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Abstract 
The first pieces of software were introduced into cars 
in 1976. By 2010, premium class vehicles are expected 
to contain one gigabyte of on-board software. We pre-
sent research challenges in the domain of automotive 
software engineering. 

 
1. Introduction 

The amount of software in modern cars is increasing 
at a breathtaking pace. The current BMW 7 series, for 
instance, implements about 270 functions that a user 
interacts with, deployed over up to 67 embedded plat-
forms. Altogether, the software amounts to about 65 
megabytes of binary code. The next generation of up-
per class vehicles, hitting the market around the year 
2010, is expected to run one gigabyte of software (on 
board, excluding data on DVD for navigation etc.). 
This is comparable to what a typical desktop work-
station runs today. Reasons for this tremendous in-
crease include the demand for new functionality on the 
one hand, and the availability of powerful and cheap 
hardware on the other hand. Furthermore, electronics 
in cars help reduce gas consumption as well as increase 
performance, comfort and safety as today’s figures of 
increasing traffic with decreasing serious accidents 
show. Finally, software enables OEMs (the “car mak-
ers”) and suppliers to tailor systems to particular cus-
tomers’ needs. In other words, software can help dif-
ferentiate between cars. At least in principle, software 
also allows expensive hardware to be reused across 
different cars.  

Automotive software is economically relevant. The 
worldwide value creation in automotive elec-
tric/electronics (including software) amounts to an es-
timated € 127 billion in 2002 and an expected € 316 
billion in 2015 according to a Mercer study [DK04]. 
Software makes up an estimated 40 percent of this 
value creation by 2010 [HKK04]. 

The considerable and increasing complexity of auto-
motive software systems and their huge economic rele-

vance give rise to various organizational, engineering, 
and research challenges. In the first part of this paper, 
we describe the unique blend of characteristics that 
define automotive software systems. Reflecting on the 
market, technology, economics, and organization of 
labor, we describe software-related consequences of  
• the heterogeneous nature of  automotive software 

(embedded and infotainment systems) and the 
consequences for systems integration, tools, proc-
esses and engineering skills; 

• the huge number of communicating processors and 
the resulting need for tailored middleware;  

• the necessity to handle large numbers of variants 
and configurations;  

• decisions grounded in a unit-based cost model;  
• the interplay of long life and short development 

cycles; and 
• specific requirements related to reliability, safety, 

and security.  
As key research challenges, we identify the integra-

tion of heterogeneous subsystems from different 
sources as well as their evolution and maintenance, and 
reuse. 

Division of labor in the automotive world has tradi-
tionally been organized in a highly vertical manner, 
resulting in distributed and concurrent engineering 
processes. The corresponding need for clear interface 
descriptions together with a tradition of model-based 
development of continuous systems explains, at least in 
part, the relative success of model-based approaches to 
developing automotive software systems. In the second 
part of the paper, we hence explore potential benefits 
of a seamless model-based development process that 
caters to the characteristics of automotive software in 
terms of requirements engineering and management, 
architecture development, and testing activities. 
Overview. Section 2 describes the characteristics of the 
domain of automotive software and their conse-
quences. Section 3 uses this analysis to identify re-
search challenges. More specifically, we present one 
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particular facet of model-based development as a pos-
sible solution in Section 4. Our presentation of the fun-
damental models itself leads to many more relevant 
areas of future research. Section 5 summarizes our 
findings and concludes. A more detailed discussion of 
the domain characteristics can be found in [BKP+07]. 
 
2. Domain Profile 

We use this section to present five salient features of 
the automotive software domain as it presents itself 
today. These features are the heterogeneous nature of 
the software involved, the organization of labor, the 
distributed nature of automotive software, the huge 
number of variants and configurations, and the pre-
dominance of unit-based cost models. In Section 3, we 
will use this analysis to highlight particularly relevant 
areas of research. 
 
2.1 Heterogeneity of Software 

2.1.1 Description 
Automotive software is very diverse, ranging from 

entertainment and office-related software to safety-
critical real-time control software. It can be clustered 
according to the application area and the associated 
non-functional requirements: 
• Multimedia, telematics, and human-machine inter-

face (HMI) software: typically soft real-time soft-
ware, which also has to interface with off-board 
IT, dominated by discrete-event/data processing; 

• Body/comfort software: typically soft real-time, 
discrete-event processing dominates over control 
programs; 

• Software for safety electronics: hard real-time, 
discrete event-based, strict safety requirements; 

• Power train and chassis control software: hard 
real-time, control algorithms dominate over dis-
crete-event processing, strict availability require-
ments; and 

• Infrastructure software: soft and hard real-time, 
event-based software for management of the IT 
systems in the vehicle, such as software for diag-
nostics and software updates.  

In terms of non-functional requirements, reliability and 
safety are concerns for all functions relevant to driving, 
from engine control and passenger safety functions to 
forthcoming X-by-wire [XBW98]  functions where 
mechanical transmission is replaced by electrical sig-
nals, such as steer-by-wire (steering signals are elec-
tronically transmitted to the wheels) or brake-by-wire 
(braking signals are electronically transmitted to the 
brakes). In addition, with the development of infotain-
ment functionality, the car is becoming an information 
hub where functions of cell phones, Laptops and PDAs 
are interconnected using wired and wireless network 

technologies (UMTS, Bluetooth, WiFi) via and with 
car information systems. Increasingly, the on-board 
electronics systems establish communication links be-
yond car boundaries, enabling various applications 
relating to, among others, sharing of infotainment con-
tent, remote vehicle analysis, software updates, global 
positioning and emergency services, inter-vehicle 
communication for crash prevention and automatic 
convoy forming.  

2.1.2 Consequences 
From the integrated software and systems engineer-

ing perspective, the five clusters suggest a need for 
development skills from various disciplines.  
• The different SW/HW systems consist of a high 

number of separated functions and processes that 
exchange information over several communication 
links. These systems exhibit all the details and 
complexities of distributed computer networks—
computer science and computer engineering skills 
are required to successfully build automotive sys-
tems.  

• These systems are connected to sensors and actua-
tors that read physical values and operate physical 
processes, respectively, in real time. The SW/HW 
systems have to respond to these inputs in a classi-
cal control-theoretic manner—knowledge of con-
trol theory is required.  

• For some functions, such as power train control 
software, an understanding of mechanical engi-
neering is mandatory.  

Historically, the methods as well as the models of 
control theory have been quite different from the mod-
els of information processing. In control theory, tools 
such as Matlab/Simulink [Mat06,WM95] are used to 
model differential equations. In contrast, engineers in 
business information processing are increasingly eager 
to use models of data and behavior as expressed in the 
Unified Modeling Language (UML), and other kinds 
of discrete data flow or state machine models. In auto-
motive development, these separate engineering cul-
tures have to be united to reflect all relevant aspects of 
the different engineering domains. 

The heterogeneity of the domain and the lack of a 
widely accepted, let alone standardized, set of models 
and development approaches also explains the large 
number of different tools in use in automotive software 
development today. Because the tools are developed by 
different vendors, there is no comprehensive system 
model, and as a consequence, the tools are usually not 
integrated. There exist attempts to creating pragmatic 
tool chains by connecting the tools in a form where the 
data models of one tool are exported and imported by 
the next tool [PT06, KSL+03, AKMP05], but in most 
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cases, full production support has not yet been 
achieved.  

 
2.2   Distribution of Labor 

2.2.1 Description 
As mentioned above, the car industry has tradition-

ally been organized in a highly vertical manner. Me-
chanical engineers worked hard for over a century to 
render the various sub-systems in cars independent. 
This facilitated independent development and produc-
tion of the parts and gave rise to a highly successful 
division of labor: today, an estimated 25% of the prod-
uct value is created by the OEMs who tend to concen-
trate on the engine, integration, design, and marketing 
of the brand.  

In the past, the “ideal” of automotive development 
was that the parts of cars are produced by a chain of 
suppliers and more or less only assembled by the 
OEM. Thus, a large portion of the engineering and 
production activities were, and still are, outsourced. 
This also facilitates optimization of cost and risk dis-
tribution. With software becoming a major force of 
innovation, the OEM’s responsibilities have evolved 
from the assembly of parts to system integration. Tra-
ditionally unrelated and independent functions (such as 
braking, steering, or controlling the engine) that were 
freely controlled by the driver suddenly related to one 
another, and started to interact, as the example of the 
central locking system in §2.3 will demonstrate. 

While the integration of subsystems is always a chal-
lenging task for a complex system, the situation in 
automotive software engineering is even worse, be-
cause suppliers usually have a lot of freedom in how 
they realize individual solutions. (In business IT the 
client will often strongly constrain the technologies 
that may be used by a supplier.)  

2.2.2 Consequences 
Suppliers can use synergies in development and pro-

duction, because they usually produce similar systems 
for different OEMs. This, in turn, also keeps the unit 
cost low for the OEMs. For functions that do not dif-
ferentiate between the different OEMs this synergy is 
greatly exploited at the suppliers’ side.  

A negative side effect of the distribution of labor is 
that complex distributed processes need to be coordi-
nated. In particular, development is geographically 
distributed and communication gets more complicated. 
Clear interfaces as well as liabilities need to be de-
fined. The large number of parties involved in itself is 
a reason for unstable requirements, with frequent 
changes and revisions of the requirements during the 
development process as a consequence. Furthermore, 
the OEM often only has black-box specifications of the 
subsystems to be integrated, and it is difficult or im-

possible for the OEM to localize errors and to modify 
parts of the subsystems.  

 
2.3 Distribution of Software  

2.3.1 Description 
As mentioned in the introduction, today’s premium-

class vehicles are equipped with as many as 67 proces-
sors that implement roughly 270 user functions that a 
user interacts with (one of the reasons for the huge 
number of processors being the organization of labor 
as described in §2.2). These functions are composed of 
as many as 2500 “atomic” software functions. These 
functions address many different issues including clas-
sical driving tasks but also other features in comfort 
and infotainment and many more. These functions do 
not stand alone, but exhibit a high dependency on each 
other. A telling example for the increased interaction 
among previously unrelated sub-systems is the central 
locking system (CLS) as found in most modern vehi-
cles [KNP04]. It integrates the pure functionality of 
locking and unlocking car doors with comfort func-
tions (such as adjusting seats, mirrors and radio tuners 
according to the specific key used during unlocking), 
with safety/security functions (such as locking the car 
beyond a minimum speed, arming a security device 
when the car is locked, and unlocking the car in case of 
a crash), and with HMI functions, such as signaling the 
locking and unlocking using the car’s interior and exte-
rior lighting system. Many of these functions are real-
ized in sub-systems that are distributed according to 
the major mechanical breakdown of the vehicle into 
engine, drive-train, body and comfort systems. In some 
vehicles this seemingly simple functionality is physi-
cally distributed over up to 18 electronic control units 
(ECUs). Reinforced by a trend to combine on-board 
with off-board IT, the car has turned from an assem-
bled device into an integrated system.  

2.3.2 Consequences 
With the huge amount of software-based functions, 

phenomena like unintentional feature interaction 
[Zav93] have become issues. Feature interaction is the 
technical term created in the telecommunication do-
main for intentional or unintentional dependencies be-
tween individual features. Feature interactions are visi-
ble at the user level as specific dependencies between 
distinct functions. 

A second consequence of the highly distributed na-
ture of automotive software systems is the intricacy of 
an appropriate technical infrastructure, including oper-
ating systems and middleware. There are five bus sys-
tems (even more for some luxury vehicles) that serve 
as communication platform for ECUs. There are real 
time operating systems; and a lot of system-specific 
technical infrastructure on which the applications are 
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based. One challenge this infrastructure has to face is 
the significant amount of multiplexing at the bus level 
to efficiently support communication among the doz-
ens of ECUs for thousands of software-enabled tasks in 
parallel. Among others, one consequence of the high 
degree of multiplexing is that the transmission time of 
messages exhibit jitter so that systems appear to be 
nondeterministic. In many cases, timing deadlines can-
not be guaranteed. Similar problems arise in the indi-
vidual ECUs where tasks and schedulers manage (vir-
tual) parallelism. We can thus find all the issues of 
distributed systems, in a situation where physical and 
technical processes have to be controlled and coordi-
nated by the software, some of them being highly criti-
cal and hard real time.  

Due to the unpredictable load, time guarantees often 
cannot be provided. In many ways the communication 
buses serve as a global “memory” or database, captur-
ing information about the current state of the vehicle 
and its electronics components. Therefore, a lot of in-
teresting potentials for improvement, such as a car-
wide data model and management system, or the intro-
duction of drive-by-wire systems have not been real-
ized so far. Time-synchronous bus systems like TT-
CAN [ISO01] or FlexRay [MHB+01] are current at-
tempts at solving these problems.   

 
2.4 Variants and Configurations 

2.4.1 Description 
The need for differentiation in the mass market mo-

tivates the desire for customized items. A premium car 
typically has about 80 electronic fittings that can be 
ordered depending on the country, etc. Simple yes/no 
decisions for each function yield a possible maximum 
of 280 variants to be ordered and produced for a car. In 
a similar vein, the authors of [BBC+01] calculate for a 
simplified power train control application 3,488 possi-
ble component realizations by instantiating different 
algorithms and their variants.  

A different kind of variability is a consequence of 
the development process. A car model is usually pro-
duced for seven to eight years. The customer expecta-
tion of a long lifetime is reflected in the OEM's duty to 
offer service and spare parts for at least 15 years after 
the purchase of a vehicle (compare this to an estimated 
lifecycle of, say, 4 years for an average workstation 
program, with several hot fixes during this period). The 
life cycle of hardware components such as CPUs or 
DSPs is much smaller, say less than 5 years. Some of 
them will no longer be produced and have to be re-
placed by newer types. Already after the first three 
years of production, 25 percent of the ECUs in the car 
typically have to be replaced by newer ECUs due to 
discontinuation of an ECU’s specific technology.  

Software may be changed at much shorter intervals, 
typically several times a year. In particular, the com-
paratively short CPU life cycles enforce changes in a 
vehicle’s software/hardware system during the produc-
tion period and maybe also during the development 
phase. This means that, over time, there are various 
versions for each piece of software in a car. When de-
fective ECUs are replaced or when a software update is 
performed as part of vehicle maintenance, configura-
tions containing a mixture of “old” and “new” software 
can be created.  

2.4.2 Consequences 
Market demands, short innovation and long life cy-

cles lead to a huge number of variants and configura-
tions. Updating or replacing software in cars is a chal-
lenge. New versions of software are brought in when 
exchanging entire ECUs, or during maintenance by 
“flashing” techniques for replacing the software of an 
ECU. In this context, it is estimated that today more 
than fifty percent of the ECUs that are replaced in cars 
are technically error-free—they are replaced when the 
customer brings the car to a garage to fix a problem, or 
for maintenance. They are replaced simply because the 
garage could not find better ways to fix the problem. 
However, often the problem is not rooted in defective 
hardware but in ill-designed or incompatible software. 

When exchanging entire ECUs or updating the re-
spective software, one has to be sure that new software 
versions correctly interoperate with the remainder of 
the vehicle software (compatibility [BBD+06]). Be-
cause of the substantial scattering of functionality in 
cars today, this is difficult, and a lot of the problems 
we see today in the field are indeed compatibility prob-
lems. Obviously, an elaborate design and test method-
ology is required for this.  

Furthermore, because of the long lifecycles of cars, 
long-term maintenance processes must be organized. 
Today, an OEM's vehicle fleet is predominantly main-
tained by vehicle dealers following prescribed semi-
automated procedures. With its increasing amount of 
software, the vehicle more and more inherits the char-
acteristics of a complex IT system. There is a differ-
ence with the desktop software market, however: We 
deem it likely that future maintenance of on-board 
software will continue not to be delegated to the users. 
Among other things, this is a consequence of the 
OEM’s desire to create an overall brand “experience” 
to which the customer can relate as a “package”.   

  
2.5 Unit-Based Cost Model 

2.5.1 Description 
The automotive industry operates in a highly com-

petitive mass market with strong cost pressure. Here 
the rules of business of scale prove to be crucial: how 
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many units of a product are sold? Depending on the 
market segments targeted by an OEM, competition 
occurs over product price, product quality, product 
image and differentiating product features. Competi-
tion by differentiation requires innovation and a strong 
brand profile. Competition over price requires perma-
nent optimization. 

Traditionally, the cost per unit produced has played a 
decisive role. A consequence of the large quantities 
produced, production and material cost by far out-
weighed engineering cost for classical, not software-
centric vehicle parts. The classical argument is as fol-
lows. A vehicle component may be produced over 
seven years or more with, for instance, 500,000 units 
per year. A hardware cost reduction of € 1 for 20 such 
components (including 1 processor each) in each car 
would then lead to an overall cost reduction of € 70 
million over the production period. For vehicle soft-
ware, this argument continues to be used as a motiva-
tion to keep the cost per unit low.  

2.5.2 Consequences 
As a consequence, engineers concentrate on reducing 

the amount of required memory and computation 
power. Code is then written and directly optimized for 
specific individual processors. Such optimization re-
quires that the software be very closely tuned towards 
the processors’ characteristics. Trying to squeeze the 
code into as little memory as possible requires a further 
set of code optimizations. As a consequence, it be-
comes difficult to port the code to another processor. 
Thus, keeping pace with processor life cycles (§2.4.1) 
is hindered. The integration of new functionality is 
made more difficult or even impossible if memory size 
of the ECUs was optimized too much during the de-
velopment process. The negative results are as follows. 
It is very difficult to add any functionality to the sys-
tem later on, and it is very difficult to change parts of 
the code or to fix defects. The code is more complex 
than necessary, for instance, in terms of strong cou-
pling between modules. Changing the code becomes 
very difficult, and reusing this code in future car mod-
els or on other processors is almost impossible. Finally, 
some defects in the code may be a result of the optimi-
zation itself and finding defects may become even 
more difficult, since now application logic issues are 
obscured by optimization.  

In sum, exclusively thinking in terms of unit-based 
costs with the associated need for optimizations makes 
the software complex and difficult to handle. Prema-
ture optimization has a negative effect on many classi-
cal quality attributes for software. Time-to-market, 
maintenance costs and the risk of not finishing a devel-
opment project in time are substantially increased. 

We recognize that unit-based costs are important for 
software-based functions, as the above numbers show. 
However, they are but one factor.  
 
3. Research Challenges in Software Engi-

neering 
The domain characteristics of §2 directly translate 

into many fascinating areas of research in software 
engineering (we omit application-specific challenges 
such as crash prevention, advanced energy manage-
ment, driver assistance systems, further X-by-wire 
technologies, HMI-related challenges, personalization, 
etc. here). At the bottom line, they all relate to quality 
and cost, reflected by the need for integration, evolu-
tion, and reuse: 
1. Languages, models, and techniques for require-

ments engineering that support the structured 
specification of multi-functional systems and their 
mutual dependencies; 

2. Languages, models, and techniques for require-
ments engineering that cater to heterogeneous sys-
tems and the engineers that build them, to the in-
terplay between OEMs and suppliers, and to the 
huge number of variants and configurations; 

3. Platform and HW/SW designs and design method-
ologies at different levels of abstraction that ad-
dress the heterogeneity of the systems involved as 
well as the compatibility problem; 

4. Middleware at different levels of abstraction that 
enables the communication between heterogene-
ous subsystems;  

5. Comprehensive cost models that take into account 
development, maintenance and opportunity cost 
(for failure of enabling reuse, for instance); 

6. System models that enable the semantics-
preserving integration of different tools;  

7. Design and coding practices that lead to portable 
and reusable code; 

8. Security of the communication within a car as well 
as between cars and several forms of off-board IT; 

9. Reliability estimates, timing predictability, meas-
urements, and assurance;  

10. Techniques and error models for quality assur-
ance—particularly relevant in a domain with huge 
numbers of deployed entities and very limited con-
trol over them—that, in particular, address the in-
tegration problem as well as the huge numbers of 
variants and configurations; 

11. Integration of on-board and off-board IT; 
12. Approaches to error diagnosis and recovery; and 
13. Approaches to reuse for the benefit of reducing 

complexity and cost. 
We will use Section 4 to address items 1, 2, 3, and 6 
collectively in some detail under the headlight of 
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“model-based development”. In the remainder of this 
section, we briefly summarize research challenges for 
some of the other areas. 
 
3.1 Middleware: Communication Services 

A classical approach to handling complexity is 
separation of concerns. The application logic, for in-
stance, should obviously be independent from the un-
derlying communication infrastructure; all applications 
should, system-wide, react uniformly to exceptional 
events (such as physical read/write errors on the bus) 
etc. With each of the five busses (§2.3.2) having its 
own characteristics and protocols, the definition of a 
respective adequate middleware, of course, comes as a 
significant challenge. 

Separation of concerns can be reached on several 
levels, including architecture, design and implementa-
tion (language dependent). Popular techniques, well 
known from business IT, are middleware layers and the 
corresponding component orientation. An automotive 
middleware, however, must fit other requirements than 
middleware known from business IT (such as CORBA 
and web services). Flexibility at runtime is still domi-
nated by the need for flexibility at design time in the 
automotive domain, because the runtime layout of 
automotive software is still mostly static. The follow-
ing issues need to be considered for automotive mid-
dleware: 
• Resource optimization: due to the unit-based cost 

structure (§2.5), modularity must not be overly 
expensive with respect to resource consumption. 

• Adaptability to different domains: real-time and 
non-real-time, safety-critical and non-safety-
critical software is integrated within one system 
(§2.1). 

• Optimizability to hardware but also transferability 
from one hardware platform to another: due to the 
lifecycle gap (§2.4) and the hardware-software 
correlation the software must be transferable from 
old platforms to new ones, but still optimizable 
towards the hardware. 

• Extensibility: again due to the lifecycle gap (§2.4), 
it must be possible to upgrade a system during its 
lifetime and extend it with new features. 

In contrast to other middleware approaches there is 
no single instance in the system that handles the com-
munication dynamically (like an ORB in CORBA), but 
the middleware layer is generated statically for this 
special configuration of the system. This can lead to 
lean, highly optimized middleware portions inside 
every ECU that minimizes the overhead that comes 
along when using middleware. 

The consequence is that middleware can be only as 
flexible and optimized as allowed by the expressive-

ness of the underlying model.  Therefore, a powerful 
meta- or domain-model is needed that allows us to 
express all required aspects of the system, including, 
but not limited to communication variants, timing as-
pects, safety and redundancy. 

The goal of a uniform, lean middleware layer that 
manages communication and exception aspects in a 
system-wide uniform way is only achievable by in-
creasing the expressive power of automotive modeling 
approaches towards model-based system specifications 
supporting code generation of middleware components 
in an optimized and validated way. The AUTOSAR 
[Aut06] partnership, consisting of various OEMs and 
suppliers, is a promising step towards an open architec-
ture that features such a model-based middleware 
layer. It provides a basis and an enabler for further 
aspects such as timing and redundancy aspects that can 
be included in the metamodel to further increase ex-
pressiveness. 
 
3.2 Safety and Security 

The life-criticality of many avionics systems has led 
to reliabilities of 109 hours mean time between failures. 
This high reliability is, on one hand, due to the use of 
very sophisticated error tolerance methods and redun-
dancy techniques, and on the other hand due to sophis-
ticated ways of error modeling (like Failure Mode and 
Effect Analysis (FMEA), which is also heavily applied 
in the automotive industries, but rather not at the level 
of software). Furthermore, driven by government man-
dates, avionics companies invest heavily into quality 
management, including rigorous code inspection tech-
niques throughout the development process. For many 
equally life-critical systems in the automotive domain, 
the respective numbers are not even known (but the 
requirements are admittedly different). Research into 
measuring and improving reliability is, hence, required. 

Personalization and the related privacy and security 
issues are becoming increasingly important, notwith-
standing usability issues. The management of intellec-
tual property, including digital rights management, is 
particularly challenging in a distributed development 
process as described in §2.2. From a liability perspec-
tive, unauthorized “tuning” of code must be prohibited 
or at least be detectable in hindsight. Liability also is 
an important issue in ad-hoc distributed safety-critical 
applications such as crash prevention that relies on 
communication between cars. Today’s secure commu-
nication protocols need to be extended for real-time 
applications.  

There are clear benefits to hardening the automotive 
infrastructure against the intrusion of unauthorized 
services and components. The more the vehicle be-
comes connected to the cyber-infrastructure the more 
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susceptible it becomes to attacks carried out via this 
cyber-infrastructure.  Management of security is, there-
fore, a necessity both on-and off-board. As an example 
for on-board authentication requirements, consider the 
importance of identifying which of the myriad of func-
tions and ECUs is responsible for a failure: if the func-
tions, as they become active and communicate, authen-
ticate themselves, the system could identify the pres-
ence of unauthorized components, or could determine 
which of the authorized components malfunctioned. 
These topics are under research also in their more tra-
ditional home grounds of internet-enabled business 
information systems; their inherently cross-cutting 
nature makes them particularly challenging in automo-
tive architectures with a high degree of scattered func-
tionality. 

 
3.3 Error Diagnosis and Recovery 

Failure management, from a systems engineering 
perspective, is a further area that requires increased 
attention. Because of its role as the system integrator, 
the OEM is uniquely positioned to deal with failures at 
the composite system level—as compared to the typi-
cally localized failure management at the component 
level prevalent today. This requires, however, compre-
hensive logical and technical domain models of fail-
ures, failure effects, failure detectors, mitigators and 
mitigation strategies that influence the choice of both 
logical architectures and their mapping to technical 
architectures (§4.2). 

Today the amount of error diagnosis and error re-
covery in cars is rather lightweight. In the CPUs some 
error logging takes place, but there is no consideration 
nor logging of errors at the level of the network and the 
functional distribution; there is no comprehensive error 
diagnosis and no systematic error recovery beyond 
individual CPUs (note that as of today, this appears 
appropriate because systems are essentially designed in 
a way that will lead to a safe state, even if bus commu-
nication crashes).  One result of inadequate error man-
agement is the maintenance problem mentioned in 
§2.4.1, resulting in the replacement of many non-
defective ECUs. Failure logging to the end of better 
error diagnosis for maintenance then emerges as a 
relevant research problem. 

There are some fail-safe and graceful degradation 
techniques found in cars today, but a systematic and 
comprehensive error treatment is missing. With the 
upcoming multi-core controllers for embedded applica-
tions, an interesting area for research is how this can be 
exploited also for redundancy/recovery strategies. In 
the long run, comprehensive error models in cars seem 
desirable, and so does software for the detection and 
possibly mitigation of errors. On such models we can 

base techniques to guarantee fail-safe and graceful 
degradation and, in the end, also error avoidance by the 
help of redundancy.  

 
3.4 Reuse 
Typically, functionality changes only to a small 

amount from one vehicle generation to the next. Most 
of the old functionality remains and can be found in the 
new car generation, as it was in the old one. From one 
car generation to the next, functionality (of the systems 
that exist in both generations) differs mostly not more 
than 10%, while much more than 10% of the software 
is re-written. The short hardware lifecycles (§2.4) may 
require frequent re-implementations. Nevertheless, 
today the process of software reuse is not systemati-
cally planned between OEMs and suppliers, as re-
quired, say, for software product lines ([CN01]; see the 
comment below). From the OEM point of view, reuse 
rather occurs on the level of whole ECUs than on the 
level of software, and the reuse objectives of OEMs 
and suppliers may be in conflict with each other. Reuse 
is arguably one of the most challenging problems, 
clearly transcending the automotive domain, and we 
are not aware of convincing solutions for the general 
problem. However, some reuse problems are of an ac-
cidental rather than an essential nature. For instance, 
too strong an optimization of the software towards the 
hardware (§2.5) can make reuse in the form of porting 
it to new hardware impossible or very expensive. With 
the increasing importance of software, we deem it a 
mere question of time until it becomes more economi-
cal to use more generous hardware structures and to 
stay away from low-level code optimization. 

Reuse comes in different forms. Reuse at the level of 
single code modules has proven to be utterly difficult. 
At the level of programming or modeling languages, 
recurring patterns of behavior in a domain can be en-
capsulated into concise language constructs. In terms 
of research, this necessitates the analysis of domains 
where such patterns can be identified, and then the 
definition of these patterns. The tradeoff between the 
benefits of general-purpose languages on the one hand 
and the benefits of domain-specific languages on the 
other hand has to be evaluated. Domain-specific design 
patterns must be defined in places where it makes no 
sense to encode recurring patterns into dedicated lan-
guage constructs. Well-designed libraries and frame-
works form a promising avenue of research. 

Reuse is also facilitated by standardized middleware 
[Aut06] that allows for coordinated and standardized 
interfaces. At the level of requirements engineering, 
there definitely is a need for further research into prod-
uct lines (with the common argument that product lines 
cater to anticipated changes only). The organizational 
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structure of the development process, with its interplay 
between OEMs and suppliers and the resulting con-
flicting desires for reuse, must also be taken into ac-
count (as reflected by suppliers being seemingly more 
open to product line approaches than OEMs). Research 
into reuse must of course include studies of the cost 
effectiveness, and hence be related to research into cost 
models. It is unclear to date to what extent and where 
at least ad hoc reuse occurs today, and how OEMs and 
suppliers profit from different forms of reuse. 

 
3.5 Cost Models 

In the development of software intensive systems, 
many aspects of costs are involved, including devel-
opment cost, maintenance cost, different forms of op-
portunity cost, and reputation-related costs for the 
OEM’s brand. So far the comprehensive cost situation 
is not understood in sufficient detail. What is quite 
clear is that the costs for the electronic devices both for 
the development and for the production are rising (§1). 
But it is not so clear how development cost is distrib-
uted between software and hardware costs. Because 
current cost models usually relate to the cost per unit, 
software is considered an integral part of the develop-
ment process and not explicitly calculated in the con-
tracts between the supplier and the OEM despite its 
continuous rise (there is an estimation that, per year, 
about five percent of the costs “migrate” from hard-
ware to software).  

The importance of intellectual property (IP) issues 
seems to exceed that of hardware developments. The 
IP for a large piece of software is remarkable. The next 
generation of premium cars will exhibit hundreds of 
millions of lines of code. If the overall costs for such 
an amount of code are calculated according to the clas-
sical development costs, the value of the software costs 
of a premium car amounts to somewhere between three 
hundred and eight hundred million €. Owning the soft-
ware and being able to reuse it is an important factor in 
the cost models.  

In sum, the exponential increase of software does not 
justify the use of restricted unit-based cost-models 
alone. The research challenge consists of understand-
ing processes and products and defining more appro-
priate, comprehensive cost models. The automotive 
industry needs decision and cost models that take into 
account rising development costs, maintenance cost, 
software-related project risk and time-to-market. It is 
likely that such models require a more transparent co-
operation between suppliers and OEMs  

 
4. Model-Based Development 

In this section, we describe some further research 
challenges. We will cast facets of a possible solution to 

the abovementioned problems into the general ideas of 
model-based development, by taking into account the 
automotive idiosyncrasies. In this paper, model-based 
development means working with artifacts representing 
domain and design knowledge at different levels of 
abstraction, throughout the development process, and 
possibly also at runtime. Many crucial software-related 
facets of a system are then represented by the follow-
ing artifacts. 
• Requirements models that address multi-

functionality and feature interactions embrace all 
requirements-related issues, dealing with the direct 
behavior of embedded software-based functions 
from the users’ point of view. These include the 
driver, passengers, maintenance staff and other 
persons dealing with the car. Use cases and related 
behavior specifications are one part of the re-
quirements models. 

• The logical architecture is a breakdown of the 
functionality into interacting logical components. 
It represents the functional decomposition of a 
system into functional components, as well as the 
behaviors of these components at the logical level. 
The functional components provide the functional-
ities described in the requirements model.   

• The technical architecture defines the deployment 
architecture, i.e. all the hardware units, the basic 
software (operating system and middleware) on 
them and their connections: controllers, communi-
cation devices, actuators and sensor, as well as a 
mapping (the “deployment function”) from the 
logical architecture (its structures and behaviors), 
to this deployment architecture. This includes the 
definition of source code modules, the platform, 
and the representation of the application software 
in terms of tasks, based on the chosen platform, as 
well as the mapping of these tasks to ECUs and 
their schedules. 

Each of these models must of course be connected to 
non-functional requirements, including safety reliabil-
ity, maintainability, portability, performance, etc. The 
architectures and the implementation of the system 
then have to ensure these requirements. 

In the remainder of this section, we discuss require-
ments models (§4.1), the logical and technical architec-
tures (§4.2), and the role of detailed behavior models 
(§4.3). We will argue that a clear separation of con-
cerns together with a comprehensive understanding of 
the domain-specific issues (§2) and their cross-cutting 
aspects is likely to be the main benefits of this ap-
proach. We consider code generation, in particular in 
the domain of discrete systems, to be but one of the 
benefits of a model-based approach. Furthermore, we 
deem the availability of comprehensive product models 
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the exception, rather than the norm. This is a conse-
quence of the complexity of the systems and the nature 
of the distributed development process (§2.2).  

With different levels of abstraction, seamlessness and 
traceability are, of course, major concerns and belong 
to the fundamental research challenges: how can, con-
ceptually, models at different levels of abstraction be 
related to one another [BBJ+05], and how can the re-
spective tools be integrated? The different levels of 
abstraction discussed in this section support require-
ments tracing for functional requirements (of course, 
requirements tracing should also include the link be-
tween requirements, their origin—e.g., requirements 
from marketing—and design decisions). The flow-
down is as follows. The relationship between the func-
tion hierarchy—a part of the requirements model—and 
the logical architecture indicates which components of 
the logical architecture are contributing to (i.e., col-
laboratively realizing) the respective function. The 
logical components are later represented by specific 
software. The deployment onto the technical architec-
ture determines which software runs on which hard-
ware and which logical communication channels are 
implemented by which bus systems. In sum, by also 
taking into account the quality models, elements of the 
function hierarchy can be traced to the hardware level, 
which greatly facilitates requirements verification, 
maintenance, and evolution after the start of produc-
tion. 

 
4.1 Model-Based Requirements Engineering 

There is a general agreement that requirements en-
gineering for embedded systems is a key discipline in 
the automotive domain—a discipline that is not suffi-
ciently mastered today [WW03]. Reasons include the 
following.  
• Many new innovative functions in cars today are 

based on embedded software systems. There is no 
experience so far with these functions and the best 
way to engineer the human-machine interactions 
with them. The process of deciding on the optimal 
realization of functions, the interaction between 
functions themselves, and the interaction between 
users and functions is a difficult and error-prone 
learning process. Models and prototypes can pro-
vide initial solutions to these problems. 

• The systems are multi-functional, and a huge 
number (§2.3.1) of functions is offered to the user. 
These functions exhibit complex interactions, are 
mutually dependent and give rise to intended and 
unwanted feature interactions.  

• The suppliers realize a lot of the functionality 
(§2.2). Therefore the overall ideas of functions 
have to be fixed by the OEMs and then docu-

mented in a way such that the supplier can imple-
ment them. 

• Over the development process requirements occur 
in strongly varying levels of detail. In the begin-
ning requirements are often very abstract, e.g. 
based on benchmarking with competitors. How-
ever, in the same process phase requirements to 
reuse some ECUs from other products may al-
ready be fixed. The need to integrate these ECUs 
not only strongly restricts the set of possible solu-
tions, it also adds a large set of very detailed re-
quirements resulting from the ECUs to be inte-
grated.   

• Requirements specifications must deal with a large 
number of vehicle variants (§2.4; for instance, “2 
doors”, “4 doors”), and in particular variants re-
sulting from different combinations of auxiliary 
equipment. 

• Besides the functional requirements there is a 
large number of non-functional requirements con-
cerning cost, time-to-market for innovations, 
safety, security, reliability, maintainability etc. 

• Often, there are further constraining platform-
specific requirements (“this ECU has to be re-
used”), pulling deployment specifics already into 
the levels of requirements engineering and logical 
architecture design. 

In general, requirements are originally expressed in 
natural language. It has turned out that rigorously im-
posing structure on the text is most useful. A first step 
from text to models are taxonomies that can be com-
puted from text by natural language processing tech-
niques [Kof05]. They are used as a basis for the 
abovementioned requirements models (that of course 
reflect a lot of structuring activities and which are 
hence richer than mere feature trees [BLP04]). 

The system’s (intended) functionality is modeled by 
a function hierarchy that collects all software-based 
functions. These will be implemented by functional 
entities defined at the level of the logical architecture. 
Requirements are associated with the elements of this 
hierarchy. Its nodes relate to one another in an “is-
subfunction” relation. The dependencies between the 
functions must also be described. Each function is 
modeled in isolation. A function may, for instance, 
define an interactive service that is described by a state 
machine. System behavior in the presence of failures 
needs to be specified as well. Based on the function 
hierarchy, detailed behavior patterns can be provided 
for the individual functions. This model of the func-
tionality comes along with models of the required qual-
ity aspects of the system. 

These models are a necessary starting point for 
mapping requirements to elements of the logical and 
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technical architectures (ideally, the latter mapping is 
indirect via elements of the logical architecture); the 
quality models are used to assess and optimize archi-
tecture decisions. Therefore, for a systematic model-
based requirements definition, all requirements have, 
sooner or later, to be formulated in terms of the struc-
tured view on the architectures. 

Research Challenges. This approach to require-
ments engineering entails many research challenges. 
The definition of the tracing structures and their effec-
tive tool support is, so far, an unsolved problem. 

As indicated above, requirements exist at various lev-
els of detail. They range from marketing-driven re-
quests (“the car has to have the following comfort-
functions”) to very detailed platform specifications, 
which may limit the design space for both logical and 
technical architectures. One research challenge is, 
therefore, to elucidate a comprehensive requirements 
model that brings out these levels of abstraction and 
optimizes the resulting solution space for logical and 
technical architecture.  

A systematic way to structure the requirements after 
capturing them, to make them precise, and to validate 
them is still a challenge. First of all, a reference model 
is needed that defines all the artifacts that are to be 
considered as results of requirements engineering and 
requirements dependencies (see [GBB+06]). 

So far the models offered for requirements engineer-
ing are limited. We need structured hierarchies of all 
the software-based functions in a car that reflect all 
their mutual dependencies (specified feature interac-
tion). Good ways to model the functional hierarchies 
and their dependencies that support automatic analysis 
are a challenge for research. In addition, the functional 
behavior of the individual functions has to be modeled.  

The systematic step from the requirements to the de-
sign phase, taking into account both functional and 
quality requirements, is largely unsolved. Eliciting 
domain-specific design and analysis patterns can be a 
promising research direction to tackle this problem. 
 
4.2 Logical and Technical Architectures 
As outlined above, the complexity of automotive sys-

tems rivals that of other ultra large scale systems, in-
cluding avionics, command and control, and internet-
wide business intelligence systems. In fact, automotive 
systems combine many of the requirements challenges 
we see elsewhere only in isolation. Historically, there 
has been a tight coupling between automotive software 
functions and the physical processes they manage, and 
thus with dedicated, networked ECUs. This tight cou-
pling has contributed significantly to the fragmentation 
of the automotive platform into its current state. This, 
in turn, has led to a strong entanglement between the 

logical architecture or function network, and its de-
ployment on a concrete, technical architecture.  This 
entanglement gives rise to a scattering of functionality 
(§2.3.1). One of the central challenges for next-
generation automotive system development is, there-
fore, to disentangle logical and technical architectures. 
This will help unleash so far untapped potentials at  
• reducing the number of ECUs required to deliver 

the desired functionality based on the ability to es-
tablish globally optimal mappings from functions 
to ECUs;  

• enabling dynamic reallocation of computing and 
communication  resources to effect globally opti-
mal energy and QoS management, or to manage 
failures by means of an appropriate reconfigura-
tion of the system;  

• reducing the dependency on physical proximity for 
the provisioning of automotive functionality by in-
troducing location transparency, say, for functions 
such as navigation;  

• enabling conceptual reuse by allowing independ-
ent evolution of logical and technical architecture; 
and  

• enabling faster modeling, design and test cycles, 
because the OEM can ultimately perform continu-
ous integration of functionalities as they become 
available from suppliers – rather than having to 
wait until all functions of all ECUs are imple-
mented towards the end of the overall system de-
velopment cycle during system integration. 

Modern approaches to software and systems archi-
tecture and integration recognize the importance of 
separating logical and technical architectures. Model-
Driven Architecture, for instance, distinguishes be-
tween Platform Independent Models (PIMs) and Plat-
form Specific Models (PSMs) to separate logical func-
tionality from its mapping to a deployment model. Ar-
chitecture standards, such as the Department of De-
fense Architecture Framework, distinguish operational 
from systems views to effect a similar disentanglement 
between logical and technical system aspects. 

In essence, the models relevant for logical ar-
chitecture focus on capabilities and their mapping to 
logical entities (sometimes called operational nodes). 
These capabilities realize the functions in the require-
ments model. The models relevant for technical archi-
tecture focus on deployment, i.e. the physical layout of 
the system including physical nodes and networking 
structures—and the mapping from the logical architec-
ture to this layout. Consequently, many models, includ-
ing structural and behavioral models, crosscut logical 
and technical architectures. Often, the technical archi-
tecture introduces additional constraints at, for in-
stance, performance, safety, security and reliability that 
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influence the mapping from logical to technical archi-
tecture. The use of reflective models, i.e. models that 
are accessible to and can be modified by the runtime 
infrastructure, can establish a link between the logical 
and technical architecture; this can provide a means to 
adapt the mapping between logical and technical archi-
tecture according to resource constraints, or to over-
come failures.  
4.2.1 Logical Architecture 

The focus of the logical architecture in general is 
the set of capabilities provided and requested by the 
overall system and its subsystems. This describes the 
(logical) implementation of the overall functionality by 
a network of logical entities (operational nodes includ-
ing software components) and the necessary links be-
tween these logical entities. In addition, the logical 
architecture encompasses mapped use cases, the rele-
vant data models, as well as QoS, bandwidth, (real-
time) performance, security and other cross-cutting 
concerns to the degree they are relevant on the logical 
level. Data models, logical entities and behavior mod-
els are typically linked by means of data-flow models. 
Depending on the level of detail at which these models 
are available, the logical architecture can support early 
simulation, optimization, prototyping, verification & 
validation, including testing. 

In the automotive domain, the so-called function 
network (which is not the same as the function hierar-
chy of the requirements model) is often used as a 
key—sometimes the only—expression of the logical 
architecture. The function network is, in essence, a 
representation of the functionality to be provided by 
the vehicle together with links indicating (communica-
tion) dependencies among these functions. The mod-
eled functions are then mapped to the HW/SW imple-
mentations as part of the technical architecture, consid-
ering the also captured real-time and bandwidth re-
quirements.  

Because the OEM to a large extent plays the role of 
system integrator, the logical architecture from the 
OEM’s point of view will mainly stay at the level of an 
integration architecture. The detailed development of 
functions is often left to suppliers; consequently, the 
OEM will have only a black-box view on these func-
tions, limiting opportunities for global optimization, 
and deep verification and validation. This places par-
ticular importance on the specification of interfaces at 
the logical level; in particular, the interfaces need to be 
rich in the sense that they need to convey not only 
structural information (such as function names and data 
types) but also behavioral information (§4.3).  

Research Challenges. A first step towards accom-
plishing the desired disentanglement of logical from 
technical architecture aspects is to consistently think of 
the system and its subsystems in terms of capabilities 

rather than in terms of deployment components. A 
promising aid to that end is the notion of service. Of-
ten, service-oriented architectures consist of at least 
two distinct layers: one domain layer, which houses all 
domain objects and their associated logic; and one ser-
vice layer, which acts as a façade to the underlying 
domain objects—in effect offering an interface that 
shields the domain objects from client software. Typi-
cally, services in this sense coordinate workflows 
among the domain objects; they may also call, and thus 
depend on, other services; and a respective service 
model that takes into account the specifics of automo-
tive requirements needs to be defined. Enriching do-
main-specific architecture definition languages with 
the corresponding abstractions and notations to capture 
the cross-cutting, coordinating nature of services is 
also a rich topic of future research [KNP04, AKMP05].  

Another research challenge is the management of 
the various levels of granularity and detail available in 
a systems of systems engineering project. Because of 
the complexity and size of automotive systems, having 
complete knowledge about all subsystems and the 
overall systems is an illusion. Hence, we need re-
quirements and logical architecture models that can 
deal with the partiality of information. Again, the no-
tion of service discussed above can be a valuable step 
into this direction. Services, defined via interaction 
patterns among roles, provide partial views onto the 
overall system, albeit in an end-to-end fashion. Com-
position and combination of services then leads to a 
composite view of the relevant parts of the overall sys-
tem integration. Exploiting this partiality for tasks such 
as simulation, verification and validation holds signifi-
cant promise in complexity management. Of course, to 
be viable, the service notion has to reflect the com-
bined control- and event-driven behavior spectrum.  

Ultimately, combining the aforementioned models 
into a notion of service- and component-interfaces that 
includes behavior descriptions and can be shared be-
tween OEMs and suppliers, is a long-term research 
goal at the logical architecture level. Solving this chal-
lenge would enable OEMs and suppliers to engage in 
meaningfully tool-supported exchange of interface 
models that can support the value-added development 
support we have alluded to, above.    
4.2.2 Technical Architecture 

The technical architecture identifies the ECUs, the 
basic software (operating system and middleware) on 
them, their interconnection via busses, as well as the 
partitioning of functions or SW components from the 
logical architecture onto ECUs. This, of course, re-
quires the identification and definition of software 
components representing logical entities defined at the 
level of the logical architecture. The respective parti-
tioning decisions need to be future-proof, because of 
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the business characteristic of long life-cycles (§2.4): 
changes in the partitioning are very likely to lead to 
incompatibilities to legacy systems. An ECU with a 
new partitioning will usually not work in an already 
produced vehicle. As backward compatibility is 
breached, a new branch in the configuration space is 
opened, or an obsolescence management strategy is 
needed for the old ECU variant.  

 The technical architecture also specifies how logi-
cal communication is mapped onto technical commu-
nication. For instance, the technical architecture speci-
fies how a logical signal is mapped onto protocol data 
units of the bus system that is used for communication 
of the deployment components. Due to the specifics of 
real-time bus systems, this mapping often is a complex 
issue. For instance, for a signal with hard real-time 
requirements that will be sent via the time-synchronous 
Flexray [MHB+01] bus, the decision remains whether 
the signal should be transmitted in the static segment 
of bus communication or within the guaranteed dy-
namic segment.  

In the context of upcoming time-synchronous bus 
systems such as Flexray, a further task in the definition 
of the technical architecture is to define a bus schedule. 
This schedule specifies what information is sent in 
which time slot, and it needs to be coordinated with the 
task schedules of the ECUs. A close coordination al-
lows to minimize communication latency. On the other 
hand, it decreases the maintainability of the overall 
system. If coordination is very close, minor changes in 
the bus schedule might require changes to all task 
schedules of the ECUs that are connected to the bus. 
Currently, first tools for the generation of bus sched-
ules start to be available [D06, P06]. 
Research Challenges. From the point of view of 
model based development, the integration of models 
for the technical architecture and models for bus traffic 
analysis is highly desirable. A key property of these 
models is that they abstract communication behavior of 
hardware, middleware and application software in a 
stochastic way, focusing on size, frequency of occur-
rence and timing of the data to be sent. 

Furthermore, as already mentioned in §3.2, safety 
analysis can greatly benefit from model-based devel-
opment, if further research identifies how those models 
can be integrated with models for FMECA (Failure 
Mode, Effects and Criticality Analysis), FTA (Fault 
Tree Analysis), and also for reliability analysis in gen-
eral. Of course, the integration with the technical archi-
tecture alone does not suffice here. This is because 
additional information on which functions are affected 
in which way is needed, i.e. the link to the logical ar-
chitecture. Similarly, models of the logical and techni-
cal architectures can be used as a basis for diagnosis 
models that help in the localization of faults. A central 

research question here also is how modeling can help 
in performing software diagnosis for shipped software, 
i.e. without the possibility to inject stimuli from out-
side the system to localize faults. This also requires 
models for the system environment (the plant in con-
trol theory terminology).  

In vehicle networks that contain both time-
asynchronous busses like CAN [Bos91] and time-
synchronous busses like Flexray, a further question is 
which functions are deployed onto CAN-ECUs and 
which on Flexray-ECUs. While functions with hard-
real time requirements obviously are good candidates 
for Flexray-ECUs, the question remains where the bor-
der with the asynchronous world is to be drawn. Usu-
ally there remains a lot of communication between the 
two worlds, but their interface is non-trivial. In particu-
lar for the case of signals with soft real-time require-
ments that are forwarded via a gateway from CAN to 
Flexray, these signals are not only delayed by the la-
tency when accessing the CAN bus, but also by the 
latency time that is a consequence of waiting for the 
next appropriate Flexray time slot. This means that 
latency from CAN to Flexray either is rather high or 
that bandwidth is wasted on the synchronous bus. Se-
mantics-preserving deployments of synchronous mod-
els on heterogeneous architectures [BCC+04, Rom06], 
including time-synchronous and asynchronous archi-
tectures [HS06], deserve further investigation. 

Integration of models of the technical architecture 
in overall models for systems engineering is a further 
important topic. With respect to the technical architec-
ture there is a close correlation to models for the flow 
of electrical energy and geometric models for the 
placement of wiring and ECUs. Furthermore, a link to 
cost models (§§ 2.5 and 3.5) is mandatory for partition-
ing decisions. For instance, with respect to cost, the 
partitioning is strongly affected by the business choice 
of which functions are part of every vehicle and which 
ones are optional. With such an integration, a detailed 
evaluation of architectural decisions becomes possible. 
For the integration with models from systems engi-
neering, establishing of a tool chain is highly demand-
ing since for all disciplines good, isolated tools exists, 
but we cannot assume that their semantics is identical 
in detail in the model elements they have in common.  

For a seamless model-based development, there is a 
need for models of the technical architecture that com-
prise all the features offered by a platform to the SW 
components deployed on it. Therefore, research into a 
modeling paradigm is needed that supports a kind of 
(automotive-specific?) layer-based modeling, which 
makes all relevant platform aspects visible but ab-
stracts from details. As suggested in §3.1 such a mod-
eling of platform/middleware features must provide 
that some features are system wide, for instance, due to 
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a common middleware, while others are domain or 
platform/ECU specific. 
 
4.3 Detailed Behavior Models 

Finally, we will have a look at behavior models that 
specify functionality at a rather detailed level. This is 
needed for architecture specifications at both the logi-
cal and—in refined form—the technical levels. These 
models come in different flavors. Existential models 
focus on the main system runs in an exemplary man-
ner. In the form of sequence diagrams, they are often 
used as specifications. Universal models, on the other 
hand, are detailed enough to permit the generation of 
production code [FGG05, BOJ04], of simulation code 
that is used for prototyping and hardware-in-the-loop 
simulations [Spi01], and of test cases [PPW+05].  

Except for the generation of production code, all 
these activities require the development of environ-
ment models (with high costs and high potential for 
reuse). We ignore them here for brevity’s sake, and 
focus on universal models of systems. 

In accordance with the heterogeneous nature of auto-
motive software (§2.1.1), the models are continuous, 
mixed discrete-continuous, and purely continuous (see 
[HS06] for a complementary perspective). 
• Modeling continuous systems—more concretely, 

control algorithms—is common practice and has a 
long tradition in the automotive domain. In the 
automotive domain, the most prominent toolset for 
such models is Matlab Simulink [Mat06,WM95]. 
The language of block diagrams allows the engi-
neer to graphically specify differential equations, 
with blocks representing operations such as multi-
plication, integration, or differentiation, and arrows 
between blocks representing data flow. Block dia-
grams can be seen as a graphical special-purpose 
programming language for control algorithms. At 
the control-theoretic, purely continuous, level there 
is a huge body of methods for the analysis of prop-
erties like robustness, stability, attraction, etc. 
[Sta04]. Because of the low level of detail, impres-
sively efficient simulation and production code can 
be generated. This, of course, involves discretiza-
tion and the respective fundamental problems with 
the transition from floating point to fixed point 
numbers.  

• Mixed discrete-continuous systems exhibit different 
modes in which they operate continuously, and 
modes are switched in a non-continuous—i.e., dis-
crete—manner [GKS00]. Approaches to specifying 
hybrid systems include hybrid automata, hybrid 
Petri nets, and equation-based approaches. In prac-
tice, extensions of the Matlab Simulink languages 
(Stateflow) are most commonly used. 

• Discrete systems, as predominantly found in the 
infotainment domain (§2.1.1), are probably most 
familiar to software engineers. They are typically 
specified in one of a plethora of state machine vari-
ants. As of today, in contrast to continuous systems, 
their usage is not commonplace in the automotive 
industry. When speculating about the reasons, one 
might want to quote  
1. the lack of convincing tools with excellent pro-

duction code generators that would allow for 
roundtrip engineering;  

2. a rather close proximity between genuine C++ 
code and state machines with C++ as action 
language on transitions—hierarchical state ma-
chines then act as structuring means only; 

3. the closely related problem of choosing appro-
priate abstraction levels (for continuous models, 
abstraction takes place by means of language 
constructs, not deliberate loss of information 
[PP05,PP04]); 

4. cost issues in cases where models are not used 
for the generation of production code but as 
specifications only: two artifacts, model and 
code, have to be maintained and synchronized; 

5. the necessity to add yet another language and 
yet another toolset to the existing tool chain for 
continuous systems; 

6. so far unfulfilled promises as far as the verifica-
tion of such models is concerned; and 

7. education issues. 
It is noteworthy that the goals of code generation 

and verification are somehow contradictory. The for-
mer requires a rather low level of abstraction as em-
bodied by corresponding language constructs whereas 
the latter usually requires abstraction in the sense of an 
actual loss of information [PP04]. Furthermore, verifi-
cation tasks by definition require knowledge of the 
properties to be verified, and these properties are often 
not known (these problems are of course not unique to 
the automotive domain).  

The above objections are hard to overcome. Indeed, 
as far as the automotive domain is concerned, it seems 
very possible that the benefits of model-based devel-
opment for discrete systems do not lie in the generation 
of code but rather in the definition of clear interfaces 
and the relationships between components (§§ 4.2.1 
and 4.2.2). What does appear appealing in this context 
is the use of behavior models as black-box specifica-
tions, serving as communication interface between 
OEMs and suppliers (§2.2.1; [PP05, AKMP05]). In 
addition, these behavior models can be used to the end 
of generating tests [PPW+05], thus facilitating the task 
of verifying a system with respect to its specification.  
Research Challenges. Challenges in the context of 
continuous models include even more efficient code 

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00  © 2007



 

generators as well as a sufficiently precise “standard” 
semantics. Such a standard would of course come with 
the political problems that every standardization of 
semantics has to face, see the UML. On the other hand, 
it would allow assessments of the correctness of code 
generators—as of today, production and simulation 
code from one product do not necessarily exhibit iden-
tical behaviors (we mention TDL [PT06] as a notable 
exception), and neither does generated code from two 
different products [SC04]. Because the idiosyncrasies 
of different code generators are known, the current 
approach to handling this problem consists of avoiding 
“critical” constructs, which results in modeling guide-
lines. Because of the enormous state spaces of continu-
ous systems, their analysis also remains a challenging 
task. Function blocks are equipped with a multitude of 
possible parameters in order to cater for different ap-
plication domains such as automotive and avionics. As 
a consequence, it is very hard to keep track of all the 
relevant and irrelevant parameters; the models become 
unnecessarily complex. A possible solution, and thus a 
research challenge, is an automotive “profile” for Mat-
lab/Simulink.  

Because the classical proof methods from control 
theory are not applicable, the analysis of mixed dis-
crete-continuous systems presents itself as a vast re-
search problem, with only first steps in the understand-
ing of proof methods [Sta04] and in terms of reachabil-
ity analyses being taken today. The conceptual clarity 
of time-synchronous languages such as Esterel [BG92] 
and Lustre [HCR+91] is appealing and might turn out 
to impact the integration of discrete and discretized 
continuous systems. Furthermore, the combination of 
continuous and discrete subsystems into a joint, com-
prehensive domain model supporting early simulation 
and validation is missing so far. In particular, this will 
require a combination of timed behavior models of 
varying degrees of rigidity and event-driven behavior 
models. This combination will be a first step towards 
integrating time into a general programming model for 
embedded systems.  

Fundamental research challenges in the context of 
using models both as specifications and source of test 
cases include the definition of domain- and purpose-
specific abstraction levels, tools for push-button gen-
eration of tests, and the definition of domain-specific 
and domain-independent test case specifications. It is 
unclear if the effort, including synchronization, of 
maintaining both a model and a piece of code is justi-
fied by the resulting quality of systems and test cases. 

Embracing all three classes of  models, further open 
research problems include the question of how to de-
rive detailed behavior models from more coarse-
grained ones (§4.2), how to map this functionality to 
software components and possibly different ECUs, 

domain-specific modeling methodologies, code genera-
tors, roundtrip engineering, tool integration, and verifi-
cation technology. 

Finally, empirical investigations into cost effective-
ness are needed to assess the benefits of behavior mod-
els when used for specification (where component-
based engineering might turn out to be the better solu-
tion) and test case generation (where setting up better 
structured test processes might in itself solve a lot of 
problems). We realize that many of these research 
challenges are shared with other technical domains. 
  
5. Conclusions and Outlook 

Software engineering for automotive systems embraces 
almost all areas of computer science and computer 
engineering, and includes all software engineering ac-
tivities. In this paper, we have characterized the do-
main of automotive software and highlighted some 
particularly important research problems, of course 
without any claims to completeness. Because of the 
broad scope of our subject it is not surprising that 
many problems exist in other domains as well. As a 
consequence, we have taken some care to identify 
problems that are specific to the automotive realm—
which explains why we did not discuss important prob-
lems as diverse as continuously changing requirements, 
timing predictability, usability, portability, design and 
coding standards, etc. Essentially, the problems we 
have identified relate to evolution and integration. To-
day, integration is mainly enabled in an ex-post man-
ner, by testing and changing where necessary. For evo-
lution, this becomes increasingly complicated, a con-
sequence of the huge number of variants and versions 
that require support. We have indicated how model-
based approaches to systems development can help 
meet the challenges, and provided some particularly 
relevant research directions in the intersection of 
model-based development and automotive software 
systems. 
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