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Abstract−  Provisions within offshore rules 
and standards address practically all stages of 
hardware component life cycles of complex 
control systems, but relatively little towards 
software reliability. More guidance is needed 
on how to approach software alongside 
hardware in Failure Modes and Criticality 
Analysis of software dependent control 
systems for the offshore oil & gas industry. 
Recently DNV has performed software 
FMECAs on BOP control systems using 
techniques that enable software components 
to be assessed alongside hardware 
components using a common risk criticality 
calculation matrix. These FMECAs have 
shown to be useful in identifying hidden 
failure modes that would otherwise have been 
missed in the usual industry practice which 
often limits the consideration of software by 
targeting the hardware failure modes of 
components hosting the software (e.g. CPU) 
rather than the software components 
themselves (e.g. Function Block, library, 
critical software routines within the code, 

etc.). DNV’s approach lead to software design 
decisions and new test cases being added to 
the testing program. These additions reduced 
and mitigated risks of software failure modes 
thus increasing the robustness of the BOP 
control systems. This approach involves 
reverse engineering of topology information, 
understanding the mechanisms of software 
failure modes and identifying unforeseen 
software consequences of hardware failure 
modes. Although the primary target of this 
paper are designers of well control systems, it 
is likely that most other offshore control 
system engineers will find the approach 
presented and examples of software failure 
modes to be useful in their future efforts for 
improved software dependent system 
reliability. 
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1. INTRODUCTION 
As oil resources are increasingly difficult to 
access, oil companies are driven towards deeper 
waters, harsher weather down to moving 
production equipment on the seabed for deep-
water unmanned and fully automated oil 
production facilities. These solutions are 
increasingly dependent on the extensive use of 
software. 

Safety analysis studies are performed in the 
early phases of newbuild projects in order to 
increase the reliability of these critical systems 
and techniques have been standardized to help 
the industry maintain risks of system failure to a 
minimum. 

However when it comes to the offshore 
standards, there is much more focus on hardware 
than software reliability. Provisions within 
offshore rules and standards address practically 
all stages of hardware component life cycles 
ranging from single component design to the 
integration and commissioning of complex 
control systems onboard drilling vessels. 

The different focus level on software reliability 
versus hardware reliability may be in part due to 
the abstract and intangible nature of software 
making it more difficult to instinctively identify 
software as being components that merit just as 
much attention and rigor as do the hardware 
components of the offshore industry. 

Lately Hyundai Heavy Industry shipbuilding 
division has also recognized that up until 
recently software has been somewhat neglected 
in their usual Newbuild project lifecycle [1]. 

Another reason for the difference in focus could 
be attributed to the lack of guidance on software 
reliability in this industry. This in turn leads to a 
lack of consideration of software during system 
safety and reliability analysis studies. Failure 
Mode and Criticality Analysis (FMECA) 

techniques have been standardized in IEC 60812 
and referenced in offshore standards, yet little 
guidance can be found on how to treat software 
components during the analysis. Since hardware 
failure modes (e.g. bursting of gas pipe) are 
often mitigated by software functions (e.g. 
Emergency System Disconnect (ESD)), and 
software failure modes (e.g. fail to close valve 
command) are often mitigated by hardware 
components (e.g. redundant controller, or local 
manual operation), one could expect that both 
hardware and software system component 
failures would be assessed during FMECAs, 
however this is not a common practice in this 
industry. 

Recently Det Norske Veritas (DNV) has 
performed software FMECAs on Blow Out 
Preventer (BOP) control systems using 
techniques that enable software components to 
be assessed alongside hardware components 
using a common risk calculation matrix. 

These FMECAs have shown to be useful in 
identifying hidden failure modes that would 
otherwise have been missed in the usual industry 
practice. DNV’s approach lead to software 
design decisions and extra system test cases that 
were added to the testing program. These 
additions reduced and mitigated risks of 
software failure modes thus increasing the 
robustness of the BOP control systems. 

This paper provides guidance on how to 
approach software alongside hardware in Failure 
Modes and Criticality Analysis of software 
dependent control systems for the offshore oil & 
gas industry by reverse engineering software 
topology information, understanding the 
mechanisms of software failure modes and 
identifying unforeseen software consequences of 
hardware failure modes. Although the primary 
target of this paper are designers of well control 
systems, it is likely that most other offshore 
control system engineers will find the approach 
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presented and examples of software failure 
modes to be useful in their future efforts for 
improved software dependent system reliability. 

2. Objective 
While compliance to regulatory requirement to 
perform a System Failure Mode and Effects 
analysis (FMEA) are often the main driver 
behind the investments for conducting safety 
analysis studies,  the methodology presented in 
this paper aims to help improve the reliability of 
the software dependent system and reduce costs 
by discovering design faults early in the life 
cycle phases. The proposed approach for 
Software FMECA (SFMECA) will ultimately 
drive both product and process improvements. 
Product improvements because design changes 
are part of the possible mitigation actions, and 
process improvements because a SFMECA is a 
great tool for enhancing the test programs.  

3. Approach 
The key elements of the FMECA analysis 
generally follows the following steps (IEC 
60300-3-1:2003 - A.1.7.3): 

• identification of how the component of 
system should perform; 

• identification of potential failure modes, 
effects and causes; 

• identification of risk related to failure 
modes and its effects; 

• identification of recommended actions 
to eliminate or reduce the risk; 

• follow-up actions to close out the 
recommended actions. 

In this paper the standard FMECA approach is not 
presented in its entirety (see IEC 60812). This 
paper will instead focus on the extension of the 
usual practice of applying FMECA process to 
hardware by adding Software Potential Failure 
Modes (SPFMs) to the analysis. We will start by 

first addressing key aspects of the preparation 
work followed by the suggested steps of a 
SFMECA workshop. Lastly we will touch upon 
some important considerations to keep in mind 
during the process and present some examples of 
the types of failure modes that have been identified 
applying this approach on BOP control systems. 

3.1. Mapping the software to the 
system scope 

In this paper we will assume that the system 
boundaries have already been determined so the 
next step would be to prepare the FMECA 
worksheet. In order to prepopulate the FMECA 
table with software components and functions, 
the system design information needs to be 
assessed: 

• What are the functions, especially 
critical functions? 

• Where will the software be executed and 
data transmitted (Programmable Logic 
Controllers (PLC), Central Processing 
Units (CPU), Switches, Input/Output 
(I/O) modules)? 

• What are the different software 
packages to be deployed? 

• How do the software packages 
communicate with the outside world and 
with each other (interfaces, protocols)? 

These questions lead to the identification of the 
necessary information that will be needed as 
inputs to the SFMECA such as functional design 
specifications, electrical and communication 
drawings, software architecture and/or topology. 

A common problem in the offshore industry is 
that software design information is not always 
available or completed during the usual design 
phase of the newbuild project lifecycle; either 
the system is novel or the available software 
developed by the suppliers of control systems 
lacks traceability to software design information 
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such as a software architecture or topology. The 
topology should be pre-existing; however as a 
backup this can easily be reverse engineered by 
using the existing knowledge of the types of 
software to be deployed and any available 
electrical and communications drawings.	 For 
example let’s imagine that the diagram in Figure 
1 is actually an electrical/communication 
drawing representing the scope of the distributed 
PLC & Computer based BOP control system 
(sensors, grounding, power, pushbuttons and x-
interfaces, etc. have been left-out for simplicity). 

(Step 1) The first thing we would need to do is 
identify all CPUs, PLCs, Switches & I/O 
modules on which the software will be running 
(Windows, Siemens Step-7, PLC application 
software & Firmware; etc.). The idea here is to 
identify all the CPUs and microprocessors 
within the electrical and communications 
drawings. If there is a CPU on these drawings, 
chances are that there will be software running 
on it. Figure 1 shows an example of tagged 
CPUs, PLCs, I/O Modules & Switches on a 
given drawing: 

 

Figure 1: Example of drawing on which CPUs, I/O modules and Switches are identified 
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(Step 2) Once we have identified all the 
hardware on which software will be running 
and/or transmitting, we will need to list all 
software packages, firmware and operating 
systems to be deployed on this hardware. For 
example we might be aiming to deploy 
Windows, Siemens Step-7, Original Equipment 
Manufacturer (OEM) firmware, the PLC 
application software, (e.g. BOP stack control, 
HPU control, etc.). (Step 3) The next step is to 

retrace the communication links and protocols 
and build the software topology by mapping the 
identified software in (Step 2) to the hardware 
identified in (Step 1) and sequentially 
numbering the Software Components (SC) in the 
resulting topology (sc.#..). (Step 4) Lastly we 
shall ensure that we have accounted for all the 
known software functions by allocating them to 
the software topology created in (step 3) such as 
the example shown in Figure 2 : 

 

Figure 2: Example of software topology (right) reversed engineered from electrical and communications drawings 

An effective way to ensure that all of the 
software functions have been accounted for is to 
use a requirements traceability matrix that traces 
all the requirements through the design 
information and down to the test cases; adding a 
column referencing the software components 
identified on the software topology (sc.#___) 
helps to then sort the traceability matrix table in 

order to list all software functions within a given 
component. If no requirements traceability 
matrix is available then the facilitator should 
mark-off each section of the design 
documentation describing software functions 
and reference which software component hosts 
the given function within the design 
documentation. 

Functional Specs

SW FunctionsRequirements
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3.2. Prepopulating the FMECA 
table 

An another important step of the preparation 
process will be to address the appropriate level 
of granularity; that is the lowest functional level 
on which failure mode analysis will later be 
performed. Too high of a level will not produce 
much more added value than a pure hardware 
FMECA, and too low of a level of detail will 
swamp the team with tedious repetitive work 

that will have an adverse effect on the team’s 
participation. That said the level of granularity 
will depend on the level of available information; 
as a rule of thumb we will use the lowest level of 
functions described in the functional design 
specifications such as valve commands, 
interlocks, Emergency Disconnect System (EDS) 
sequences, Human Machine Interface (HMI) 
functions, watchdogs, etc. Table 1 shows an 
example of a prepopulated SFMECA table and 
details the level of granularity up to the failure 
modes:

 

Table 1: Example of a prepopulated SFMECA table 

  

ID Function/Item Purpose of 
function/item FAILURE MODE CAUSE LOCAL

EFFECT
GLOBAL 
EFFECT 

CURRENT SAFEGUARDS
/ MITIGATING 

ACTIONS

FAILURE 
DETECTION TY

P
E

C
O

N
S

P
R

O
B

R
IS

K Mitigation 
action

1 Driller’s panel

1.1 DP-PLC CPU … No processing HW
Failure

Virus Loss of 
PLC

Loss of
functions Antivirus policy Alarm USB 

limitations

1.1.1 BOP Stack Control 
(SW component)

Reference to SW 
topology #sc.7

Delayed output
No output

Spurious output
Wrong output

1.1.1.1 LMRP Unlatch
(SW function)

Reference to 
requirement/spec 

chapter

Delayed output
No output

Spurious output
Wrong output

1.1.1.2
Close Blind Shear 

Ram
(SW function)

Reference to 
requirement/spec 

chapter

Delayed output
No output

Spurious output
Wrong output

1.1.1.3 EDS
(SW function)

Reference to 
requirement/spec 

chapter

Delayed output
No output

Spurious output
Wrong output

… … … …
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3.3. Narrowing down the 
Fundamental SPFMs 

Prepopulating failure modes with a narrowed 
down number of types of failure modes will 
greatly reduce the vast realm of SPFMs and will 
save you time consuming discussions during the 
workshop. The need for narrowing down the 
potential failure modes has also been discussed 
in standards and literature [2, 3, 4, 5]. In this 
approach we propose to narrow down the 
SPFMs to four (4) fundamental types of 
software failures: 

 

During the workshop we will eliminate SPFMs 
depending on their relevance and the function’s 
criticality. Also the facilitator should pay 
attention to team’s reaction; if the SPFM does 
not trigger interest then it can simply be deleted, 
otherwise when the team is in doubt or 
demonstrates interest then it should be kept in. 

3.4. Mapping the software 
probability of failure to a 
common HW & SW 
risk/criticality matrix 

Software by itself is harmless; it is only when 
uploaded to microcontrollers and other CPUs 
controlling physical elements that their failures can 
lead to consequences in the physical world. This 
means that ultimately the consequences of software 
failures will lead to the same as for the hardware 
failures. Therefore the difficulty of using a common 
risk/criticality calculation matrix is not in 
determining the consequence categories but rather in 
mapping the scale of probabilities of failure. For 
hardware we usually dispose of manufacturer data 

and field experience but for software the problem is 
different. This approach proposes a simple and easy 
to use method of mapping the software probability of 
failure scale to the hardware scale that we will 
assume has already been determined for the usual 
hardware FMECA workshop. To do this we propose 
three criteria joined by a fourth overriding one:  

• Technology robustness: for example 
Windows based technology is known to 
have a higher failure rate than PLC based 
technology… 

• Logic complexity: the correlation between 
the logic complexity and defect-prone 
software has been validated in the literature 
[6, 7, 8]; when assessing a SPFM for its 
probability of failure, invite the software 
engineers to categorise the software 
function’s complexity (e.g.: straight forward 
logic, medium or complex).  

• Proven in use: when a software module or 
function has been proven in use and is not 
subject to any modification for the target 
system under analysis, the probability of 
failure can be lowered as the software 
defects are more likely to have been 
identified and removed throughout the years 
of its use in the industry. On the other 
hand when a known software function is to 
be tailored or modified, then new software 
defects may be introduced during its 
modification and the probability of failure 
increases in turn. For this reason, any 
alteration to reused software should 
disqualify it as being “proven in use”, in 
other words altered software should not be 
considered as proven in use. 

• SMEs’ field experience: lastly the 
probability of failure can be overridden by 
the SMEs depending on the team’s 
discussions as they may have field 
experience on known failure modes of 
certain software packages etc. 

In the example below we have used the above criteria 
to create a scale of 1 to 5 which maps to the scale of 
hardware failure probabilities: 
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Figure 3: Mapping the software probability of failure scale alongside the hardware provides a common risk/criticality 
calculation matrix 

  

Probability

Software Category
PLC (‘Limited 
variability’)

‘Windows’ 
based

Straight forward logic 1 2
Complex logic, but not altered/Straight forward but altered* logic 2 3
Complex and altered logic 3 4
Complex and newly developed 4 5

No/Minor Moderate Major 1-3 Multiple 
Opportun

istic
Stop / 
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1-3 days 
of 

downtime

3-10 
days of 
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Mean time to failure ~= 10,000 years

1 L L L L M

Remote
Has occurred in Oil & Gas Industry; 1×10 (̂-3)
Mean time to failure ~= 1,000 years

2 L L M M M

Occasional
Has been experienced by most operators; 
1×10 (̂-2); Mean time to failure ~= 100 years

3 L M M H H

Probable
Happens several times per year, per operator
1×10 (̂-1); Mean time to failure ~= 10 years

4 L M H H H

Frequent
Happens several times per year, per facility
1×10 (̂0); Mean time to failure ~= 1 year

5 M M H H H

Pr
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ab
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ty

TYPE OF CONSEQUENCE Consequence
S - Safety (Injuries)

P - Production Loss / Business Risk
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3.5. Mutual effects of SW/HW 
failures  

It is worthwhile to assess the mutual effects of 
software and hardware failure modes. For 
example software has been known to escalate 
failure consequences in the past; a mechanical 
failure of a limit switch lead to severe damage of 
the equipment since the software misinterpreted 
the actual position of the equipment during 
critical manoeuvres. Designers of control 
systems should consider: 

• How will the equipment react to a given 
software failure mode? 

• How will the software react faced with a 
hardware failure, loss of sensor, 
erroneous sensor, sensor missing from 
design, or faulty position of the 
equipment? 

• Are there common mode failures being 
introduced by hardware redundancy 
(redundant hardware running same 
software…)? 

These questions are useful in that they will bring 
value and help elaborate on the failure 
consequences during the breaking down of 
critical function as seen in Figure 4. 

3.6. Breaking down of critical 
functions  

On top of identifying and ranking SPFMs, 
getting the SMEs to agree on a list of critical 
software functions that require special attention 
will also help capture interesting failure modes 
and mitigation actions. As it is not practical to 
test all theoretical branches of software 
execution paths which run up to 2n paths where 
n is the number of conditions within a function, 
and if this function contains conditional loops 
then the result may lead to an infinite number of 
paths [6]. Inviting the team to also pre-select a 

list of critical functions will help cover more 
ground at a minor cost and will help keep the 
teams’ attention fresh throughout the workshop. 
The list of critical functions could look like EDS, 
Safety critical functions, Regulatory sensitive 
functions, etc. 

Zooming-in and breaking down these critical 
functions will help elaborate on the failure 
consequences and identify mitigation actions. 
One easy and intuitive way to do this is to draft 
the flow chart of a function’s process flow and 
analyze what would be the cascading 
consequences of a function failing at a given 
step while considering software interlocks, 
timers, calls to libraries, detection of faulty 
sensors, etc. Figure 4 shows an example of this: 

 

Figure 4: Breaking down a critical function to elaborate 
on the failure consequences 

3.7. Analyzing HMI failure modes  
When coming across mimics or screenshots of 
HMIs within the design documents, existing or 
to be developed, the facilitator should ask the 
SMEs if there is logic embedded within the HMI 
or Supervisory Control And Data Acquisition 
(SCADA) that will be executed for a given 
command/push button or if it is simply 
requesting the execution of some program code 
to be executed in a remote PLC for example. 

Input 
signal/start 
command

step3

step5

Do these steps call to other 
blocks of software? If so identify 
where and reference the SW 
component from SW topology 
sc.#...

What if there is no response 
back from these called 
functions? How will the 
software/hardware react?

What if these called functions 
fail? How will the 
software/hardware react?

step2

step4

step1
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This probing will help bring forward implicit 
software functions (and SPFMs) executed within 
the HMI/SCADA software that may otherwise 
get overlooked. It is worth highlighting even if 
an HMI is simply waiting for a return from 
another code execution before completing a 
sequence or giving back the command to the 
operator; as we will show later in the examples, 
crashing of the HMI at the wrong time can also 
lead to serious undesired effects. 

3.8. Determination and tracking of 
mitigation actions  

Risk mitigation actions aim to reduce the 
consequences and probability of software 
defects from surfacing during operations. The 
implementation of the mitigation actions are 
typically confirmed during software verification 
and validation activities: design peer reviews, 
software code peer reviews, unit testing, Factory 
Acceptance Testing (FAT), Hardware In the 
Loop (HIL) testing.  

One temptation that must be avoided during the 
workshop is to assume the mitigation actions to 
be already in place. Members of the workshop 
team may suggest lowering the probability of 
failure of a SPFM because they are assuming the 
suggested SPFM will already have been 
discovered by the time the system is deployed, 
because they are basing their assumption on the 
fact that the software is scheduled for testing 
before it leaves the factory. However the 
probability of failure should not be lowered on 

this basis, rather it should be kept as initially 
determined, and if the resulting level of risk 
requires action, then the action to include this 
failure mode in the test program will be recorded 
and tracked with the help of QA (rather than 
assuming the future test program will address 
the SPFM in question). 

Mitigation actions must therefore be considered 
as actions to be carried out and tracked via 
documented evidence confirming that the 
mitigating verification & validation activities 
have been carried-out. Teaming-up with the 
software quality assurance responsible will help 
keep track of these actions. This is especially 
important for new software as the likelihood of 
failure of new software is at its maximum until 
all verification and validation actions have been 
carried-out, including testing of failure modes. 

4. SPFMs found during BOP 
SFMECAs 

DNV has so far tested the proposed approach for 
BOP control system FMECAs on three different 
occasions. The approach has proven to be 
effective in revealing SPFMs that would have 
otherwise been overlooked during the normal 
system FMECA. DNV was able to identify a 
combined amount of 224 failure modes, 11 of 
which were High risks, 22 were Medium and 
191 were Low. The following Table 2 provides a 
sample set of the types of software failure modes 
and mutual effects from hardware failures that 
have been identified using this approach: 
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Table 2: Sample of software failure mode identified using the proposed SFMECA approach 

The sample set given in Table 2 are examples of 
the most significant risks that could later be 
mitigated at a minor cost. The first half of the 
table contains examples of software failure 
modes while the second half contains hardware 
failure modes for which consequences were 
found to be aggravated by the software not being 
designed to handle a given hardware failure. 
Mitigation actions are shown to vary from 
simple additions of time-out logic in the 
software code to the implementation of software 
watchdogs and additions of more situational 
awareness logic also to be described in the 
functional design specifications. In any case the 
failure modes should be added to the testing 
program(s) i.e. Unit, FAT & HIL testing where 
applicable. 

5. Discussion 
The subjectivity of the approach discussed in 
chapter 3.4 can be debated. One could see the 
probability of failure scale of the hardware 
aspect in Figure 3 as having a more 

mathematical approach where failure  categories 
range from 1 X 10(-4) to 1 X 10(0). However the 
determination of these categories is also very 
subjective as they are deeply dependent on the 
experience of the FMEA team. Furthermore, the 
calculated risks are in practice subject to 
arbitration since the team can also override the 
result when it agrees to do so; for example if the 
team is on the fence between choosing a failure 
category, they can decide to tip the scale to the 
highest level to ensure that the risk will mandate 
a mitigation action if the team feels the need to 
do so. 
 
One limitation that has been observed is relation 
to the maturity level of the software design 
information. At the time of a SFMECA analysis, 
a too low level of maturity could potentially be 
in conflict with certain offshore rules. For 
example NORSOK Z-013 states that the basis 
for a risk analysis must be documented, which 
would render the output of a premature system 
FMEA to be non-compliant. However the 
proposed methodology in this paper can be 
applied even when software design information 
is limited or available only in part. Therefore 
despite the often low level of software design 

FUNCTION/ITEM FAILURE MODE CAUSE GLOBAL EFFECT MITIGATION ACTION

Fluid recovery Unexpected 
malfunction

Erroneous 
SW 

configuration
Stack malfunction

Display readback values to help identify wrong 
configuration

Include default setpoints in commissioning procedure

HMI unlatch 
function No output SW defect manual unlatch 

impossible Implement time-out logic in interlock

SCADA No output SW defect

Unable to control 
annular pressure 

leading to collapse of 
casing

Implement high pressure shutdown logic in PLC code, 
addition of this failure mode in HIL testing program

EDS Spurious output SW defect Blowout Extensive testing of new logic, confirm achievement 
of  required SIL level (see IEC 61508)

I/O module No output HW failure
Gas, mud, wellbore 
fluid discharge in 

environment

Software implementation of failure handling logic and 
alarm signaling loss of I/O module

Intrinsically safe
barriers No output HW failure Damage to pump Software implementation of alarm signaling loss of 

barrier

SW valve 
command

Unable to
complete 
command

Mechanical 
problem

Failure to unlatch, 
Blowout, Discharge 

into sea

Additional logic enabling SW interlock to be aware of 
valve position at end of interlock sequence, SW 

Functional spec to be updated.
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information or maturity in the design phase of 
offshore drilling control systems, the SFMECA 
will still drive the quality and reliability of the 
system. A SFMECA update can always be 
performed on the system once the software 
design has been significantly updated. 

6. Conclusion 
As pointed-out in IEC 60812; a FMECA should 
not be used as the single basis for judging 
whether or not the risk of a system is acceptably 
small. “[…] more influential parameters (and 
their interactions) can be taken into account, e.g. 
exposure time, probability of avoidance, latency 
of failures, fault detection mechanisms”. 
However this approach has been observed to add 
value to the conventional methodology observed 
in the offshore industry where system FMECAs 
often only address software failures via the 
failures modes of hardware hosting the software. 
 
Despite having been observed on a small sample 
set, this approach is based on proven concepts 
and has already showed promise in the few 
attempts performed on BOP control systems as 
it helped shed light on otherwise overlooked 
SPFMs. In three separate trials of applying this 
approach DNV was able to identify a combined 
amount of 224 failure modes at a low cost (one 
to two extra days for the SFMECA were added 
to the hardware FMECA which typically ran 
between 7 to 10 days). The identification of 
these failure modes lead to mitigation actions 
that improved the hardware design and also 
enhance the verification and validation strategy. 
Since these SPFMs and their test cases were 
identified early in the system life cycle, the 
findings could be addressed with the most cost 
effectiveness. 
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8. Definitions 

8.1. Terms 
Commercial Off-The-Shelf (COTS): COTS 
products are ready-made packages sold off-the-
shelf to the acquirer who had no influence on its 
features and other qualities. Typically the 
software is sold pre-wrapped with its user 
documentation [ISO/IEC 25051:2006(E)]. 

Critical: Any function or component whose 
failure could interfere significantly with the 
operation or activity under consideration [DNV-
OS-D203]. 

Defect: Non-fulfilment of a requirement related 
to an intended or specified use [ISO 9000: 2005]. 

Factory Acceptance Tests (FAT): Acceptance 
testing (see above) of a component, sub-system 
or system before delivery and integration. 

Failure: The termination of the ability of a 
functional unit to perform a required function on 
demand [IEC 60812:2006]  

Failure mode: A defined manner in which a 
failure can occur [IEC 60812:2006]. Failure 
modes can be seen as scenarios for how a system 
can go wrong. 

Fault: Abnormal condition that may cause a 
reduction in, or loss of, the capability of a 
functional unit to perform a required function 
excluding the inability during preventive 
maintenance or other planned actions, or due to 
lack of external resources [IEC 61508-4]. 

Firmware: The combination of a hardware 
device and computer instructions and data that 
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reside as read-only software on that device 
[IEEE 610.12:1990]. 

Functional requirement: A requirement that 
specifies a function that a system or system 
component must be able to perform [IEEE 
610.12:1990]. 

Hardware In the Loop (HIL), a testing technique 
using simulators to simulate external conditions. 

Peer review: A process of subjecting an author's 
work to the scrutiny of others who are experts in 
the same field. 

Proven in use: The proven-in-use analysis 
should investigate failure data from previous 
systems that have been operated in a controlled 
way, e.g., all errors and software changes must 
have been recorded [DNV-OS-D203] 

Redundancy: The existence of more than one 
means for performing a required function or for 
representing information [IEC 61508-4]. 
Redundancy prevents the entire system from 
failing when one component fails. 

Requirement: A condition or capability that must 
be met or possessed by a system or system 
component to satisfy a contract, standard, 
specification, or other formally imposed 
documents [IEEE 610.12:1990]. 

Reused software: Software integrated into the 
system that is not developed during the project, 
i.e., both standard software and non-standard 
legacy software. Software can be reused “as-is” 
or be configured or modified [DNV-OS-D203]. 

Review: Activity undertaken to determine the 
suitability, adequacy and effectiveness of the 
subject matter to achieve established objectives 
[ISO 9000:2005]. 

Risk: The qualitative or quantitative likelihood 
of an accident or unplanned event occurring, 
considered in conjunction with the potential 

consequences of such a failure. In quantitative 
terms, risk is the quantified probability of a 
defined failure mode times its quantified 
consequence [DNV-OSS-300]. 

Safety integrity level (SIL): A relative level of 
risk-reduction provided by a safety function, or 
to specify a target level of risk reduction [IEC 
61508]. 

Software: Computer programs, procedures, and 
possibly associated documentation and data 
pertaining to the operation of a computer system 
[IEEE 610.12:1990]. 

Software Component: A software component is 
an interacting set of software modules [DNV-
OS-D203]. 

Software Module: Separately compliable or 
executable piece of source code. It is also called 
“Software Unit” or “Software Package” 
[ISO/IEC 12207:2008]. A small self-contained 
program which carries out a clearly defined task 
and is intended to operate within a larger 
program [DNV-OS-D203]. 

Specification: A document that specifies, in a 
complete, precise, verifiable manner, the 
requirements, design, behaviour, or other 
characteristics of a system or component, and, 
often, the procedures for determining whether 
these provisions have been satisfied [IEEE 
610.12:1990]. 

System Design Review: A review conducted to 
evaluate the manner in which the requirements 
for a system have been allocated to 
configuration items, the system engineering 
process that produced the allocation, the 
engineering planning for the next phase of the 
effort, manufacturing considerations, and the 
planning for production engineering [IEEE 
610.12:1990]. 
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Traceability: Linkage between requirements and 
subsequent work products, e.g. design 
documentation and test documentation [DNV-
OS-D203.] 

Traceability matrix: A matrix that records the 
relationship between two or more products of 
the development process; for example, a matrix 
that records the relationship between the 
requirements and the design of a given software 
component [IEEE 610.12:1990]. 

Validation: Confirmation, through the provision 
of objective evidence that the requirements for a 
specific intended use or application have been 
fulfilled [ISO 9000:2005]. 

Verification: Tasks, actions and activities 
performed to evaluate progress and effectiveness 
of the evolving system solutions (people, 
products and process) and to measure 
compliance with requirements. Analysis 
(including simulation, demonstration, test and 
inspection) are verification approaches used to 
evaluate: risk; people, product and process 
capabilities; compliance with requirements, and 
proof of concept [INCOSE SE 2004]. 

Verification strategy: Identification (e.g., list) of 
verification activities to be performed, along 
with verification methods, objectives, and 
responsibility assigned to them. The purpose of 
this strategy is to minimize redundancy and 
maximize effectiveness of the various 
verification activities [DNV-OS-D203]. 

8.2. Abbreviations 
BOP: Blow Out Preventer 
CPU: Central Processing Unit 
DNV: Det Norkse Veritas (Classification society 
now merged with GL) 
EDS: Emergency Disconnect System 
FMEA: Failure Mode and Effects analysis 

FMECA: Failure Modes, Effects and Criticality 
Analysis 
HMI: Human Machine Interface 
OEM: Original Equipment Manufacturer 
PLC: Programmable Logic Controller 
PFM: Potential Failure Mode 
SCADA: Supervisory Control And Data 
Acquisition 
SFMECA: Software FMECA 
SPFM: Software Potential Failure Mode 
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