
AB HELSINKI UNIVERSITY OF TECHNOLOGY

T–76.3601 — Introduction to Software Engineering

http://www.soberit.hut.fi/T-76.3601/

Casper Lassenius
Casper.Lassenius@tkk.fi

Software Engineering Practice
Software Configuration Management

http://www.soberit.hut.fi/T-76.3601/
http://www.soberit.hut.fi/T-76.3601/

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Software Engineering
Practice

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

What is “Practice”?

• Practice is a broad array of concepts,
principles, methods and tools that you must
consider as software is planned and developed

• It represents the details—the technical
considerations and how to’s—that are below the
surface of the software process—the things that you’ll
need to actually build high-quality computer software.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach.
6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005.

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

WARNING!

• Most things said during this lecture will sound
extremely simple and self-evident

• This is because they basically are

• However, most of the good practices are not
practiced in many software development projects!

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

The Essence
• George Polya, in a book written in 1945(!) describes the

essence of software engineering practice...

• Understand the problem (communication and
analysis)

• Plan a solution (modeling and software design)

• Carry out the plan (code generation)

• Examine the result for accuracy (testing and
quality assurance)

• At its core, good practice is common-sense problem
solving

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach.
6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005.

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

Core Software Engineering Principles

• Provide value to the customer and the user

• KIS—keep it simple!

• Maintain the product and project vision

• What you produce, others will consume

• Be open to the future

• Plan ahead for reuse

• Think!

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach.
6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005.

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

General Practices for the Basic Software
Engineering Activities

• Planning

• Modeling

• Construction

• Deployment

• Communication

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach.
6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005.

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

Planning Practices
• Principles

• Understand the project
scope

• Involve the customer
and other stakeholders

• Recognize that
planning is iterative

• Estimate based upon
what you know

• Consider risk

• Be realistic

• Adjust granularity as
you plan

• Define how to achieve
quality

• Define how to
accomodate changes

• Track your plan

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach.
6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005.

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

Planning Practices
• Ask Boehm’s questions:

• Why is the system developed?

• What will be done?

• When will it be accomplished?

• Who is responsible?

• Where are they located? (organizationally)

• How will the job be done (technically and
managerially)

• How much of each resource is needed?
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach.
6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005.

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

Modeling Practices
• We create models to gain a better understanding of

the actual entity to be built

• Analysis models represent the customer
requirements by depicting the software in three
different domains: the information domain, the
functional domain, and the behavioral domain

• Design models represent characteristics of the
software that help practitioners construct it
effectively: the architecture, the user interface, and
component-level detail

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach.
6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005.

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

Analysis Modeling Practices

• Principles

• Represent the information domain

• Represent the software functions

• Represent software behavior

• Partition the representations

• Move from essence towards implementation

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach.
6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005.

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

Design Modeling Practices
• Principles

• Design must be traceable to the analysis model

• Always consider architecture

• Focus on the design of data

• Interfaces (user, internal) must be designed

• Components should exhibit functional independence

• Components should be loosely coupled

• Design representations should be easily understood

• The design model should be developed interatively
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach.
6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005.

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

Construction Practices
• Preparation principles (before you start coding!)

• Understand the problem

• Understand basic design principles and concepts

• Pick a programming language that meets the needs of
the software and environment

• Select a programming environment that provides tools
that make your work easier

• Create a set of unit tests that will be applied once the
component you code is completed (if you use the test-
first approach)

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach.
6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005.

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

Construction Practices
• Coding principles

• Select data structures that meet the needs of your design

• Understand the architecture and create compliant interfaces

• Keep conditional logic as simple as possible

• Create nested loops in a way that makes them easily testable

• Select meaningful variable names and follow local coding
conventions

• Write self-documenting code

• Create a visual layout (indentation, blank lines etc.) that aids
understanding

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach.
6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005.

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

Construction Practices
• Validation principles

• Use code walkthroughs

• Perform unit tests and correct errors

• Refactor the code

• Testing principles

• All test should be traceable to requirements

• Tests should be planned (!?)

• The pareto principle applies to testing

• Testing begins “in the small” and moves toward “in the large”

• Exhaustive testing is not possible

• Testing can only show the presence of bugs—not their absence!
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach.
6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005.

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

Deployment Practices

• Principles

• Manage customer expectations for each increment

• A complete delivery package should be assembled
and tested

• A support regime should be established

• Instructional materials must be provided to end-users

• Buggy software should be fixed first, delivered later

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach.
6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005.

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

Communication Practices
• Principles

• Listen

• Prepare

• Facilitate

• Face-to-face is best

• Take notes and
document decisions

• Collaborate with the
customer

• Stay focused

• Draw pictures when
things are unclear

• Move on...

• Negotiation works
best when both
parties win!

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach.
6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005.

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Software
Configuration
Management

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

The “First Law”

• No matter where you are in the system life cycle,
the system will change, and the desire to change it
will persist throughout the life cycle.

Bersoff, et el. 1980

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

What are these Changes?

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

These courseware materials are to be used in conjunction with Software Engineering: A
Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman &
Associates, Inc., copyright © 1996, 2001, 2005

4

data

other
documents

code
Test

Project

Plan

changes in

technical requirements

changes in
business requirements

changes in

user requirements

software models

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach.
6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005.

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

Three Basic Problems
• Double maintenance problem

• Multiple copies of a file on different computers.
All must be updated.

• Shared data problem

• Single copy of file on server. Only one person can
work on it at a time.

• Simultaneous update problem

• Master copy of file on server, developers have
work copies. Changes might get overwritten.

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

Software Configuration Management
• Version management

• files and documentsn (not only source files!)

• Build management

• building the executable from the right sources

• “manufacturing process”

• Change management

• what changes are implemented, and how

• Status accounting

• recording and reporting

• visibility

• Release management

• what is delivered to the customer

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

Why Version Management?

• During the lifetime of a system, files change

• Old versions of files can be needed

• troubleshooting

• reverting to a tested and working version

• Different versions might be incompatible

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

Configuration Item

• Something that is versioned

• An atomic unit from the SCM point of view

• Examples

• files

• documents

• components

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

Version

• An instance of a configuration item that differs
from other instances of the same configuration item

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

Versions: Revisions and Variants

• Variant

• an alternative to another
version of the same CI

• typically used, e.g. for
customization

• Revision

• replaces another
(previous) version of the
same CI

1

2

M1

M2 D2

D1

D3M3

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

Merging Variants

• Textual

• Syntactic

• Semantic

• Version management
systems or IDEs typically
contain tools helping with
merging (e.g. diff)

1

2

M1

M2 D2

D1

D3M3

D4

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

Configurations
• Configuration

• a set of logically connected configuration items

• a collection of CI versions (max 1 version/CI)

• Work set

• current configuration

• Baseline

• a permanent configuration created for a purpose (testing, release)

• possible to return to later

• implemented, e.g. by tagging CIs

• Release

• permanent configuration that is delivered to the customer

• subset of deliverable structure baseline

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

Baseline
• The IEEE Std 610.12–1990 defines a baseline as:

• A specification or product that has been forma&y
reviewed and agreed upon, that therea'er serves as the
basis for further development, and that can be changed
only through formal change control procedures.

• a baseline is a milestone in the development of
software that is marked by the delivery of one or
more software configuration items and the approval
of these SCIs that is obtained through a formal
technical review

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach.
6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005.

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

The SCM Process

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

These courseware materials are to be used in conjunction with Software Engineering: A
Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman &
Associates, Inc., copyright © 1996, 2001, 2005

13

identification

change control

version control

configuration auditing

reporting

SCIs

Software

Vm.n

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach.
6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005.

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

Change Management
• Changes to approved items must be controlled

• Change management is a procedure by which a change to
an item is requested, evaluated, approved or rejected,
scheduled and tracked

• The purpose is to avoid uncontrolled changes to software
in order to

• minimize quality problems

• control schedule and effort

• avoid gold plating and feature creep

• Uses a well-defined configuration as a starting point

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

CM Process I/III

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach.
6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005.AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

These courseware materials are to be used in conjunction with Software Engineering: A
Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman &
Associates, Inc., copyright © 1996, 2001, 2005

15

change request from user

developer evaluates

change report is generated

change control authority decides

need for change is recognized

change request is denied

user is informed

request is queued for action

change control process—II

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

CM Process II/III

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach.
6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005.AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

These courseware materials are to be used in conjunction with Software Engineering: A
Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman &
Associates, Inc., copyright © 1996, 2001, 2005

16

assign people to SCIs

check-out SCIs

make the change

review/audit the change

change control process—III

establish a “baseline” for testing

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

CM Process III/III

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach.
6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005.AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

These courseware materials are to be used in conjunction with Software Engineering: A
Practitioner’s Approach, 6/e and are provided with permission by R.S. Pressman &
Associates, Inc., copyright © 1996, 2001, 2005

17

promote SCI for inclusion in next release

rebuild appropriate version

review/audit the change

include all changes in release

check-in the changed SCIs

perform SQA and testing activities

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

Change Request (CR) Content
• Submitter (customer, tester)

• description of problem

• who found

• version

• error messages/symptoms

• Analyst

• cause

• affected components/
subsystems

• effort estimation

• Manager

• decision fix/postpone/
drop

• target release

• responsible developer

• Developer

• actions taken

• affected files

• release notes

• actual effort

• Tester

• retesting

• regression testing

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

Correct Level of CM
• Depends on many factors, e.g.

• size of team

• criticality of software

• risk

• scope of change

• criticality of change

• release process

• ...

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

Build Management

• The manufacturing process for software

• Selecting the right sources for a build

• Performing the right steps

• Compiling only the necessary parts of the system
depending on what has been changed

• Typically automated

• make, ant, ...

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

Build Cycle
• Heartbeat of a project

• build and smoke-test e.g. daily

• show concrete progress

• Frequent builds and automated tests

• minimize integration risk

• reduce quality risk

• easier debugging

• improve morale

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

Status Accounting

• Making status of the development visible

• Is the developer finished with a file?

• Is a file reviewed?

• Is a CR rejected?

• Status reflects the lifecycle of a CR or bug report

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

Release Management

• About managing what gets released, under what
conditions, and to whom

• In product environments, release cycles are common

• E.g. major release every 1-3 years, yearly minor
updates, unscheduled (on a need basis) patch
releases (service packs)

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

Release Classifications

• Alpha release

• Beta release

• Final release

• Update and upgrade release

• Patches and emergency fixes

AB HELSINKI UNIVERSITY OF TECHNOLOGY Casper Lassenius

Distribution of Releases
• Physical media

• CD ROM, DVD, tapes, chips

• Networked media

• Internet

• NFS

• Software as a service

• Not installed on client computers, but site
upgraded

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Questions?

