
Software Engineering I
cs361

Announcements

✖ Friday Extra office hour of
“Coding Lab” 2-3pm

✖ CI instructions added to
Assignment 3

✖ travis-ci.ORG

✖http://www.umlet.com/
umletino/umletino.html

http://travis-ci.org
http://www.umlet.com/umletino/umletino.html

Design Patterns

Attribution

Much of this material inspired by a
great slides from Kenneth M.

Anderson, available here:

https://www.cs.colorado.edu/~kena/

classes/5448/f12/lectures/07-
designpatterns.pdf

Also, here: https://sourcemaking.com/
design_patterns/template_method

https://www.cs.colorado.edu/~kena/classes/5448/f12/lectures/07-designpatterns.pdf
https://sourcemaking.com/design_patterns/template_method

Christopher Alexander

✖ Worked as in computer
science but trained as an
architect

✖ Wrote a book called A Pattern
Language: Towns, Buildings,
Construction.

✖ Adopted as some cities as a
building code

The timeless Way of Building

✖Asks the question, “is quality
objective?”

✖Specifically, “What makes us
know when an architectural
design is good? Is there an
objective basis for such a
judgement?”

Approach

 He studied the problem of identifying
what makes a good architectural design
by observing:

• buildings,

• towns,

• streets,

• homes,

• community centers,

• etc.

When he found a good example, he
would compare with others.

Four Elements of a Pattern

Alexander identified four
elements to describe a pattern:

• The name of the pattern

• The purpose of the pattern:

what problem it solves

• How to solve the problem

• The constraints we have to

consider in our solution

Inspired by Alexanders Work

Christopher Alexander

Inspired by Alexanders Work

Christopher Alexander

Inspired by Alexanders Work

https://archive.org/details/msdos_SimCity_1989

Inspired by Alexanders Work

Software design patterns

✖Are there problems in software
that occur all the time that can
be solved in somewhat the same
manner?

✖Is it possible to design software
in terms of patterns?

Design Patterns

✖1995 book first
introduced Design
Patterns

✖ 23 Patterns in first

✖ Since then, many
more design patterns
have been published

✖Authors knows as
“Gang of Four”

Key Features of a Pattern

✖Name

✖Intent: The purpose
of the pattern

✖Problem: What
problem does it solve?

✖Solution: The
approach to take to
solve the pattern

✖Participants: The
entities involved in
the pattern

✖Consequences: The
effect the pattern has
on your software

✖Implementation:
Example ways to
implement the
pattern

✖Structure: Class
Diagram

Why Study Design Patterns?

Patterns let us

• reuse solutions that have

worked in the past; why waste
time reinventing the wheel?

• have a shared vocabulary
around software design.

• e.g., “What if we used a

facade here?”

Example of Higher-Level Perspective

Miter Joint Dovetail Joint

Example of Higher-Level Perspective

When two carpenters are
deciding how to make a joint,
They could say:

“Should we use a dovetail or
miter joint?”

“Should I make the joint by
cutting down into the wood and
then going back up 45 degrees
and…”

Example of Higher-Level Perspective Cont…

The former avoids getting bogged
down in details

The former relies on the carpenter’s
shared knowledge

• They both know that dovetail
joints are higher quality then
miter joints but with higher costs

• Knowing that, they can debate
whether the higher quality is
needed in the situation they are in

Design Pattern Categories

Creational Design Patterns

Design patterns about class
instantiation

Structural Design Patterns

All about Class and Object
composition

Behavioral Design Patterns

All about Object
Communication

Creational Patterns

Abstract Factory

Creates an instance of
several families of
classes

Builder

Separates object
construction from its
representation

Factory Method

Creates an instance of
several derived classes

Object Pool

Avoid expensive
acquisition and release
of resources by
recycling objects that
are no longer in use

Prototype

A fully initialized
instance to be copied or
cloned

Singleton

A class of which only a
single instance can
exist

Singleton

Singleton - Problem

✖ Application needs one, and
only one, instance of an object.
Additionally, it must have lazy
initialization and global access.

Singleton - Intent

✖ Ensure a class has only one
instance, and provide a global
point of access to it.

✖Encapsulated “just-in-time
initialization” or “initialize on
first use”

Singleton - Discussion

 The class of the single instance
object is should be responsible
for:

• creation

• initialization

• access

• enforcement

Singleton - Discussion

Singleton should be used when:

• Ownership of a single

instance cannot be
reasonably assigned

• Lazy initialization is
desirable

• Global access is not
otherwise provided for

Example Code

Singleton - UML

Singletons - Pros and Cons

Structural design patterns

Adapter

Match interfaces of
different classes

Bridge

Separates an object’s
interface from its
implementation

Composite

A tree structure of simple
and composite objects

Decorator

Add responsibilities to
objects dynamically

Facade

A single class that
represents an entire
subsystem

Flyweight

A fine-grained instance
used for efficient
sharing

Private Class Data

Restricts accessor/
mutator access

Proxy

An object representing
another object

Facade

https://en.wikipedia.org/wiki/Florence_Cathedral

Facade - problem

✖ Complexity is the biggest
problem that developers face.

✖ Clients want functionality
without having to understand/
master functionality of entire
system

Facade - intent

✖ Provide a unified interface to a
set of interfaces in a subsystem.
Facade defines a higher-level
interface that makes the
subsystem easier to use.

✖Wrap a complicated subsystem
with a simpler interface

Facade Discussion

✖ Encapsulates the a complex
system within a single interface
object

✖ Reduces the learning curve
necessary to leverage the
subsystem

Example Code

Behavioral design patterns
Chain of responsibility

A way of passing a request
between a chain of objects

Command

Encapsulate a command request
as an object

Interpreter

A way to include language
elements in a program

Iterator

Sequentially access the elements
of a collection

Mediator

Defines simplified communication
between classes

Memento

Capture and restore an object's
internal state

Null Object

Designed to act as a default
value of an object

Observer

A way of notifying change to a
number of classes

State

Alter an object's behavior when
its state changes

Strategy

Encapsulates an algorithm
inside a class

Template method

Defer the exact steps of an
algorithm to a subclass

Visitor

Defines a new operation to a
class without change

Template Method - problem

✖Two different components
have significant similarities, but
demonstrate no reuse of
common interface or
implementation. If a change
common to both components
becomes necessary, duplicate
effort must be expended.

Template Method - intent

✖Define the skeleton of the
operation, but differ some steps
to client subclasses.

✖Base class declares algorithm
placeholders and derived classes
implement the placeholders

Template Method - Discussion

✖ The overall algorithm is the
same, but certain steps vary.

✖The abstract class defines the
overall algorithm, as well as the
invariant steps

✖Each subclass defines the
variant steps

Example Code

Credits

Special thanks to all the people who made and
released these awesome resources for free:

✖ Presentation template by SlidesCarnival

✖ Photographs by Unsplash

http://www.slidescarnival.com/
http://unsplash.com/

