
 1

SOFTWARE ENGINEERING

Staffing Level Estimation and Scheduling

Staffing level estimation

Once the effort required to develop a software has been determined, it is necessary to determine the staffing
requirement for the project. Putnam first studied the problem of what should be a proper staffing pattern for
software projects. He extended the work of Norden who had earlier investigated the staffing pattern of
research and development (R&D) type of projects. In order to appreciate the staffing pattern of software
projects, Norden’s and Putnam’s results must be understood.

Norden’s Work

Norden studied the staffing patterns of several R & D projects. He found that the staffing pattern can be
approximated by the Rayleigh distribution curve as shown in the figure. Norden represented the Rayleigh
curve by the following equation:

E = K/t²
d
* t * e

-t² / 2 t²d

Where E is the effort required at time t. E is an indication of the number of engineers (or the staffing level) at
any particular time during the duration of the project, K is the area under the curve, and t

d
is the time at which

the curve attains its maximum value. It must be remembered that the results of Norden are applicable to
general R & D projects and were not meant to model the staffing pattern of software development projects.

 Rayleigh curve

Putnam’s Work

Putnam studied the problem of staffing of software projects and found that the software development has
characteristics very similar to other R & D projects studied by Norden and that the Rayleigh-Norden curve
can be used to relate the number of delivered lines of code to the effort and the time required to develop the
project. By analyzing a large number of army projects, Putnam derived the following expression:

 L = C
k
K
1/3

t
d

4/3

 2

The various terms of this expression are as follows:

• K is the total effort expended (in PM) in the product development and L is the product size in KLOC.

• t
d
corresponds to the time of system and integration testing. Therefore, t

d
can be approximately considered as the time

required to develop the software.

• C
k
is the state of technology constant and reflects constraints that impede the progress of the programmer. Typical

values of C
k
= 2 for poor development environment (no methodology, poor documentation, and review, etc.), C

k
= 8

for good software development environment (software engineering principles are adhered to), C
k
= 11 for an excellent

environment (in addition to following software engineering principles, automated tools and techniques are used). The

exact value of C
k
for a specific project can be computed from the historical data of the organization developing it.

Putnam suggested that optimal staff build-up on a project should follow the Rayleigh curve. Only a small
number of engineers are needed at the beginning of a project to carry out planning and specification tasks.
As the project progresses and more detailed work is required, the number of engineers reaches a peak. After
implementation and unit testing, the number of project staff falls.
However, the staff build-up should not be carried out in large installments. The team size should either be
increased or decreased slowly whenever required to match the Rayleigh-Norden curve. Experience shows
that a very rapid build up of project staff any time during the project development correlates with schedule
slippage.
It should be clear that a constant level of manpower through out the project duration would lead to wastage
of effort and increase the time and effort required to develop the product. If a constant number of engineers
are used over all the phases of a project, some phases would be overstaffed and the other phases would be
understaffed causing inefficient use of manpower, leading to schedule slippage and increase in cost.

Effect of schedule change on cost

By analyzing a large number of army projects, Putnam derived the following expression:

L = CkK
1/3
td
4/3

Where, K is the total effort expended (in PM) in the product development and L is the product size in KLOC,
t
d
corresponds to the time of system and integration testing and C

k
is the state of technology constant and

reflects constraints that impede the progress of the programmer
Now by using the above expression it is obtained that,

 (as project development effort is equally proportional to project development cost)
From the above expression, it can be easily observed that when the schedule of a project is compressed, the
required development effort as well as project development cost increases in proportion to the fourth power
of the degree of compression. It means that a relatively small compression in delivery schedule can result in
substantial penalty of human effort as well as development cost. For example, if the estimated development
time is 1 year, then in order to develop the product in 6 months, the total effort required to develop the
product (and hence the project cost) increases 16 times.

 3

Project scheduling

Project-task scheduling is an important project planning activity. It involves deciding which tasks would be
taken up when. In order to schedule the project activities, a software project manager needs to do the
following:

1. Identify all the tasks needed to complete the project.

2. Break down large tasks into small activities.

3. Determine the dependency among different activities.

4. Establish the most likely estimates for the time durations necessary to complete the activities.

5. Allocate resources to activities.

6. Plan the starting and ending dates for various activities.

7. Determine the critical path. A critical path is the chain of activities that determines the duration of

the project.

The first step in scheduling a software project involves identifying all the tasks necessary to complete the
project. A good knowledge of the intricacies of the project and the development process helps the managers
to effectively identify the important tasks of the project. Next, the large tasks are broken down into a logical
set of small activities which would be assigned to different engineers. The work breakdown structure
formalism helps the manager to breakdown the tasks systematically.

After the project manager has broken down the tasks and created the work breakdown structure, he has to
find the dependency among the activities. Dependency among the different activities determines the order in
which the different activities would be carried out. If an activity A requires the results of another activity B,
then activity A must be scheduled after activity B. In general, the task dependencies define a partial ordering
among tasks, i.e. each tasks may precede a subset of other tasks, but some tasks might not have any
precedence ordering defined between them (called concurrent task). The dependency among the activities
are represented in the form of an activity network.
Once the activity network representation has been worked out, resources are allocated to each activity.
Resource allocation is typically done using a Gantt chart. After resource allocation is done, a PERT chart
representation is developed. The PERT chart representation is suitable for program monitoring and control.
For task scheduling, the project manager needs to decompose the project tasks into a set of activities. The
time frame when each activity is to be performed is to be determined. The end of each activity is called
milestone. The project manager tracks the progress of a project by monitoring the timely completion of the
milestones. If he observes that the milestones start getting delayed, then he has to carefully control the
activities, so that the overall deadline can still be met.

 4

Work breakdown structure

Work Breakdown Structure (WBS) is used to decompose a given task set recursively into small activities.
WBS provides a notation for representing the major tasks need to be carried out in order to solve a problem.
The root of the tree is labeled by the problem name. Each node of the tree is broken down into smaller
activities that are made the children of the node. Each activity is recursively decomposed into smaller sub-
activities until at the leaf level, the activities requires approximately two weeks to develop. The figure below
represents the WBS of an MIS (Management Information System) software.
While breaking down a task into smaller tasks, the manager has to make some hard decisions. If a task is
broken down into large number of very small activities, these can be carried out independently. Thus, it
becomes possible to develop the product faster (with the help of additional manpower). Therefore, to be able
to complete a project in the least amount of time, the manager needs to break large tasks into smaller ones,
expecting to find more parallelism. However, it is not useful to subdivide tasks into units which take less than
a week or two to execute. Very fine subdivision means that a disproportionate amount of time must be spent
on preparing and revising various charts.

 Work breakdown structure of an MIS problem

 5

Activity networks and critical path method

WBS representation of a project is transformed into an activity network by representing activities identified in
WBS along with their interdependencies. An activity network shows the different activities making up a
project, their estimated durations, and interdependencies as shown in the figure. Each activity is represented
by a rectangular node and the duration of the activity is shown alongside each task.
Managers can estimate the time durations for the different tasks in several ways. One possibility is that they
can empirically assign durations to different tasks. This however is not a good idea, because software
engineers often resent such unilateral decisions. A possible alternative is to let engineer himself estimate the
time for an activity he can assigned to. However, some managers prefer to estimate the time for various
activities themselves. Many managers believe that an aggressive schedule motivates the engineers to do a
better and faster job. However, careful experiments have shown that unrealistically aggressive schedules not
only cause engineers to compromise on intangible quality aspects, but also are a cause for schedule delays.
A good way to achieve accurately in estimation of the task durations without creating undue schedule
pressures is to have people set their own schedules.

 Activity network representation of the MIS problem

 6

Critical Path Method (CPM)

From the activity network representation following analysis can be made. The minimum time (MT) to
complete the project is the maximum of all paths from start to finish.

The earliest start (ES) time of a task is the maximum of all paths from the start to the task.

The latest start time is the difference between MT and the maximum of all paths from this task to the finish.

The earliest finish time (EF) of a task is the sum of the earliest start time of the task and the duration of the
task.

The latest finish (LF) time of a task can be obtained by subtracting maximum of all paths from this task to
finish from MT.

The slack time (ST) is LS – EF and equivalently can be written as LF – EF. The slack time (or float time) is
the total time that a task may be delayed before it will affect the end time of the project. The slack time
indicates the “flexibility” in starting and completion of tasks. A critical task is one with a zero slack time. A
path from the start node to the finish node containing only critical tasks is called a critical path. These
parameters for different tasks for the MIS problem are shown in the following table.

The critical paths are all the paths whose duration equals MT. The critical path in figure is shown with a blue
arrow.

 7

Gantt chart

Gantt charts are mainly used to allocate resources to activities. The resources allocated to activities include
staff, hardware, and software. Gantt charts (named after its developer Henry Gantt) are useful for resource
planning. A Gantt chart is a special type of bar chart where each bar represents an activity. The bars are
drawn along a time line. The length of each bar is proportional to the duration of time planned for the
corresponding activity.
Gantt charts are used in software project management are actually an enhanced version of the standard
Gantt charts. In the Gantt charts used for software project management, each bar consists of a white part
and a shaded part. The shaded part of the bar shows the length of time each task is estimated to take. The
white part shows the slack time, that is, the latest time by which a task must be finished. A Gantt chart
representation for the MIS problem of previous figure is shown in the figure below.

 Gantt chart representation of the MIS problem

 8

PERT chart

PERT (Project Evaluation and Review Technique) charts consist of a network of boxes and arrows. The
boxes represent activities and the arrows represent task dependencies. PERT chart represents the statistical
variations in the project estimates assuming a normal distribution. Thus, in a PERT chart instead of making a
single estimate for each task, pessimistic, likely, and optimistic estimates are made. The boxes of PERT
charts are usually annotated with the pessimistic, likely, and optimistic estimates for every task. Since all
possible completion times between the minimum and maximum duration for every task has to be considered,
there are not one but many critical paths, depending on the permutations of the estimates for each task. This
makes critical path analysis in PERT charts very complex. A critical path in a PERT chart is shown by using
thicker arrows. The PERT chart representation of the MIS problem of previous figure is shown in figure
below. PERT charts are a more sophisticated form of activity chart. In activity diagrams only the estimated
task durations are represented. Since, the actual durations might vary from the estimated durations, the utility
of the activity diagrams are limited.
Gantt chart representation of a project schedule is helpful in planning the utilization of resources, while PERT
chart is useful for monitoring the timely progress of activities. Also, it is easier to identify parallel activities in a
project using a PERT chart. Project managers need to identify the parallel activities in a project for
assignment to different engineers.

PERT chart representation of the MIS problem

