
2015 IADC Critical Issues Asia Pacific Conference

Page 1 of 16
Proceedings

Proceedings for the International Association Of Drilling Contractors (IADC)
2015 Critical Issues Asia Pacific November 18-19, 2nd edition

Software FMECA: A proposed approach applied to BOP control systems

Patrick Rossi

Approval Centre East Asia
DNV GL

Busan, Korea
patrick.rossi@dnvgl.com

Abstract− Provisions within offshore rules
and standards address practically all stages of
hardware component life cycles of complex
control systems, but relatively little towards
software reliability. More guidance is needed
on how to approach software alongside
hardware in Failure Modes and Criticality
Analysis of software dependent control
systems for the offshore oil & gas industry.
Recently DNV has performed software
FMECAs on BOP control systems using
techniques that enable software components
to be assessed alongside hardware
components using a common risk criticality
calculation matrix. These FMECAs have
shown to be useful in identifying hidden
failure modes that would otherwise have been
missed in the usual industry practice which
often limits the consideration of software by
targeting the hardware failure modes of
components hosting the software (e.g. CPU)
rather than the software components
themselves (e.g. Function Block, library,
critical software routines within the code,

etc.). DNV’s approach lead to software design
decisions and new test cases being added to
the testing program. These additions reduced
and mitigated risks of software failure modes
thus increasing the robustness of the BOP
control systems. This approach involves
reverse engineering of topology information,
understanding the mechanisms of software
failure modes and identifying unforeseen
software consequences of hardware failure
modes. Although the primary target of this
paper are designers of well control systems, it
is likely that most other offshore control
system engineers will find the approach
presented and examples of software failure
modes to be useful in their future efforts for
improved software dependent system
reliability.

Key Words– Software Reliability, Software
Failure Mode and Effects Analysis

2015 IADC Critical Issues Asia Pacific Conference

Page 2 of 16
Proceedings

Proceedings for the International Association Of Drilling Contractors (IADC)
2015 Critical Issues Asia Pacific November 18-19, 2nd edition

Contents	

1.	 INTRODUCTION	..	3	

2.	 Objective	..	4	

3.	 Approach	..	4	

3.1.	 Mapping the software to the system scope	...	4	

3.2.	 Prepopulating the FMECA table	..	7	

3.3.	 Narrowing down the Fundamental SPFMs	...	8	

3.4.	 Mapping the software probability of failure to a common HW & SW risk/criticality matrix	8	

3.5.	 Mutual effects of SW/HW failures	...	10	

3.6.	 Breaking down of critical functions	...	10	

3.7.	 Analyzing HMI failure modes	..	10	

3.8.	 Determination and tracking of mitigation actions	..	11	

4.	 SPFMs found during BOP SFMECAs	...	11	

5.	 Discussion	..	12	

6.	 Conclusion	..	13	

7.	 Acknowledgements	..	13	

8.	 Definitions	..	13	

8.1.	 Terms	..	13	

8.2.	 Abbreviations	...	15	

9.	 References	..	15	

2015 IADC Critical Issues Asia Pacific Conference

Page 3 of 16
Proceedings

Proceedings for the International Association Of Drilling Contractors (IADC)
2015 Critical Issues Asia Pacific November 18-19, 2nd edition

1. INTRODUCTION
As oil resources are increasingly difficult to
access, oil companies are driven towards deeper
waters, harsher weather down to moving
production equipment on the seabed for deep-
water unmanned and fully automated oil
production facilities. These solutions are
increasingly dependent on the extensive use of
software.

Safety analysis studies are performed in the
early phases of newbuild projects in order to
increase the reliability of these critical systems
and techniques have been standardized to help
the industry maintain risks of system failure to a
minimum.

However when it comes to the offshore
standards, there is much more focus on hardware
than software reliability. Provisions within
offshore rules and standards address practically
all stages of hardware component life cycles
ranging from single component design to the
integration and commissioning of complex
control systems onboard drilling vessels.

The different focus level on software reliability
versus hardware reliability may be in part due to
the abstract and intangible nature of software
making it more difficult to instinctively identify
software as being components that merit just as
much attention and rigor as do the hardware
components of the offshore industry.

Lately Hyundai Heavy Industry shipbuilding
division has also recognized that up until
recently software has been somewhat neglected
in their usual Newbuild project lifecycle [1].

Another reason for the difference in focus could
be attributed to the lack of guidance on software
reliability in this industry. This in turn leads to a
lack of consideration of software during system
safety and reliability analysis studies. Failure
Mode and Criticality Analysis (FMECA)

techniques have been standardized in IEC 60812
and referenced in offshore standards, yet little
guidance can be found on how to treat software
components during the analysis. Since hardware
failure modes (e.g. bursting of gas pipe) are
often mitigated by software functions (e.g.
Emergency System Disconnect (ESD)), and
software failure modes (e.g. fail to close valve
command) are often mitigated by hardware
components (e.g. redundant controller, or local
manual operation), one could expect that both
hardware and software system component
failures would be assessed during FMECAs,
however this is not a common practice in this
industry.

Recently Det Norske Veritas (DNV) has
performed software FMECAs on Blow Out
Preventer (BOP) control systems using
techniques that enable software components to
be assessed alongside hardware components
using a common risk calculation matrix.

These FMECAs have shown to be useful in
identifying hidden failure modes that would
otherwise have been missed in the usual industry
practice. DNV’s approach lead to software
design decisions and extra system test cases that
were added to the testing program. These
additions reduced and mitigated risks of
software failure modes thus increasing the
robustness of the BOP control systems.

This paper provides guidance on how to
approach software alongside hardware in Failure
Modes and Criticality Analysis of software
dependent control systems for the offshore oil &
gas industry by reverse engineering software
topology information, understanding the
mechanisms of software failure modes and
identifying unforeseen software consequences of
hardware failure modes. Although the primary
target of this paper are designers of well control
systems, it is likely that most other offshore
control system engineers will find the approach

2015 IADC Critical Issues Asia Pacific Conference

Page 4 of 16
Proceedings

Proceedings for the International Association Of Drilling Contractors (IADC)
2015 Critical Issues Asia Pacific November 18-19, 2nd edition

presented and examples of software failure
modes to be useful in their future efforts for
improved software dependent system reliability.

2. Objective
While compliance to regulatory requirement to
perform a System Failure Mode and Effects
analysis (FMEA) are often the main driver
behind the investments for conducting safety
analysis studies, the methodology presented in
this paper aims to help improve the reliability of
the software dependent system and reduce costs
by discovering design faults early in the life
cycle phases. The proposed approach for
Software FMECA (SFMECA) will ultimately
drive both product and process improvements.
Product improvements because design changes
are part of the possible mitigation actions, and
process improvements because a SFMECA is a
great tool for enhancing the test programs.

3. Approach
The key elements of the FMECA analysis
generally follows the following steps (IEC
60300-3-1:2003 - A.1.7.3):

• identification of how the component of
system should perform;

• identification of potential failure modes,
effects and causes;

• identification of risk related to failure
modes and its effects;

• identification of recommended actions
to eliminate or reduce the risk;

• follow-up actions to close out the
recommended actions.

In this paper the standard FMECA approach is not
presented in its entirety (see IEC 60812). This
paper will instead focus on the extension of the
usual practice of applying FMECA process to
hardware by adding Software Potential Failure
Modes (SPFMs) to the analysis. We will start by

first addressing key aspects of the preparation
work followed by the suggested steps of a
SFMECA workshop. Lastly we will touch upon
some important considerations to keep in mind
during the process and present some examples of
the types of failure modes that have been identified
applying this approach on BOP control systems.

3.1. Mapping the software to the
system scope

In this paper we will assume that the system
boundaries have already been determined so the
next step would be to prepare the FMECA
worksheet. In order to prepopulate the FMECA
table with software components and functions,
the system design information needs to be
assessed:

• What are the functions, especially
critical functions?

• Where will the software be executed and
data transmitted (Programmable Logic
Controllers (PLC), Central Processing
Units (CPU), Switches, Input/Output
(I/O) modules)?

• What are the different software
packages to be deployed?

• How do the software packages
communicate with the outside world and
with each other (interfaces, protocols)?

These questions lead to the identification of the
necessary information that will be needed as
inputs to the SFMECA such as functional design
specifications, electrical and communication
drawings, software architecture and/or topology.

A common problem in the offshore industry is
that software design information is not always
available or completed during the usual design
phase of the newbuild project lifecycle; either
the system is novel or the available software
developed by the suppliers of control systems
lacks traceability to software design information

2015 IADC Critical Issues Asia Pacific Conference

Page 5 of 16
Proceedings

Proceedings for the International Association Of Drilling Contractors (IADC)
2015 Critical Issues Asia Pacific November 18-19, 2nd edition

such as a software architecture or topology. The
topology should be pre-existing; however as a
backup this can easily be reverse engineered by
using the existing knowledge of the types of
software to be deployed and any available
electrical and communications drawings.	 For
example let’s imagine that the diagram in Figure
1 is actually an electrical/communication
drawing representing the scope of the distributed
PLC & Computer based BOP control system
(sensors, grounding, power, pushbuttons and x-
interfaces, etc. have been left-out for simplicity).

(Step 1) The first thing we would need to do is
identify all CPUs, PLCs, Switches & I/O
modules on which the software will be running
(Windows, Siemens Step-7, PLC application
software & Firmware; etc.). The idea here is to
identify all the CPUs and microprocessors
within the electrical and communications
drawings. If there is a CPU on these drawings,
chances are that there will be software running
on it. Figure 1 shows an example of tagged
CPUs, PLCs, I/O Modules & Switches on a
given drawing:

Figure 1: Example of drawing on which CPUs, I/O modules and Switches are identified

I/O

DP PLC
CPU

Switch

DP PC CPU

Touch
screen

I/O

TP PLC
CPU

Switch

TP PC CPU

Touch
screen

I/O

MUD PLC
CPU

Switch

I/O

DIV PLC
CPU

Switch

I/O

ETHERNET CABLE

PROFIBUS CABLE

ETHERNET CABLE

ETH
ER

N
ET C

A
B
LE

ETH
ER

N
ET

ETH
ER

N
ET

B
U

S

B
U

S

B
U

S

B
U

S

DRILLER PANEL

DIVERTER PANEL

TOOLPUSHER PANEL

MUD CTRL PANEL

HPU PANEL

2015 IADC Critical Issues Asia Pacific Conference

Page 6 of 16
Proceedings

Proceedings for the International Association Of Drilling Contractors (IADC)
2015 Critical Issues Asia Pacific November 18-19, 2nd edition

(Step 2) Once we have identified all the
hardware on which software will be running
and/or transmitting, we will need to list all
software packages, firmware and operating
systems to be deployed on this hardware. For
example we might be aiming to deploy
Windows, Siemens Step-7, Original Equipment
Manufacturer (OEM) firmware, the PLC
application software, (e.g. BOP stack control,
HPU control, etc.). (Step 3) The next step is to

retrace the communication links and protocols
and build the software topology by mapping the
identified software in (Step 2) to the hardware
identified in (Step 1) and sequentially
numbering the Software Components (SC) in the
resulting topology (sc.#..). (Step 4) Lastly we
shall ensure that we have accounted for all the
known software functions by allocating them to
the software topology created in (step 3) such as
the example shown in Figure 2 :

Figure 2: Example of software topology (right) reversed engineered from electrical and communications drawings

An effective way to ensure that all of the
software functions have been accounted for is to
use a requirements traceability matrix that traces
all the requirements through the design
information and down to the test cases; adding a
column referencing the software components
identified on the software topology (sc.#___)
helps to then sort the traceability matrix table in

order to list all software functions within a given
component. If no requirements traceability
matrix is available then the facilitator should
mark-off each section of the design
documentation describing software functions
and reference which software component hosts
the given function within the design
documentation.

Functional Specs

SW FunctionsRequirements

2015 IADC Critical Issues Asia Pacific Conference

Page 7 of 16
Proceedings

Proceedings for the International Association Of Drilling Contractors (IADC)
2015 Critical Issues Asia Pacific November 18-19, 2nd edition

3.2. Prepopulating the FMECA
table

An another important step of the preparation
process will be to address the appropriate level
of granularity; that is the lowest functional level
on which failure mode analysis will later be
performed. Too high of a level will not produce
much more added value than a pure hardware
FMECA, and too low of a level of detail will
swamp the team with tedious repetitive work

that will have an adverse effect on the team’s
participation. That said the level of granularity
will depend on the level of available information;
as a rule of thumb we will use the lowest level of
functions described in the functional design
specifications such as valve commands,
interlocks, Emergency Disconnect System (EDS)
sequences, Human Machine Interface (HMI)
functions, watchdogs, etc. Table 1 shows an
example of a prepopulated SFMECA table and
details the level of granularity up to the failure
modes:

Table 1: Example of a prepopulated SFMECA table

ID Function/Item Purpose of
function/item FAILURE MODE CAUSE LOCAL

EFFECT
GLOBAL
EFFECT

CURRENT SAFEGUARDS
/ MITIGATING

ACTIONS

FAILURE
DETECTION TY

P
E

C
O

N
S

P
R

O
B

R
IS

K Mitigation
action

1 Driller’s panel

1.1 DP-PLC CPU … No processing HW
Failure

Virus Loss of
PLC

Loss of
functions Antivirus policy Alarm USB

limitations

1.1.1 BOP Stack Control
(SW component)

Reference to SW
topology #sc.7

Delayed output
No output

Spurious output
Wrong output

1.1.1.1 LMRP Unlatch
(SW function)

Reference to
requirement/spec

chapter

Delayed output
No output

Spurious output
Wrong output

1.1.1.2
Close Blind Shear

Ram
(SW function)

Reference to
requirement/spec

chapter

Delayed output
No output

Spurious output
Wrong output

1.1.1.3 EDS
(SW function)

Reference to
requirement/spec

chapter

Delayed output
No output

Spurious output
Wrong output

… … … …

2015 IADC Critical Issues Asia Pacific Conference

Page 8 of 16
Proceedings

Proceedings for the International Association Of Drilling Contractors (IADC)
2015 Critical Issues Asia Pacific November 18-19, 2nd edition

3.3. Narrowing down the
Fundamental SPFMs

Prepopulating failure modes with a narrowed
down number of types of failure modes will
greatly reduce the vast realm of SPFMs and will
save you time consuming discussions during the
workshop. The need for narrowing down the
potential failure modes has also been discussed
in standards and literature [2, 3, 4, 5]. In this
approach we propose to narrow down the
SPFMs to four (4) fundamental types of
software failures:

During the workshop we will eliminate SPFMs
depending on their relevance and the function’s
criticality. Also the facilitator should pay
attention to team’s reaction; if the SPFM does
not trigger interest then it can simply be deleted,
otherwise when the team is in doubt or
demonstrates interest then it should be kept in.

3.4. Mapping the software
probability of failure to a
common HW & SW
risk/criticality matrix

Software by itself is harmless; it is only when
uploaded to microcontrollers and other CPUs
controlling physical elements that their failures can
lead to consequences in the physical world. This
means that ultimately the consequences of software
failures will lead to the same as for the hardware
failures. Therefore the difficulty of using a common
risk/criticality calculation matrix is not in
determining the consequence categories but rather in
mapping the scale of probabilities of failure. For
hardware we usually dispose of manufacturer data

and field experience but for software the problem is
different. This approach proposes a simple and easy
to use method of mapping the software probability of
failure scale to the hardware scale that we will
assume has already been determined for the usual
hardware FMECA workshop. To do this we propose
three criteria joined by a fourth overriding one:

• Technology robustness: for example
Windows based technology is known to
have a higher failure rate than PLC based
technology…

• Logic complexity: the correlation between
the logic complexity and defect-prone
software has been validated in the literature
[6, 7, 8]; when assessing a SPFM for its
probability of failure, invite the software
engineers to categorise the software
function’s complexity (e.g.: straight forward
logic, medium or complex).

• Proven in use: when a software module or
function has been proven in use and is not
subject to any modification for the target
system under analysis, the probability of
failure can be lowered as the software
defects are more likely to have been
identified and removed throughout the years
of its use in the industry. On the other
hand when a known software function is to
be tailored or modified, then new software
defects may be introduced during its
modification and the probability of failure
increases in turn. For this reason, any
alteration to reused software should
disqualify it as being “proven in use”, in
other words altered software should not be
considered as proven in use.

• SMEs’ field experience: lastly the
probability of failure can be overridden by
the SMEs depending on the team’s
discussions as they may have field
experience on known failure modes of
certain software packages etc.

In the example below we have used the above criteria
to create a scale of 1 to 5 which maps to the scale of
hardware failure probabilities:

Delayed output

No output

Spurious output

Wrong output

Software

component/function
(Fundam

ental S
PFM

)

2015 IADC Critical Issues Asia Pacific Conference

Page 9 of 16
Proceedings

Proceedings for the International Association Of Drilling Contractors (IADC)
2015 Critical Issues Asia Pacific November 18-19, 2nd edition

Figure 3: Mapping the software probability of failure scale alongside the hardware provides a common risk/criticality
calculation matrix

Probability

Software Category
PLC (‘Limited
variability’)

‘Windows’
based

Straight forward logic 1 2
Complex logic, but not altered/Straight forward but altered* logic 2 3
Complex and altered logic 3 4
Complex and newly developed 4 5

No/Minor Moderate Major 1-3 Multiple
Opportun

istic
Stop /

Intervene

1-3 days
of

downtime

3-10
days of

downtime

>10
days of

downtime
< $25k $25-$1M $1M- $10M- >$100M

1 2 3 4 5

Improbable
Never heard of in Oil & Gas Industry; 1×10 (̂-4)
Mean time to failure ~= 10,000 years

1 L L L L M

Remote
Has occurred in Oil & Gas Industry; 1×10 (̂-3)
Mean time to failure ~= 1,000 years

2 L L M M M

Occasional
Has been experienced by most operators;
1×10 (̂-2); Mean time to failure ~= 100 years

3 L M M H H

Probable
Happens several times per year, per operator
1×10 (̂-1); Mean time to failure ~= 10 years

4 L M H H H

Frequent
Happens several times per year, per facility
1×10 (̂0); Mean time to failure ~= 1 year

5 M M H H H

Pr
ob

ab
ili

ty

TYPE OF CONSEQUENCE Consequence
S - Safety (Injuries)

P - Production Loss / Business Risk

F - Financial Loss / Capital Asset

2015 IADC Critical Issues Asia Pacific Conference

Page 10 of 16
Proceedings for the International Association Of Drilling Contractors (IADC)

2015 Critical Issues Asia Pacific November 18-19, 2nd edition

3.5. Mutual effects of SW/HW
failures

It is worthwhile to assess the mutual effects of
software and hardware failure modes. For
example software has been known to escalate
failure consequences in the past; a mechanical
failure of a limit switch lead to severe damage of
the equipment since the software misinterpreted
the actual position of the equipment during
critical manoeuvres. Designers of control
systems should consider:

• How will the equipment react to a given
software failure mode?

• How will the software react faced with a
hardware failure, loss of sensor,
erroneous sensor, sensor missing from
design, or faulty position of the
equipment?

• Are there common mode failures being
introduced by hardware redundancy
(redundant hardware running same
software…)?

These questions are useful in that they will bring
value and help elaborate on the failure
consequences during the breaking down of
critical function as seen in Figure 4.

3.6. Breaking down of critical
functions

On top of identifying and ranking SPFMs,
getting the SMEs to agree on a list of critical
software functions that require special attention
will also help capture interesting failure modes
and mitigation actions. As it is not practical to
test all theoretical branches of software
execution paths which run up to 2n paths where
n is the number of conditions within a function,
and if this function contains conditional loops
then the result may lead to an infinite number of
paths [6]. Inviting the team to also pre-select a

list of critical functions will help cover more
ground at a minor cost and will help keep the
teams’ attention fresh throughout the workshop.
The list of critical functions could look like EDS,
Safety critical functions, Regulatory sensitive
functions, etc.

Zooming-in and breaking down these critical
functions will help elaborate on the failure
consequences and identify mitigation actions.
One easy and intuitive way to do this is to draft
the flow chart of a function’s process flow and
analyze what would be the cascading
consequences of a function failing at a given
step while considering software interlocks,
timers, calls to libraries, detection of faulty
sensors, etc. Figure 4 shows an example of this:

Figure 4: Breaking down a critical function to elaborate
on the failure consequences

3.7. Analyzing HMI failure modes
When coming across mimics or screenshots of
HMIs within the design documents, existing or
to be developed, the facilitator should ask the
SMEs if there is logic embedded within the HMI
or Supervisory Control And Data Acquisition
(SCADA) that will be executed for a given
command/push button or if it is simply
requesting the execution of some program code
to be executed in a remote PLC for example.

Input
signal/start
command

step3

step5

Do these steps call to other
blocks of software? If so identify
where and reference the SW
component from SW topology
sc.#...

What if there is no response
back from these called
functions? How will the
software/hardware react?

What if these called functions
fail? How will the
software/hardware react?

step2

step4

step1

2015 IADC Critical Issues Asia Pacific Conference

Page 11 of 16
Proceedings for the International Association Of Drilling Contractors (IADC)

2015 Critical Issues Asia Pacific November 18-19, 2nd edition

This probing will help bring forward implicit
software functions (and SPFMs) executed within
the HMI/SCADA software that may otherwise
get overlooked. It is worth highlighting even if
an HMI is simply waiting for a return from
another code execution before completing a
sequence or giving back the command to the
operator; as we will show later in the examples,
crashing of the HMI at the wrong time can also
lead to serious undesired effects.

3.8. Determination and tracking of
mitigation actions

Risk mitigation actions aim to reduce the
consequences and probability of software
defects from surfacing during operations. The
implementation of the mitigation actions are
typically confirmed during software verification
and validation activities: design peer reviews,
software code peer reviews, unit testing, Factory
Acceptance Testing (FAT), Hardware In the
Loop (HIL) testing.

One temptation that must be avoided during the
workshop is to assume the mitigation actions to
be already in place. Members of the workshop
team may suggest lowering the probability of
failure of a SPFM because they are assuming the
suggested SPFM will already have been
discovered by the time the system is deployed,
because they are basing their assumption on the
fact that the software is scheduled for testing
before it leaves the factory. However the
probability of failure should not be lowered on

this basis, rather it should be kept as initially
determined, and if the resulting level of risk
requires action, then the action to include this
failure mode in the test program will be recorded
and tracked with the help of QA (rather than
assuming the future test program will address
the SPFM in question).

Mitigation actions must therefore be considered
as actions to be carried out and tracked via
documented evidence confirming that the
mitigating verification & validation activities
have been carried-out. Teaming-up with the
software quality assurance responsible will help
keep track of these actions. This is especially
important for new software as the likelihood of
failure of new software is at its maximum until
all verification and validation actions have been
carried-out, including testing of failure modes.

4. SPFMs found during BOP
SFMECAs

DNV has so far tested the proposed approach for
BOP control system FMECAs on three different
occasions. The approach has proven to be
effective in revealing SPFMs that would have
otherwise been overlooked during the normal
system FMECA. DNV was able to identify a
combined amount of 224 failure modes, 11 of
which were High risks, 22 were Medium and
191 were Low. The following Table 2 provides a
sample set of the types of software failure modes
and mutual effects from hardware failures that
have been identified using this approach:

2015 IADC Critical Issues Asia Pacific Conference

Page 12 of 16
Proceedings for the International Association Of Drilling Contractors (IADC)

2015 Critical Issues Asia Pacific November 18-19, 2nd edition

Table 2: Sample of software failure mode identified using the proposed SFMECA approach

The sample set given in Table 2 are examples of
the most significant risks that could later be
mitigated at a minor cost. The first half of the
table contains examples of software failure
modes while the second half contains hardware
failure modes for which consequences were
found to be aggravated by the software not being
designed to handle a given hardware failure.
Mitigation actions are shown to vary from
simple additions of time-out logic in the
software code to the implementation of software
watchdogs and additions of more situational
awareness logic also to be described in the
functional design specifications. In any case the
failure modes should be added to the testing
program(s) i.e. Unit, FAT & HIL testing where
applicable.

5. Discussion
The subjectivity of the approach discussed in
chapter 3.4 can be debated. One could see the
probability of failure scale of the hardware
aspect in Figure 3 as having a more

mathematical approach where failure categories
range from 1 X 10(-4) to 1 X 10(0). However the
determination of these categories is also very
subjective as they are deeply dependent on the
experience of the FMEA team. Furthermore, the
calculated risks are in practice subject to
arbitration since the team can also override the
result when it agrees to do so; for example if the
team is on the fence between choosing a failure
category, they can decide to tip the scale to the
highest level to ensure that the risk will mandate
a mitigation action if the team feels the need to
do so.

One limitation that has been observed is relation
to the maturity level of the software design
information. At the time of a SFMECA analysis,
a too low level of maturity could potentially be
in conflict with certain offshore rules. For
example NORSOK Z-013 states that the basis
for a risk analysis must be documented, which
would render the output of a premature system
FMEA to be non-compliant. However the
proposed methodology in this paper can be
applied even when software design information
is limited or available only in part. Therefore
despite the often low level of software design

FUNCTION/ITEM FAILURE MODE CAUSE GLOBAL EFFECT MITIGATION ACTION

Fluid recovery Unexpected
malfunction

Erroneous
SW

configuration
Stack malfunction

Display readback values to help identify wrong
configuration

Include default setpoints in commissioning procedure

HMI unlatch
function No output SW defect manual unlatch

impossible Implement time-out logic in interlock

SCADA No output SW defect

Unable to control
annular pressure

leading to collapse of
casing

Implement high pressure shutdown logic in PLC code,
addition of this failure mode in HIL testing program

EDS Spurious output SW defect Blowout Extensive testing of new logic, confirm achievement
of required SIL level (see IEC 61508)

I/O module No output HW failure
Gas, mud, wellbore
fluid discharge in

environment

Software implementation of failure handling logic and
alarm signaling loss of I/O module

Intrinsically safe
barriers No output HW failure Damage to pump Software implementation of alarm signaling loss of

barrier

SW valve
command

Unable to
complete
command

Mechanical
problem

Failure to unlatch,
Blowout, Discharge

into sea

Additional logic enabling SW interlock to be aware of
valve position at end of interlock sequence, SW

Functional spec to be updated.

2015 IADC Critical Issues Asia Pacific Conference

Page 13 of 16
Proceedings for the International Association Of Drilling Contractors (IADC)

2015 Critical Issues Asia Pacific November 18-19, 2nd edition

information or maturity in the design phase of
offshore drilling control systems, the SFMECA
will still drive the quality and reliability of the
system. A SFMECA update can always be
performed on the system once the software
design has been significantly updated.

6. Conclusion
As pointed-out in IEC 60812; a FMECA should
not be used as the single basis for judging
whether or not the risk of a system is acceptably
small. “[…] more influential parameters (and
their interactions) can be taken into account, e.g.
exposure time, probability of avoidance, latency
of failures, fault detection mechanisms”.
However this approach has been observed to add
value to the conventional methodology observed
in the offshore industry where system FMECAs
often only address software failures via the
failures modes of hardware hosting the software.

Despite having been observed on a small sample
set, this approach is based on proven concepts
and has already showed promise in the few
attempts performed on BOP control systems as
it helped shed light on otherwise overlooked
SPFMs. In three separate trials of applying this
approach DNV was able to identify a combined
amount of 224 failure modes at a low cost (one
to two extra days for the SFMECA were added
to the hardware FMECA which typically ran
between 7 to 10 days). The identification of
these failure modes lead to mitigation actions
that improved the hardware design and also
enhance the verification and validation strategy.
Since these SPFMs and their test cases were
identified early in the system life cycle, the
findings could be addressed with the most cost
effectiveness.

7. Acknowledgements
This paper is supported by DNV GL Approval
Center Korea. I also acknowledge the
encouragement and assistance provided by my
colleague and mentor, David N. Card, ISDS
Senior Principal Specialist. Mr. Card is listed in
Who's Who in Science and Technology and has

received several awards for his professional
activities from CSC, NSF, NASA, IEEE, and
AIAA.

8. Definitions

8.1. Terms
Commercial Off-The-Shelf (COTS): COTS
products are ready-made packages sold off-the-
shelf to the acquirer who had no influence on its
features and other qualities. Typically the
software is sold pre-wrapped with its user
documentation [ISO/IEC 25051:2006(E)].

Critical: Any function or component whose
failure could interfere significantly with the
operation or activity under consideration [DNV-
OS-D203].

Defect: Non-fulfilment of a requirement related
to an intended or specified use [ISO 9000: 2005].

Factory Acceptance Tests (FAT): Acceptance
testing (see above) of a component, sub-system
or system before delivery and integration.

Failure: The termination of the ability of a
functional unit to perform a required function on
demand [IEC 60812:2006]

Failure mode: A defined manner in which a
failure can occur [IEC 60812:2006]. Failure
modes can be seen as scenarios for how a system
can go wrong.

Fault: Abnormal condition that may cause a
reduction in, or loss of, the capability of a
functional unit to perform a required function
excluding the inability during preventive
maintenance or other planned actions, or due to
lack of external resources [IEC 61508-4].

Firmware: The combination of a hardware
device and computer instructions and data that

2015 IADC Critical Issues Asia Pacific Conference

Page 14 of 16
Proceedings for the International Association Of Drilling Contractors (IADC)

2015 Critical Issues Asia Pacific November 18-19, 2nd edition

reside as read-only software on that device
[IEEE 610.12:1990].

Functional requirement: A requirement that
specifies a function that a system or system
component must be able to perform [IEEE
610.12:1990].

Hardware In the Loop (HIL), a testing technique
using simulators to simulate external conditions.

Peer review: A process of subjecting an author's
work to the scrutiny of others who are experts in
the same field.

Proven in use: The proven-in-use analysis
should investigate failure data from previous
systems that have been operated in a controlled
way, e.g., all errors and software changes must
have been recorded [DNV-OS-D203]

Redundancy: The existence of more than one
means for performing a required function or for
representing information [IEC 61508-4].
Redundancy prevents the entire system from
failing when one component fails.

Requirement: A condition or capability that must
be met or possessed by a system or system
component to satisfy a contract, standard,
specification, or other formally imposed
documents [IEEE 610.12:1990].

Reused software: Software integrated into the
system that is not developed during the project,
i.e., both standard software and non-standard
legacy software. Software can be reused “as-is”
or be configured or modified [DNV-OS-D203].

Review: Activity undertaken to determine the
suitability, adequacy and effectiveness of the
subject matter to achieve established objectives
[ISO 9000:2005].

Risk: The qualitative or quantitative likelihood
of an accident or unplanned event occurring,
considered in conjunction with the potential

consequences of such a failure. In quantitative
terms, risk is the quantified probability of a
defined failure mode times its quantified
consequence [DNV-OSS-300].

Safety integrity level (SIL): A relative level of
risk-reduction provided by a safety function, or
to specify a target level of risk reduction [IEC
61508].

Software: Computer programs, procedures, and
possibly associated documentation and data
pertaining to the operation of a computer system
[IEEE 610.12:1990].

Software Component: A software component is
an interacting set of software modules [DNV-
OS-D203].

Software Module: Separately compliable or
executable piece of source code. It is also called
“Software Unit” or “Software Package”
[ISO/IEC 12207:2008]. A small self-contained
program which carries out a clearly defined task
and is intended to operate within a larger
program [DNV-OS-D203].

Specification: A document that specifies, in a
complete, precise, verifiable manner, the
requirements, design, behaviour, or other
characteristics of a system or component, and,
often, the procedures for determining whether
these provisions have been satisfied [IEEE
610.12:1990].

System Design Review: A review conducted to
evaluate the manner in which the requirements
for a system have been allocated to
configuration items, the system engineering
process that produced the allocation, the
engineering planning for the next phase of the
effort, manufacturing considerations, and the
planning for production engineering [IEEE
610.12:1990].

2015 IADC Critical Issues Asia Pacific Conference

Page 15 of 16
Proceedings for the International Association Of Drilling Contractors (IADC)

2015 Critical Issues Asia Pacific November 18-19, 2nd edition

Traceability: Linkage between requirements and
subsequent work products, e.g. design
documentation and test documentation [DNV-
OS-D203.]

Traceability matrix: A matrix that records the
relationship between two or more products of
the development process; for example, a matrix
that records the relationship between the
requirements and the design of a given software
component [IEEE 610.12:1990].

Validation: Confirmation, through the provision
of objective evidence that the requirements for a
specific intended use or application have been
fulfilled [ISO 9000:2005].

Verification: Tasks, actions and activities
performed to evaluate progress and effectiveness
of the evolving system solutions (people,
products and process) and to measure
compliance with requirements. Analysis
(including simulation, demonstration, test and
inspection) are verification approaches used to
evaluate: risk; people, product and process
capabilities; compliance with requirements, and
proof of concept [INCOSE SE 2004].

Verification strategy: Identification (e.g., list) of
verification activities to be performed, along
with verification methods, objectives, and
responsibility assigned to them. The purpose of
this strategy is to minimize redundancy and
maximize effectiveness of the various
verification activities [DNV-OS-D203].

8.2. Abbreviations
BOP: Blow Out Preventer
CPU: Central Processing Unit
DNV: Det Norkse Veritas (Classification society
now merged with GL)
EDS: Emergency Disconnect System
FMEA: Failure Mode and Effects analysis

FMECA: Failure Modes, Effects and Criticality
Analysis
HMI: Human Machine Interface
OEM: Original Equipment Manufacturer
PLC: Programmable Logic Controller
PFM: Potential Failure Mode
SCADA: Supervisory Control And Data
Acquisition
SFMECA: Software FMECA
SPFM: Software Potential Failure Mode

9. References
																																																													
[1] Software Management for Integrated control
system based on ISDS notation, Drillship & Semi-Rig
& Jackup Rig, session 5, Offshore Korea conference,
November 13th 2014

[2] Integrated Software Dependent System, Offshore
Class notation DNV-OS-D203, B.RAMS.3

[3] Ristord, L. & Esmenjaud, C., 2001, FMEA Per-
ored on the SPINLINE3 Operational System Software
as part of the TIHANGE 1 NIS Refurbishment Safety
Case. CNRA/CNSI Workshop 2001–Licensing and
Operating Experience of Computer Based I&C
Systems. Ceské Budejovice–September 25–27, 2001.

[4] Lutz, R.R. & Shaw, H–Y., 1999a, Applying
Adaptive Safety Analysis Techniques. Proceedings of
the Tenth International Symposium on Software
Reliability Engineering, Boca Raton, FL, Nov 1–4,
1999.

[5] James R. Kotterman, Narrow(er) FOCUS,
Tapping into a powerful new method to better
identify potential failure modes. Quality Progress
Journal -p.23-28, January issue 2015

[6] McCabe, Structured Testing: A Software Testing
Methodology Using The Cyclomatic Complexity
Metric, National Bureau of Standards Special
Publication 500-99.

[7] T.J. McCabe, “A Complexity Measure” IEEE
Transactions on Software Engineering. Vol. SE-2, no.
4. Dec. 1976. Pp. 308-320

[8] T.J. McCabe, and associates, Inc. Structured
Testing Workbook, 14th Edition

2015 IADC Critical Issues Asia Pacific Conference

Page 16 of 16
Proceedings for the International Association Of Drilling Contractors (IADC)

2015 Critical Issues Asia Pacific November 18-19, 2nd edition

																																																																																											

Biography

Patrick Rossi
Senior ISDS Approval Engineer
Integrated Software Dependent Systems
DNV GL, Approval Centre Korea
patrick.rossi@dnvgl.com,
patrick_rossi@hotmail.com

Patrick graduated with a Masters degree in
Automated Production Engineering in 2000. He
held different posts in various projects ranging
from manufacturing quality assurance to
software quality assurance in the aerospace,
automation, maritime and offshore industries in
Europe until 2013 when he joined the South
Korean approval centre as an Integrated
Software Dependent System (ISDS) senior
approval engineer for offshore newbuild projects.
Patrick is lead surveyor for ISDS projects for
high tech drilling vessels destined for the North
Sea and is a contributor for the ISDS class
notation targeted at increasing software
dependent system reliability in the offshore
drilling industry.

	

