Testing of Reac-
tive Systems, LNCS 3472, pp. 281-291, 2005

[PPW+05] A. Pretschner, W. Prenninger, S. Wagner, C.
Kühnel, M. Baumgartner, B. Sostawa, R. Zölch, T.
Stauner: “One Evaluation of Model-Based Testing and
ist Automation”. Proc. 27th Intl. Conf. on Software En-
gineering, St. Louis, 2005, pp.392-401

[PT06] W. Pree, J. Templ: “Modeling with the Timing Defi-
nition Language TDL”. Proc. Automotive Software
Workshop, San Diego, 2006

[Rom06] J. Romberg: “Synthesis of distributed systems from
synchronous dataflow programs”. Dissertation, Tech-
nische Universität München, 2006.

[SC04] I. Stürmer, M. Conrad: “Code Generator Testing in
Practice”. Proc. GI Jahrestagung (2), pp. 33-37, 2004

[Spi01] B. Spitzer: “Modellbasierter Hardware-in-the Loop
Test von eingebetteten elektronischen Systemen”. PhD
Dissertation, Univ. Karlsruhe, 2001

[Sta04] T. Stauner: “Properties of Hybrid Systems—A
Computer Science Perspective”. Formal Methods in
System Design 24(3):223-259, 2004.

[WM95] R. Weeks, J.J. Moskwa, “Automotive Engine Mod-
eling for Real-Time Control Using MAT-
LAB/SIMULINK”. SAE Paper 950417, 1995

[WW03] M. Weber and J. Weisbrod: “Requirements engi-
neering in automotive development: Experiences and
challenges”. IEEE Software 20 (2003) 16-24

[XBW98] X-by-Wire Consortium, “X-by-wire – Safety re-
lated fault tolerant systems in vehicles – final report”.
Project BE95/1329, Contract BRPR-CT95-0032, 1998

[Zav93] P. Zave. “Feature Interactions and Formal Specifi-
cations in Telecommunications”. IEEE Computer
26(8):20-28, 1993

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

