
Software FMEA Toolkit
Tutorial

Ann Marie Neufelder

SoftRel, LLC

www.softrel.com

amneufelder@softrel.com

© Softrel, LLC 2016

This presentation may not be copied in part or in
whole without written permission from Ann Marie

Neufelder

http://www.softrel.com/
mailto:amneufelder@softrel.com

Help
Every worksheet has at least one online help file link to guide you through the
toolkit.

Additional resources

• Your toolkit has online help for every worksheet

• Each worksheet has “call outs” to guide you

• The toolkit has been designed to work with the separately sold book

"Effective Application of Software Failure Modes Effects Analysis"

http://link.quanterion.net/email/?id=Q23344&url=00087

Step 1. Get started
The toolkit is a macro enabled spreadsheet

Opening the toolkit
• Prior to launching the software reliability toolkit you must

• Have a recent version of Microsoft Excel

• Make sure that the zip file is unzipped to c:/SWFT folder (note the files that should be
extracted in the below figure)

• Enable macros in Microsoft Excel

• Activate the license

• Then launch the toolkit by simply selecting the macro enabled file and
opening it with Microsoft Excel

Copying the toolkit
• The “Save As” is not an allowed feature for the toolkit so to create multiple SFMEAs

from template use the File Manager to copy and paste.

• As shown below the SFMEA Template v4.2 was copied to another template for
“project a”.

• You can make as many templates as you like as long as they remain in the SWFT folder.

Copyright

• The toolkit is a single user/computer license.

• Read the Copyright notice

• If you see only the Copyright worksheet when you open the toolkit
then you haven’t enabled the macros.

Overview of the SFMEA

• The Overview page summarizes the rest of the toolkit

• Each step of the SFMEA is presented in order from left to right in
each of the toolkit worksheets

Step 2. Prepare the SFMEA
Define the scope and resources and tailor the SFMEA template

Prepare the SFMEA

2.1 Define Scope
• Identify the applicability
• Identify riskiest parts of the software
• Identify most relevant viewpoints

2.2 Identify resources
• Gather artifacts
• Identify the right people
• Decide selection scheme

2.3 Tailor the SFMEA
• Set ground rules
• Define likelihood and severity
• Select template and tools

2.1 Identify the scope

• Identify all of the software components in the system

• Identify the safety rating of each component

• Identify the mission impact of each component

• Identify the development risk – how problematic the particular code has
been or is expected to be

• Identify the applicable viewpoints for each component. The choices are
functional, interface, detailed, maintenance, usability, serviceability,
vulnerability and production

• Identify which components are in scope for this SFMEA and which ones
are not

Identify resources
• Depending on the viewpoint selected, different artifacts are required for

the analysis. Highlight the required artifacts from the below table. As
shown here, either the System Requirements Spec or the Software
requirements Spec is required for the functional SFMEA.

Identify the right people

• Identify who will be performing the SFMEA. Ensure that there are
appropriate subject matter experts for the selected viewpoints. For
example, the detailed, maintenance and vulnerability viewpoints
require at least one software engineer to be involved with the SFMEA
construction.

Set the ground rules

• Review the ground rules
and make decisions for
this SFMEA with regards
to consideration of
• human error

• interface chains

• network availability

• speed/throughput.

Identify severity and likelihood

• Identifying the severity and likelihood ratings is the easy part

• Identifying concrete definitions of each is the difficult part

• The FDSC (Failure Definition Scoring Criteria) is a great way to assign specific
program specific events to the severity levels. Identifying these up front can
minimize time spent later in the analysis.

Import the artifacts into the template

The SFMEA process is much easier when the artifacts are copied or
imported into the template. In the above example, the SRS and
Software architecture design is needed for the functional FMEA. These
statements (and even pictures) should be copied in. Bold the
requirements that are in scope for the SFMEA.

Step 3. Analyze failure modes
and root causes
Your toolkit comes with hundreds of software failure modes and root causes

Analyze failure modes and root causes

•Brainstorm failure modes

•Analyze failure modes and root causes for each of
the in scope SFMEA viewpoints
• Functional

• Interface
• Detailed
• Maintenance
• Usability
• Serviceability
• Vulnerability
• Production

• Your toolkit is populated with hundreds of failure
modes and root causes

Brainstorm Failure modes

• The toolkit is packaged with hundreds of failure mode/root cause
pairs.

• However, you also have the ability to identify additional failure
modes or root causes.

Brainstorm Failure Modes

Once the failure modes and root causes are brainstormed they can be
typed directly into the SW Failure Modes worksheet. This will allow
those user defined failure modes/root causes to be included in the
pull-down menus.

Functional (SRS) SFMEA viewpoint

The Functional SRS worksheet is pre-populated with a template.

There are “call outs” to guide you in setting up the SFMEA.

First, copy in all of the in scope software requirements statements so
that each one has it’s own area.

Any related requirements are also copied in.

Functional (SRS) SFMEA viewpoint

In the event that you don’t wish to use the built in template, the failure
modes are selectable with the pulldown menu.

Functional (SRS) SFMEA viewpoint

The root causes are also selectable with a pull down menu. If you add
root causes in the Brainstorm worksheet these will appear in the
pulldown menus.

Functional SRS Example

This example shows one requirement and the associated failure modes
and root causes. Each in scope SRS statement would have a section
similar to the above.

Interface SFMEA

• The Interface SFMEA viewpoint has a slightly different template than the functional
SFMEA since it is focused on the interface between 2 software components or between
a software/hardware component

• From the interface design specification enter in the variable ID, type of interface, type
size, default value, minimum value, maximum value and applicable unit of measure.

• If these items are not in the IDS that, in itself, can indicate a potential failure mode.

• The Interface SFMEA has it’s own set of built in failure modes and root causes that
apply to the interface viewpoint.

Detailed SFMEA

• The Detailed SFMEA viewpoint has a slightly different template than the functional
SFMEA since it is focused on the detailed design of a particular component.

• First the analyst needs to identify what is relevant for this particular function, module or
class. Data, exception handling, functionality and memory are always relevant. A
function may or may not have logic, algorithms, comparison operators, or sequences.

• For each particular function, delete the characteristics that don’t apply to that function.
Then explore the failure modes and root causes that pertain to the relevant
characteristics of the function.

Maintenance SFMEA

• The Maintenance SFMEA template is exactly like the detailed SFMEA
template.

• Except that the focus is on the detailed design or code that has CHANGED
since the last established baseline.

• It’s best to copy in the detailed design or code and highlight the changes in
another color or font. Then analyze what can go wrong with the change.

Usability SFMEA

• The usability SFMEA focuses on the use cases and what can go wrong
when there are humans interfacing with the software.

• Copy in each of the in scope use cases and analyze each one, one at a
time. The template has pre-populated failure modes and root
causes.

• Delete the failure modes and root causes that aren’t relevant to a
particular use case. Analyze the remainder.

Serviceability SFMEA

• The serviceability SFMEA focuses on the installation and upgrades of the
software. This can be particular critical for software that is mass deployed or
software that is deployed to geographically difficult to reach areas.

• The two basic reasons that installations or upgrades fail is
• The installation is too difficult for someone other than a software engineer to do

• The installation has faulty install scripts

• There are numerous root causes for these failure modes which are contained
in the pre-populated pull-down menus.

Vulnerability SFMEA

• The vulnerability SFMEA focuses on the detailed design and code as well as
use cases. Note that there are many other vulnerabilities. However, this
SFMEA focuses on those that are related to the design or code.

• The design/code related vulnerability related failure modes are listed. There
are many Common Weakness Entries (CWE) for each of the failure modes.

Production SFMEA

• The Production SFMEA is the only viewpoint that focuses on the processes
that produce the software as opposed to the software product itself.

• The key failure modes related to production, such as faulty scheduling and
staffing are listed as well as numerous root causes for each failure mode.

Step 4. Identify Consequences
Identify the effects on the software and the system and any preventive measures

Identify Consequences

Once the failure modes and root causes are analyzed, scroll to the right to
analyze the effects on the software (local) and system. If there are any
measures to prevent the failure mode, identify.

Tip: It’s usually best to analyze all of the effects and preventive measures first
and then analyze the severity and likelihood in one last pass.

The Risk Probability Number (RPN) is automatically calculated.

Step 5. Identify Mitigations
Identify corrective actions, compensating provisions and revised RPN

Identify Mitigations

Once the consequences are identified, scroll to the right to analyze the
corrective actions. If there are compensating provisions then identify those.
Re-assess the severity and likelihood once the corrective actions are
approved.

Corrective actions include but aren’t limited to changing the requirements,
design, code, test plan, user manual, installation guide, use case, etc.

